1//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Basic SystemZ instruction definition
12//===----------------------------------------------------------------------===//
13
14class InstSystemZ<int size, dag outs, dag ins, string asmstr,
15                  list<dag> pattern> : Instruction {
16  let Namespace = "SystemZ";
17
18  dag OutOperandList = outs;
19  dag InOperandList = ins;
20  let Size = size;
21  let Pattern = pattern;
22  let AsmString = asmstr;
23
24  // Some instructions come in pairs, one having a 12-bit displacement
25  // and the other having a 20-bit displacement.  Both instructions in
26  // the pair have the same DispKey and their DispSizes are "12" and "20"
27  // respectively.
28  string DispKey = "";
29  string DispSize = "none";
30
31  // Many register-based <INSN>R instructions have a memory-based <INSN>
32  // counterpart.  OpKey uniquely identifies <INSN>, while OpType is
33  // "reg" for <INSN>R and "mem" for <INSN>.
34  string OpKey = "";
35  string OpType = "none";
36
37  // Many distinct-operands instructions have older 2-operand equivalents.
38  // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
39  // with NumOpsValue being "2" or "3" as appropriate.
40  string NumOpsKey = "";
41  string NumOpsValue = "none";
42
43  // True if this instruction is a simple D(X,B) load of a register
44  // (with no sign or zero extension).
45  bit SimpleBDXLoad = 0;
46
47  // True if this instruction is a simple D(X,B) store of a register
48  // (with no truncation).
49  bit SimpleBDXStore = 0;
50
51  // True if this instruction has a 20-bit displacement field.
52  bit Has20BitOffset = 0;
53
54  // True if addresses in this instruction have an index register.
55  bit HasIndex = 0;
56
57  // True if this is a 128-bit pseudo instruction that combines two 64-bit
58  // operations.
59  bit Is128Bit = 0;
60
61  // The access size of all memory operands in bytes, or 0 if not known.
62  bits<5> AccessBytes = 0;
63
64  // If the instruction sets CC to a useful value, this gives the mask
65  // of all possible CC results.  The mask has the same form as
66  // SystemZ::CCMASK_*.
67  bits<4> CCValues = 0;
68
69  // The subset of CCValues that have the same meaning as they would after
70  // a comparison of the first operand against zero.
71  bits<4> CompareZeroCCMask = 0;
72
73  // True if the instruction is conditional and if the CC mask operand
74  // comes first (as for BRC, etc.).
75  bit CCMaskFirst = 0;
76
77  // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
78  bit CCMaskLast = 0;
79
80  // True if the instruction is the "logical" rather than "arithmetic" form,
81  // in cases where a distinction exists.
82  bit IsLogical = 0;
83
84  let TSFlags{0}     = SimpleBDXLoad;
85  let TSFlags{1}     = SimpleBDXStore;
86  let TSFlags{2}     = Has20BitOffset;
87  let TSFlags{3}     = HasIndex;
88  let TSFlags{4}     = Is128Bit;
89  let TSFlags{9-5}   = AccessBytes;
90  let TSFlags{13-10} = CCValues;
91  let TSFlags{17-14} = CompareZeroCCMask;
92  let TSFlags{18}    = CCMaskFirst;
93  let TSFlags{19}    = CCMaskLast;
94  let TSFlags{20}    = IsLogical;
95}
96
97//===----------------------------------------------------------------------===//
98// Mappings between instructions
99//===----------------------------------------------------------------------===//
100
101// Return the version of an instruction that has an unsigned 12-bit
102// displacement.
103def getDisp12Opcode : InstrMapping {
104  let FilterClass = "InstSystemZ";
105  let RowFields = ["DispKey"];
106  let ColFields = ["DispSize"];
107  let KeyCol = ["20"];
108  let ValueCols = [["12"]];
109}
110
111// Return the version of an instruction that has a signed 20-bit displacement.
112def getDisp20Opcode : InstrMapping {
113  let FilterClass = "InstSystemZ";
114  let RowFields = ["DispKey"];
115  let ColFields = ["DispSize"];
116  let KeyCol = ["12"];
117  let ValueCols = [["20"]];
118}
119
120// Return the memory form of a register instruction.
121def getMemOpcode : InstrMapping {
122  let FilterClass = "InstSystemZ";
123  let RowFields = ["OpKey"];
124  let ColFields = ["OpType"];
125  let KeyCol = ["reg"];
126  let ValueCols = [["mem"]];
127}
128
129// Return the 3-operand form of a 2-operand instruction.
130def getThreeOperandOpcode : InstrMapping {
131  let FilterClass = "InstSystemZ";
132  let RowFields = ["NumOpsKey"];
133  let ColFields = ["NumOpsValue"];
134  let KeyCol = ["2"];
135  let ValueCols = [["3"]];
136}
137
138//===----------------------------------------------------------------------===//
139// Instruction formats
140//===----------------------------------------------------------------------===//
141//
142// Formats are specified using operand field declarations of the form:
143//
144//   bits<4> Rn   : register input or output for operand n
145//   bits<m> In   : immediate value of width m for operand n
146//   bits<4> BDn  : address operand n, which has a base and a displacement
147//   bits<m> XBDn : address operand n, which has an index, a base and a
148//                  displacement
149//   bits<4> Xn   : index register for address operand n
150//   bits<4> Mn   : mode value for operand n
151//
152// The operand numbers ("n" in the list above) follow the architecture manual.
153// Assembly operands sometimes have a different order; in particular, R3 often
154// is often written between operands 1 and 2.
155//
156//===----------------------------------------------------------------------===//
157
158class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
159  : InstSystemZ<4, outs, ins, asmstr, pattern> {
160  field bits<32> Inst;
161  field bits<32> SoftFail = 0;
162
163  bits<4> R1;
164  bits<16> I2;
165
166  let Inst{31-24} = op{11-4};
167  let Inst{23-20} = R1;
168  let Inst{19-16} = op{3-0};
169  let Inst{15-0}  = I2;
170}
171
172class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
173  : InstSystemZ<6, outs, ins, asmstr, pattern> {
174  field bits<48> Inst;
175  field bits<48> SoftFail = 0;
176
177  bits<4> R1;
178  bits<4> R2;
179  bits<4> M3;
180  bits<16> RI4;
181
182  let Inst{47-40} = op{15-8};
183  let Inst{39-36} = R1;
184  let Inst{35-32} = R2;
185  let Inst{31-16} = RI4;
186  let Inst{15-12} = M3;
187  let Inst{11-8}  = 0;
188  let Inst{7-0}   = op{7-0};
189}
190
191class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
192  : InstSystemZ<6, outs, ins, asmstr, pattern> {
193  field bits<48> Inst;
194  field bits<48> SoftFail = 0;
195
196  bits<4> R1;
197  bits<8> I2;
198  bits<4> M3;
199  bits<16> RI4;
200
201  let Inst{47-40} = op{15-8};
202  let Inst{39-36} = R1;
203  let Inst{35-32} = M3;
204  let Inst{31-16} = RI4;
205  let Inst{15-8}  = I2;
206  let Inst{7-0}   = op{7-0};
207}
208
209class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
210  : InstSystemZ<6, outs, ins, asmstr, pattern> {
211  field bits<48> Inst;
212  field bits<48> SoftFail = 0;
213
214  bits<4> R1;
215  bits<4> R3;
216  bits<16> I2;
217
218  let Inst{47-40} = op{15-8};
219  let Inst{39-36} = R1;
220  let Inst{35-32} = R3;
221  let Inst{31-16} = I2;
222  let Inst{15-8}  = 0;
223  let Inst{7-0}   = op{7-0};
224}
225
226class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
227  : InstSystemZ<6, outs, ins, asmstr, pattern> {
228  field bits<48> Inst;
229  field bits<48> SoftFail = 0;
230
231  bits<4> R1;
232  bits<4> R2;
233  bits<8> I3;
234  bits<8> I4;
235  bits<8> I5;
236
237  let Inst{47-40} = op{15-8};
238  let Inst{39-36} = R1;
239  let Inst{35-32} = R2;
240  let Inst{31-24} = I3;
241  let Inst{23-16} = I4;
242  let Inst{15-8}  = I5;
243  let Inst{7-0}   = op{7-0};
244}
245
246class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
247  : InstSystemZ<6, outs, ins, asmstr, pattern> {
248  field bits<48> Inst;
249  field bits<48> SoftFail = 0;
250
251  bits<4> R1;
252  bits<32> I2;
253
254  let Inst{47-40} = op{11-4};
255  let Inst{39-36} = R1;
256  let Inst{35-32} = op{3-0};
257  let Inst{31-0}  = I2;
258}
259
260class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
261  : InstSystemZ<2, outs, ins, asmstr, pattern> {
262  field bits<16> Inst;
263  field bits<16> SoftFail = 0;
264
265  bits<4> R1;
266  bits<4> R2;
267
268  let Inst{15-8} = op;
269  let Inst{7-4}  = R1;
270  let Inst{3-0}  = R2;
271}
272
273class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
274  : InstSystemZ<4, outs, ins, asmstr, pattern> {
275  field bits<32> Inst;
276  field bits<32> SoftFail = 0;
277
278  bits<4> R1;
279  bits<4> R3;
280  bits<4> R2;
281
282  let Inst{31-16} = op;
283  let Inst{15-12} = R1;
284  let Inst{11-8}  = 0;
285  let Inst{7-4}   = R3;
286  let Inst{3-0}   = R2;
287}
288
289class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
290  : InstSystemZ<4, outs, ins, asmstr, pattern> {
291  field bits<32> Inst;
292  field bits<32> SoftFail = 0;
293
294  bits<4> R1;
295  bits<4> R2;
296
297  let Inst{31-16} = op;
298  let Inst{15-8}  = 0;
299  let Inst{7-4}   = R1;
300  let Inst{3-0}   = R2;
301}
302
303class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
304  : InstSystemZ<4, outs, ins, asmstr, pattern> {
305  field bits<32> Inst;
306  field bits<32> SoftFail = 0;
307
308  bits<4> R1;
309  bits<4> R2;
310  bits<4> R3;
311  bits<4> R4;
312
313  let Inst{31-16} = op;
314  let Inst{15-12} = R3;
315  let Inst{11-8}  = R4;
316  let Inst{7-4}   = R1;
317  let Inst{3-0}   = R2;
318}
319
320class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
321  : InstSystemZ<4, outs, ins, asmstr, pattern> {
322  field bits<32> Inst;
323  field bits<32> SoftFail = 0;
324
325  bits<4> R1;
326  bits<20> XBD2;
327
328  let Inst{31-24} = op;
329  let Inst{23-20} = R1;
330  let Inst{19-0}  = XBD2;
331
332  let HasIndex = 1;
333}
334
335class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
336  : InstSystemZ<6, outs, ins, asmstr, pattern> {
337  field bits<48> Inst;
338  field bits<48> SoftFail = 0;
339
340  bits<4> R1;
341  bits<20> XBD2;
342
343  let Inst{47-40} = op{15-8};
344  let Inst{39-36} = R1;
345  let Inst{35-16} = XBD2;
346  let Inst{15-8}  = 0;
347  let Inst{7-0}   = op{7-0};
348
349  let HasIndex = 1;
350}
351
352class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
353  : InstSystemZ<6, outs, ins, asmstr, pattern> {
354  field bits<48> Inst;
355  field bits<48> SoftFail = 0;
356
357  bits<4> R1;
358  bits<4> R3;
359  bits<20> XBD2;
360
361  let Inst{47-40} = op{15-8};
362  let Inst{39-36} = R3;
363  let Inst{35-16} = XBD2;
364  let Inst{15-12} = R1;
365  let Inst{11-8}  = 0;
366  let Inst{7-0}   = op{7-0};
367
368  let HasIndex = 1;
369}
370
371class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
372  : InstSystemZ<6, outs, ins, asmstr, pattern> {
373  field bits<48> Inst;
374  field bits<48> SoftFail = 0;
375
376  bits<4> R1;
377  bits<28> XBD2;
378
379  let Inst{47-40} = op{15-8};
380  let Inst{39-36} = R1;
381  let Inst{35-8}  = XBD2;
382  let Inst{7-0}   = op{7-0};
383
384  let Has20BitOffset = 1;
385  let HasIndex = 1;
386}
387
388class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
389  : InstSystemZ<4, outs, ins, asmstr, pattern> {
390  field bits<32> Inst;
391  field bits<32> SoftFail = 0;
392
393  bits<4> R1;
394  bits<4> R3;
395  bits<16> BD2;
396
397  let Inst{31-24} = op;
398  let Inst{23-20} = R1;
399  let Inst{19-16} = R3;
400  let Inst{15-0}  = BD2;
401}
402
403class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
404  : InstSystemZ<6, outs, ins, asmstr, pattern> {
405  field bits<48> Inst;
406  field bits<48> SoftFail = 0;
407
408  bits<4> R1;
409  bits<4> R3;
410  bits<24> BD2;
411
412  let Inst{47-40} = op{15-8};
413  let Inst{39-36} = R1;
414  let Inst{35-32} = R3;
415  let Inst{31-8}  = BD2;
416  let Inst{7-0}   = op{7-0};
417
418  let Has20BitOffset = 1;
419}
420
421class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
422  : InstSystemZ<4, outs, ins, asmstr, pattern> {
423  field bits<32> Inst;
424  field bits<32> SoftFail = 0;
425
426  bits<16> BD1;
427  bits<8> I2;
428
429  let Inst{31-24} = op;
430  let Inst{23-16} = I2;
431  let Inst{15-0}  = BD1;
432}
433
434class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
435  : InstSystemZ<6, outs, ins, asmstr, pattern> {
436  field bits<48> Inst;
437  field bits<48> SoftFail = 0;
438
439  bits<16> BD1;
440  bits<16> I2;
441
442  let Inst{47-32} = op;
443  let Inst{31-16} = BD1;
444  let Inst{15-0}  = I2;
445}
446
447class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
448  : InstSystemZ<6, outs, ins, asmstr, pattern> {
449  field bits<48> Inst;
450  field bits<48> SoftFail = 0;
451
452  bits<24> BD1;
453  bits<8> I2;
454
455  let Inst{47-40} = op{15-8};
456  let Inst{39-32} = I2;
457  let Inst{31-8}  = BD1;
458  let Inst{7-0}   = op{7-0};
459
460  let Has20BitOffset = 1;
461}
462
463class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
464  : InstSystemZ<6, outs, ins, asmstr, pattern> {
465  field bits<48> Inst;
466  field bits<48> SoftFail = 0;
467
468  bits<24> BDL1;
469  bits<16> BD2;
470
471  let Inst{47-40} = op;
472  let Inst{39-16} = BDL1;
473  let Inst{15-0}  = BD2;
474}
475
476//===----------------------------------------------------------------------===//
477// Instruction definitions with semantics
478//===----------------------------------------------------------------------===//
479//
480// These classes have the form [Cond]<Category><Format>, where <Format> is one
481// of the formats defined above and where <Category> describes the inputs
482// and outputs.  "Cond" is used if the instruction is conditional,
483// in which case the 4-bit condition-code mask is added as a final operand.
484// <Category> can be one of:
485//
486//   Inherent:
487//     One register output operand and no input operands.
488//
489//   BranchUnary:
490//     One register output operand, one register input operand and
491//     one branch displacement.  The instructions stores a modified
492//     form of the source register in the destination register and
493//     branches on the result.
494//
495//   Store:
496//     One register or immediate input operand and one address input operand.
497//     The instruction stores the first operand to the address.
498//
499//     This category is used for both pure and truncating stores.
500//
501//   LoadMultiple:
502//     One address input operand and two explicit output operands.
503//     The instruction loads a range of registers from the address,
504//     with the explicit operands giving the first and last register
505//     to load.  Other loaded registers are added as implicit definitions.
506//
507//   StoreMultiple:
508//     Two explicit input register operands and an address operand.
509//     The instruction stores a range of registers to the address,
510//     with the explicit operands giving the first and last register
511//     to store.  Other stored registers are added as implicit uses.
512//
513//   Unary:
514//     One register output operand and one input operand.
515//
516//   Binary:
517//     One register output operand and two input operands.
518//
519//   Compare:
520//     Two input operands and an implicit CC output operand.
521//
522//   Ternary:
523//     One register output operand and three input operands.
524//
525//   LoadAndOp:
526//     One output operand and two input operands, one of which is an address.
527//     The instruction both reads from and writes to the address.
528//
529//   CmpSwap:
530//     One output operand and three input operands, one of which is an address.
531//     The instruction both reads from and writes to the address.
532//
533//   RotateSelect:
534//     One output operand and five input operands.  The first two operands
535//     are registers and the other three are immediates.
536//
537//   Prefetch:
538//     One 4-bit immediate operand and one address operand.  The immediate
539//     operand is 1 for a load prefetch and 2 for a store prefetch.
540//
541// The format determines which input operands are tied to output operands,
542// and also determines the shape of any address operand.
543//
544// Multiclasses of the form <Category><Format>Pair define two instructions,
545// one with <Category><Format> and one with <Category><Format>Y.  The name
546// of the first instruction has no suffix, the name of the second has
547// an extra "y".
548//
549//===----------------------------------------------------------------------===//
550
551class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
552                  dag src>
553  : InstRRE<opcode, (outs cls:$R1), (ins),
554            mnemonic#"\t$R1",
555            [(set cls:$R1, src)]> {
556  let R2 = 0;
557}
558
559class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
560  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
561           mnemonic##"\t$R1, $I2", []> {
562  let isBranch = 1;
563  let isTerminator = 1;
564  let Constraints = "$R1 = $R1src";
565  let DisableEncoding = "$R1src";
566}
567
568class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
569  : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
570            mnemonic#"\t$R1, $R3, $BD2", []> {
571  let mayLoad = 1;
572}
573
574class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
575                 RegisterOperand cls>
576  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
577            mnemonic#"\t$R1, $I2",
578            [(operator cls:$R1, pcrel32:$I2)]> {
579  let mayStore = 1;
580  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
581  // However, BDXs have two extra operands and are therefore 6 units more
582  // complex.
583  let AddedComplexity = 7;
584}
585
586class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
587              RegisterOperand cls, bits<5> bytes,
588              AddressingMode mode = bdxaddr12only>
589  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
590           mnemonic#"\t$R1, $XBD2",
591           [(operator cls:$R1, mode:$XBD2)]> {
592  let OpKey = mnemonic ## cls;
593  let OpType = "mem";
594  let mayStore = 1;
595  let AccessBytes = bytes;
596}
597
598class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
599               RegisterOperand cls, bits<5> bytes,
600               AddressingMode mode = bdxaddr20only>
601  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
602            mnemonic#"\t$R1, $XBD2",
603            [(operator cls:$R1, mode:$XBD2)]> {
604  let OpKey = mnemonic ## cls;
605  let OpType = "mem";
606  let mayStore = 1;
607  let AccessBytes = bytes;
608}
609
610multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
611                       SDPatternOperator operator, RegisterOperand cls,
612                       bits<5> bytes> {
613  let DispKey = mnemonic ## #cls in {
614    let DispSize = "12" in
615      def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
616    let DispSize = "20" in
617      def Y  : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
618                        bdxaddr20pair>;
619  }
620}
621
622class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
623  : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
624            mnemonic#"\t$R1, $R3, $BD2", []> {
625  let mayStore = 1;
626}
627
628// StoreSI* instructions are used to store an integer to memory, but the
629// addresses are more restricted than for normal stores.  If we are in the
630// situation of having to force either the address into a register or the
631// constant into a register, it's usually better to do the latter.
632// We therefore match the address in the same way as a normal store and
633// only use the StoreSI* instruction if the matched address is suitable.
634class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
635              Immediate imm>
636  : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
637           mnemonic#"\t$BD1, $I2",
638           [(operator imm:$I2, mviaddr12pair:$BD1)]> {
639  let mayStore = 1;
640}
641
642class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
643               Immediate imm>
644  : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
645            mnemonic#"\t$BD1, $I2",
646            [(operator imm:$I2, mviaddr20pair:$BD1)]> {
647  let mayStore = 1;
648}
649
650class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
651               Immediate imm>
652  : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
653            mnemonic#"\t$BD1, $I2",
654            [(operator imm:$I2, mviaddr12pair:$BD1)]> {
655  let mayStore = 1;
656}
657
658multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
659                       SDPatternOperator operator, Immediate imm> {
660  let DispKey = mnemonic in {
661    let DispSize = "12" in
662      def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
663    let DispSize = "20" in
664      def Y  : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
665  }
666}
667
668class CondStoreRSY<string mnemonic, bits<16> opcode,
669                   RegisterOperand cls, bits<5> bytes,
670                   AddressingMode mode = bdaddr20only>
671  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
672            mnemonic#"$R3\t$R1, $BD2", []>,
673    Requires<[FeatureLoadStoreOnCond]> {
674  let mayStore = 1;
675  let AccessBytes = bytes;
676  let CCMaskLast = 1;
677}
678
679// Like CondStoreRSY, but used for the raw assembly form.  The condition-code
680// mask is the third operand rather than being part of the mnemonic.
681class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
682                      RegisterOperand cls, bits<5> bytes,
683                      AddressingMode mode = bdaddr20only>
684  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$R3),
685            mnemonic#"\t$R1, $BD2, $R3", []>,
686    Requires<[FeatureLoadStoreOnCond]> {
687  let mayStore = 1;
688  let AccessBytes = bytes;
689}
690
691// Like CondStoreRSY, but with a fixed CC mask.
692class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
693                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
694                        AddressingMode mode = bdaddr20only>
695  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
696            mnemonic#"\t$R1, $BD2", []>,
697    Requires<[FeatureLoadStoreOnCond]> {
698  let mayStore = 1;
699  let AccessBytes = bytes;
700  let R3 = ccmask;
701}
702
703class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
704              RegisterOperand cls1, RegisterOperand cls2>
705  : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
706           mnemonic#"r\t$R1, $R2",
707           [(set cls1:$R1, (operator cls2:$R2))]> {
708  let OpKey = mnemonic ## cls1;
709  let OpType = "reg";
710}
711
712class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
713               RegisterOperand cls1, RegisterOperand cls2>
714  : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
715            mnemonic#"r\t$R1, $R2",
716            [(set cls1:$R1, (operator cls2:$R2))]> {
717  let OpKey = mnemonic ## cls1;
718  let OpType = "reg";
719}
720
721class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
722               RegisterOperand cls2>
723  : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2),
724            mnemonic#"r\t$R1, $R3, $R2", []> {
725  let OpKey = mnemonic ## cls1;
726  let OpType = "reg";
727  let R4 = 0;
728}
729
730class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
731                RegisterOperand cls2>
732  : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2, imm32zx4:$R4),
733            mnemonic#"\t$R1, $R3, $R2, $R4", []>;
734
735// These instructions are generated by if conversion.  The old value of R1
736// is added as an implicit use.
737class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
738                   RegisterOperand cls2>
739  : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
740            mnemonic#"r$R3\t$R1, $R2", []>,
741    Requires<[FeatureLoadStoreOnCond]> {
742  let CCMaskLast = 1;
743  let R4 = 0;
744}
745
746// Like CondUnaryRRF, but used for the raw assembly form.  The condition-code
747// mask is the third operand rather than being part of the mnemonic.
748class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
749                      RegisterOperand cls2>
750  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, imm32zx4:$R3),
751            mnemonic#"r\t$R1, $R2, $R3", []>,
752    Requires<[FeatureLoadStoreOnCond]> {
753  let Constraints = "$R1 = $R1src";
754  let DisableEncoding = "$R1src";
755  let R4 = 0;
756}
757
758// Like CondUnaryRRF, but with a fixed CC mask.
759class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
760                        RegisterOperand cls2, bits<4> ccmask>
761  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
762            mnemonic#"\t$R1, $R2", []>,
763    Requires<[FeatureLoadStoreOnCond]> {
764  let Constraints = "$R1 = $R1src";
765  let DisableEncoding = "$R1src";
766  let R3 = ccmask;
767  let R4 = 0;
768}
769
770class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
771              RegisterOperand cls, Immediate imm>
772  : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
773           mnemonic#"\t$R1, $I2",
774           [(set cls:$R1, (operator imm:$I2))]>;
775
776class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
777               RegisterOperand cls, Immediate imm>
778  : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
779            mnemonic#"\t$R1, $I2",
780            [(set cls:$R1, (operator imm:$I2))]>;
781
782class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
783                 RegisterOperand cls>
784  : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
785            mnemonic#"\t$R1, $I2",
786            [(set cls:$R1, (operator pcrel32:$I2))]> {
787  let mayLoad = 1;
788  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
789  // However, BDXs have two extra operands and are therefore 6 units more
790  // complex.
791  let AddedComplexity = 7;
792}
793
794class CondUnaryRSY<string mnemonic, bits<16> opcode,
795                   SDPatternOperator operator, RegisterOperand cls,
796                   bits<5> bytes, AddressingMode mode = bdaddr20only>
797  : InstRSY<opcode, (outs cls:$R1),
798            (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
799            mnemonic#"$R3\t$R1, $BD2",
800            [(set cls:$R1,
801                  (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
802                                   cond4:$valid, cond4:$R3))]>,
803    Requires<[FeatureLoadStoreOnCond]> {
804  let Constraints = "$R1 = $R1src";
805  let DisableEncoding = "$R1src";
806  let mayLoad = 1;
807  let AccessBytes = bytes;
808  let CCMaskLast = 1;
809}
810
811// Like CondUnaryRSY, but used for the raw assembly form.  The condition-code
812// mask is the third operand rather than being part of the mnemonic.
813class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
814                      RegisterOperand cls, bits<5> bytes,
815                      AddressingMode mode = bdaddr20only>
816  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$R3),
817            mnemonic#"\t$R1, $BD2, $R3", []>,
818    Requires<[FeatureLoadStoreOnCond]> {
819  let mayLoad = 1;
820  let AccessBytes = bytes;
821  let Constraints = "$R1 = $R1src";
822  let DisableEncoding = "$R1src";
823}
824
825// Like CondUnaryRSY, but with a fixed CC mask.
826class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
827                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
828                        AddressingMode mode = bdaddr20only>
829  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
830            mnemonic#"\t$R1, $BD2", []>,
831    Requires<[FeatureLoadStoreOnCond]> {
832  let Constraints = "$R1 = $R1src";
833  let DisableEncoding = "$R1src";
834  let R3 = ccmask;
835  let mayLoad = 1;
836  let AccessBytes = bytes;
837}
838
839class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
840              RegisterOperand cls, bits<5> bytes,
841              AddressingMode mode = bdxaddr12only>
842  : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
843           mnemonic#"\t$R1, $XBD2",
844           [(set cls:$R1, (operator mode:$XBD2))]> {
845  let OpKey = mnemonic ## cls;
846  let OpType = "mem";
847  let mayLoad = 1;
848  let AccessBytes = bytes;
849}
850
851class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
852               RegisterOperand cls, bits<5> bytes>
853  : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
854            mnemonic#"\t$R1, $XBD2",
855            [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
856  let OpKey = mnemonic ## cls;
857  let OpType = "mem";
858  let mayLoad = 1;
859  let AccessBytes = bytes;
860}
861
862class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
863               RegisterOperand cls, bits<5> bytes,
864               AddressingMode mode = bdxaddr20only>
865  : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
866            mnemonic#"\t$R1, $XBD2",
867            [(set cls:$R1, (operator mode:$XBD2))]> {
868  let OpKey = mnemonic ## cls;
869  let OpType = "mem";
870  let mayLoad = 1;
871  let AccessBytes = bytes;
872}
873
874multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
875                       SDPatternOperator operator, RegisterOperand cls,
876                       bits<5> bytes> {
877  let DispKey = mnemonic ## #cls in {
878    let DispSize = "12" in
879      def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
880    let DispSize = "20" in
881      def Y  : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
882                        bdxaddr20pair>;
883  }
884}
885
886class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
887               RegisterOperand cls1, RegisterOperand cls2>
888  : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
889           mnemonic#"r\t$R1, $R2",
890           [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
891  let OpKey = mnemonic ## cls1;
892  let OpType = "reg";
893  let Constraints = "$R1 = $R1src";
894  let DisableEncoding = "$R1src";
895}
896
897class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
898                RegisterOperand cls1, RegisterOperand cls2>
899  : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
900            mnemonic#"r\t$R1, $R2",
901            [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
902  let OpKey = mnemonic ## cls1;
903  let OpType = "reg";
904  let Constraints = "$R1 = $R1src";
905  let DisableEncoding = "$R1src";
906}
907
908class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
909                RegisterOperand cls1, RegisterOperand cls2>
910  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
911            mnemonic#"r\t$R1, $R3, $R2",
912            [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
913  let OpKey = mnemonic ## cls1;
914  let OpType = "reg";
915  let R4 = 0;
916}
917
918class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
919                 RegisterOperand cls1, RegisterOperand cls2>
920  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
921            mnemonic#"rk\t$R1, $R2, $R3",
922            [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
923  let R4 = 0;
924}
925
926multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
927                        SDPatternOperator operator, RegisterOperand cls1,
928                        RegisterOperand cls2> {
929  let NumOpsKey = mnemonic in {
930    let NumOpsValue = "3" in
931      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
932              Requires<[FeatureDistinctOps]>;
933    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
934      def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
935  }
936}
937
938multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
939                         SDPatternOperator operator, RegisterOperand cls1,
940                         RegisterOperand cls2> {
941  let NumOpsKey = mnemonic in {
942    let NumOpsValue = "3" in
943      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
944              Requires<[FeatureDistinctOps]>;
945    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
946      def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
947  }
948}
949
950class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
951               RegisterOperand cls, Immediate imm>
952  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
953           mnemonic#"\t$R1, $I2",
954           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
955  let Constraints = "$R1 = $R1src";
956  let DisableEncoding = "$R1src";
957}
958
959class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
960                RegisterOperand cls, Immediate imm>
961  : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
962             mnemonic#"\t$R1, $R3, $I2",
963             [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
964
965multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
966                        SDPatternOperator operator, RegisterOperand cls,
967                        Immediate imm> {
968  let NumOpsKey = mnemonic in {
969    let NumOpsValue = "3" in
970      def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
971              Requires<[FeatureDistinctOps]>;
972    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
973      def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
974  }
975}
976
977class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
978                RegisterOperand cls, Immediate imm>
979  : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
980            mnemonic#"\t$R1, $I2",
981            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
982  let Constraints = "$R1 = $R1src";
983  let DisableEncoding = "$R1src";
984}
985
986class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
987               RegisterOperand cls>
988  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
989           mnemonic#"\t$R1, $BD2",
990           [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
991  let R3 = 0;
992  let Constraints = "$R1 = $R1src";
993  let DisableEncoding = "$R1src";
994}
995
996class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
997                RegisterOperand cls>
998  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
999            mnemonic#"\t$R1, $R3, $BD2",
1000            [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
1001
1002multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
1003                        SDPatternOperator operator, RegisterOperand cls> {
1004  let NumOpsKey = mnemonic in {
1005    let NumOpsValue = "3" in
1006      def K  : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
1007               Requires<[FeatureDistinctOps]>;
1008    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1009      def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
1010  }
1011}
1012
1013class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1014               RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1015               AddressingMode mode = bdxaddr12only>
1016  : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
1017           mnemonic#"\t$R1, $XBD2",
1018           [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
1019  let OpKey = mnemonic ## cls;
1020  let OpType = "mem";
1021  let Constraints = "$R1 = $R1src";
1022  let DisableEncoding = "$R1src";
1023  let mayLoad = 1;
1024  let AccessBytes = bytes;
1025}
1026
1027class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1028                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1029  : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
1030            mnemonic#"\t$R1, $XBD2",
1031            [(set cls:$R1, (operator cls:$R1src,
1032                                     (load bdxaddr12only:$XBD2)))]> {
1033  let OpKey = mnemonic ## cls;
1034  let OpType = "mem";
1035  let Constraints = "$R1 = $R1src";
1036  let DisableEncoding = "$R1src";
1037  let mayLoad = 1;
1038  let AccessBytes = bytes;
1039}
1040
1041class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1042                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1043                AddressingMode mode = bdxaddr20only>
1044  : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
1045            mnemonic#"\t$R1, $XBD2",
1046            [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
1047  let OpKey = mnemonic ## cls;
1048  let OpType = "mem";
1049  let Constraints = "$R1 = $R1src";
1050  let DisableEncoding = "$R1src";
1051  let mayLoad = 1;
1052  let AccessBytes = bytes;
1053}
1054
1055multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1056                        SDPatternOperator operator, RegisterOperand cls,
1057                        SDPatternOperator load, bits<5> bytes> {
1058  let DispKey = mnemonic ## #cls in {
1059    let DispSize = "12" in
1060      def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
1061                        bdxaddr12pair>;
1062    let DispSize = "20" in
1063      def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
1064                         bdxaddr20pair>;
1065  }
1066}
1067
1068class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1069               Operand imm, AddressingMode mode = bdaddr12only>
1070  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1071           mnemonic#"\t$BD1, $I2",
1072           [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1073  let mayLoad = 1;
1074  let mayStore = 1;
1075}
1076
1077class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1078                Operand imm, AddressingMode mode = bdaddr20only>
1079  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1080            mnemonic#"\t$BD1, $I2",
1081            [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1082  let mayLoad = 1;
1083  let mayStore = 1;
1084}
1085
1086multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
1087                        bits<16> siyOpcode, SDPatternOperator operator,
1088                        Operand imm> {
1089  let DispKey = mnemonic ## #cls in {
1090    let DispSize = "12" in
1091      def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
1092    let DispSize = "20" in
1093      def Y  : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
1094  }
1095}
1096
1097class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1098                RegisterOperand cls1, RegisterOperand cls2>
1099  : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1100           mnemonic#"r\t$R1, $R2",
1101           [(operator cls1:$R1, cls2:$R2)]> {
1102  let OpKey = mnemonic ## cls1;
1103  let OpType = "reg";
1104  let isCompare = 1;
1105}
1106
1107class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1108                 RegisterOperand cls1, RegisterOperand cls2>
1109  : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1110            mnemonic#"r\t$R1, $R2",
1111            [(operator cls1:$R1, cls2:$R2)]> {
1112  let OpKey = mnemonic ## cls1;
1113  let OpType = "reg";
1114  let isCompare = 1;
1115}
1116
1117class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1118                RegisterOperand cls, Immediate imm>
1119  : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
1120           mnemonic#"\t$R1, $I2",
1121           [(operator cls:$R1, imm:$I2)]> {
1122  let isCompare = 1;
1123}
1124
1125class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1126                 RegisterOperand cls, Immediate imm>
1127  : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
1128            mnemonic#"\t$R1, $I2",
1129            [(operator cls:$R1, imm:$I2)]> {
1130  let isCompare = 1;
1131}
1132
1133class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1134                   RegisterOperand cls, SDPatternOperator load>
1135  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
1136            mnemonic#"\t$R1, $I2",
1137            [(operator cls:$R1, (load pcrel32:$I2))]> {
1138  let isCompare = 1;
1139  let mayLoad = 1;
1140  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1141  // However, BDXs have two extra operands and are therefore 6 units more
1142  // complex.
1143  let AddedComplexity = 7;
1144}
1145
1146class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1147                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1148                AddressingMode mode = bdxaddr12only>
1149  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1150           mnemonic#"\t$R1, $XBD2",
1151           [(operator cls:$R1, (load mode:$XBD2))]> {
1152  let OpKey = mnemonic ## cls;
1153  let OpType = "mem";
1154  let isCompare = 1;
1155  let mayLoad = 1;
1156  let AccessBytes = bytes;
1157}
1158
1159class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1160                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1161  : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
1162            mnemonic#"\t$R1, $XBD2",
1163            [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
1164  let OpKey = mnemonic ## cls;
1165  let OpType = "mem";
1166  let isCompare = 1;
1167  let mayLoad = 1;
1168  let AccessBytes = bytes;
1169}
1170
1171class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1172                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1173                 AddressingMode mode = bdxaddr20only>
1174  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1175            mnemonic#"\t$R1, $XBD2",
1176            [(operator cls:$R1, (load mode:$XBD2))]> {
1177  let OpKey = mnemonic ## cls;
1178  let OpType = "mem";
1179  let isCompare = 1;
1180  let mayLoad = 1;
1181  let AccessBytes = bytes;
1182}
1183
1184multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1185                         SDPatternOperator operator, RegisterOperand cls,
1186                         SDPatternOperator load, bits<5> bytes> {
1187  let DispKey = mnemonic ## #cls in {
1188    let DispSize = "12" in
1189      def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
1190                         load, bytes, bdxaddr12pair>;
1191    let DispSize = "20" in
1192      def Y  : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
1193                          load, bytes, bdxaddr20pair>;
1194  }
1195}
1196
1197class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1198                SDPatternOperator load, Immediate imm,
1199                AddressingMode mode = bdaddr12only>
1200  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1201           mnemonic#"\t$BD1, $I2",
1202           [(operator (load mode:$BD1), imm:$I2)]> {
1203  let isCompare = 1;
1204  let mayLoad = 1;
1205}
1206
1207class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1208                 SDPatternOperator load, Immediate imm>
1209  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
1210            mnemonic#"\t$BD1, $I2",
1211            [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
1212  let isCompare = 1;
1213  let mayLoad = 1;
1214}
1215
1216class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1217                 SDPatternOperator load, Immediate imm,
1218                 AddressingMode mode = bdaddr20only>
1219  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1220            mnemonic#"\t$BD1, $I2",
1221            [(operator (load mode:$BD1), imm:$I2)]> {
1222  let isCompare = 1;
1223  let mayLoad = 1;
1224}
1225
1226multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
1227                         SDPatternOperator operator, SDPatternOperator load,
1228                         Immediate imm> {
1229  let DispKey = mnemonic in {
1230    let DispSize = "12" in
1231      def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
1232    let DispSize = "20" in
1233      def Y  : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
1234                          bdaddr20pair>;
1235  }
1236}
1237
1238class TernaryRRD<string mnemonic, bits<16> opcode,
1239                 SDPatternOperator operator, RegisterOperand cls>
1240  : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
1241            mnemonic#"r\t$R1, $R3, $R2",
1242            [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
1243  let OpKey = mnemonic ## cls;
1244  let OpType = "reg";
1245  let Constraints = "$R1 = $R1src";
1246  let DisableEncoding = "$R1src";
1247}
1248
1249class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1250                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1251  : InstRXF<opcode, (outs cls:$R1),
1252            (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
1253            mnemonic#"\t$R1, $R3, $XBD2",
1254            [(set cls:$R1, (operator cls:$R1src, cls:$R3,
1255                                     (load bdxaddr12only:$XBD2)))]> {
1256  let OpKey = mnemonic ## cls;
1257  let OpType = "mem";
1258  let Constraints = "$R1 = $R1src";
1259  let DisableEncoding = "$R1src";
1260  let mayLoad = 1;
1261  let AccessBytes = bytes;
1262}
1263
1264class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1265                  RegisterOperand cls, AddressingMode mode = bdaddr20only>
1266  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
1267            mnemonic#"\t$R1, $R3, $BD2",
1268            [(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
1269  let mayLoad = 1;
1270  let mayStore = 1;
1271}
1272
1273class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1274                RegisterOperand cls, AddressingMode mode = bdaddr12only>
1275  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1276           mnemonic#"\t$R1, $R3, $BD2",
1277           [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1278  let Constraints = "$R1 = $R1src";
1279  let DisableEncoding = "$R1src";
1280  let mayLoad = 1;
1281  let mayStore = 1;
1282}
1283
1284class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1285                 RegisterOperand cls, AddressingMode mode = bdaddr20only>
1286  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1287            mnemonic#"\t$R1, $R3, $BD2",
1288            [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1289  let Constraints = "$R1 = $R1src";
1290  let DisableEncoding = "$R1src";
1291  let mayLoad = 1;
1292  let mayStore = 1;
1293}
1294
1295multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
1296                         SDPatternOperator operator, RegisterOperand cls> {
1297  let DispKey = mnemonic ## #cls in {
1298    let DispSize = "12" in
1299      def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
1300    let DispSize = "20" in
1301      def Y  : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
1302  }
1303}
1304
1305class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
1306                       RegisterOperand cls2>
1307  : InstRIEf<opcode, (outs cls1:$R1),
1308             (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
1309                  imm32zx6:$I5),
1310             mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
1311  let Constraints = "$R1 = $R1src";
1312  let DisableEncoding = "$R1src";
1313}
1314
1315class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
1316  : InstRXY<opcode, (outs), (ins imm32zx4:$R1, bdxaddr20only:$XBD2),
1317            mnemonic##"\t$R1, $XBD2",
1318            [(operator imm32zx4:$R1, bdxaddr20only:$XBD2)]>;
1319
1320class PrefetchRILPC<string mnemonic, bits<12> opcode,
1321                    SDPatternOperator operator>
1322  : InstRIL<opcode, (outs), (ins imm32zx4:$R1, pcrel32:$I2),
1323            mnemonic##"\t$R1, $I2",
1324            [(operator imm32zx4:$R1, pcrel32:$I2)]> {
1325  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1326  // However, BDXs have two extra operands and are therefore 6 units more
1327  // complex.
1328  let AddedComplexity = 7;
1329}
1330
1331// A floating-point load-and test operation.  Create both a normal unary
1332// operation and one that acts as a comparison against zero.
1333multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
1334                          RegisterOperand cls> {
1335  def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
1336  let isCodeGenOnly = 1 in
1337    def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
1338}
1339
1340//===----------------------------------------------------------------------===//
1341// Pseudo instructions
1342//===----------------------------------------------------------------------===//
1343//
1344// Convenience instructions that get lowered to real instructions
1345// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
1346// or SystemZInstrInfo::expandPostRAPseudo().
1347//
1348//===----------------------------------------------------------------------===//
1349
1350class Pseudo<dag outs, dag ins, list<dag> pattern>
1351  : InstSystemZ<0, outs, ins, "", pattern> {
1352  let isPseudo = 1;
1353  let isCodeGenOnly = 1;
1354}
1355
1356// Like UnaryRI, but expanded after RA depending on the choice of register.
1357class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1358                    Immediate imm>
1359  : Pseudo<(outs cls:$R1), (ins imm:$I2),
1360           [(set cls:$R1, (operator imm:$I2))]>;
1361
1362// Like UnaryRXY, but expanded after RA depending on the choice of register.
1363class UnaryRXYPseudo<string key, SDPatternOperator operator,
1364                     RegisterOperand cls, bits<5> bytes,
1365                     AddressingMode mode = bdxaddr20only>
1366  : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
1367           [(set cls:$R1, (operator mode:$XBD2))]> {
1368  let OpKey = key ## cls;
1369  let OpType = "mem";
1370  let mayLoad = 1;
1371  let Has20BitOffset = 1;
1372  let HasIndex = 1;
1373  let AccessBytes = bytes;
1374}
1375
1376// Like UnaryRR, but expanded after RA depending on the choice of registers.
1377class UnaryRRPseudo<string key, SDPatternOperator operator,
1378                    RegisterOperand cls1, RegisterOperand cls2>
1379  : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
1380           [(set cls1:$R1, (operator cls2:$R2))]> {
1381  let OpKey = key ## cls1;
1382  let OpType = "reg";
1383}
1384
1385// Like BinaryRI, but expanded after RA depending on the choice of register.
1386class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1387                     Immediate imm>
1388  : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
1389           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1390  let Constraints = "$R1 = $R1src";
1391}
1392
1393// Like BinaryRIE, but expanded after RA depending on the choice of register.
1394class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
1395                      Immediate imm>
1396  : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
1397           [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
1398
1399// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
1400multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
1401                              RegisterOperand cls, Immediate imm> {
1402  let NumOpsKey = key in {
1403    let NumOpsValue = "3" in
1404      def K : BinaryRIEPseudo<null_frag, cls, imm>,
1405              Requires<[FeatureHighWord, FeatureDistinctOps]>;
1406    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1407      def "" : BinaryRIPseudo<operator, cls, imm>,
1408               Requires<[FeatureHighWord]>;
1409  }
1410}
1411
1412// Like CompareRI, but expanded after RA depending on the choice of register.
1413class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1414                      Immediate imm>
1415  : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
1416
1417// Like CompareRXY, but expanded after RA depending on the choice of register.
1418class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
1419                       SDPatternOperator load, bits<5> bytes,
1420                       AddressingMode mode = bdxaddr20only>
1421  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
1422           [(operator cls:$R1, (load mode:$XBD2))]> {
1423  let mayLoad = 1;
1424  let Has20BitOffset = 1;
1425  let HasIndex = 1;
1426  let AccessBytes = bytes;
1427}
1428
1429// Like StoreRXY, but expanded after RA depending on the choice of register.
1430class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
1431                     bits<5> bytes, AddressingMode mode = bdxaddr20only>
1432  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
1433           [(operator cls:$R1, mode:$XBD2)]> {
1434  let mayStore = 1;
1435  let Has20BitOffset = 1;
1436  let HasIndex = 1;
1437  let AccessBytes = bytes;
1438}
1439
1440// Like RotateSelectRIEf, but expanded after RA depending on the choice
1441// of registers.
1442class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
1443  : Pseudo<(outs cls1:$R1),
1444           (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
1445                imm32zx6:$I5),
1446           []> {
1447  let Constraints = "$R1 = $R1src";
1448  let DisableEncoding = "$R1src";
1449}
1450
1451// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
1452// the value of the PSW's 2-bit condition code field.
1453class SelectWrapper<RegisterOperand cls>
1454  : Pseudo<(outs cls:$dst),
1455           (ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
1456           [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
1457                                            imm32zx4:$valid, imm32zx4:$cc))]> {
1458  let usesCustomInserter = 1;
1459  // Although the instructions used by these nodes do not in themselves
1460  // change CC, the insertion requires new blocks, and CC cannot be live
1461  // across them.
1462  let Defs = [CC];
1463  let Uses = [CC];
1464}
1465
1466// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
1467multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
1468                      SDPatternOperator load, AddressingMode mode> {
1469  let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
1470    def "" : Pseudo<(outs),
1471                    (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
1472                    [(store (z_select_ccmask cls:$new, (load mode:$addr),
1473                                             imm32zx4:$valid, imm32zx4:$cc),
1474                            mode:$addr)]>;
1475    def Inv : Pseudo<(outs),
1476                     (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
1477                     [(store (z_select_ccmask (load mode:$addr), cls:$new,
1478                                              imm32zx4:$valid, imm32zx4:$cc),
1479                              mode:$addr)]>;
1480  }
1481}
1482
1483// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation.  PAT and OPERAND
1484// describe the second (non-memory) operand.
1485class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
1486                       dag pat, DAGOperand operand>
1487  : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
1488           [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
1489  let Defs = [CC];
1490  let Has20BitOffset = 1;
1491  let mayLoad = 1;
1492  let mayStore = 1;
1493  let usesCustomInserter = 1;
1494}
1495
1496// Specializations of AtomicLoadWBinary.
1497class AtomicLoadBinaryReg32<SDPatternOperator operator>
1498  : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
1499class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
1500  : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
1501class AtomicLoadBinaryReg64<SDPatternOperator operator>
1502  : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
1503class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
1504  : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
1505
1506// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation.  PAT and OPERAND
1507// describe the second (non-memory) operand.
1508class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
1509                        DAGOperand operand>
1510  : Pseudo<(outs GR32:$dst),
1511           (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
1512                ADDR32:$negbitshift, uimm32:$bitsize),
1513           [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
1514                                      ADDR32:$negbitshift, uimm32:$bitsize))]> {
1515  let Defs = [CC];
1516  let Has20BitOffset = 1;
1517  let mayLoad = 1;
1518  let mayStore = 1;
1519  let usesCustomInserter = 1;
1520}
1521
1522// Specializations of AtomicLoadWBinary.
1523class AtomicLoadWBinaryReg<SDPatternOperator operator>
1524  : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
1525class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
1526  : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
1527
1528// Define an instruction that operates on two fixed-length blocks of memory,
1529// and associated pseudo instructions for operating on blocks of any size.
1530// The Sequence form uses a straight-line sequence of instructions and
1531// the Loop form uses a loop of length-256 instructions followed by
1532// another instruction to handle the excess.
1533multiclass MemorySS<string mnemonic, bits<8> opcode,
1534                    SDPatternOperator sequence, SDPatternOperator loop> {
1535  def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
1536                                       bdaddr12only:$BD2),
1537                  mnemonic##"\t$BDL1, $BD2", []>;
1538  let usesCustomInserter = 1 in {
1539    def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1540                                       imm64:$length),
1541                           [(sequence bdaddr12only:$dest, bdaddr12only:$src,
1542                                      imm64:$length)]>;
1543    def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1544                                   imm64:$length, GR64:$count256),
1545                      [(loop bdaddr12only:$dest, bdaddr12only:$src,
1546                             imm64:$length, GR64:$count256)]>;
1547  }
1548}
1549
1550// Define an instruction that operates on two strings, both terminated
1551// by the character in R0.  The instruction processes a CPU-determinated
1552// number of bytes at a time and sets CC to 3 if the instruction needs
1553// to be repeated.  Also define a pseudo instruction that represents
1554// the full loop (the main instruction plus the branch on CC==3).
1555multiclass StringRRE<string mnemonic, bits<16> opcode,
1556                     SDPatternOperator operator> {
1557  def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
1558                   (ins GR64:$R1src, GR64:$R2src),
1559                   mnemonic#"\t$R1, $R2", []> {
1560    let Constraints = "$R1 = $R1src, $R2 = $R2src";
1561    let DisableEncoding = "$R1src, $R2src";
1562  }
1563  let usesCustomInserter = 1 in
1564    def Loop : Pseudo<(outs GR64:$end),
1565                      (ins GR64:$start1, GR64:$start2, GR32:$char),
1566                      [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
1567                                                 GR32:$char))]>;
1568}
1569
1570// A pseudo instruction that is a direct alias of a real instruction.
1571// These aliases are used in cases where a particular register operand is
1572// fixed or where the same instruction is used with different register sizes.
1573// The size parameter is the size in bytes of the associated real instruction.
1574class Alias<int size, dag outs, dag ins, list<dag> pattern>
1575  : InstSystemZ<size, outs, ins, "", pattern> {
1576  let isPseudo = 1;
1577  let isCodeGenOnly = 1;
1578}
1579
1580// An alias of a BinaryRI, but with different register sizes.
1581class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
1582                    Immediate imm>
1583  : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
1584          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1585  let Constraints = "$R1 = $R1src";
1586}
1587
1588// An alias of a BinaryRIL, but with different register sizes.
1589class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
1590                     Immediate imm>
1591  : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
1592          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1593  let Constraints = "$R1 = $R1src";
1594}
1595
1596// An alias of a CompareRI, but with different register sizes.
1597class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
1598                     Immediate imm>
1599  : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
1600  let isCompare = 1;
1601}
1602
1603// An alias of a RotateSelectRIEf, but with different register sizes.
1604class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
1605  : Alias<6, (outs cls1:$R1),
1606          (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
1607               imm32zx6:$I5), []> {
1608  let Constraints = "$R1 = $R1src";
1609}
1610