SystemZInstrFormats.td revision d954716e7567282ff6f3d25b4f404bae006eed04
1//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Basic SystemZ instruction definition
12//===----------------------------------------------------------------------===//
13
14class InstSystemZ<int size, dag outs, dag ins, string asmstr,
15                  list<dag> pattern> : Instruction {
16  let Namespace = "SystemZ";
17
18  dag OutOperandList = outs;
19  dag InOperandList = ins;
20  let Size = size;
21  let Pattern = pattern;
22  let AsmString = asmstr;
23
24  // Some instructions come in pairs, one having a 12-bit displacement
25  // and the other having a 20-bit displacement.  Both instructions in
26  // the pair have the same DispKey and their DispSizes are "12" and "20"
27  // respectively.
28  string DispKey = "";
29  string DispSize = "none";
30
31  // Many register-based <INSN>R instructions have a memory-based <INSN>
32  // counterpart.  OpKey uniquely identifies <INSN>, while OpType is
33  // "reg" for <INSN>R and "mem" for <INSN>.
34  string OpKey = "";
35  string OpType = "none";
36
37  // Many distinct-operands instructions have older 2-operand equivalents.
38  // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
39  // with NumOpsValue being "2" or "3" as appropriate.
40  string NumOpsKey = "";
41  string NumOpsValue = "none";
42
43  // True if this instruction is a simple D(X,B) load of a register
44  // (with no sign or zero extension).
45  bit SimpleBDXLoad = 0;
46
47  // True if this instruction is a simple D(X,B) store of a register
48  // (with no truncation).
49  bit SimpleBDXStore = 0;
50
51  // True if this instruction has a 20-bit displacement field.
52  bit Has20BitOffset = 0;
53
54  // True if addresses in this instruction have an index register.
55  bit HasIndex = 0;
56
57  // True if this is a 128-bit pseudo instruction that combines two 64-bit
58  // operations.
59  bit Is128Bit = 0;
60
61  // The access size of all memory operands in bytes, or 0 if not known.
62  bits<5> AccessBytes = 0;
63
64  // If the instruction sets CC to a useful value, this gives the mask
65  // of all possible CC results.  The mask has the same form as
66  // SystemZ::CCMASK_*.
67  bits<4> CCValues = 0;
68
69  // The subset of CCValues that have the same meaning as they would after
70  // a comparison of the first operand against zero.
71  bits<4> CompareZeroCCMask = 0;
72
73  // True if the instruction is conditional and if the CC mask operand
74  // comes first (as for BRC, etc.).
75  bit CCMaskFirst = 0;
76
77  // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
78  bit CCMaskLast = 0;
79
80  // True if the instruction is the "logical" rather than "arithmetic" form,
81  // in cases where a distinction exists.
82  bit IsLogical = 0;
83
84  let TSFlags{0}     = SimpleBDXLoad;
85  let TSFlags{1}     = SimpleBDXStore;
86  let TSFlags{2}     = Has20BitOffset;
87  let TSFlags{3}     = HasIndex;
88  let TSFlags{4}     = Is128Bit;
89  let TSFlags{9-5}   = AccessBytes;
90  let TSFlags{13-10} = CCValues;
91  let TSFlags{17-14} = CompareZeroCCMask;
92  let TSFlags{18}    = CCMaskFirst;
93  let TSFlags{19}    = CCMaskLast;
94  let TSFlags{20}    = IsLogical;
95}
96
97//===----------------------------------------------------------------------===//
98// Mappings between instructions
99//===----------------------------------------------------------------------===//
100
101// Return the version of an instruction that has an unsigned 12-bit
102// displacement.
103def getDisp12Opcode : InstrMapping {
104  let FilterClass = "InstSystemZ";
105  let RowFields = ["DispKey"];
106  let ColFields = ["DispSize"];
107  let KeyCol = ["20"];
108  let ValueCols = [["12"]];
109}
110
111// Return the version of an instruction that has a signed 20-bit displacement.
112def getDisp20Opcode : InstrMapping {
113  let FilterClass = "InstSystemZ";
114  let RowFields = ["DispKey"];
115  let ColFields = ["DispSize"];
116  let KeyCol = ["12"];
117  let ValueCols = [["20"]];
118}
119
120// Return the memory form of a register instruction.
121def getMemOpcode : InstrMapping {
122  let FilterClass = "InstSystemZ";
123  let RowFields = ["OpKey"];
124  let ColFields = ["OpType"];
125  let KeyCol = ["reg"];
126  let ValueCols = [["mem"]];
127}
128
129// Return the 3-operand form of a 2-operand instruction.
130def getThreeOperandOpcode : InstrMapping {
131  let FilterClass = "InstSystemZ";
132  let RowFields = ["NumOpsKey"];
133  let ColFields = ["NumOpsValue"];
134  let KeyCol = ["2"];
135  let ValueCols = [["3"]];
136}
137
138//===----------------------------------------------------------------------===//
139// Instruction formats
140//===----------------------------------------------------------------------===//
141//
142// Formats are specified using operand field declarations of the form:
143//
144//   bits<4> Rn   : register input or output for operand n
145//   bits<m> In   : immediate value of width m for operand n
146//   bits<4> BDn  : address operand n, which has a base and a displacement
147//   bits<m> XBDn : address operand n, which has an index, a base and a
148//                  displacement
149//   bits<4> Xn   : index register for address operand n
150//   bits<4> Mn   : mode value for operand n
151//
152// The operand numbers ("n" in the list above) follow the architecture manual.
153// Assembly operands sometimes have a different order; in particular, R3 often
154// is often written between operands 1 and 2.
155//
156//===----------------------------------------------------------------------===//
157
158class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
159  : InstSystemZ<4, outs, ins, asmstr, pattern> {
160  field bits<32> Inst;
161  field bits<32> SoftFail = 0;
162
163  bits<4> R1;
164  bits<16> I2;
165
166  let Inst{31-24} = op{11-4};
167  let Inst{23-20} = R1;
168  let Inst{19-16} = op{3-0};
169  let Inst{15-0}  = I2;
170}
171
172class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
173  : InstSystemZ<6, outs, ins, asmstr, pattern> {
174  field bits<48> Inst;
175  field bits<48> SoftFail = 0;
176
177  bits<4> R1;
178  bits<4> R2;
179  bits<4> M3;
180  bits<16> RI4;
181
182  let Inst{47-40} = op{15-8};
183  let Inst{39-36} = R1;
184  let Inst{35-32} = R2;
185  let Inst{31-16} = RI4;
186  let Inst{15-12} = M3;
187  let Inst{11-8}  = 0;
188  let Inst{7-0}   = op{7-0};
189}
190
191class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
192  : InstSystemZ<6, outs, ins, asmstr, pattern> {
193  field bits<48> Inst;
194  field bits<48> SoftFail = 0;
195
196  bits<4> R1;
197  bits<8> I2;
198  bits<4> M3;
199  bits<16> RI4;
200
201  let Inst{47-40} = op{15-8};
202  let Inst{39-36} = R1;
203  let Inst{35-32} = M3;
204  let Inst{31-16} = RI4;
205  let Inst{15-8}  = I2;
206  let Inst{7-0}   = op{7-0};
207}
208
209class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
210  : InstSystemZ<6, outs, ins, asmstr, pattern> {
211  field bits<48> Inst;
212  field bits<48> SoftFail = 0;
213
214  bits<4> R1;
215  bits<4> R3;
216  bits<16> I2;
217
218  let Inst{47-40} = op{15-8};
219  let Inst{39-36} = R1;
220  let Inst{35-32} = R3;
221  let Inst{31-16} = I2;
222  let Inst{15-8}  = 0;
223  let Inst{7-0}   = op{7-0};
224}
225
226class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
227  : InstSystemZ<6, outs, ins, asmstr, pattern> {
228  field bits<48> Inst;
229  field bits<48> SoftFail = 0;
230
231  bits<4> R1;
232  bits<4> R2;
233  bits<8> I3;
234  bits<8> I4;
235  bits<8> I5;
236
237  let Inst{47-40} = op{15-8};
238  let Inst{39-36} = R1;
239  let Inst{35-32} = R2;
240  let Inst{31-24} = I3;
241  let Inst{23-16} = I4;
242  let Inst{15-8}  = I5;
243  let Inst{7-0}   = op{7-0};
244}
245
246class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
247  : InstSystemZ<6, outs, ins, asmstr, pattern> {
248  field bits<48> Inst;
249  field bits<48> SoftFail = 0;
250
251  bits<4> R1;
252  bits<32> I2;
253
254  let Inst{47-40} = op{11-4};
255  let Inst{39-36} = R1;
256  let Inst{35-32} = op{3-0};
257  let Inst{31-0}  = I2;
258}
259
260class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
261  : InstSystemZ<2, outs, ins, asmstr, pattern> {
262  field bits<16> Inst;
263  field bits<16> SoftFail = 0;
264
265  bits<4> R1;
266  bits<4> R2;
267
268  let Inst{15-8} = op;
269  let Inst{7-4}  = R1;
270  let Inst{3-0}  = R2;
271}
272
273class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
274  : InstSystemZ<4, outs, ins, asmstr, pattern> {
275  field bits<32> Inst;
276  field bits<32> SoftFail = 0;
277
278  bits<4> R1;
279  bits<4> R3;
280  bits<4> R2;
281
282  let Inst{31-16} = op;
283  let Inst{15-12} = R1;
284  let Inst{11-8}  = 0;
285  let Inst{7-4}   = R3;
286  let Inst{3-0}   = R2;
287}
288
289class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
290  : InstSystemZ<4, outs, ins, asmstr, pattern> {
291  field bits<32> Inst;
292  field bits<32> SoftFail = 0;
293
294  bits<4> R1;
295  bits<4> R2;
296
297  let Inst{31-16} = op;
298  let Inst{15-8}  = 0;
299  let Inst{7-4}   = R1;
300  let Inst{3-0}   = R2;
301}
302
303class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
304  : InstSystemZ<4, outs, ins, asmstr, pattern> {
305  field bits<32> Inst;
306  field bits<32> SoftFail = 0;
307
308  bits<4> R1;
309  bits<4> R2;
310  bits<4> R3;
311  bits<4> R4;
312
313  let Inst{31-16} = op;
314  let Inst{15-12} = R3;
315  let Inst{11-8}  = R4;
316  let Inst{7-4}   = R1;
317  let Inst{3-0}   = R2;
318}
319
320class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
321  : InstSystemZ<4, outs, ins, asmstr, pattern> {
322  field bits<32> Inst;
323  field bits<32> SoftFail = 0;
324
325  bits<4> R1;
326  bits<20> XBD2;
327
328  let Inst{31-24} = op;
329  let Inst{23-20} = R1;
330  let Inst{19-0}  = XBD2;
331
332  let HasIndex = 1;
333}
334
335class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
336  : InstSystemZ<6, outs, ins, asmstr, pattern> {
337  field bits<48> Inst;
338  field bits<48> SoftFail = 0;
339
340  bits<4> R1;
341  bits<20> XBD2;
342
343  let Inst{47-40} = op{15-8};
344  let Inst{39-36} = R1;
345  let Inst{35-16} = XBD2;
346  let Inst{15-8}  = 0;
347  let Inst{7-0}   = op{7-0};
348
349  let HasIndex = 1;
350}
351
352class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
353  : InstSystemZ<6, outs, ins, asmstr, pattern> {
354  field bits<48> Inst;
355  field bits<48> SoftFail = 0;
356
357  bits<4> R1;
358  bits<4> R3;
359  bits<20> XBD2;
360
361  let Inst{47-40} = op{15-8};
362  let Inst{39-36} = R3;
363  let Inst{35-16} = XBD2;
364  let Inst{15-12} = R1;
365  let Inst{11-8}  = 0;
366  let Inst{7-0}   = op{7-0};
367
368  let HasIndex = 1;
369}
370
371class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
372  : InstSystemZ<6, outs, ins, asmstr, pattern> {
373  field bits<48> Inst;
374  field bits<48> SoftFail = 0;
375
376  bits<4> R1;
377  bits<28> XBD2;
378
379  let Inst{47-40} = op{15-8};
380  let Inst{39-36} = R1;
381  let Inst{35-8}  = XBD2;
382  let Inst{7-0}   = op{7-0};
383
384  let Has20BitOffset = 1;
385  let HasIndex = 1;
386}
387
388class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
389  : InstSystemZ<4, outs, ins, asmstr, pattern> {
390  field bits<32> Inst;
391  field bits<32> SoftFail = 0;
392
393  bits<4> R1;
394  bits<4> R3;
395  bits<16> BD2;
396
397  let Inst{31-24} = op;
398  let Inst{23-20} = R1;
399  let Inst{19-16} = R3;
400  let Inst{15-0}  = BD2;
401}
402
403class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
404  : InstSystemZ<6, outs, ins, asmstr, pattern> {
405  field bits<48> Inst;
406  field bits<48> SoftFail = 0;
407
408  bits<4> R1;
409  bits<4> R3;
410  bits<24> BD2;
411
412  let Inst{47-40} = op{15-8};
413  let Inst{39-36} = R1;
414  let Inst{35-32} = R3;
415  let Inst{31-8}  = BD2;
416  let Inst{7-0}   = op{7-0};
417
418  let Has20BitOffset = 1;
419}
420
421class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
422  : InstSystemZ<4, outs, ins, asmstr, pattern> {
423  field bits<32> Inst;
424  field bits<32> SoftFail = 0;
425
426  bits<16> BD1;
427  bits<8> I2;
428
429  let Inst{31-24} = op;
430  let Inst{23-16} = I2;
431  let Inst{15-0}  = BD1;
432}
433
434class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
435  : InstSystemZ<6, outs, ins, asmstr, pattern> {
436  field bits<48> Inst;
437  field bits<48> SoftFail = 0;
438
439  bits<16> BD1;
440  bits<16> I2;
441
442  let Inst{47-32} = op;
443  let Inst{31-16} = BD1;
444  let Inst{15-0}  = I2;
445}
446
447class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
448  : InstSystemZ<6, outs, ins, asmstr, pattern> {
449  field bits<48> Inst;
450  field bits<48> SoftFail = 0;
451
452  bits<24> BD1;
453  bits<8> I2;
454
455  let Inst{47-40} = op{15-8};
456  let Inst{39-32} = I2;
457  let Inst{31-8}  = BD1;
458  let Inst{7-0}   = op{7-0};
459
460  let Has20BitOffset = 1;
461}
462
463class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
464  : InstSystemZ<6, outs, ins, asmstr, pattern> {
465  field bits<48> Inst;
466  field bits<48> SoftFail = 0;
467
468  bits<24> BDL1;
469  bits<16> BD2;
470
471  let Inst{47-40} = op;
472  let Inst{39-16} = BDL1;
473  let Inst{15-0}  = BD2;
474}
475
476//===----------------------------------------------------------------------===//
477// Instruction definitions with semantics
478//===----------------------------------------------------------------------===//
479//
480// These classes have the form [Cond]<Category><Format>, where <Format> is one
481// of the formats defined above and where <Category> describes the inputs
482// and outputs.  "Cond" is used if the instruction is conditional,
483// in which case the 4-bit condition-code mask is added as a final operand.
484// <Category> can be one of:
485//
486//   Inherent:
487//     One register output operand and no input operands.
488//
489//   BranchUnary:
490//     One register output operand, one register input operand and
491//     one branch displacement.  The instructions stores a modified
492//     form of the source register in the destination register and
493//     branches on the result.
494//
495//   Store:
496//     One register or immediate input operand and one address input operand.
497//     The instruction stores the first operand to the address.
498//
499//     This category is used for both pure and truncating stores.
500//
501//   LoadMultiple:
502//     One address input operand and two explicit output operands.
503//     The instruction loads a range of registers from the address,
504//     with the explicit operands giving the first and last register
505//     to load.  Other loaded registers are added as implicit definitions.
506//
507//   StoreMultiple:
508//     Two explicit input register operands and an address operand.
509//     The instruction stores a range of registers to the address,
510//     with the explicit operands giving the first and last register
511//     to store.  Other stored registers are added as implicit uses.
512//
513//   Unary:
514//     One register output operand and one input operand.  The input
515//     operand may be a register, immediate or memory.
516//
517//   Binary:
518//     One register output operand and two input operands.  The first
519//     input operand is always a register and he second may be a register,
520//     immediate or memory.
521//
522//   Shift:
523//     One register output operand and two input operands.  The first
524//     input operand is a register and the second has the same form as
525//     an address (although it isn't actually used to address memory).
526//
527//   Compare:
528//     Two input operands.  The first operand is always a register,
529//     the second may be a register, immediate or memory.
530//
531//   Ternary:
532//     One register output operand and three register input operands.
533//
534//   CmpSwap:
535//     One output operand and three input operands.  The first two
536//     operands are registers and the third is an address.  The instruction
537//     both reads from and writes to the address.
538//
539//   RotateSelect:
540//     One output operand and five input operands.  The first two operands
541//     are registers and the other three are immediates.
542//
543// The format determines which input operands are tied to output operands,
544// and also determines the shape of any address operand.
545//
546// Multiclasses of the form <Category><Format>Pair define two instructions,
547// one with <Category><Format> and one with <Category><Format>Y.  The name
548// of the first instruction has no suffix, the name of the second has
549// an extra "y".
550//
551//===----------------------------------------------------------------------===//
552
553class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
554                  dag src>
555  : InstRRE<opcode, (outs cls:$R1), (ins),
556            mnemonic#"\t$R1",
557            [(set cls:$R1, src)]> {
558  let R2 = 0;
559}
560
561class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
562  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
563           mnemonic##"\t$R1, $I2", []> {
564  let isBranch = 1;
565  let isTerminator = 1;
566  let Constraints = "$R1 = $R1src";
567  let DisableEncoding = "$R1src";
568}
569
570class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
571  : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
572            mnemonic#"\t$R1, $R3, $BD2", []> {
573  let mayLoad = 1;
574}
575
576class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
577                 RegisterOperand cls>
578  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
579            mnemonic#"\t$R1, $I2",
580            [(operator cls:$R1, pcrel32:$I2)]> {
581  let mayStore = 1;
582  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
583  // However, BDXs have two extra operands and are therefore 6 units more
584  // complex.
585  let AddedComplexity = 7;
586}
587
588class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
589              RegisterOperand cls, bits<5> bytes,
590              AddressingMode mode = bdxaddr12only>
591  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
592           mnemonic#"\t$R1, $XBD2",
593           [(operator cls:$R1, mode:$XBD2)]> {
594  let OpKey = mnemonic ## cls;
595  let OpType = "mem";
596  let mayStore = 1;
597  let AccessBytes = bytes;
598}
599
600class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
601               RegisterOperand cls, bits<5> bytes,
602               AddressingMode mode = bdxaddr20only>
603  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
604            mnemonic#"\t$R1, $XBD2",
605            [(operator cls:$R1, mode:$XBD2)]> {
606  let OpKey = mnemonic ## cls;
607  let OpType = "mem";
608  let mayStore = 1;
609  let AccessBytes = bytes;
610}
611
612multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
613                       SDPatternOperator operator, RegisterOperand cls,
614                       bits<5> bytes> {
615  let DispKey = mnemonic ## #cls in {
616    let DispSize = "12" in
617      def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
618    let DispSize = "20" in
619      def Y  : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
620                        bdxaddr20pair>;
621  }
622}
623
624class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
625  : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
626            mnemonic#"\t$R1, $R3, $BD2", []> {
627  let mayStore = 1;
628}
629
630class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
631              Immediate imm, AddressingMode mode = bdaddr12only>
632  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
633           mnemonic#"\t$BD1, $I2",
634           [(operator imm:$I2, mode:$BD1)]> {
635  let mayStore = 1;
636}
637
638class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
639               Immediate imm, AddressingMode mode = bdaddr20only>
640  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
641            mnemonic#"\t$BD1, $I2",
642            [(operator imm:$I2, mode:$BD1)]> {
643  let mayStore = 1;
644}
645
646class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
647               Immediate imm>
648  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
649            mnemonic#"\t$BD1, $I2",
650            [(operator imm:$I2, bdaddr12only:$BD1)]> {
651  let mayStore = 1;
652}
653
654multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
655                       SDPatternOperator operator, Immediate imm> {
656  let DispKey = mnemonic in {
657    let DispSize = "12" in
658      def "" : StoreSI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
659    let DispSize = "20" in
660      def Y  : StoreSIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
661  }
662}
663
664class CondStoreRSY<string mnemonic, bits<16> opcode,
665                   RegisterOperand cls, bits<5> bytes,
666                   AddressingMode mode = bdaddr20only>
667  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
668            mnemonic#"$R3\t$R1, $BD2", []>,
669    Requires<[FeatureLoadStoreOnCond]> {
670  let mayStore = 1;
671  let AccessBytes = bytes;
672  let CCMaskLast = 1;
673}
674
675// Like CondStoreRSY, but used for the raw assembly form.  The condition-code
676// mask is the third operand rather than being part of the mnemonic.
677class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
678                      RegisterOperand cls, bits<5> bytes,
679                      AddressingMode mode = bdaddr20only>
680  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, uimm8zx4:$R3),
681            mnemonic#"\t$R1, $BD2, $R3", []>,
682    Requires<[FeatureLoadStoreOnCond]> {
683  let mayStore = 1;
684  let AccessBytes = bytes;
685}
686
687// Like CondStoreRSY, but with a fixed CC mask.
688class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
689                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
690                        AddressingMode mode = bdaddr20only>
691  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
692            mnemonic#"\t$R1, $BD2", []>,
693    Requires<[FeatureLoadStoreOnCond]> {
694  let mayStore = 1;
695  let AccessBytes = bytes;
696  let R3 = ccmask;
697}
698
699class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
700              RegisterOperand cls1, RegisterOperand cls2>
701  : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
702           mnemonic#"r\t$R1, $R2",
703           [(set cls1:$R1, (operator cls2:$R2))]> {
704  let OpKey = mnemonic ## cls1;
705  let OpType = "reg";
706}
707
708class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
709               RegisterOperand cls1, RegisterOperand cls2>
710  : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
711            mnemonic#"r\t$R1, $R2",
712            [(set cls1:$R1, (operator cls2:$R2))]> {
713  let OpKey = mnemonic ## cls1;
714  let OpType = "reg";
715}
716
717class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
718               RegisterOperand cls2>
719  : InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2),
720            mnemonic#"r\t$R1, $R3, $R2", []> {
721  let OpKey = mnemonic ## cls1;
722  let OpType = "reg";
723  let R4 = 0;
724}
725
726class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
727                RegisterOperand cls2>
728  : InstRRF<opcode, (outs cls1:$R1), (ins uimm8zx4:$R3, cls2:$R2, uimm8zx4:$R4),
729            mnemonic#"\t$R1, $R3, $R2, $R4", []>;
730
731// These instructions are generated by if conversion.  The old value of R1
732// is added as an implicit use.
733class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
734                   RegisterOperand cls2>
735  : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
736            mnemonic#"r$R3\t$R1, $R2", []>,
737    Requires<[FeatureLoadStoreOnCond]> {
738  let CCMaskLast = 1;
739  let R4 = 0;
740}
741
742// Like CondUnaryRRF, but used for the raw assembly form.  The condition-code
743// mask is the third operand rather than being part of the mnemonic.
744class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
745                      RegisterOperand cls2>
746  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, uimm8zx4:$R3),
747            mnemonic#"r\t$R1, $R2, $R3", []>,
748    Requires<[FeatureLoadStoreOnCond]> {
749  let Constraints = "$R1 = $R1src";
750  let DisableEncoding = "$R1src";
751  let R4 = 0;
752}
753
754// Like CondUnaryRRF, but with a fixed CC mask.
755class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
756                        RegisterOperand cls2, bits<4> ccmask>
757  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
758            mnemonic#"\t$R1, $R2", []>,
759    Requires<[FeatureLoadStoreOnCond]> {
760  let Constraints = "$R1 = $R1src";
761  let DisableEncoding = "$R1src";
762  let R3 = ccmask;
763  let R4 = 0;
764}
765
766class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
767              RegisterOperand cls, Immediate imm>
768  : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
769           mnemonic#"\t$R1, $I2",
770           [(set cls:$R1, (operator imm:$I2))]>;
771
772class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
773               RegisterOperand cls, Immediate imm>
774  : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
775            mnemonic#"\t$R1, $I2",
776            [(set cls:$R1, (operator imm:$I2))]>;
777
778class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
779                 RegisterOperand cls>
780  : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
781            mnemonic#"\t$R1, $I2",
782            [(set cls:$R1, (operator pcrel32:$I2))]> {
783  let mayLoad = 1;
784  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
785  // However, BDXs have two extra operands and are therefore 6 units more
786  // complex.
787  let AddedComplexity = 7;
788}
789
790class CondUnaryRSY<string mnemonic, bits<16> opcode,
791                   SDPatternOperator operator, RegisterOperand cls,
792                   bits<5> bytes, AddressingMode mode = bdaddr20only>
793  : InstRSY<opcode, (outs cls:$R1),
794            (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
795            mnemonic#"$R3\t$R1, $BD2",
796            [(set cls:$R1,
797                  (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
798                                   cond4:$valid, cond4:$R3))]>,
799    Requires<[FeatureLoadStoreOnCond]> {
800  let Constraints = "$R1 = $R1src";
801  let DisableEncoding = "$R1src";
802  let mayLoad = 1;
803  let AccessBytes = bytes;
804  let CCMaskLast = 1;
805}
806
807// Like CondUnaryRSY, but used for the raw assembly form.  The condition-code
808// mask is the third operand rather than being part of the mnemonic.
809class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
810                      RegisterOperand cls, bits<5> bytes,
811                      AddressingMode mode = bdaddr20only>
812  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, uimm8zx4:$R3),
813            mnemonic#"\t$R1, $BD2, $R3", []>,
814    Requires<[FeatureLoadStoreOnCond]> {
815  let mayLoad = 1;
816  let AccessBytes = bytes;
817  let Constraints = "$R1 = $R1src";
818  let DisableEncoding = "$R1src";
819}
820
821// Like CondUnaryRSY, but with a fixed CC mask.
822class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
823                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
824                        AddressingMode mode = bdaddr20only>
825  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
826            mnemonic#"\t$R1, $BD2", []>,
827    Requires<[FeatureLoadStoreOnCond]> {
828  let Constraints = "$R1 = $R1src";
829  let DisableEncoding = "$R1src";
830  let R3 = ccmask;
831  let mayLoad = 1;
832  let AccessBytes = bytes;
833}
834
835class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
836              RegisterOperand cls, bits<5> bytes,
837              AddressingMode mode = bdxaddr12only>
838  : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
839           mnemonic#"\t$R1, $XBD2",
840           [(set cls:$R1, (operator mode:$XBD2))]> {
841  let OpKey = mnemonic ## cls;
842  let OpType = "mem";
843  let mayLoad = 1;
844  let AccessBytes = bytes;
845}
846
847class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
848               RegisterOperand cls, bits<5> bytes>
849  : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
850            mnemonic#"\t$R1, $XBD2",
851            [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
852  let OpKey = mnemonic ## cls;
853  let OpType = "mem";
854  let mayLoad = 1;
855  let AccessBytes = bytes;
856}
857
858class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
859               RegisterOperand cls, bits<5> bytes,
860               AddressingMode mode = bdxaddr20only>
861  : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
862            mnemonic#"\t$R1, $XBD2",
863            [(set cls:$R1, (operator mode:$XBD2))]> {
864  let OpKey = mnemonic ## cls;
865  let OpType = "mem";
866  let mayLoad = 1;
867  let AccessBytes = bytes;
868}
869
870multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
871                       SDPatternOperator operator, RegisterOperand cls,
872                       bits<5> bytes> {
873  let DispKey = mnemonic ## #cls in {
874    let DispSize = "12" in
875      def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
876    let DispSize = "20" in
877      def Y  : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
878                        bdxaddr20pair>;
879  }
880}
881
882class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
883               RegisterOperand cls1, RegisterOperand cls2>
884  : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
885           mnemonic#"r\t$R1, $R2",
886           [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
887  let OpKey = mnemonic ## cls1;
888  let OpType = "reg";
889  let Constraints = "$R1 = $R1src";
890  let DisableEncoding = "$R1src";
891}
892
893class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
894                RegisterOperand cls1, RegisterOperand cls2>
895  : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
896            mnemonic#"r\t$R1, $R2",
897            [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
898  let OpKey = mnemonic ## cls1;
899  let OpType = "reg";
900  let Constraints = "$R1 = $R1src";
901  let DisableEncoding = "$R1src";
902}
903
904class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
905                RegisterOperand cls1, RegisterOperand cls2>
906  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
907            mnemonic#"r\t$R1, $R3, $R2",
908            [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
909  let OpKey = mnemonic ## cls1;
910  let OpType = "reg";
911  let R4 = 0;
912}
913
914class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
915                 RegisterOperand cls1, RegisterOperand cls2>
916  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
917            mnemonic#"rk\t$R1, $R2, $R3",
918            [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
919  let R4 = 0;
920}
921
922multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
923                        SDPatternOperator operator, RegisterOperand cls1,
924                        RegisterOperand cls2> {
925  let NumOpsKey = mnemonic in {
926    let NumOpsValue = "3" in
927      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
928              Requires<[FeatureDistinctOps]>;
929    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
930      def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
931  }
932}
933
934multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
935                         SDPatternOperator operator, RegisterOperand cls1,
936                         RegisterOperand cls2> {
937  let NumOpsKey = mnemonic in {
938    let NumOpsValue = "3" in
939      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
940              Requires<[FeatureDistinctOps]>;
941    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
942      def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
943  }
944}
945
946class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
947               RegisterOperand cls, Immediate imm>
948  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
949           mnemonic#"\t$R1, $I2",
950           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
951  let Constraints = "$R1 = $R1src";
952  let DisableEncoding = "$R1src";
953}
954
955class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
956                RegisterOperand cls, Immediate imm>
957  : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
958             mnemonic#"\t$R1, $R3, $I2",
959             [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
960
961multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
962                        SDPatternOperator operator, RegisterOperand cls,
963                        Immediate imm> {
964  let NumOpsKey = mnemonic in {
965    let NumOpsValue = "3" in
966      def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
967              Requires<[FeatureDistinctOps]>;
968    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
969      def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
970  }
971}
972
973class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
974                RegisterOperand cls, Immediate imm>
975  : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
976            mnemonic#"\t$R1, $I2",
977            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
978  let Constraints = "$R1 = $R1src";
979  let DisableEncoding = "$R1src";
980}
981
982class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
983               RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
984               AddressingMode mode = bdxaddr12only>
985  : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
986           mnemonic#"\t$R1, $XBD2",
987           [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
988  let OpKey = mnemonic ## cls;
989  let OpType = "mem";
990  let Constraints = "$R1 = $R1src";
991  let DisableEncoding = "$R1src";
992  let mayLoad = 1;
993  let AccessBytes = bytes;
994}
995
996class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
997                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
998  : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
999            mnemonic#"\t$R1, $XBD2",
1000            [(set cls:$R1, (operator cls:$R1src,
1001                                     (load bdxaddr12only:$XBD2)))]> {
1002  let OpKey = mnemonic ## cls;
1003  let OpType = "mem";
1004  let Constraints = "$R1 = $R1src";
1005  let DisableEncoding = "$R1src";
1006  let mayLoad = 1;
1007  let AccessBytes = bytes;
1008}
1009
1010class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1011                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1012                AddressingMode mode = bdxaddr20only>
1013  : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
1014            mnemonic#"\t$R1, $XBD2",
1015            [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
1016  let OpKey = mnemonic ## cls;
1017  let OpType = "mem";
1018  let Constraints = "$R1 = $R1src";
1019  let DisableEncoding = "$R1src";
1020  let mayLoad = 1;
1021  let AccessBytes = bytes;
1022}
1023
1024multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1025                        SDPatternOperator operator, RegisterOperand cls,
1026                        SDPatternOperator load, bits<5> bytes> {
1027  let DispKey = mnemonic ## #cls in {
1028    let DispSize = "12" in
1029      def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
1030                        bdxaddr12pair>;
1031    let DispSize = "20" in
1032      def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
1033                         bdxaddr20pair>;
1034  }
1035}
1036
1037class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1038               Operand imm, AddressingMode mode = bdaddr12only>
1039  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1040           mnemonic#"\t$BD1, $I2",
1041           [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1042  let mayLoad = 1;
1043  let mayStore = 1;
1044}
1045
1046class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1047                Operand imm, AddressingMode mode = bdaddr20only>
1048  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1049            mnemonic#"\t$BD1, $I2",
1050            [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1051  let mayLoad = 1;
1052  let mayStore = 1;
1053}
1054
1055multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
1056                        bits<16> siyOpcode, SDPatternOperator operator,
1057                        Operand imm> {
1058  let DispKey = mnemonic ## #cls in {
1059    let DispSize = "12" in
1060      def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
1061    let DispSize = "20" in
1062      def Y  : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
1063  }
1064}
1065
1066class ShiftRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1067              RegisterOperand cls>
1068  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
1069           mnemonic#"\t$R1, $BD2",
1070           [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
1071  let R3 = 0;
1072  let Constraints = "$R1 = $R1src";
1073  let DisableEncoding = "$R1src";
1074}
1075
1076class ShiftRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1077               RegisterOperand cls>
1078  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
1079            mnemonic#"\t$R1, $R3, $BD2",
1080            [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
1081
1082multiclass ShiftRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
1083                       SDPatternOperator operator, RegisterOperand cls> {
1084  let NumOpsKey = mnemonic in {
1085    let NumOpsValue = "3" in
1086      def K  : ShiftRSY<mnemonic##"k", opcode2, null_frag, cls>,
1087               Requires<[FeatureDistinctOps]>;
1088    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1089      def "" : ShiftRS<mnemonic, opcode1, operator, cls>;
1090  }
1091}
1092
1093class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1094                RegisterOperand cls1, RegisterOperand cls2>
1095  : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1096           mnemonic#"r\t$R1, $R2",
1097           [(operator cls1:$R1, cls2:$R2)]> {
1098  let OpKey = mnemonic ## cls1;
1099  let OpType = "reg";
1100  let isCompare = 1;
1101}
1102
1103class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1104                 RegisterOperand cls1, RegisterOperand cls2>
1105  : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1106            mnemonic#"r\t$R1, $R2",
1107            [(operator cls1:$R1, cls2:$R2)]> {
1108  let OpKey = mnemonic ## cls1;
1109  let OpType = "reg";
1110  let isCompare = 1;
1111}
1112
1113class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1114                RegisterOperand cls, Immediate imm>
1115  : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
1116           mnemonic#"\t$R1, $I2",
1117           [(operator cls:$R1, imm:$I2)]> {
1118  let isCompare = 1;
1119}
1120
1121class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1122                 RegisterOperand cls, Immediate imm>
1123  : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
1124            mnemonic#"\t$R1, $I2",
1125            [(operator cls:$R1, imm:$I2)]> {
1126  let isCompare = 1;
1127}
1128
1129class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1130                   RegisterOperand cls, SDPatternOperator load>
1131  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
1132            mnemonic#"\t$R1, $I2",
1133            [(operator cls:$R1, (load pcrel32:$I2))]> {
1134  let isCompare = 1;
1135  let mayLoad = 1;
1136  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1137  // However, BDXs have two extra operands and are therefore 6 units more
1138  // complex.
1139  let AddedComplexity = 7;
1140}
1141
1142class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1143                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1144                AddressingMode mode = bdxaddr12only>
1145  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1146           mnemonic#"\t$R1, $XBD2",
1147           [(operator cls:$R1, (load mode:$XBD2))]> {
1148  let OpKey = mnemonic ## cls;
1149  let OpType = "mem";
1150  let isCompare = 1;
1151  let mayLoad = 1;
1152  let AccessBytes = bytes;
1153}
1154
1155class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1156                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1157  : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
1158            mnemonic#"\t$R1, $XBD2",
1159            [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
1160  let OpKey = mnemonic ## cls;
1161  let OpType = "mem";
1162  let isCompare = 1;
1163  let mayLoad = 1;
1164  let AccessBytes = bytes;
1165}
1166
1167class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1168                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1169                 AddressingMode mode = bdxaddr20only>
1170  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1171            mnemonic#"\t$R1, $XBD2",
1172            [(operator cls:$R1, (load mode:$XBD2))]> {
1173  let OpKey = mnemonic ## cls;
1174  let OpType = "mem";
1175  let isCompare = 1;
1176  let mayLoad = 1;
1177  let AccessBytes = bytes;
1178}
1179
1180multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1181                         SDPatternOperator operator, RegisterOperand cls,
1182                         SDPatternOperator load, bits<5> bytes> {
1183  let DispKey = mnemonic ## #cls in {
1184    let DispSize = "12" in
1185      def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
1186                         load, bytes, bdxaddr12pair>;
1187    let DispSize = "20" in
1188      def Y  : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
1189                          load, bytes, bdxaddr20pair>;
1190  }
1191}
1192
1193class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1194                SDPatternOperator load, Immediate imm,
1195                AddressingMode mode = bdaddr12only>
1196  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1197           mnemonic#"\t$BD1, $I2",
1198           [(operator (load mode:$BD1), imm:$I2)]> {
1199  let isCompare = 1;
1200  let mayLoad = 1;
1201}
1202
1203class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1204                 SDPatternOperator load, Immediate imm>
1205  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
1206            mnemonic#"\t$BD1, $I2",
1207            [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
1208  let isCompare = 1;
1209  let mayLoad = 1;
1210}
1211
1212class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1213                 SDPatternOperator load, Immediate imm,
1214                 AddressingMode mode = bdaddr20only>
1215  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1216            mnemonic#"\t$BD1, $I2",
1217            [(operator (load mode:$BD1), imm:$I2)]> {
1218  let isCompare = 1;
1219  let mayLoad = 1;
1220}
1221
1222multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
1223                         SDPatternOperator operator, SDPatternOperator load,
1224                         Immediate imm> {
1225  let DispKey = mnemonic in {
1226    let DispSize = "12" in
1227      def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
1228    let DispSize = "20" in
1229      def Y  : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
1230                          bdaddr20pair>;
1231  }
1232}
1233
1234class TernaryRRD<string mnemonic, bits<16> opcode,
1235                 SDPatternOperator operator, RegisterOperand cls>
1236  : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
1237            mnemonic#"r\t$R1, $R3, $R2",
1238            [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
1239  let OpKey = mnemonic ## cls;
1240  let OpType = "reg";
1241  let Constraints = "$R1 = $R1src";
1242  let DisableEncoding = "$R1src";
1243}
1244
1245class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1246                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1247  : InstRXF<opcode, (outs cls:$R1),
1248            (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
1249            mnemonic#"\t$R1, $R3, $XBD2",
1250            [(set cls:$R1, (operator cls:$R1src, cls:$R3,
1251                                     (load bdxaddr12only:$XBD2)))]> {
1252  let OpKey = mnemonic ## cls;
1253  let OpType = "mem";
1254  let Constraints = "$R1 = $R1src";
1255  let DisableEncoding = "$R1src";
1256  let mayLoad = 1;
1257  let AccessBytes = bytes;
1258}
1259
1260class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1261                RegisterOperand cls, AddressingMode mode = bdaddr12only>
1262  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1263           mnemonic#"\t$R1, $R3, $BD2",
1264           [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1265  let Constraints = "$R1 = $R1src";
1266  let DisableEncoding = "$R1src";
1267  let mayLoad = 1;
1268  let mayStore = 1;
1269}
1270
1271class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1272                 RegisterOperand cls, AddressingMode mode = bdaddr20only>
1273  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1274            mnemonic#"\t$R1, $R3, $BD2",
1275            [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1276  let Constraints = "$R1 = $R1src";
1277  let DisableEncoding = "$R1src";
1278  let mayLoad = 1;
1279  let mayStore = 1;
1280}
1281
1282multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
1283                         SDPatternOperator operator, RegisterOperand cls> {
1284  let DispKey = mnemonic ## #cls in {
1285    let DispSize = "12" in
1286      def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
1287    let DispSize = "20" in
1288      def Y  : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
1289  }
1290}
1291
1292class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
1293                       RegisterOperand cls2>
1294  : InstRIEf<opcode, (outs cls1:$R1),
1295             (ins cls1:$R1src, cls2:$R2, uimm8:$I3, uimm8:$I4, uimm8zx6:$I5),
1296             mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
1297  let Constraints = "$R1 = $R1src";
1298  let DisableEncoding = "$R1src";
1299}
1300
1301// A floating-point load-and test operation.  Create both a normal unary
1302// operation and one that acts as a comparison against zero.
1303multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
1304                          RegisterOperand cls> {
1305  def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
1306  let isCodeGenOnly = 1 in
1307    def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
1308}
1309
1310//===----------------------------------------------------------------------===//
1311// Pseudo instructions
1312//===----------------------------------------------------------------------===//
1313//
1314// Convenience instructions that get lowered to real instructions
1315// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
1316// or SystemZInstrInfo::expandPostRAPseudo().
1317//
1318//===----------------------------------------------------------------------===//
1319
1320class Pseudo<dag outs, dag ins, list<dag> pattern>
1321  : InstSystemZ<0, outs, ins, "", pattern> {
1322  let isPseudo = 1;
1323  let isCodeGenOnly = 1;
1324}
1325
1326// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
1327// the value of the PSW's 2-bit condition code field.
1328class SelectWrapper<RegisterOperand cls>
1329  : Pseudo<(outs cls:$dst),
1330           (ins cls:$src1, cls:$src2, uimm8zx4:$valid, uimm8zx4:$cc),
1331           [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
1332                                            uimm8zx4:$valid, uimm8zx4:$cc))]> {
1333  let usesCustomInserter = 1;
1334  // Although the instructions used by these nodes do not in themselves
1335  // change CC, the insertion requires new blocks, and CC cannot be live
1336  // across them.
1337  let Defs = [CC];
1338  let Uses = [CC];
1339}
1340
1341// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
1342multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
1343                      SDPatternOperator load, AddressingMode mode> {
1344  let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
1345    def "" : Pseudo<(outs),
1346                    (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc),
1347                    [(store (z_select_ccmask cls:$new, (load mode:$addr),
1348                                             uimm8zx4:$valid, uimm8zx4:$cc),
1349                            mode:$addr)]>;
1350    def Inv : Pseudo<(outs),
1351                     (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc),
1352                     [(store (z_select_ccmask (load mode:$addr), cls:$new,
1353                                              uimm8zx4:$valid, uimm8zx4:$cc),
1354                              mode:$addr)]>;
1355  }
1356}
1357
1358// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation.  PAT and OPERAND
1359// describe the second (non-memory) operand.
1360class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
1361                       dag pat, DAGOperand operand>
1362  : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
1363           [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
1364  let Defs = [CC];
1365  let Has20BitOffset = 1;
1366  let mayLoad = 1;
1367  let mayStore = 1;
1368  let usesCustomInserter = 1;
1369}
1370
1371// Specializations of AtomicLoadWBinary.
1372class AtomicLoadBinaryReg32<SDPatternOperator operator>
1373  : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
1374class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
1375  : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
1376class AtomicLoadBinaryReg64<SDPatternOperator operator>
1377  : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
1378class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
1379  : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
1380
1381// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation.  PAT and OPERAND
1382// describe the second (non-memory) operand.
1383class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
1384                        DAGOperand operand>
1385  : Pseudo<(outs GR32:$dst),
1386           (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
1387                ADDR32:$negbitshift, uimm32:$bitsize),
1388           [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
1389                                      ADDR32:$negbitshift, uimm32:$bitsize))]> {
1390  let Defs = [CC];
1391  let Has20BitOffset = 1;
1392  let mayLoad = 1;
1393  let mayStore = 1;
1394  let usesCustomInserter = 1;
1395}
1396
1397// Specializations of AtomicLoadWBinary.
1398class AtomicLoadWBinaryReg<SDPatternOperator operator>
1399  : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
1400class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
1401  : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
1402
1403// Define an instruction that operates on two fixed-length blocks of memory.
1404// The real instruction uses a bdladdr12onlylen8 for the first operand and a
1405// bdaddr12only for the second, with the length of the second operand being
1406// implicitly the same as the first.  This arrangement matches the underlying
1407// assembly syntax.  However, for instruction selection it's easier to have
1408// two normal bdaddr12onlys and a separate length operand, so define a pseudo
1409// instruction for that too.
1410multiclass MemorySS<string mnemonic, bits<8> opcode,
1411                    SDPatternOperator operator> {
1412  def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
1413                                       bdaddr12only:$BD2),
1414                  mnemonic##"\t$BDL1, $BD2", []>;
1415  let usesCustomInserter = 1 in
1416    def Wrapper : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1417                                      imm32len8:$length),
1418                         [(operator bdaddr12only:$dest, bdaddr12only:$src,
1419                                    imm32len8:$length)]>;
1420}
1421
1422// Define an instruction that operates on two strings, both terminated
1423// by the character in R0.  The instruction processes a CPU-determinated
1424// number of bytes at a time and sets CC to 3 if the instruction needs
1425// to be repeated.  Also define a pseudo instruction that represents
1426// the full loop (the main instruction plus the branch on CC==3).
1427multiclass StringRRE<string mnemonic, bits<16> opcode,
1428                     SDPatternOperator operator> {
1429  def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
1430                   (ins GR64:$R1src, GR64:$R2src),
1431                   mnemonic#"\t$R1, $R2", []> {
1432    let Constraints = "$R1 = $R1src, $R2 = $R2src";
1433    let DisableEncoding = "$R1src, $R2src";
1434  }
1435  let usesCustomInserter = 1 in
1436    def Loop : Pseudo<(outs GR64:$end),
1437                      (ins GR64:$start1, GR64:$start2, GR32:$char),
1438                      [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
1439                                                 GR32:$char))]>;
1440}
1441