SystemZISelLowering.cpp revision df40f8e8ad0aa93defa44b8a136e8d871cfd44ea
1//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SystemZTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "systemz-lower"
15
16#include "SystemZISelLowering.h"
17#include "SystemZCallingConv.h"
18#include "SystemZConstantPoolValue.h"
19#include "SystemZMachineFunctionInfo.h"
20#include "SystemZTargetMachine.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25
26using namespace llvm;
27
28// Classify VT as either 32 or 64 bit.
29static bool is32Bit(EVT VT) {
30  switch (VT.getSimpleVT().SimpleTy) {
31  case MVT::i32:
32    return true;
33  case MVT::i64:
34    return false;
35  default:
36    llvm_unreachable("Unsupported type");
37  }
38}
39
40// Return a version of MachineOperand that can be safely used before the
41// final use.
42static MachineOperand earlyUseOperand(MachineOperand Op) {
43  if (Op.isReg())
44    Op.setIsKill(false);
45  return Op;
46}
47
48SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm)
49  : TargetLowering(tm, new TargetLoweringObjectFileELF()),
50    Subtarget(*tm.getSubtargetImpl()), TM(tm) {
51  MVT PtrVT = getPointerTy();
52
53  // Set up the register classes.
54  addRegisterClass(MVT::i32,  &SystemZ::GR32BitRegClass);
55  addRegisterClass(MVT::i64,  &SystemZ::GR64BitRegClass);
56  addRegisterClass(MVT::f32,  &SystemZ::FP32BitRegClass);
57  addRegisterClass(MVT::f64,  &SystemZ::FP64BitRegClass);
58  addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
59
60  // Compute derived properties from the register classes
61  computeRegisterProperties();
62
63  // Set up special registers.
64  setExceptionPointerRegister(SystemZ::R6D);
65  setExceptionSelectorRegister(SystemZ::R7D);
66  setStackPointerRegisterToSaveRestore(SystemZ::R15D);
67
68  // TODO: It may be better to default to latency-oriented scheduling, however
69  // LLVM's current latency-oriented scheduler can't handle physreg definitions
70  // such as SystemZ has with CC, so set this to the register-pressure
71  // scheduler, because it can.
72  setSchedulingPreference(Sched::RegPressure);
73
74  setBooleanContents(ZeroOrOneBooleanContent);
75  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
76
77  // Instructions are strings of 2-byte aligned 2-byte values.
78  setMinFunctionAlignment(2);
79
80  // Handle operations that are handled in a similar way for all types.
81  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
82       I <= MVT::LAST_FP_VALUETYPE;
83       ++I) {
84    MVT VT = MVT::SimpleValueType(I);
85    if (isTypeLegal(VT)) {
86      // Expand SETCC(X, Y, COND) into SELECT_CC(X, Y, 1, 0, COND).
87      setOperationAction(ISD::SETCC, VT, Expand);
88
89      // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
90      setOperationAction(ISD::SELECT, VT, Expand);
91
92      // Lower SELECT_CC and BR_CC into separate comparisons and branches.
93      setOperationAction(ISD::SELECT_CC, VT, Custom);
94      setOperationAction(ISD::BR_CC,     VT, Custom);
95    }
96  }
97
98  // Expand jump table branches as address arithmetic followed by an
99  // indirect jump.
100  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
101
102  // Expand BRCOND into a BR_CC (see above).
103  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104
105  // Handle integer types.
106  for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
107       I <= MVT::LAST_INTEGER_VALUETYPE;
108       ++I) {
109    MVT VT = MVT::SimpleValueType(I);
110    if (isTypeLegal(VT)) {
111      // Expand individual DIV and REMs into DIVREMs.
112      setOperationAction(ISD::SDIV, VT, Expand);
113      setOperationAction(ISD::UDIV, VT, Expand);
114      setOperationAction(ISD::SREM, VT, Expand);
115      setOperationAction(ISD::UREM, VT, Expand);
116      setOperationAction(ISD::SDIVREM, VT, Custom);
117      setOperationAction(ISD::UDIVREM, VT, Custom);
118
119      // Expand ATOMIC_LOAD and ATOMIC_STORE using ATOMIC_CMP_SWAP.
120      // FIXME: probably much too conservative.
121      setOperationAction(ISD::ATOMIC_LOAD,  VT, Expand);
122      setOperationAction(ISD::ATOMIC_STORE, VT, Expand);
123
124      // No special instructions for these.
125      setOperationAction(ISD::CTPOP,           VT, Expand);
126      setOperationAction(ISD::CTTZ,            VT, Expand);
127      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
128      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
129      setOperationAction(ISD::ROTR,            VT, Expand);
130
131      // Use *MUL_LOHI where possible instead of MULH*.
132      setOperationAction(ISD::MULHS, VT, Expand);
133      setOperationAction(ISD::MULHU, VT, Expand);
134      setOperationAction(ISD::SMUL_LOHI, VT, Custom);
135      setOperationAction(ISD::UMUL_LOHI, VT, Custom);
136
137      // We have instructions for signed but not unsigned FP conversion.
138      setOperationAction(ISD::FP_TO_UINT, VT, Expand);
139    }
140  }
141
142  // Type legalization will convert 8- and 16-bit atomic operations into
143  // forms that operate on i32s (but still keeping the original memory VT).
144  // Lower them into full i32 operations.
145  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
146  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
147  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
148  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
149  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
150  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
151  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
152  setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
153  setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
154  setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
155  setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
156  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
157
158  // We have instructions for signed but not unsigned FP conversion.
159  // Handle unsigned 32-bit types as signed 64-bit types.
160  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
161  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
162
163  // We have native support for a 64-bit CTLZ, via FLOGR.
164  setOperationAction(ISD::CTLZ, MVT::i32, Promote);
165  setOperationAction(ISD::CTLZ, MVT::i64, Legal);
166
167  // Give LowerOperation the chance to replace 64-bit ORs with subregs.
168  setOperationAction(ISD::OR, MVT::i64, Custom);
169
170  // FIXME: Can we support these natively?
171  setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
172  setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
173  setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
174
175  // We have native instructions for i8, i16 and i32 extensions, but not i1.
176  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
177  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
178  setLoadExtAction(ISD::EXTLOAD,  MVT::i1, Promote);
179  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
180
181  // Handle the various types of symbolic address.
182  setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
183  setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
184  setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
185  setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
186  setOperationAction(ISD::JumpTable,        PtrVT, Custom);
187
188  // We need to handle dynamic allocations specially because of the
189  // 160-byte area at the bottom of the stack.
190  setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
191
192  // Use custom expanders so that we can force the function to use
193  // a frame pointer.
194  setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
195  setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
196
197  // Handle floating-point types.
198  for (unsigned I = MVT::FIRST_FP_VALUETYPE;
199       I <= MVT::LAST_FP_VALUETYPE;
200       ++I) {
201    MVT VT = MVT::SimpleValueType(I);
202    if (isTypeLegal(VT)) {
203      // We can use FI for FRINT.
204      setOperationAction(ISD::FRINT, VT, Legal);
205
206      // We can use the extended form of FI for other rounding operations.
207      if (Subtarget.hasFPExtension()) {
208        setOperationAction(ISD::FNEARBYINT, VT, Legal);
209        setOperationAction(ISD::FFLOOR, VT, Legal);
210        setOperationAction(ISD::FCEIL, VT, Legal);
211        setOperationAction(ISD::FTRUNC, VT, Legal);
212        setOperationAction(ISD::FROUND, VT, Legal);
213      }
214
215      // No special instructions for these.
216      setOperationAction(ISD::FSIN, VT, Expand);
217      setOperationAction(ISD::FCOS, VT, Expand);
218      setOperationAction(ISD::FREM, VT, Expand);
219    }
220  }
221
222  // We have fused multiply-addition for f32 and f64 but not f128.
223  setOperationAction(ISD::FMA, MVT::f32,  Legal);
224  setOperationAction(ISD::FMA, MVT::f64,  Legal);
225  setOperationAction(ISD::FMA, MVT::f128, Expand);
226
227  // Needed so that we don't try to implement f128 constant loads using
228  // a load-and-extend of a f80 constant (in cases where the constant
229  // would fit in an f80).
230  setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
231
232  // Floating-point truncation and stores need to be done separately.
233  setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
234  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
235  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
236
237  // We have 64-bit FPR<->GPR moves, but need special handling for
238  // 32-bit forms.
239  setOperationAction(ISD::BITCAST, MVT::i32, Custom);
240  setOperationAction(ISD::BITCAST, MVT::f32, Custom);
241
242  // VASTART and VACOPY need to deal with the SystemZ-specific varargs
243  // structure, but VAEND is a no-op.
244  setOperationAction(ISD::VASTART, MVT::Other, Custom);
245  setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
246  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
247
248  // We want to use MVC in preference to even a single load/store pair.
249  MaxStoresPerMemcpy = 0;
250  MaxStoresPerMemcpyOptSize = 0;
251
252  // The main memset sequence is a byte store followed by an MVC.
253  // Two STC or MV..I stores win over that, but the kind of fused stores
254  // generated by target-independent code don't when the byte value is
255  // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
256  // than "STC;MVC".  Handle the choice in target-specific code instead.
257  MaxStoresPerMemset = 0;
258  MaxStoresPerMemsetOptSize = 0;
259}
260
261bool
262SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
263  VT = VT.getScalarType();
264
265  if (!VT.isSimple())
266    return false;
267
268  switch (VT.getSimpleVT().SimpleTy) {
269  case MVT::f32:
270  case MVT::f64:
271    return true;
272  case MVT::f128:
273    return false;
274  default:
275    break;
276  }
277
278  return false;
279}
280
281bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
282  // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
283  return Imm.isZero() || Imm.isNegZero();
284}
285
286bool SystemZTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
287                                                          bool *Fast) const {
288  // Unaligned accesses should never be slower than the expanded version.
289  // We check specifically for aligned accesses in the few cases where
290  // they are required.
291  if (Fast)
292    *Fast = true;
293  return true;
294}
295
296bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM,
297                                                  Type *Ty) const {
298  // Punt on globals for now, although they can be used in limited
299  // RELATIVE LONG cases.
300  if (AM.BaseGV)
301    return false;
302
303  // Require a 20-bit signed offset.
304  if (!isInt<20>(AM.BaseOffs))
305    return false;
306
307  // Indexing is OK but no scale factor can be applied.
308  return AM.Scale == 0 || AM.Scale == 1;
309}
310
311bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
312  if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
313    return false;
314  unsigned FromBits = FromType->getPrimitiveSizeInBits();
315  unsigned ToBits = ToType->getPrimitiveSizeInBits();
316  return FromBits > ToBits;
317}
318
319bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
320  if (!FromVT.isInteger() || !ToVT.isInteger())
321    return false;
322  unsigned FromBits = FromVT.getSizeInBits();
323  unsigned ToBits = ToVT.getSizeInBits();
324  return FromBits > ToBits;
325}
326
327//===----------------------------------------------------------------------===//
328// Inline asm support
329//===----------------------------------------------------------------------===//
330
331TargetLowering::ConstraintType
332SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
333  if (Constraint.size() == 1) {
334    switch (Constraint[0]) {
335    case 'a': // Address register
336    case 'd': // Data register (equivalent to 'r')
337    case 'f': // Floating-point register
338    case 'r': // General-purpose register
339      return C_RegisterClass;
340
341    case 'Q': // Memory with base and unsigned 12-bit displacement
342    case 'R': // Likewise, plus an index
343    case 'S': // Memory with base and signed 20-bit displacement
344    case 'T': // Likewise, plus an index
345    case 'm': // Equivalent to 'T'.
346      return C_Memory;
347
348    case 'I': // Unsigned 8-bit constant
349    case 'J': // Unsigned 12-bit constant
350    case 'K': // Signed 16-bit constant
351    case 'L': // Signed 20-bit displacement (on all targets we support)
352    case 'M': // 0x7fffffff
353      return C_Other;
354
355    default:
356      break;
357    }
358  }
359  return TargetLowering::getConstraintType(Constraint);
360}
361
362TargetLowering::ConstraintWeight SystemZTargetLowering::
363getSingleConstraintMatchWeight(AsmOperandInfo &info,
364                               const char *constraint) const {
365  ConstraintWeight weight = CW_Invalid;
366  Value *CallOperandVal = info.CallOperandVal;
367  // If we don't have a value, we can't do a match,
368  // but allow it at the lowest weight.
369  if (CallOperandVal == NULL)
370    return CW_Default;
371  Type *type = CallOperandVal->getType();
372  // Look at the constraint type.
373  switch (*constraint) {
374  default:
375    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
376    break;
377
378  case 'a': // Address register
379  case 'd': // Data register (equivalent to 'r')
380  case 'r': // General-purpose register
381    if (CallOperandVal->getType()->isIntegerTy())
382      weight = CW_Register;
383    break;
384
385  case 'f': // Floating-point register
386    if (type->isFloatingPointTy())
387      weight = CW_Register;
388    break;
389
390  case 'I': // Unsigned 8-bit constant
391    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
392      if (isUInt<8>(C->getZExtValue()))
393        weight = CW_Constant;
394    break;
395
396  case 'J': // Unsigned 12-bit constant
397    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
398      if (isUInt<12>(C->getZExtValue()))
399        weight = CW_Constant;
400    break;
401
402  case 'K': // Signed 16-bit constant
403    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
404      if (isInt<16>(C->getSExtValue()))
405        weight = CW_Constant;
406    break;
407
408  case 'L': // Signed 20-bit displacement (on all targets we support)
409    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
410      if (isInt<20>(C->getSExtValue()))
411        weight = CW_Constant;
412    break;
413
414  case 'M': // 0x7fffffff
415    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal))
416      if (C->getZExtValue() == 0x7fffffff)
417        weight = CW_Constant;
418    break;
419  }
420  return weight;
421}
422
423// Parse a "{tNNN}" register constraint for which the register type "t"
424// has already been verified.  MC is the class associated with "t" and
425// Map maps 0-based register numbers to LLVM register numbers.
426static std::pair<unsigned, const TargetRegisterClass *>
427parseRegisterNumber(const std::string &Constraint,
428                    const TargetRegisterClass *RC, const unsigned *Map) {
429  assert(*(Constraint.end()-1) == '}' && "Missing '}'");
430  if (isdigit(Constraint[2])) {
431    std::string Suffix(Constraint.data() + 2, Constraint.size() - 2);
432    unsigned Index = atoi(Suffix.c_str());
433    if (Index < 16 && Map[Index])
434      return std::make_pair(Map[Index], RC);
435  }
436  return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
437}
438
439std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering::
440getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const {
441  if (Constraint.size() == 1) {
442    // GCC Constraint Letters
443    switch (Constraint[0]) {
444    default: break;
445    case 'd': // Data register (equivalent to 'r')
446    case 'r': // General-purpose register
447      if (VT == MVT::i64)
448        return std::make_pair(0U, &SystemZ::GR64BitRegClass);
449      else if (VT == MVT::i128)
450        return std::make_pair(0U, &SystemZ::GR128BitRegClass);
451      return std::make_pair(0U, &SystemZ::GR32BitRegClass);
452
453    case 'a': // Address register
454      if (VT == MVT::i64)
455        return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
456      else if (VT == MVT::i128)
457        return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
458      return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
459
460    case 'f': // Floating-point register
461      if (VT == MVT::f64)
462        return std::make_pair(0U, &SystemZ::FP64BitRegClass);
463      else if (VT == MVT::f128)
464        return std::make_pair(0U, &SystemZ::FP128BitRegClass);
465      return std::make_pair(0U, &SystemZ::FP32BitRegClass);
466    }
467  }
468  if (Constraint[0] == '{') {
469    // We need to override the default register parsing for GPRs and FPRs
470    // because the interpretation depends on VT.  The internal names of
471    // the registers are also different from the external names
472    // (F0D and F0S instead of F0, etc.).
473    if (Constraint[1] == 'r') {
474      if (VT == MVT::i32)
475        return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
476                                   SystemZMC::GR32Regs);
477      if (VT == MVT::i128)
478        return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
479                                   SystemZMC::GR128Regs);
480      return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
481                                 SystemZMC::GR64Regs);
482    }
483    if (Constraint[1] == 'f') {
484      if (VT == MVT::f32)
485        return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
486                                   SystemZMC::FP32Regs);
487      if (VT == MVT::f128)
488        return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
489                                   SystemZMC::FP128Regs);
490      return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
491                                 SystemZMC::FP64Regs);
492    }
493  }
494  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
495}
496
497void SystemZTargetLowering::
498LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
499                             std::vector<SDValue> &Ops,
500                             SelectionDAG &DAG) const {
501  // Only support length 1 constraints for now.
502  if (Constraint.length() == 1) {
503    switch (Constraint[0]) {
504    case 'I': // Unsigned 8-bit constant
505      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
506        if (isUInt<8>(C->getZExtValue()))
507          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
508                                              Op.getValueType()));
509      return;
510
511    case 'J': // Unsigned 12-bit constant
512      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
513        if (isUInt<12>(C->getZExtValue()))
514          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
515                                              Op.getValueType()));
516      return;
517
518    case 'K': // Signed 16-bit constant
519      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
520        if (isInt<16>(C->getSExtValue()))
521          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
522                                              Op.getValueType()));
523      return;
524
525    case 'L': // Signed 20-bit displacement (on all targets we support)
526      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
527        if (isInt<20>(C->getSExtValue()))
528          Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
529                                              Op.getValueType()));
530      return;
531
532    case 'M': // 0x7fffffff
533      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
534        if (C->getZExtValue() == 0x7fffffff)
535          Ops.push_back(DAG.getTargetConstant(C->getZExtValue(),
536                                              Op.getValueType()));
537      return;
538    }
539  }
540  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
541}
542
543//===----------------------------------------------------------------------===//
544// Calling conventions
545//===----------------------------------------------------------------------===//
546
547#include "SystemZGenCallingConv.inc"
548
549bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
550                                                     Type *ToType) const {
551  return isTruncateFree(FromType, ToType);
552}
553
554bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
555  if (!CI->isTailCall())
556    return false;
557  return true;
558}
559
560// Value is a value that has been passed to us in the location described by VA
561// (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
562// any loads onto Chain.
563static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL,
564                                   CCValAssign &VA, SDValue Chain,
565                                   SDValue Value) {
566  // If the argument has been promoted from a smaller type, insert an
567  // assertion to capture this.
568  if (VA.getLocInfo() == CCValAssign::SExt)
569    Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
570                        DAG.getValueType(VA.getValVT()));
571  else if (VA.getLocInfo() == CCValAssign::ZExt)
572    Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
573                        DAG.getValueType(VA.getValVT()));
574
575  if (VA.isExtInLoc())
576    Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
577  else if (VA.getLocInfo() == CCValAssign::Indirect)
578    Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value,
579                        MachinePointerInfo(), false, false, false, 0);
580  else
581    assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
582  return Value;
583}
584
585// Value is a value of type VA.getValVT() that we need to copy into
586// the location described by VA.  Return a copy of Value converted to
587// VA.getValVT().  The caller is responsible for handling indirect values.
588static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL,
589                                   CCValAssign &VA, SDValue Value) {
590  switch (VA.getLocInfo()) {
591  case CCValAssign::SExt:
592    return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
593  case CCValAssign::ZExt:
594    return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
595  case CCValAssign::AExt:
596    return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
597  case CCValAssign::Full:
598    return Value;
599  default:
600    llvm_unreachable("Unhandled getLocInfo()");
601  }
602}
603
604SDValue SystemZTargetLowering::
605LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
606                     const SmallVectorImpl<ISD::InputArg> &Ins,
607                     SDLoc DL, SelectionDAG &DAG,
608                     SmallVectorImpl<SDValue> &InVals) const {
609  MachineFunction &MF = DAG.getMachineFunction();
610  MachineFrameInfo *MFI = MF.getFrameInfo();
611  MachineRegisterInfo &MRI = MF.getRegInfo();
612  SystemZMachineFunctionInfo *FuncInfo =
613    MF.getInfo<SystemZMachineFunctionInfo>();
614  const SystemZFrameLowering *TFL =
615    static_cast<const SystemZFrameLowering *>(TM.getFrameLowering());
616
617  // Assign locations to all of the incoming arguments.
618  SmallVector<CCValAssign, 16> ArgLocs;
619  CCState CCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
620  CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
621
622  unsigned NumFixedGPRs = 0;
623  unsigned NumFixedFPRs = 0;
624  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
625    SDValue ArgValue;
626    CCValAssign &VA = ArgLocs[I];
627    EVT LocVT = VA.getLocVT();
628    if (VA.isRegLoc()) {
629      // Arguments passed in registers
630      const TargetRegisterClass *RC;
631      switch (LocVT.getSimpleVT().SimpleTy) {
632      default:
633        // Integers smaller than i64 should be promoted to i64.
634        llvm_unreachable("Unexpected argument type");
635      case MVT::i32:
636        NumFixedGPRs += 1;
637        RC = &SystemZ::GR32BitRegClass;
638        break;
639      case MVT::i64:
640        NumFixedGPRs += 1;
641        RC = &SystemZ::GR64BitRegClass;
642        break;
643      case MVT::f32:
644        NumFixedFPRs += 1;
645        RC = &SystemZ::FP32BitRegClass;
646        break;
647      case MVT::f64:
648        NumFixedFPRs += 1;
649        RC = &SystemZ::FP64BitRegClass;
650        break;
651      }
652
653      unsigned VReg = MRI.createVirtualRegister(RC);
654      MRI.addLiveIn(VA.getLocReg(), VReg);
655      ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
656    } else {
657      assert(VA.isMemLoc() && "Argument not register or memory");
658
659      // Create the frame index object for this incoming parameter.
660      int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8,
661                                      VA.getLocMemOffset(), true);
662
663      // Create the SelectionDAG nodes corresponding to a load
664      // from this parameter.  Unpromoted ints and floats are
665      // passed as right-justified 8-byte values.
666      EVT PtrVT = getPointerTy();
667      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
668      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
669        FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4));
670      ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
671                             MachinePointerInfo::getFixedStack(FI),
672                             false, false, false, 0);
673    }
674
675    // Convert the value of the argument register into the value that's
676    // being passed.
677    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
678  }
679
680  if (IsVarArg) {
681    // Save the number of non-varargs registers for later use by va_start, etc.
682    FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
683    FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
684
685    // Likewise the address (in the form of a frame index) of where the
686    // first stack vararg would be.  The 1-byte size here is arbitrary.
687    int64_t StackSize = CCInfo.getNextStackOffset();
688    FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true));
689
690    // ...and a similar frame index for the caller-allocated save area
691    // that will be used to store the incoming registers.
692    int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
693    unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true);
694    FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
695
696    // Store the FPR varargs in the reserved frame slots.  (We store the
697    // GPRs as part of the prologue.)
698    if (NumFixedFPRs < SystemZ::NumArgFPRs) {
699      SDValue MemOps[SystemZ::NumArgFPRs];
700      for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
701        unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
702        int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true);
703        SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
704        unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
705                                     &SystemZ::FP64BitRegClass);
706        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
707        MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
708                                 MachinePointerInfo::getFixedStack(FI),
709                                 false, false, 0);
710
711      }
712      // Join the stores, which are independent of one another.
713      Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
714                          &MemOps[NumFixedFPRs],
715                          SystemZ::NumArgFPRs - NumFixedFPRs);
716    }
717  }
718
719  return Chain;
720}
721
722static bool canUseSiblingCall(CCState ArgCCInfo,
723                              SmallVectorImpl<CCValAssign> &ArgLocs) {
724  // Punt if there are any indirect or stack arguments, or if the call
725  // needs the call-saved argument register R6.
726  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
727    CCValAssign &VA = ArgLocs[I];
728    if (VA.getLocInfo() == CCValAssign::Indirect)
729      return false;
730    if (!VA.isRegLoc())
731      return false;
732    unsigned Reg = VA.getLocReg();
733    if (Reg == SystemZ::R6W || Reg == SystemZ::R6D)
734      return false;
735  }
736  return true;
737}
738
739SDValue
740SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
741                                 SmallVectorImpl<SDValue> &InVals) const {
742  SelectionDAG &DAG = CLI.DAG;
743  SDLoc &DL = CLI.DL;
744  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
745  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
746  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
747  SDValue Chain = CLI.Chain;
748  SDValue Callee = CLI.Callee;
749  bool &IsTailCall = CLI.IsTailCall;
750  CallingConv::ID CallConv = CLI.CallConv;
751  bool IsVarArg = CLI.IsVarArg;
752  MachineFunction &MF = DAG.getMachineFunction();
753  EVT PtrVT = getPointerTy();
754
755  // Analyze the operands of the call, assigning locations to each operand.
756  SmallVector<CCValAssign, 16> ArgLocs;
757  CCState ArgCCInfo(CallConv, IsVarArg, MF, TM, ArgLocs, *DAG.getContext());
758  ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
759
760  // We don't support GuaranteedTailCallOpt, only automatically-detected
761  // sibling calls.
762  if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs))
763    IsTailCall = false;
764
765  // Get a count of how many bytes are to be pushed on the stack.
766  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
767
768  // Mark the start of the call.
769  if (!IsTailCall)
770    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true),
771                                 DL);
772
773  // Copy argument values to their designated locations.
774  SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
775  SmallVector<SDValue, 8> MemOpChains;
776  SDValue StackPtr;
777  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
778    CCValAssign &VA = ArgLocs[I];
779    SDValue ArgValue = OutVals[I];
780
781    if (VA.getLocInfo() == CCValAssign::Indirect) {
782      // Store the argument in a stack slot and pass its address.
783      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
784      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
785      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot,
786                                         MachinePointerInfo::getFixedStack(FI),
787                                         false, false, 0));
788      ArgValue = SpillSlot;
789    } else
790      ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
791
792    if (VA.isRegLoc())
793      // Queue up the argument copies and emit them at the end.
794      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
795    else {
796      assert(VA.isMemLoc() && "Argument not register or memory");
797
798      // Work out the address of the stack slot.  Unpromoted ints and
799      // floats are passed as right-justified 8-byte values.
800      if (!StackPtr.getNode())
801        StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
802      unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
803      if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
804        Offset += 4;
805      SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
806                                    DAG.getIntPtrConstant(Offset));
807
808      // Emit the store.
809      MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address,
810                                         MachinePointerInfo(),
811                                         false, false, 0));
812    }
813  }
814
815  // Join the stores, which are independent of one another.
816  if (!MemOpChains.empty())
817    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
818                        &MemOpChains[0], MemOpChains.size());
819
820  // Accept direct calls by converting symbolic call addresses to the
821  // associated Target* opcodes.  Force %r1 to be used for indirect
822  // tail calls.
823  SDValue Glue;
824  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
825    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
826    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
827  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
828    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
829    Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
830  } else if (IsTailCall) {
831    Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
832    Glue = Chain.getValue(1);
833    Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
834  }
835
836  // Build a sequence of copy-to-reg nodes, chained and glued together.
837  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
838    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
839                             RegsToPass[I].second, Glue);
840    Glue = Chain.getValue(1);
841  }
842
843  // The first call operand is the chain and the second is the target address.
844  SmallVector<SDValue, 8> Ops;
845  Ops.push_back(Chain);
846  Ops.push_back(Callee);
847
848  // Add argument registers to the end of the list so that they are
849  // known live into the call.
850  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
851    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
852                                  RegsToPass[I].second.getValueType()));
853
854  // Glue the call to the argument copies, if any.
855  if (Glue.getNode())
856    Ops.push_back(Glue);
857
858  // Emit the call.
859  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
860  if (IsTailCall)
861    return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, &Ops[0], Ops.size());
862  Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, &Ops[0], Ops.size());
863  Glue = Chain.getValue(1);
864
865  // Mark the end of the call, which is glued to the call itself.
866  Chain = DAG.getCALLSEQ_END(Chain,
867                             DAG.getConstant(NumBytes, PtrVT, true),
868                             DAG.getConstant(0, PtrVT, true),
869                             Glue, DL);
870  Glue = Chain.getValue(1);
871
872  // Assign locations to each value returned by this call.
873  SmallVector<CCValAssign, 16> RetLocs;
874  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
875  RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
876
877  // Copy all of the result registers out of their specified physreg.
878  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
879    CCValAssign &VA = RetLocs[I];
880
881    // Copy the value out, gluing the copy to the end of the call sequence.
882    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
883                                          VA.getLocVT(), Glue);
884    Chain = RetValue.getValue(1);
885    Glue = RetValue.getValue(2);
886
887    // Convert the value of the return register into the value that's
888    // being returned.
889    InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
890  }
891
892  return Chain;
893}
894
895SDValue
896SystemZTargetLowering::LowerReturn(SDValue Chain,
897                                   CallingConv::ID CallConv, bool IsVarArg,
898                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
899                                   const SmallVectorImpl<SDValue> &OutVals,
900                                   SDLoc DL, SelectionDAG &DAG) const {
901  MachineFunction &MF = DAG.getMachineFunction();
902
903  // Assign locations to each returned value.
904  SmallVector<CCValAssign, 16> RetLocs;
905  CCState RetCCInfo(CallConv, IsVarArg, MF, TM, RetLocs, *DAG.getContext());
906  RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
907
908  // Quick exit for void returns
909  if (RetLocs.empty())
910    return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
911
912  // Copy the result values into the output registers.
913  SDValue Glue;
914  SmallVector<SDValue, 4> RetOps;
915  RetOps.push_back(Chain);
916  for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
917    CCValAssign &VA = RetLocs[I];
918    SDValue RetValue = OutVals[I];
919
920    // Make the return register live on exit.
921    assert(VA.isRegLoc() && "Can only return in registers!");
922
923    // Promote the value as required.
924    RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
925
926    // Chain and glue the copies together.
927    unsigned Reg = VA.getLocReg();
928    Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
929    Glue = Chain.getValue(1);
930    RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
931  }
932
933  // Update chain and glue.
934  RetOps[0] = Chain;
935  if (Glue.getNode())
936    RetOps.push_back(Glue);
937
938  return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other,
939                     RetOps.data(), RetOps.size());
940}
941
942// CC is a comparison that will be implemented using an integer or
943// floating-point comparison.  Return the condition code mask for
944// a branch on true.  In the integer case, CCMASK_CMP_UO is set for
945// unsigned comparisons and clear for signed ones.  In the floating-point
946// case, CCMASK_CMP_UO has its normal mask meaning (unordered).
947static unsigned CCMaskForCondCode(ISD::CondCode CC) {
948#define CONV(X) \
949  case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
950  case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
951  case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
952
953  switch (CC) {
954  default:
955    llvm_unreachable("Invalid integer condition!");
956
957  CONV(EQ);
958  CONV(NE);
959  CONV(GT);
960  CONV(GE);
961  CONV(LT);
962  CONV(LE);
963
964  case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
965  case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
966  }
967#undef CONV
968}
969
970// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
971// can be converted to a comparison against zero, adjust the operands
972// as necessary.
973static void adjustZeroCmp(SelectionDAG &DAG, bool &IsUnsigned,
974                          SDValue &CmpOp0, SDValue &CmpOp1,
975                          unsigned &CCMask) {
976  if (IsUnsigned)
977    return;
978
979  ConstantSDNode *ConstOp1 = dyn_cast<ConstantSDNode>(CmpOp1.getNode());
980  if (!ConstOp1)
981    return;
982
983  int64_t Value = ConstOp1->getSExtValue();
984  if ((Value == -1 && CCMask == SystemZ::CCMASK_CMP_GT) ||
985      (Value == -1 && CCMask == SystemZ::CCMASK_CMP_LE) ||
986      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_LT) ||
987      (Value == 1 && CCMask == SystemZ::CCMASK_CMP_GE)) {
988    CCMask ^= SystemZ::CCMASK_CMP_EQ;
989    CmpOp1 = DAG.getConstant(0, CmpOp1.getValueType());
990  }
991}
992
993// If a comparison described by IsUnsigned, CCMask, CmpOp0 and CmpOp1
994// is suitable for CLI(Y), CHHSI or CLHHSI, adjust the operands as necessary.
995static void adjustSubwordCmp(SelectionDAG &DAG, bool &IsUnsigned,
996                             SDValue &CmpOp0, SDValue &CmpOp1,
997                             unsigned &CCMask) {
998  // For us to make any changes, it must a comparison between a single-use
999  // load and a constant.
1000  if (!CmpOp0.hasOneUse() ||
1001      CmpOp0.getOpcode() != ISD::LOAD ||
1002      CmpOp1.getOpcode() != ISD::Constant)
1003    return;
1004
1005  // We must have an 8- or 16-bit load.
1006  LoadSDNode *Load = cast<LoadSDNode>(CmpOp0);
1007  unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1008  if (NumBits != 8 && NumBits != 16)
1009    return;
1010
1011  // The load must be an extending one and the constant must be within the
1012  // range of the unextended value.
1013  ConstantSDNode *Constant = cast<ConstantSDNode>(CmpOp1);
1014  uint64_t Value = Constant->getZExtValue();
1015  uint64_t Mask = (1 << NumBits) - 1;
1016  if (Load->getExtensionType() == ISD::SEXTLOAD) {
1017    int64_t SignedValue = Constant->getSExtValue();
1018    if (uint64_t(SignedValue) + (1ULL << (NumBits - 1)) > Mask)
1019      return;
1020    // Unsigned comparison between two sign-extended values is equivalent
1021    // to unsigned comparison between two zero-extended values.
1022    if (IsUnsigned)
1023      Value &= Mask;
1024    else if (CCMask == SystemZ::CCMASK_CMP_EQ ||
1025             CCMask == SystemZ::CCMASK_CMP_NE)
1026      // Any choice of IsUnsigned is OK for equality comparisons.
1027      // We could use either CHHSI or CLHHSI for 16-bit comparisons,
1028      // but since we use CLHHSI for zero extensions, it seems better
1029      // to be consistent and do the same here.
1030      Value &= Mask, IsUnsigned = true;
1031    else if (NumBits == 8) {
1032      // Try to treat the comparison as unsigned, so that we can use CLI.
1033      // Adjust CCMask and Value as necessary.
1034      if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_LT)
1035        // Test whether the high bit of the byte is set.
1036        Value = 127, CCMask = SystemZ::CCMASK_CMP_GT, IsUnsigned = true;
1037      else if (Value == 0 && CCMask == SystemZ::CCMASK_CMP_GE)
1038        // Test whether the high bit of the byte is clear.
1039        Value = 128, CCMask = SystemZ::CCMASK_CMP_LT, IsUnsigned = true;
1040      else
1041        // No instruction exists for this combination.
1042        return;
1043    }
1044  } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1045    if (Value > Mask)
1046      return;
1047    // Signed comparison between two zero-extended values is equivalent
1048    // to unsigned comparison.
1049    IsUnsigned = true;
1050  } else
1051    return;
1052
1053  // Make sure that the first operand is an i32 of the right extension type.
1054  ISD::LoadExtType ExtType = IsUnsigned ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
1055  if (CmpOp0.getValueType() != MVT::i32 ||
1056      Load->getExtensionType() != ExtType)
1057    CmpOp0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32,
1058                            Load->getChain(), Load->getBasePtr(),
1059                            Load->getPointerInfo(), Load->getMemoryVT(),
1060                            Load->isVolatile(), Load->isNonTemporal(),
1061                            Load->getAlignment());
1062
1063  // Make sure that the second operand is an i32 with the right value.
1064  if (CmpOp1.getValueType() != MVT::i32 ||
1065      Value != Constant->getZExtValue())
1066    CmpOp1 = DAG.getConstant(Value, MVT::i32);
1067}
1068
1069// Return true if a comparison described by CCMask, CmpOp0 and CmpOp1
1070// is an equality comparison that is better implemented using unsigned
1071// rather than signed comparison instructions.
1072static bool preferUnsignedComparison(SelectionDAG &DAG, SDValue CmpOp0,
1073                                     SDValue CmpOp1, unsigned CCMask) {
1074  // The test must be for equality or inequality.
1075  if (CCMask != SystemZ::CCMASK_CMP_EQ && CCMask != SystemZ::CCMASK_CMP_NE)
1076    return false;
1077
1078  if (CmpOp1.getOpcode() == ISD::Constant) {
1079    uint64_t Value = cast<ConstantSDNode>(CmpOp1)->getSExtValue();
1080
1081    // If we're comparing with memory, prefer unsigned comparisons for
1082    // values that are in the unsigned 16-bit range but not the signed
1083    // 16-bit range.  We want to use CLFHSI and CLGHSI.
1084    if (CmpOp0.hasOneUse() &&
1085        ISD::isNormalLoad(CmpOp0.getNode()) &&
1086        (Value >= 32768 && Value < 65536))
1087      return true;
1088
1089    // Use unsigned comparisons for values that are in the CLGFI range
1090    // but not in the CGFI range.
1091    if (CmpOp0.getValueType() == MVT::i64 && (Value >> 31) == 1)
1092      return true;
1093
1094    return false;
1095  }
1096
1097  // Prefer CL for zero-extended loads.
1098  if (CmpOp1.getOpcode() == ISD::ZERO_EXTEND ||
1099      ISD::isZEXTLoad(CmpOp1.getNode()))
1100    return true;
1101
1102  // ...and for "in-register" zero extensions.
1103  if (CmpOp1.getOpcode() == ISD::AND && CmpOp1.getValueType() == MVT::i64) {
1104    SDValue Mask = CmpOp1.getOperand(1);
1105    if (Mask.getOpcode() == ISD::Constant &&
1106        cast<ConstantSDNode>(Mask)->getZExtValue() == 0xffffffff)
1107      return true;
1108  }
1109
1110  return false;
1111}
1112
1113// Return a target node that compares CmpOp0 with CmpOp1 and stores a
1114// 2-bit result in CC.  Set CCValid to the CCMASK_* of all possible
1115// 2-bit results and CCMask to the subset of those results that are
1116// associated with Cond.
1117static SDValue emitCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
1118                       ISD::CondCode Cond, unsigned &CCValid,
1119                       unsigned &CCMask) {
1120  bool IsUnsigned = false;
1121  CCMask = CCMaskForCondCode(Cond);
1122  if (CmpOp0.getValueType().isFloatingPoint())
1123    CCValid = SystemZ::CCMASK_FCMP;
1124  else {
1125    IsUnsigned = CCMask & SystemZ::CCMASK_CMP_UO;
1126    CCValid = SystemZ::CCMASK_ICMP;
1127    CCMask &= CCValid;
1128    adjustZeroCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1129    adjustSubwordCmp(DAG, IsUnsigned, CmpOp0, CmpOp1, CCMask);
1130    if (preferUnsignedComparison(DAG, CmpOp0, CmpOp1, CCMask))
1131      IsUnsigned = true;
1132  }
1133
1134  SDLoc DL(CmpOp0);
1135  return DAG.getNode((IsUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
1136                     DL, MVT::Glue, CmpOp0, CmpOp1);
1137}
1138
1139// Implement a 32-bit *MUL_LOHI operation by extending both operands to
1140// 64 bits.  Extend is the extension type to use.  Store the high part
1141// in Hi and the low part in Lo.
1142static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL,
1143                            unsigned Extend, SDValue Op0, SDValue Op1,
1144                            SDValue &Hi, SDValue &Lo) {
1145  Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
1146  Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
1147  SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
1148  Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64));
1149  Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
1150  Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
1151}
1152
1153// Lower a binary operation that produces two VT results, one in each
1154// half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
1155// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
1156// on the extended Op0 and (unextended) Op1.  Store the even register result
1157// in Even and the odd register result in Odd.
1158static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT,
1159                             unsigned Extend, unsigned Opcode,
1160                             SDValue Op0, SDValue Op1,
1161                             SDValue &Even, SDValue &Odd) {
1162  SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
1163  SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
1164                               SDValue(In128, 0), Op1);
1165  bool Is32Bit = is32Bit(VT);
1166  SDValue SubReg0 = DAG.getTargetConstant(SystemZ::even128(Is32Bit), VT);
1167  SDValue SubReg1 = DAG.getTargetConstant(SystemZ::odd128(Is32Bit), VT);
1168  SDNode *Reg0 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1169                                    VT, Result, SubReg0);
1170  SDNode *Reg1 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1171                                    VT, Result, SubReg1);
1172  Even = SDValue(Reg0, 0);
1173  Odd = SDValue(Reg1, 0);
1174}
1175
1176SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1177  SDValue Chain    = Op.getOperand(0);
1178  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1179  SDValue CmpOp0   = Op.getOperand(2);
1180  SDValue CmpOp1   = Op.getOperand(3);
1181  SDValue Dest     = Op.getOperand(4);
1182  SDLoc DL(Op);
1183
1184  unsigned CCValid, CCMask;
1185  SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1186  return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
1187                     Chain, DAG.getConstant(CCValid, MVT::i32),
1188                     DAG.getConstant(CCMask, MVT::i32), Dest, Flags);
1189}
1190
1191SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
1192                                              SelectionDAG &DAG) const {
1193  SDValue CmpOp0   = Op.getOperand(0);
1194  SDValue CmpOp1   = Op.getOperand(1);
1195  SDValue TrueOp   = Op.getOperand(2);
1196  SDValue FalseOp  = Op.getOperand(3);
1197  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1198  SDLoc DL(Op);
1199
1200  unsigned CCValid, CCMask;
1201  SDValue Flags = emitCmp(DAG, CmpOp0, CmpOp1, CC, CCValid, CCMask);
1202
1203  SmallVector<SDValue, 5> Ops;
1204  Ops.push_back(TrueOp);
1205  Ops.push_back(FalseOp);
1206  Ops.push_back(DAG.getConstant(CCValid, MVT::i32));
1207  Ops.push_back(DAG.getConstant(CCMask, MVT::i32));
1208  Ops.push_back(Flags);
1209
1210  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
1211  return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, &Ops[0], Ops.size());
1212}
1213
1214SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
1215                                                  SelectionDAG &DAG) const {
1216  SDLoc DL(Node);
1217  const GlobalValue *GV = Node->getGlobal();
1218  int64_t Offset = Node->getOffset();
1219  EVT PtrVT = getPointerTy();
1220  Reloc::Model RM = TM.getRelocationModel();
1221  CodeModel::Model CM = TM.getCodeModel();
1222
1223  SDValue Result;
1224  if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) {
1225    // Make sure that the offset is aligned to a halfword.  If it isn't,
1226    // create an "anchor" at the previous 12-bit boundary.
1227    // FIXME check whether there is a better way of handling this.
1228    if (Offset & 1) {
1229      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
1230                                          Offset & ~uint64_t(0xfff));
1231      Offset &= 0xfff;
1232    } else {
1233      Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
1234      Offset = 0;
1235    }
1236    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1237  } else {
1238    Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
1239    Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1240    Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
1241                         MachinePointerInfo::getGOT(), false, false, false, 0);
1242  }
1243
1244  // If there was a non-zero offset that we didn't fold, create an explicit
1245  // addition for it.
1246  if (Offset != 0)
1247    Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
1248                         DAG.getConstant(Offset, PtrVT));
1249
1250  return Result;
1251}
1252
1253SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
1254						     SelectionDAG &DAG) const {
1255  SDLoc DL(Node);
1256  const GlobalValue *GV = Node->getGlobal();
1257  EVT PtrVT = getPointerTy();
1258  TLSModel::Model model = TM.getTLSModel(GV);
1259
1260  if (model != TLSModel::LocalExec)
1261    llvm_unreachable("only local-exec TLS mode supported");
1262
1263  // The high part of the thread pointer is in access register 0.
1264  SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1265                             DAG.getConstant(0, MVT::i32));
1266  TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
1267
1268  // The low part of the thread pointer is in access register 1.
1269  SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
1270                             DAG.getConstant(1, MVT::i32));
1271  TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
1272
1273  // Merge them into a single 64-bit address.
1274  SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
1275				    DAG.getConstant(32, PtrVT));
1276  SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
1277
1278  // Get the offset of GA from the thread pointer.
1279  SystemZConstantPoolValue *CPV =
1280    SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
1281
1282  // Force the offset into the constant pool and load it from there.
1283  SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8);
1284  SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(),
1285			       CPAddr, MachinePointerInfo::getConstantPool(),
1286			       false, false, false, 0);
1287
1288  // Add the base and offset together.
1289  return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
1290}
1291
1292SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
1293                                                 SelectionDAG &DAG) const {
1294  SDLoc DL(Node);
1295  const BlockAddress *BA = Node->getBlockAddress();
1296  int64_t Offset = Node->getOffset();
1297  EVT PtrVT = getPointerTy();
1298
1299  SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
1300  Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1301  return Result;
1302}
1303
1304SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
1305                                              SelectionDAG &DAG) const {
1306  SDLoc DL(JT);
1307  EVT PtrVT = getPointerTy();
1308  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1309
1310  // Use LARL to load the address of the table.
1311  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1312}
1313
1314SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
1315                                                 SelectionDAG &DAG) const {
1316  SDLoc DL(CP);
1317  EVT PtrVT = getPointerTy();
1318
1319  SDValue Result;
1320  if (CP->isMachineConstantPoolEntry())
1321    Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1322				       CP->getAlignment());
1323  else
1324    Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1325				       CP->getAlignment(), CP->getOffset());
1326
1327  // Use LARL to load the address of the constant pool entry.
1328  return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
1329}
1330
1331SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
1332                                            SelectionDAG &DAG) const {
1333  SDLoc DL(Op);
1334  SDValue In = Op.getOperand(0);
1335  EVT InVT = In.getValueType();
1336  EVT ResVT = Op.getValueType();
1337
1338  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1339  SDValue Shift32 = DAG.getConstant(32, MVT::i64);
1340  if (InVT == MVT::i32 && ResVT == MVT::f32) {
1341    SDValue In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
1342    SDValue Shift = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, Shift32);
1343    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Shift);
1344    SDNode *Out = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1345                                     MVT::f32, Out64, SubReg32);
1346    return SDValue(Out, 0);
1347  }
1348  if (InVT == MVT::f32 && ResVT == MVT::i32) {
1349    SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
1350    SDNode *In64 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1351                                      MVT::f64, SDValue(U64, 0), In, SubReg32);
1352    SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, SDValue(In64, 0));
1353    SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, Shift32);
1354    SDValue Out = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
1355    return Out;
1356  }
1357  llvm_unreachable("Unexpected bitcast combination");
1358}
1359
1360SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
1361                                            SelectionDAG &DAG) const {
1362  MachineFunction &MF = DAG.getMachineFunction();
1363  SystemZMachineFunctionInfo *FuncInfo =
1364    MF.getInfo<SystemZMachineFunctionInfo>();
1365  EVT PtrVT = getPointerTy();
1366
1367  SDValue Chain   = Op.getOperand(0);
1368  SDValue Addr    = Op.getOperand(1);
1369  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1370  SDLoc DL(Op);
1371
1372  // The initial values of each field.
1373  const unsigned NumFields = 4;
1374  SDValue Fields[NumFields] = {
1375    DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT),
1376    DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT),
1377    DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
1378    DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
1379  };
1380
1381  // Store each field into its respective slot.
1382  SDValue MemOps[NumFields];
1383  unsigned Offset = 0;
1384  for (unsigned I = 0; I < NumFields; ++I) {
1385    SDValue FieldAddr = Addr;
1386    if (Offset != 0)
1387      FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
1388                              DAG.getIntPtrConstant(Offset));
1389    MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
1390                             MachinePointerInfo(SV, Offset),
1391                             false, false, 0);
1392    Offset += 8;
1393  }
1394  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps, NumFields);
1395}
1396
1397SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
1398                                           SelectionDAG &DAG) const {
1399  SDValue Chain      = Op.getOperand(0);
1400  SDValue DstPtr     = Op.getOperand(1);
1401  SDValue SrcPtr     = Op.getOperand(2);
1402  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1403  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1404  SDLoc DL(Op);
1405
1406  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32),
1407                       /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
1408                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
1409}
1410
1411SDValue SystemZTargetLowering::
1412lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
1413  SDValue Chain = Op.getOperand(0);
1414  SDValue Size  = Op.getOperand(1);
1415  SDLoc DL(Op);
1416
1417  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1418
1419  // Get a reference to the stack pointer.
1420  SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
1421
1422  // Get the new stack pointer value.
1423  SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size);
1424
1425  // Copy the new stack pointer back.
1426  Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
1427
1428  // The allocated data lives above the 160 bytes allocated for the standard
1429  // frame, plus any outgoing stack arguments.  We don't know how much that
1430  // amounts to yet, so emit a special ADJDYNALLOC placeholder.
1431  SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
1432  SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
1433
1434  SDValue Ops[2] = { Result, Chain };
1435  return DAG.getMergeValues(Ops, 2, DL);
1436}
1437
1438SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
1439                                              SelectionDAG &DAG) const {
1440  EVT VT = Op.getValueType();
1441  SDLoc DL(Op);
1442  SDValue Ops[2];
1443  if (is32Bit(VT))
1444    // Just do a normal 64-bit multiplication and extract the results.
1445    // We define this so that it can be used for constant division.
1446    lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
1447                    Op.getOperand(1), Ops[1], Ops[0]);
1448  else {
1449    // Do a full 128-bit multiplication based on UMUL_LOHI64:
1450    //
1451    //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
1452    //
1453    // but using the fact that the upper halves are either all zeros
1454    // or all ones:
1455    //
1456    //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
1457    //
1458    // and grouping the right terms together since they are quicker than the
1459    // multiplication:
1460    //
1461    //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
1462    SDValue C63 = DAG.getConstant(63, MVT::i64);
1463    SDValue LL = Op.getOperand(0);
1464    SDValue RL = Op.getOperand(1);
1465    SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
1466    SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
1467    // UMUL_LOHI64 returns the low result in the odd register and the high
1468    // result in the even register.  SMUL_LOHI is defined to return the
1469    // low half first, so the results are in reverse order.
1470    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1471                     LL, RL, Ops[1], Ops[0]);
1472    SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
1473    SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
1474    SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
1475    Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
1476  }
1477  return DAG.getMergeValues(Ops, 2, DL);
1478}
1479
1480SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
1481                                              SelectionDAG &DAG) const {
1482  EVT VT = Op.getValueType();
1483  SDLoc DL(Op);
1484  SDValue Ops[2];
1485  if (is32Bit(VT))
1486    // Just do a normal 64-bit multiplication and extract the results.
1487    // We define this so that it can be used for constant division.
1488    lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
1489                    Op.getOperand(1), Ops[1], Ops[0]);
1490  else
1491    // UMUL_LOHI64 returns the low result in the odd register and the high
1492    // result in the even register.  UMUL_LOHI is defined to return the
1493    // low half first, so the results are in reverse order.
1494    lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
1495                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1496  return DAG.getMergeValues(Ops, 2, DL);
1497}
1498
1499SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
1500                                            SelectionDAG &DAG) const {
1501  SDValue Op0 = Op.getOperand(0);
1502  SDValue Op1 = Op.getOperand(1);
1503  EVT VT = Op.getValueType();
1504  SDLoc DL(Op);
1505  unsigned Opcode;
1506
1507  // We use DSGF for 32-bit division.
1508  if (is32Bit(VT)) {
1509    Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
1510    Opcode = SystemZISD::SDIVREM32;
1511  } else if (DAG.ComputeNumSignBits(Op1) > 32) {
1512    Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
1513    Opcode = SystemZISD::SDIVREM32;
1514  } else
1515    Opcode = SystemZISD::SDIVREM64;
1516
1517  // DSG(F) takes a 64-bit dividend, so the even register in the GR128
1518  // input is "don't care".  The instruction returns the remainder in
1519  // the even register and the quotient in the odd register.
1520  SDValue Ops[2];
1521  lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
1522                   Op0, Op1, Ops[1], Ops[0]);
1523  return DAG.getMergeValues(Ops, 2, DL);
1524}
1525
1526SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
1527                                            SelectionDAG &DAG) const {
1528  EVT VT = Op.getValueType();
1529  SDLoc DL(Op);
1530
1531  // DL(G) uses a double-width dividend, so we need to clear the even
1532  // register in the GR128 input.  The instruction returns the remainder
1533  // in the even register and the quotient in the odd register.
1534  SDValue Ops[2];
1535  if (is32Bit(VT))
1536    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
1537                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1538  else
1539    lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
1540                     Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
1541  return DAG.getMergeValues(Ops, 2, DL);
1542}
1543
1544SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
1545  assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
1546
1547  // Get the known-zero masks for each operand.
1548  SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
1549  APInt KnownZero[2], KnownOne[2];
1550  DAG.ComputeMaskedBits(Ops[0], KnownZero[0], KnownOne[0]);
1551  DAG.ComputeMaskedBits(Ops[1], KnownZero[1], KnownOne[1]);
1552
1553  // See if the upper 32 bits of one operand and the lower 32 bits of the
1554  // other are known zero.  They are the low and high operands respectively.
1555  uint64_t Masks[] = { KnownZero[0].getZExtValue(),
1556                       KnownZero[1].getZExtValue() };
1557  unsigned High, Low;
1558  if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
1559    High = 1, Low = 0;
1560  else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
1561    High = 0, Low = 1;
1562  else
1563    return Op;
1564
1565  SDValue LowOp = Ops[Low];
1566  SDValue HighOp = Ops[High];
1567
1568  // If the high part is a constant, we're better off using IILH.
1569  if (HighOp.getOpcode() == ISD::Constant)
1570    return Op;
1571
1572  // If the low part is a constant that is outside the range of LHI,
1573  // then we're better off using IILF.
1574  if (LowOp.getOpcode() == ISD::Constant) {
1575    int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
1576    if (!isInt<16>(Value))
1577      return Op;
1578  }
1579
1580  // Check whether the high part is an AND that doesn't change the
1581  // high 32 bits and just masks out low bits.  We can skip it if so.
1582  if (HighOp.getOpcode() == ISD::AND &&
1583      HighOp.getOperand(1).getOpcode() == ISD::Constant) {
1584    ConstantSDNode *MaskNode = cast<ConstantSDNode>(HighOp.getOperand(1));
1585    uint64_t Mask = MaskNode->getZExtValue() | Masks[High];
1586    if ((Mask >> 32) == 0xffffffff)
1587      HighOp = HighOp.getOperand(0);
1588  }
1589
1590  // Take advantage of the fact that all GR32 operations only change the
1591  // low 32 bits by truncating Low to an i32 and inserting it directly
1592  // using a subreg.  The interesting cases are those where the truncation
1593  // can be folded.
1594  SDLoc DL(Op);
1595  SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
1596  SDValue SubReg32 = DAG.getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
1597  SDNode *Result = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
1598                                      MVT::i64, HighOp, Low32, SubReg32);
1599  return SDValue(Result, 0);
1600}
1601
1602// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
1603// two into the fullword ATOMIC_LOADW_* operation given by Opcode.
1604SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
1605                                                SelectionDAG &DAG,
1606                                                unsigned Opcode) const {
1607  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1608
1609  // 32-bit operations need no code outside the main loop.
1610  EVT NarrowVT = Node->getMemoryVT();
1611  EVT WideVT = MVT::i32;
1612  if (NarrowVT == WideVT)
1613    return Op;
1614
1615  int64_t BitSize = NarrowVT.getSizeInBits();
1616  SDValue ChainIn = Node->getChain();
1617  SDValue Addr = Node->getBasePtr();
1618  SDValue Src2 = Node->getVal();
1619  MachineMemOperand *MMO = Node->getMemOperand();
1620  SDLoc DL(Node);
1621  EVT PtrVT = Addr.getValueType();
1622
1623  // Convert atomic subtracts of constants into additions.
1624  if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
1625    if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Src2)) {
1626      Opcode = SystemZISD::ATOMIC_LOADW_ADD;
1627      Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType());
1628    }
1629
1630  // Get the address of the containing word.
1631  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1632                                    DAG.getConstant(-4, PtrVT));
1633
1634  // Get the number of bits that the word must be rotated left in order
1635  // to bring the field to the top bits of a GR32.
1636  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1637                                 DAG.getConstant(3, PtrVT));
1638  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1639
1640  // Get the complementing shift amount, for rotating a field in the top
1641  // bits back to its proper position.
1642  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1643                                    DAG.getConstant(0, WideVT), BitShift);
1644
1645  // Extend the source operand to 32 bits and prepare it for the inner loop.
1646  // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
1647  // operations require the source to be shifted in advance.  (This shift
1648  // can be folded if the source is constant.)  For AND and NAND, the lower
1649  // bits must be set, while for other opcodes they should be left clear.
1650  if (Opcode != SystemZISD::ATOMIC_SWAPW)
1651    Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
1652                       DAG.getConstant(32 - BitSize, WideVT));
1653  if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
1654      Opcode == SystemZISD::ATOMIC_LOADW_NAND)
1655    Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
1656                       DAG.getConstant(uint32_t(-1) >> BitSize, WideVT));
1657
1658  // Construct the ATOMIC_LOADW_* node.
1659  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1660  SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
1661                    DAG.getConstant(BitSize, WideVT) };
1662  SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
1663                                             array_lengthof(Ops),
1664                                             NarrowVT, MMO);
1665
1666  // Rotate the result of the final CS so that the field is in the lower
1667  // bits of a GR32, then truncate it.
1668  SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
1669                                    DAG.getConstant(BitSize, WideVT));
1670  SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
1671
1672  SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
1673  return DAG.getMergeValues(RetOps, 2, DL);
1674}
1675
1676// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
1677// into a fullword ATOMIC_CMP_SWAPW operation.
1678SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
1679                                                    SelectionDAG &DAG) const {
1680  AtomicSDNode *Node = cast<AtomicSDNode>(Op.getNode());
1681
1682  // We have native support for 32-bit compare and swap.
1683  EVT NarrowVT = Node->getMemoryVT();
1684  EVT WideVT = MVT::i32;
1685  if (NarrowVT == WideVT)
1686    return Op;
1687
1688  int64_t BitSize = NarrowVT.getSizeInBits();
1689  SDValue ChainIn = Node->getOperand(0);
1690  SDValue Addr = Node->getOperand(1);
1691  SDValue CmpVal = Node->getOperand(2);
1692  SDValue SwapVal = Node->getOperand(3);
1693  MachineMemOperand *MMO = Node->getMemOperand();
1694  SDLoc DL(Node);
1695  EVT PtrVT = Addr.getValueType();
1696
1697  // Get the address of the containing word.
1698  SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
1699                                    DAG.getConstant(-4, PtrVT));
1700
1701  // Get the number of bits that the word must be rotated left in order
1702  // to bring the field to the top bits of a GR32.
1703  SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
1704                                 DAG.getConstant(3, PtrVT));
1705  BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
1706
1707  // Get the complementing shift amount, for rotating a field in the top
1708  // bits back to its proper position.
1709  SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
1710                                    DAG.getConstant(0, WideVT), BitShift);
1711
1712  // Construct the ATOMIC_CMP_SWAPW node.
1713  SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
1714  SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
1715                    NegBitShift, DAG.getConstant(BitSize, WideVT) };
1716  SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
1717                                             VTList, Ops, array_lengthof(Ops),
1718                                             NarrowVT, MMO);
1719  return AtomicOp;
1720}
1721
1722SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
1723                                              SelectionDAG &DAG) const {
1724  MachineFunction &MF = DAG.getMachineFunction();
1725  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1726  return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
1727                            SystemZ::R15D, Op.getValueType());
1728}
1729
1730SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
1731                                                 SelectionDAG &DAG) const {
1732  MachineFunction &MF = DAG.getMachineFunction();
1733  MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
1734  return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op),
1735                          SystemZ::R15D, Op.getOperand(1));
1736}
1737
1738SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
1739                                              SelectionDAG &DAG) const {
1740  switch (Op.getOpcode()) {
1741  case ISD::BR_CC:
1742    return lowerBR_CC(Op, DAG);
1743  case ISD::SELECT_CC:
1744    return lowerSELECT_CC(Op, DAG);
1745  case ISD::GlobalAddress:
1746    return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
1747  case ISD::GlobalTLSAddress:
1748    return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
1749  case ISD::BlockAddress:
1750    return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
1751  case ISD::JumpTable:
1752    return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
1753  case ISD::ConstantPool:
1754    return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
1755  case ISD::BITCAST:
1756    return lowerBITCAST(Op, DAG);
1757  case ISD::VASTART:
1758    return lowerVASTART(Op, DAG);
1759  case ISD::VACOPY:
1760    return lowerVACOPY(Op, DAG);
1761  case ISD::DYNAMIC_STACKALLOC:
1762    return lowerDYNAMIC_STACKALLOC(Op, DAG);
1763  case ISD::SMUL_LOHI:
1764    return lowerSMUL_LOHI(Op, DAG);
1765  case ISD::UMUL_LOHI:
1766    return lowerUMUL_LOHI(Op, DAG);
1767  case ISD::SDIVREM:
1768    return lowerSDIVREM(Op, DAG);
1769  case ISD::UDIVREM:
1770    return lowerUDIVREM(Op, DAG);
1771  case ISD::OR:
1772    return lowerOR(Op, DAG);
1773  case ISD::ATOMIC_SWAP:
1774    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_SWAPW);
1775  case ISD::ATOMIC_LOAD_ADD:
1776    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
1777  case ISD::ATOMIC_LOAD_SUB:
1778    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
1779  case ISD::ATOMIC_LOAD_AND:
1780    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
1781  case ISD::ATOMIC_LOAD_OR:
1782    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
1783  case ISD::ATOMIC_LOAD_XOR:
1784    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
1785  case ISD::ATOMIC_LOAD_NAND:
1786    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
1787  case ISD::ATOMIC_LOAD_MIN:
1788    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
1789  case ISD::ATOMIC_LOAD_MAX:
1790    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
1791  case ISD::ATOMIC_LOAD_UMIN:
1792    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
1793  case ISD::ATOMIC_LOAD_UMAX:
1794    return lowerATOMIC_LOAD(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
1795  case ISD::ATOMIC_CMP_SWAP:
1796    return lowerATOMIC_CMP_SWAP(Op, DAG);
1797  case ISD::STACKSAVE:
1798    return lowerSTACKSAVE(Op, DAG);
1799  case ISD::STACKRESTORE:
1800    return lowerSTACKRESTORE(Op, DAG);
1801  default:
1802    llvm_unreachable("Unexpected node to lower");
1803  }
1804}
1805
1806const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
1807#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
1808  switch (Opcode) {
1809    OPCODE(RET_FLAG);
1810    OPCODE(CALL);
1811    OPCODE(SIBCALL);
1812    OPCODE(PCREL_WRAPPER);
1813    OPCODE(CMP);
1814    OPCODE(UCMP);
1815    OPCODE(BR_CCMASK);
1816    OPCODE(SELECT_CCMASK);
1817    OPCODE(ADJDYNALLOC);
1818    OPCODE(EXTRACT_ACCESS);
1819    OPCODE(UMUL_LOHI64);
1820    OPCODE(SDIVREM64);
1821    OPCODE(UDIVREM32);
1822    OPCODE(UDIVREM64);
1823    OPCODE(MVC);
1824    OPCODE(CLC);
1825    OPCODE(STRCMP);
1826    OPCODE(STPCPY);
1827    OPCODE(SEARCH_STRING);
1828    OPCODE(IPM);
1829    OPCODE(ATOMIC_SWAPW);
1830    OPCODE(ATOMIC_LOADW_ADD);
1831    OPCODE(ATOMIC_LOADW_SUB);
1832    OPCODE(ATOMIC_LOADW_AND);
1833    OPCODE(ATOMIC_LOADW_OR);
1834    OPCODE(ATOMIC_LOADW_XOR);
1835    OPCODE(ATOMIC_LOADW_NAND);
1836    OPCODE(ATOMIC_LOADW_MIN);
1837    OPCODE(ATOMIC_LOADW_MAX);
1838    OPCODE(ATOMIC_LOADW_UMIN);
1839    OPCODE(ATOMIC_LOADW_UMAX);
1840    OPCODE(ATOMIC_CMP_SWAPW);
1841  }
1842  return NULL;
1843#undef OPCODE
1844}
1845
1846//===----------------------------------------------------------------------===//
1847// Custom insertion
1848//===----------------------------------------------------------------------===//
1849
1850// Create a new basic block after MBB.
1851static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
1852  MachineFunction &MF = *MBB->getParent();
1853  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1854  MF.insert(llvm::next(MachineFunction::iterator(MBB)), NewMBB);
1855  return NewMBB;
1856}
1857
1858// Split MBB after MI and return the new block (the one that contains
1859// instructions after MI).
1860static MachineBasicBlock *splitBlockAfter(MachineInstr *MI,
1861                                          MachineBasicBlock *MBB) {
1862  MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1863  NewMBB->splice(NewMBB->begin(), MBB,
1864                 llvm::next(MachineBasicBlock::iterator(MI)),
1865                 MBB->end());
1866  NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1867  return NewMBB;
1868}
1869
1870// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
1871MachineBasicBlock *
1872SystemZTargetLowering::emitSelect(MachineInstr *MI,
1873                                  MachineBasicBlock *MBB) const {
1874  const SystemZInstrInfo *TII = TM.getInstrInfo();
1875
1876  unsigned DestReg  = MI->getOperand(0).getReg();
1877  unsigned TrueReg  = MI->getOperand(1).getReg();
1878  unsigned FalseReg = MI->getOperand(2).getReg();
1879  unsigned CCValid  = MI->getOperand(3).getImm();
1880  unsigned CCMask   = MI->getOperand(4).getImm();
1881  DebugLoc DL       = MI->getDebugLoc();
1882
1883  MachineBasicBlock *StartMBB = MBB;
1884  MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
1885  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
1886
1887  //  StartMBB:
1888  //   BRC CCMask, JoinMBB
1889  //   # fallthrough to FalseMBB
1890  MBB = StartMBB;
1891  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1892    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
1893  MBB->addSuccessor(JoinMBB);
1894  MBB->addSuccessor(FalseMBB);
1895
1896  //  FalseMBB:
1897  //   # fallthrough to JoinMBB
1898  MBB = FalseMBB;
1899  MBB->addSuccessor(JoinMBB);
1900
1901  //  JoinMBB:
1902  //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
1903  //  ...
1904  MBB = JoinMBB;
1905  BuildMI(*MBB, MBB->begin(), DL, TII->get(SystemZ::PHI), DestReg)
1906    .addReg(TrueReg).addMBB(StartMBB)
1907    .addReg(FalseReg).addMBB(FalseMBB);
1908
1909  MI->eraseFromParent();
1910  return JoinMBB;
1911}
1912
1913// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
1914// StoreOpcode is the store to use and Invert says whether the store should
1915// happen when the condition is false rather than true.  If a STORE ON
1916// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
1917MachineBasicBlock *
1918SystemZTargetLowering::emitCondStore(MachineInstr *MI,
1919                                     MachineBasicBlock *MBB,
1920                                     unsigned StoreOpcode, unsigned STOCOpcode,
1921                                     bool Invert) const {
1922  const SystemZInstrInfo *TII = TM.getInstrInfo();
1923
1924  unsigned SrcReg     = MI->getOperand(0).getReg();
1925  MachineOperand Base = MI->getOperand(1);
1926  int64_t Disp        = MI->getOperand(2).getImm();
1927  unsigned IndexReg   = MI->getOperand(3).getReg();
1928  unsigned CCValid    = MI->getOperand(4).getImm();
1929  unsigned CCMask     = MI->getOperand(5).getImm();
1930  DebugLoc DL         = MI->getDebugLoc();
1931
1932  StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
1933
1934  // Use STOCOpcode if possible.  We could use different store patterns in
1935  // order to avoid matching the index register, but the performance trade-offs
1936  // might be more complicated in that case.
1937  if (STOCOpcode && !IndexReg && TM.getSubtargetImpl()->hasLoadStoreOnCond()) {
1938    if (Invert)
1939      CCMask ^= CCValid;
1940    BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
1941      .addReg(SrcReg).addOperand(Base).addImm(Disp)
1942      .addImm(CCValid).addImm(CCMask);
1943    MI->eraseFromParent();
1944    return MBB;
1945  }
1946
1947  // Get the condition needed to branch around the store.
1948  if (!Invert)
1949    CCMask ^= CCValid;
1950
1951  MachineBasicBlock *StartMBB = MBB;
1952  MachineBasicBlock *JoinMBB  = splitBlockAfter(MI, MBB);
1953  MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
1954
1955  //  StartMBB:
1956  //   BRC CCMask, JoinMBB
1957  //   # fallthrough to FalseMBB
1958  MBB = StartMBB;
1959  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
1960    .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
1961  MBB->addSuccessor(JoinMBB);
1962  MBB->addSuccessor(FalseMBB);
1963
1964  //  FalseMBB:
1965  //   store %SrcReg, %Disp(%Index,%Base)
1966  //   # fallthrough to JoinMBB
1967  MBB = FalseMBB;
1968  BuildMI(MBB, DL, TII->get(StoreOpcode))
1969    .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
1970  MBB->addSuccessor(JoinMBB);
1971
1972  MI->eraseFromParent();
1973  return JoinMBB;
1974}
1975
1976// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
1977// or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
1978// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
1979// BitSize is the width of the field in bits, or 0 if this is a partword
1980// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
1981// is one of the operands.  Invert says whether the field should be
1982// inverted after performing BinOpcode (e.g. for NAND).
1983MachineBasicBlock *
1984SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI,
1985                                            MachineBasicBlock *MBB,
1986                                            unsigned BinOpcode,
1987                                            unsigned BitSize,
1988                                            bool Invert) const {
1989  const SystemZInstrInfo *TII = TM.getInstrInfo();
1990  MachineFunction &MF = *MBB->getParent();
1991  MachineRegisterInfo &MRI = MF.getRegInfo();
1992  bool IsSubWord = (BitSize < 32);
1993
1994  // Extract the operands.  Base can be a register or a frame index.
1995  // Src2 can be a register or immediate.
1996  unsigned Dest        = MI->getOperand(0).getReg();
1997  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
1998  int64_t Disp         = MI->getOperand(2).getImm();
1999  MachineOperand Src2  = earlyUseOperand(MI->getOperand(3));
2000  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2001  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2002  DebugLoc DL          = MI->getDebugLoc();
2003  if (IsSubWord)
2004    BitSize = MI->getOperand(6).getImm();
2005
2006  // Subword operations use 32-bit registers.
2007  const TargetRegisterClass *RC = (BitSize <= 32 ?
2008                                   &SystemZ::GR32BitRegClass :
2009                                   &SystemZ::GR64BitRegClass);
2010  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2011  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2012
2013  // Get the right opcodes for the displacement.
2014  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2015  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2016  assert(LOpcode && CSOpcode && "Displacement out of range");
2017
2018  // Create virtual registers for temporary results.
2019  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2020  unsigned OldVal        = MRI.createVirtualRegister(RC);
2021  unsigned NewVal        = (BinOpcode || IsSubWord ?
2022                            MRI.createVirtualRegister(RC) : Src2.getReg());
2023  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2024  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2025
2026  // Insert a basic block for the main loop.
2027  MachineBasicBlock *StartMBB = MBB;
2028  MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
2029  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2030
2031  //  StartMBB:
2032  //   ...
2033  //   %OrigVal = L Disp(%Base)
2034  //   # fall through to LoopMMB
2035  MBB = StartMBB;
2036  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2037    .addOperand(Base).addImm(Disp).addReg(0);
2038  MBB->addSuccessor(LoopMBB);
2039
2040  //  LoopMBB:
2041  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
2042  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2043  //   %RotatedNewVal = OP %RotatedOldVal, %Src2
2044  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2045  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2046  //   JNE LoopMBB
2047  //   # fall through to DoneMMB
2048  MBB = LoopMBB;
2049  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2050    .addReg(OrigVal).addMBB(StartMBB)
2051    .addReg(Dest).addMBB(LoopMBB);
2052  if (IsSubWord)
2053    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2054      .addReg(OldVal).addReg(BitShift).addImm(0);
2055  if (Invert) {
2056    // Perform the operation normally and then invert every bit of the field.
2057    unsigned Tmp = MRI.createVirtualRegister(RC);
2058    BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
2059      .addReg(RotatedOldVal).addOperand(Src2);
2060    if (BitSize < 32)
2061      // XILF with the upper BitSize bits set.
2062      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2063        .addReg(Tmp).addImm(uint32_t(~0 << (32 - BitSize)));
2064    else if (BitSize == 32)
2065      // XILF with every bit set.
2066      BuildMI(MBB, DL, TII->get(SystemZ::XILF32), RotatedNewVal)
2067        .addReg(Tmp).addImm(~uint32_t(0));
2068    else {
2069      // Use LCGR and add -1 to the result, which is more compact than
2070      // an XILF, XILH pair.
2071      unsigned Tmp2 = MRI.createVirtualRegister(RC);
2072      BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
2073      BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
2074        .addReg(Tmp2).addImm(-1);
2075    }
2076  } else if (BinOpcode)
2077    // A simply binary operation.
2078    BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
2079      .addReg(RotatedOldVal).addOperand(Src2);
2080  else if (IsSubWord)
2081    // Use RISBG to rotate Src2 into position and use it to replace the
2082    // field in RotatedOldVal.
2083    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
2084      .addReg(RotatedOldVal).addReg(Src2.getReg())
2085      .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
2086  if (IsSubWord)
2087    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2088      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2089  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2090    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2091  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2092    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2093  MBB->addSuccessor(LoopMBB);
2094  MBB->addSuccessor(DoneMBB);
2095
2096  MI->eraseFromParent();
2097  return DoneMBB;
2098}
2099
2100// Implement EmitInstrWithCustomInserter for pseudo
2101// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
2102// instruction that should be used to compare the current field with the
2103// minimum or maximum value.  KeepOldMask is the BRC condition-code mask
2104// for when the current field should be kept.  BitSize is the width of
2105// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
2106MachineBasicBlock *
2107SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI,
2108                                            MachineBasicBlock *MBB,
2109                                            unsigned CompareOpcode,
2110                                            unsigned KeepOldMask,
2111                                            unsigned BitSize) const {
2112  const SystemZInstrInfo *TII = TM.getInstrInfo();
2113  MachineFunction &MF = *MBB->getParent();
2114  MachineRegisterInfo &MRI = MF.getRegInfo();
2115  bool IsSubWord = (BitSize < 32);
2116
2117  // Extract the operands.  Base can be a register or a frame index.
2118  unsigned Dest        = MI->getOperand(0).getReg();
2119  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2120  int64_t  Disp        = MI->getOperand(2).getImm();
2121  unsigned Src2        = MI->getOperand(3).getReg();
2122  unsigned BitShift    = (IsSubWord ? MI->getOperand(4).getReg() : 0);
2123  unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0);
2124  DebugLoc DL          = MI->getDebugLoc();
2125  if (IsSubWord)
2126    BitSize = MI->getOperand(6).getImm();
2127
2128  // Subword operations use 32-bit registers.
2129  const TargetRegisterClass *RC = (BitSize <= 32 ?
2130                                   &SystemZ::GR32BitRegClass :
2131                                   &SystemZ::GR64BitRegClass);
2132  unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
2133  unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
2134
2135  // Get the right opcodes for the displacement.
2136  LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
2137  CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
2138  assert(LOpcode && CSOpcode && "Displacement out of range");
2139
2140  // Create virtual registers for temporary results.
2141  unsigned OrigVal       = MRI.createVirtualRegister(RC);
2142  unsigned OldVal        = MRI.createVirtualRegister(RC);
2143  unsigned NewVal        = MRI.createVirtualRegister(RC);
2144  unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
2145  unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
2146  unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
2147
2148  // Insert 3 basic blocks for the loop.
2149  MachineBasicBlock *StartMBB  = MBB;
2150  MachineBasicBlock *DoneMBB   = splitBlockAfter(MI, MBB);
2151  MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
2152  MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
2153  MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
2154
2155  //  StartMBB:
2156  //   ...
2157  //   %OrigVal     = L Disp(%Base)
2158  //   # fall through to LoopMMB
2159  MBB = StartMBB;
2160  BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
2161    .addOperand(Base).addImm(Disp).addReg(0);
2162  MBB->addSuccessor(LoopMBB);
2163
2164  //  LoopMBB:
2165  //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
2166  //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
2167  //   CompareOpcode %RotatedOldVal, %Src2
2168  //   BRC KeepOldMask, UpdateMBB
2169  MBB = LoopMBB;
2170  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2171    .addReg(OrigVal).addMBB(StartMBB)
2172    .addReg(Dest).addMBB(UpdateMBB);
2173  if (IsSubWord)
2174    BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
2175      .addReg(OldVal).addReg(BitShift).addImm(0);
2176  BuildMI(MBB, DL, TII->get(CompareOpcode))
2177    .addReg(RotatedOldVal).addReg(Src2);
2178  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2179    .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
2180  MBB->addSuccessor(UpdateMBB);
2181  MBB->addSuccessor(UseAltMBB);
2182
2183  //  UseAltMBB:
2184  //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
2185  //   # fall through to UpdateMMB
2186  MBB = UseAltMBB;
2187  if (IsSubWord)
2188    BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
2189      .addReg(RotatedOldVal).addReg(Src2)
2190      .addImm(32).addImm(31 + BitSize).addImm(0);
2191  MBB->addSuccessor(UpdateMBB);
2192
2193  //  UpdateMBB:
2194  //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
2195  //                        [ %RotatedAltVal, UseAltMBB ]
2196  //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
2197  //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
2198  //   JNE LoopMBB
2199  //   # fall through to DoneMMB
2200  MBB = UpdateMBB;
2201  BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
2202    .addReg(RotatedOldVal).addMBB(LoopMBB)
2203    .addReg(RotatedAltVal).addMBB(UseAltMBB);
2204  if (IsSubWord)
2205    BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
2206      .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
2207  BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
2208    .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
2209  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2210    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2211  MBB->addSuccessor(LoopMBB);
2212  MBB->addSuccessor(DoneMBB);
2213
2214  MI->eraseFromParent();
2215  return DoneMBB;
2216}
2217
2218// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
2219// instruction MI.
2220MachineBasicBlock *
2221SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI,
2222                                          MachineBasicBlock *MBB) const {
2223  const SystemZInstrInfo *TII = TM.getInstrInfo();
2224  MachineFunction &MF = *MBB->getParent();
2225  MachineRegisterInfo &MRI = MF.getRegInfo();
2226
2227  // Extract the operands.  Base can be a register or a frame index.
2228  unsigned Dest        = MI->getOperand(0).getReg();
2229  MachineOperand Base  = earlyUseOperand(MI->getOperand(1));
2230  int64_t  Disp        = MI->getOperand(2).getImm();
2231  unsigned OrigCmpVal  = MI->getOperand(3).getReg();
2232  unsigned OrigSwapVal = MI->getOperand(4).getReg();
2233  unsigned BitShift    = MI->getOperand(5).getReg();
2234  unsigned NegBitShift = MI->getOperand(6).getReg();
2235  int64_t  BitSize     = MI->getOperand(7).getImm();
2236  DebugLoc DL          = MI->getDebugLoc();
2237
2238  const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
2239
2240  // Get the right opcodes for the displacement.
2241  unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
2242  unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
2243  assert(LOpcode && CSOpcode && "Displacement out of range");
2244
2245  // Create virtual registers for temporary results.
2246  unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
2247  unsigned OldVal       = MRI.createVirtualRegister(RC);
2248  unsigned CmpVal       = MRI.createVirtualRegister(RC);
2249  unsigned SwapVal      = MRI.createVirtualRegister(RC);
2250  unsigned StoreVal     = MRI.createVirtualRegister(RC);
2251  unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
2252  unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
2253  unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
2254
2255  // Insert 2 basic blocks for the loop.
2256  MachineBasicBlock *StartMBB = MBB;
2257  MachineBasicBlock *DoneMBB  = splitBlockAfter(MI, MBB);
2258  MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
2259  MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
2260
2261  //  StartMBB:
2262  //   ...
2263  //   %OrigOldVal     = L Disp(%Base)
2264  //   # fall through to LoopMMB
2265  MBB = StartMBB;
2266  BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
2267    .addOperand(Base).addImm(Disp).addReg(0);
2268  MBB->addSuccessor(LoopMBB);
2269
2270  //  LoopMBB:
2271  //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
2272  //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
2273  //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
2274  //   %Dest          = RLL %OldVal, BitSize(%BitShift)
2275  //                      ^^ The low BitSize bits contain the field
2276  //                         of interest.
2277  //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
2278  //                      ^^ Replace the upper 32-BitSize bits of the
2279  //                         comparison value with those that we loaded,
2280  //                         so that we can use a full word comparison.
2281  //   CR %Dest, %RetryCmpVal
2282  //   JNE DoneMBB
2283  //   # Fall through to SetMBB
2284  MBB = LoopMBB;
2285  BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
2286    .addReg(OrigOldVal).addMBB(StartMBB)
2287    .addReg(RetryOldVal).addMBB(SetMBB);
2288  BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
2289    .addReg(OrigCmpVal).addMBB(StartMBB)
2290    .addReg(RetryCmpVal).addMBB(SetMBB);
2291  BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
2292    .addReg(OrigSwapVal).addMBB(StartMBB)
2293    .addReg(RetrySwapVal).addMBB(SetMBB);
2294  BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
2295    .addReg(OldVal).addReg(BitShift).addImm(BitSize);
2296  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
2297    .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2298  BuildMI(MBB, DL, TII->get(SystemZ::CR))
2299    .addReg(Dest).addReg(RetryCmpVal);
2300  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2301    .addImm(SystemZ::CCMASK_ICMP)
2302    .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
2303  MBB->addSuccessor(DoneMBB);
2304  MBB->addSuccessor(SetMBB);
2305
2306  //  SetMBB:
2307  //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
2308  //                      ^^ Replace the upper 32-BitSize bits of the new
2309  //                         value with those that we loaded.
2310  //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
2311  //                      ^^ Rotate the new field to its proper position.
2312  //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
2313  //   JNE LoopMBB
2314  //   # fall through to ExitMMB
2315  MBB = SetMBB;
2316  BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
2317    .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
2318  BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
2319    .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
2320  BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
2321    .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
2322  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2323    .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
2324  MBB->addSuccessor(LoopMBB);
2325  MBB->addSuccessor(DoneMBB);
2326
2327  MI->eraseFromParent();
2328  return DoneMBB;
2329}
2330
2331// Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
2332// if the high register of the GR128 value must be cleared or false if
2333// it's "don't care".  SubReg is subreg_odd32 when extending a GR32
2334// and subreg_odd when extending a GR64.
2335MachineBasicBlock *
2336SystemZTargetLowering::emitExt128(MachineInstr *MI,
2337                                  MachineBasicBlock *MBB,
2338                                  bool ClearEven, unsigned SubReg) const {
2339  const SystemZInstrInfo *TII = TM.getInstrInfo();
2340  MachineFunction &MF = *MBB->getParent();
2341  MachineRegisterInfo &MRI = MF.getRegInfo();
2342  DebugLoc DL = MI->getDebugLoc();
2343
2344  unsigned Dest  = MI->getOperand(0).getReg();
2345  unsigned Src   = MI->getOperand(1).getReg();
2346  unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2347
2348  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
2349  if (ClearEven) {
2350    unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
2351    unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
2352
2353    BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
2354      .addImm(0);
2355    BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
2356      .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_high);
2357    In128 = NewIn128;
2358  }
2359  BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
2360    .addReg(In128).addReg(Src).addImm(SubReg);
2361
2362  MI->eraseFromParent();
2363  return MBB;
2364}
2365
2366MachineBasicBlock *
2367SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI,
2368                                         MachineBasicBlock *MBB,
2369                                         unsigned Opcode) const {
2370  const SystemZInstrInfo *TII = TM.getInstrInfo();
2371  DebugLoc DL = MI->getDebugLoc();
2372
2373  MachineOperand DestBase = MI->getOperand(0);
2374  uint64_t       DestDisp = MI->getOperand(1).getImm();
2375  MachineOperand SrcBase  = MI->getOperand(2);
2376  uint64_t       SrcDisp  = MI->getOperand(3).getImm();
2377  uint64_t       Length   = MI->getOperand(4).getImm();
2378
2379  BuildMI(*MBB, MI, DL, TII->get(Opcode))
2380    .addOperand(DestBase).addImm(DestDisp).addImm(Length)
2381    .addOperand(SrcBase).addImm(SrcDisp);
2382
2383  MI->eraseFromParent();
2384  return MBB;
2385}
2386
2387// Decompose string pseudo-instruction MI into a loop that continually performs
2388// Opcode until CC != 3.
2389MachineBasicBlock *
2390SystemZTargetLowering::emitStringWrapper(MachineInstr *MI,
2391                                         MachineBasicBlock *MBB,
2392                                         unsigned Opcode) const {
2393  const SystemZInstrInfo *TII = TM.getInstrInfo();
2394  MachineFunction &MF = *MBB->getParent();
2395  MachineRegisterInfo &MRI = MF.getRegInfo();
2396  DebugLoc DL = MI->getDebugLoc();
2397
2398  uint64_t End1Reg   = MI->getOperand(0).getReg();
2399  uint64_t Start1Reg = MI->getOperand(1).getReg();
2400  uint64_t Start2Reg = MI->getOperand(2).getReg();
2401  uint64_t CharReg   = MI->getOperand(3).getReg();
2402
2403  const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
2404  uint64_t This1Reg = MRI.createVirtualRegister(RC);
2405  uint64_t This2Reg = MRI.createVirtualRegister(RC);
2406  uint64_t End2Reg  = MRI.createVirtualRegister(RC);
2407
2408  MachineBasicBlock *StartMBB = MBB;
2409  MachineBasicBlock *DoneMBB = splitBlockAfter(MI, MBB);
2410  MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
2411
2412  //  StartMBB:
2413  //   # fall through to LoopMMB
2414  MBB->addSuccessor(LoopMBB);
2415
2416  //  LoopMBB:
2417  //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
2418  //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
2419  //   R0W = %CharReg
2420  //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0W
2421  //   JO LoopMBB
2422  //   # fall through to DoneMMB
2423  //
2424  // The load of R0W can be hoisted by post-RA LICM.
2425  MBB = LoopMBB;
2426
2427  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
2428    .addReg(Start1Reg).addMBB(StartMBB)
2429    .addReg(End1Reg).addMBB(LoopMBB);
2430  BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
2431    .addReg(Start2Reg).addMBB(StartMBB)
2432    .addReg(End2Reg).addMBB(LoopMBB);
2433  BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0W).addReg(CharReg);
2434  BuildMI(MBB, DL, TII->get(Opcode))
2435    .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
2436    .addReg(This1Reg).addReg(This2Reg);
2437  BuildMI(MBB, DL, TII->get(SystemZ::BRC))
2438    .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
2439  MBB->addSuccessor(LoopMBB);
2440  MBB->addSuccessor(DoneMBB);
2441
2442  DoneMBB->addLiveIn(SystemZ::CC);
2443
2444  MI->eraseFromParent();
2445  return DoneMBB;
2446}
2447
2448MachineBasicBlock *SystemZTargetLowering::
2449EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const {
2450  switch (MI->getOpcode()) {
2451  case SystemZ::Select32:
2452  case SystemZ::SelectF32:
2453  case SystemZ::Select64:
2454  case SystemZ::SelectF64:
2455  case SystemZ::SelectF128:
2456    return emitSelect(MI, MBB);
2457
2458  case SystemZ::CondStore8_32:
2459    return emitCondStore(MI, MBB, SystemZ::STC32, 0, false);
2460  case SystemZ::CondStore8_32Inv:
2461    return emitCondStore(MI, MBB, SystemZ::STC32, 0, true);
2462  case SystemZ::CondStore16_32:
2463    return emitCondStore(MI, MBB, SystemZ::STH32, 0, false);
2464  case SystemZ::CondStore16_32Inv:
2465    return emitCondStore(MI, MBB, SystemZ::STH32, 0, true);
2466  case SystemZ::CondStore32_32:
2467    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, false);
2468  case SystemZ::CondStore32_32Inv:
2469    return emitCondStore(MI, MBB, SystemZ::ST32, SystemZ::STOC32, true);
2470  case SystemZ::CondStore8:
2471    return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
2472  case SystemZ::CondStore8Inv:
2473    return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
2474  case SystemZ::CondStore16:
2475    return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
2476  case SystemZ::CondStore16Inv:
2477    return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
2478  case SystemZ::CondStore32:
2479    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
2480  case SystemZ::CondStore32Inv:
2481    return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
2482  case SystemZ::CondStore64:
2483    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
2484  case SystemZ::CondStore64Inv:
2485    return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
2486  case SystemZ::CondStoreF32:
2487    return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
2488  case SystemZ::CondStoreF32Inv:
2489    return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
2490  case SystemZ::CondStoreF64:
2491    return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
2492  case SystemZ::CondStoreF64Inv:
2493    return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
2494
2495  case SystemZ::AEXT128_64:
2496    return emitExt128(MI, MBB, false, SystemZ::subreg_low);
2497  case SystemZ::ZEXT128_32:
2498    return emitExt128(MI, MBB, true, SystemZ::subreg_low32);
2499  case SystemZ::ZEXT128_64:
2500    return emitExt128(MI, MBB, true, SystemZ::subreg_low);
2501
2502  case SystemZ::ATOMIC_SWAPW:
2503    return emitAtomicLoadBinary(MI, MBB, 0, 0);
2504  case SystemZ::ATOMIC_SWAP_32:
2505    return emitAtomicLoadBinary(MI, MBB, 0, 32);
2506  case SystemZ::ATOMIC_SWAP_64:
2507    return emitAtomicLoadBinary(MI, MBB, 0, 64);
2508
2509  case SystemZ::ATOMIC_LOADW_AR:
2510    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
2511  case SystemZ::ATOMIC_LOADW_AFI:
2512    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
2513  case SystemZ::ATOMIC_LOAD_AR:
2514    return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
2515  case SystemZ::ATOMIC_LOAD_AHI:
2516    return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
2517  case SystemZ::ATOMIC_LOAD_AFI:
2518    return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
2519  case SystemZ::ATOMIC_LOAD_AGR:
2520    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
2521  case SystemZ::ATOMIC_LOAD_AGHI:
2522    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
2523  case SystemZ::ATOMIC_LOAD_AGFI:
2524    return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
2525
2526  case SystemZ::ATOMIC_LOADW_SR:
2527    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
2528  case SystemZ::ATOMIC_LOAD_SR:
2529    return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
2530  case SystemZ::ATOMIC_LOAD_SGR:
2531    return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
2532
2533  case SystemZ::ATOMIC_LOADW_NR:
2534    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
2535  case SystemZ::ATOMIC_LOADW_NILH:
2536    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0);
2537  case SystemZ::ATOMIC_LOAD_NR:
2538    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
2539  case SystemZ::ATOMIC_LOAD_NILL32:
2540    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32);
2541  case SystemZ::ATOMIC_LOAD_NILH32:
2542    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32);
2543  case SystemZ::ATOMIC_LOAD_NILF32:
2544    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32);
2545  case SystemZ::ATOMIC_LOAD_NGR:
2546    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
2547  case SystemZ::ATOMIC_LOAD_NILL:
2548    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64);
2549  case SystemZ::ATOMIC_LOAD_NILH:
2550    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64);
2551  case SystemZ::ATOMIC_LOAD_NIHL:
2552    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64);
2553  case SystemZ::ATOMIC_LOAD_NIHH:
2554    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64);
2555  case SystemZ::ATOMIC_LOAD_NILF:
2556    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64);
2557  case SystemZ::ATOMIC_LOAD_NIHF:
2558    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64);
2559
2560  case SystemZ::ATOMIC_LOADW_OR:
2561    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
2562  case SystemZ::ATOMIC_LOADW_OILH:
2563    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 0);
2564  case SystemZ::ATOMIC_LOAD_OR:
2565    return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
2566  case SystemZ::ATOMIC_LOAD_OILL32:
2567    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL32, 32);
2568  case SystemZ::ATOMIC_LOAD_OILH32:
2569    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH32, 32);
2570  case SystemZ::ATOMIC_LOAD_OILF32:
2571    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF32, 32);
2572  case SystemZ::ATOMIC_LOAD_OGR:
2573    return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
2574  case SystemZ::ATOMIC_LOAD_OILL:
2575    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 64);
2576  case SystemZ::ATOMIC_LOAD_OILH:
2577    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 64);
2578  case SystemZ::ATOMIC_LOAD_OIHL:
2579    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL, 64);
2580  case SystemZ::ATOMIC_LOAD_OIHH:
2581    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH, 64);
2582  case SystemZ::ATOMIC_LOAD_OILF:
2583    return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 64);
2584  case SystemZ::ATOMIC_LOAD_OIHF:
2585    return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF, 64);
2586
2587  case SystemZ::ATOMIC_LOADW_XR:
2588    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
2589  case SystemZ::ATOMIC_LOADW_XILF:
2590    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 0);
2591  case SystemZ::ATOMIC_LOAD_XR:
2592    return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
2593  case SystemZ::ATOMIC_LOAD_XILF32:
2594    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF32, 32);
2595  case SystemZ::ATOMIC_LOAD_XGR:
2596    return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
2597  case SystemZ::ATOMIC_LOAD_XILF:
2598    return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 64);
2599  case SystemZ::ATOMIC_LOAD_XIHF:
2600    return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF, 64);
2601
2602  case SystemZ::ATOMIC_LOADW_NRi:
2603    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
2604  case SystemZ::ATOMIC_LOADW_NILHi:
2605    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 0, true);
2606  case SystemZ::ATOMIC_LOAD_NRi:
2607    return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
2608  case SystemZ::ATOMIC_LOAD_NILL32i:
2609    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL32, 32, true);
2610  case SystemZ::ATOMIC_LOAD_NILH32i:
2611    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH32, 32, true);
2612  case SystemZ::ATOMIC_LOAD_NILF32i:
2613    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF32, 32, true);
2614  case SystemZ::ATOMIC_LOAD_NGRi:
2615    return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
2616  case SystemZ::ATOMIC_LOAD_NILLi:
2617    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 64, true);
2618  case SystemZ::ATOMIC_LOAD_NILHi:
2619    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 64, true);
2620  case SystemZ::ATOMIC_LOAD_NIHLi:
2621    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL, 64, true);
2622  case SystemZ::ATOMIC_LOAD_NIHHi:
2623    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH, 64, true);
2624  case SystemZ::ATOMIC_LOAD_NILFi:
2625    return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 64, true);
2626  case SystemZ::ATOMIC_LOAD_NIHFi:
2627    return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF, 64, true);
2628
2629  case SystemZ::ATOMIC_LOADW_MIN:
2630    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2631                                SystemZ::CCMASK_CMP_LE, 0);
2632  case SystemZ::ATOMIC_LOAD_MIN_32:
2633    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2634                                SystemZ::CCMASK_CMP_LE, 32);
2635  case SystemZ::ATOMIC_LOAD_MIN_64:
2636    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
2637                                SystemZ::CCMASK_CMP_LE, 64);
2638
2639  case SystemZ::ATOMIC_LOADW_MAX:
2640    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2641                                SystemZ::CCMASK_CMP_GE, 0);
2642  case SystemZ::ATOMIC_LOAD_MAX_32:
2643    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
2644                                SystemZ::CCMASK_CMP_GE, 32);
2645  case SystemZ::ATOMIC_LOAD_MAX_64:
2646    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
2647                                SystemZ::CCMASK_CMP_GE, 64);
2648
2649  case SystemZ::ATOMIC_LOADW_UMIN:
2650    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2651                                SystemZ::CCMASK_CMP_LE, 0);
2652  case SystemZ::ATOMIC_LOAD_UMIN_32:
2653    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2654                                SystemZ::CCMASK_CMP_LE, 32);
2655  case SystemZ::ATOMIC_LOAD_UMIN_64:
2656    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
2657                                SystemZ::CCMASK_CMP_LE, 64);
2658
2659  case SystemZ::ATOMIC_LOADW_UMAX:
2660    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2661                                SystemZ::CCMASK_CMP_GE, 0);
2662  case SystemZ::ATOMIC_LOAD_UMAX_32:
2663    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
2664                                SystemZ::CCMASK_CMP_GE, 32);
2665  case SystemZ::ATOMIC_LOAD_UMAX_64:
2666    return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
2667                                SystemZ::CCMASK_CMP_GE, 64);
2668
2669  case SystemZ::ATOMIC_CMP_SWAPW:
2670    return emitAtomicCmpSwapW(MI, MBB);
2671  case SystemZ::MVCWrapper:
2672    return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
2673  case SystemZ::CLCWrapper:
2674    return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
2675  case SystemZ::CLSTLoop:
2676    return emitStringWrapper(MI, MBB, SystemZ::CLST);
2677  case SystemZ::MVSTLoop:
2678    return emitStringWrapper(MI, MBB, SystemZ::MVST);
2679  case SystemZ::SRSTLoop:
2680    return emitStringWrapper(MI, MBB, SystemZ::SRST);
2681  default:
2682    llvm_unreachable("Unexpected instr type to insert");
2683  }
2684}
2685