SystemZInstrInfo.td revision 1d09d56fe1e3f3faadd4bf4ccf3e585ddb3c3b07
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15                              [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17                              [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20  // Takes as input the value of the stack pointer after a dynamic allocation
21  // has been made.  Sets the output to the address of the dynamically-
22  // allocated area itself, skipping the outgoing arguments.
23  //
24  // This expands to an LA or LAY instruction.  We restrict the offset
25  // to the range of LA and keep the LAY range in reserve for when
26  // the size of the outgoing arguments is added.
27  def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28                           [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction.  R1 is the condition-code mask (all 1s)
36// and R2 is the target address, which is always stored in %r14.
37let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
38    R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
39  def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
40}
41
42// Unconditional branches.  R1 is the condition-code mask (all 1s).
43let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
44  let isIndirectBranch = 1 in
45    def BR : InstRR<0x07, (outs), (ins ADDR64:$dst),
46                    "br\t$dst", [(brind ADDR64:$dst)]>;
47
48  // An assembler extended mnemonic for BRC.  Use a separate instruction for
49  // the asm parser, so that we don't relax Js to external symbols into JGs.
50  let isCodeGenOnly = 1 in
51    def J : InstRI<0xA74, (outs), (ins brtarget16:$dst), "j\t$dst", []>;
52  let isAsmParserOnly = 1 in
53    def AsmJ : InstRI<0xA74, (outs), (ins brtarget16:$dst), "j\t$dst", []>;
54
55  // An assembler extended mnemonic for BRCL.  (The extension is "G"
56  // rather than "L" because "JL" is "Jump if Less".)
57  def JG : InstRIL<0xC04, (outs), (ins brtarget32:$dst),
58                   "jg\t$dst", [(br bb:$dst)]>;
59}
60
61// Conditional branches.  It's easier for LLVM to handle these branches
62// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
63// the first operand.  It seems friendlier to use mnemonic forms like
64// JE and JLH when writing out the assembly though.
65multiclass CondBranches<Operand imm, string short, string long> {
66  let isBranch = 1, isTerminator = 1, Uses = [PSW] in {
67    def "" : InstRI<0xA74, (outs), (ins imm:$cond, brtarget16:$dst), short, []>;
68    def L  : InstRIL<0xC04, (outs), (ins imm:$cond, brtarget32:$dst), long, []>;
69  }
70}
71let isCodeGenOnly = 1 in
72  defm BRC : CondBranches<cond4, "j$cond\t$dst", "jg$cond\t$dst">;
73let isAsmParserOnly = 1 in
74  defm AsmBRC : CondBranches<uimm8zx4, "brc\t$cond, $dst", "brcl\t$cond, $dst">;
75
76def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRCL cond4:$cond, bb:$dst)>;
77
78// Define AsmParser mnemonics for each condition code.
79multiclass CondExtendedMnemonic<bits<4> Cond, string name> {
80  let R1 = Cond in {
81    def "" : InstRI<0xA74, (outs), (ins brtarget16:$dst),
82                    "j"##name##"\t$dst", []>;
83    def L  : InstRIL<0xC04, (outs), (ins brtarget32:$dst),
84                    "jg"##name##"\t$dst", []>;
85  }
86}
87let isAsmParserOnly = 1 in {
88  defm AsmJO   : CondExtendedMnemonic<1,  "o">;
89  defm AsmJH   : CondExtendedMnemonic<2,  "h">;
90  defm AsmJNLE : CondExtendedMnemonic<3,  "nle">;
91  defm AsmJL   : CondExtendedMnemonic<4,  "l">;
92  defm AsmJNHE : CondExtendedMnemonic<5,  "nhe">;
93  defm AsmJLH  : CondExtendedMnemonic<6,  "lh">;
94  defm AsmJNE  : CondExtendedMnemonic<7,  "ne">;
95  defm AsmJE   : CondExtendedMnemonic<8,  "e">;
96  defm AsmJNLH : CondExtendedMnemonic<9,  "nlh">;
97  defm AsmJHE  : CondExtendedMnemonic<10, "he">;
98  defm AsmJNL  : CondExtendedMnemonic<11, "nl">;
99  defm AsmJLE  : CondExtendedMnemonic<12, "le">;
100  defm AsmJNH  : CondExtendedMnemonic<13, "nh">;
101  defm AsmJNO  : CondExtendedMnemonic<14, "no">;
102}
103
104def Select32 : SelectWrapper<GR32>;
105def Select64 : SelectWrapper<GR64>;
106
107//===----------------------------------------------------------------------===//
108// Call instructions
109//===----------------------------------------------------------------------===//
110
111// The definitions here are for the call-clobbered registers.
112let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
113                        F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
114    R1 = 14, isCodeGenOnly = 1 in {
115  def BRAS  : InstRI<0xA75, (outs), (ins pcrel16call:$dst, variable_ops),
116                     "bras\t%r14, $dst", []>;
117  def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$dst, variable_ops),
118                      "brasl\t%r14, $dst", [(z_call pcrel32call:$dst)]>;
119  def BASR  : InstRR<0x0D, (outs), (ins ADDR64:$dst, variable_ops),
120                     "basr\t%r14, $dst", [(z_call ADDR64:$dst)]>;
121}
122
123// Define the general form of the call instructions for the asm parser.
124// These instructions don't hard-code %r14 as the return address register.
125let isAsmParserOnly = 1 in {
126  def AsmBRAS  : InstRI<0xA75, (outs), (ins GR64:$save, brtarget16:$dst),
127                        "bras\t$save, $dst", []>;
128  def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$save, brtarget32:$dst),
129                        "brasl\t$save, $dst", []>;
130  def AsmBASR  : InstRR<0x0D, (outs), (ins GR64:$save, ADDR64:$dst),
131                        "basr\t$save, $dst", []>;
132}
133
134//===----------------------------------------------------------------------===//
135// Move instructions
136//===----------------------------------------------------------------------===//
137
138// Register moves.
139let neverHasSideEffects = 1 in {
140  def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
141  def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
142}
143
144// Immediate moves.
145let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
146  // 16-bit sign-extended immediates.
147  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
148  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
149
150  // Other 16-bit immediates.
151  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
152  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
153  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
154  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
155
156  // 32-bit immediates.
157  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
158  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
159  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
160}
161
162// Register loads.
163let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
164  defm L   : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
165  def  LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
166
167  def LG   : UnaryRXY<"lg", 0xE304, load, GR64>;
168  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
169
170  // These instructions are split after register allocation, so we don't
171  // want a custom inserter.
172  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
173    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
174                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
175  }
176}
177
178// Register stores.
179let SimpleBDXStore = 1 in {
180  let isCodeGenOnly = 1 in {
181    defm ST32   : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
182    def  STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
183  }
184
185  def STG   : StoreRXY<"stg", 0xE324, store, GR64>;
186  def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
187
188  // These instructions are split after register allocation, so we don't
189  // want a custom inserter.
190  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
191    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
192                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
193  }
194}
195
196// 8-bit immediate stores to 8-bit fields.
197defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
198
199// 16-bit immediate stores to 16-, 32- or 64-bit fields.
200def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
201def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
202def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
203
204//===----------------------------------------------------------------------===//
205// Sign extensions
206//===----------------------------------------------------------------------===//
207
208// 32-bit extensions from registers.
209let neverHasSideEffects = 1 in {
210  def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
211  def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
212}
213
214// 64-bit extensions from registers.
215let neverHasSideEffects = 1 in {
216  def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
217  def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
218  def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
219}
220
221// Match 32-to-64-bit sign extensions in which the source is already
222// in a 64-bit register.
223def : Pat<(sext_inreg GR64:$src, i32),
224          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
225
226// 32-bit extensions from memory.
227def  LB   : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
228defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
229def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
230
231// 64-bit extensions from memory.
232def LGB   : UnaryRXY<"lgb", 0xE377, sextloadi8,  GR64>;
233def LGH   : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
234def LGF   : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
235def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
236def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
237
238// If the sign of a load-extend operation doesn't matter, use the signed ones.
239// There's not really much to choose between the sign and zero extensions,
240// but LH is more compact than LLH for small offsets.
241def : Pat<(i32 (extloadi8  bdxaddr20only:$src)), (LB  bdxaddr20only:$src)>;
242def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH  bdxaddr12pair:$src)>;
243def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
244
245def : Pat<(i64 (extloadi8  bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
246def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
247def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
248
249//===----------------------------------------------------------------------===//
250// Zero extensions
251//===----------------------------------------------------------------------===//
252
253// 32-bit extensions from registers.
254let neverHasSideEffects = 1 in {
255  def LLCR : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
256  def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
257}
258
259// 64-bit extensions from registers.
260let neverHasSideEffects = 1 in {
261  def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
262  def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
263  def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
264}
265
266// Match 32-to-64-bit zero extensions in which the source is already
267// in a 64-bit register.
268def : Pat<(and GR64:$src, 0xffffffff),
269          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
270
271// 32-bit extensions from memory.
272def LLC   : UnaryRXY<"llc", 0xE394, zextloadi8,  GR32>;
273def LLH   : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
274def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
275
276// 64-bit extensions from memory.
277def LLGC   : UnaryRXY<"llgc", 0xE390, zextloadi8,  GR64>;
278def LLGH   : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
279def LLGF   : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
280def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
281def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
282
283//===----------------------------------------------------------------------===//
284// Truncations
285//===----------------------------------------------------------------------===//
286
287// Truncations of 64-bit registers to 32-bit registers.
288def : Pat<(i32 (trunc GR64:$src)),
289          (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
290
291// Truncations of 32-bit registers to memory.
292let isCodeGenOnly = 1 in {
293  defm STC32   : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8,  GR32>;
294  defm STH32   : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
295  def  STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
296}
297
298// Truncations of 64-bit registers to memory.
299defm STC   : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8,  GR64>;
300defm STH   : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
301def  STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
302defm ST    : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
303def  STRL  : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
304
305//===----------------------------------------------------------------------===//
306// Multi-register moves
307//===----------------------------------------------------------------------===//
308
309// Multi-register loads.
310def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
311
312// Multi-register stores.
313def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
314
315//===----------------------------------------------------------------------===//
316// Byte swaps
317//===----------------------------------------------------------------------===//
318
319// Byte-swapping register moves.
320let neverHasSideEffects = 1 in {
321  def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
322  def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
323}
324
325// Byte-swapping loads.
326def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap>, GR32>;
327def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap>, GR64>;
328
329// Byte-swapping stores.
330def STRV  : StoreRXY<"strv",  0xE33E, storeu<bswap>, GR32>;
331def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap>, GR64>;
332
333//===----------------------------------------------------------------------===//
334// Load address instructions
335//===----------------------------------------------------------------------===//
336
337// Load BDX-style addresses.
338let neverHasSideEffects = 1, Function = "la" in {
339  let PairType = "12" in
340    def LA : InstRX<0x41, (outs GR64:$dst), (ins laaddr12pair:$src),
341                    "la\t$dst, $src",
342                    [(set GR64:$dst, laaddr12pair:$src)]>;
343  let PairType = "20" in
344    def LAY : InstRXY<0xE371, (outs GR64:$dst), (ins laaddr20pair:$src),
345                      "lay\t$dst, $src",
346                      [(set GR64:$dst, laaddr20pair:$src)]>;
347}
348
349// Load a PC-relative address.  There's no version of this instruction
350// with a 16-bit offset, so there's no relaxation.
351let neverHasSideEffects = 1 in {
352  def LARL : InstRIL<0xC00, (outs GR64:$dst), (ins pcrel32:$src),
353                     "larl\t$dst, $src",
354                     [(set GR64:$dst, pcrel32:$src)]>;
355}
356
357//===----------------------------------------------------------------------===//
358// Negation
359//===----------------------------------------------------------------------===//
360
361let Defs = [PSW] in {
362  def LCR   : UnaryRR <"lcr",   0x13,   ineg,      GR32, GR32>;
363  def LCGR  : UnaryRRE<"lcgr",  0xB903, ineg,      GR64, GR64>;
364  def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
365}
366defm : SXU<ineg, LCGFR>;
367
368//===----------------------------------------------------------------------===//
369// Insertion
370//===----------------------------------------------------------------------===//
371
372let isCodeGenOnly = 1 in
373  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
374defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
375
376defm : InsertMem<"inserti8", IC32,  GR32, zextloadi8, bdxaddr12pair>;
377defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
378
379defm : InsertMem<"inserti8", IC,  GR64, zextloadi8, bdxaddr12pair>;
380defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
381
382// Insertions of a 16-bit immediate, leaving other bits unaffected.
383// We don't have or_as_insert equivalents of these operations because
384// OI is available instead.
385let isCodeGenOnly = 1 in {
386  def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
387  def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
388}
389def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
390def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
391def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
392def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
393
394// ...likewise for 32-bit immediates.  For GR32s this is a general
395// full-width move.  (We use IILF rather than something like LLILF
396// for 32-bit moves because IILF leaves the upper 32 bits of the
397// GR64 unchanged.)
398let isCodeGenOnly = 1 in {
399  def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
400}
401def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
402def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
403
404// An alternative model of inserthf, with the first operand being
405// a zero-extended value.
406def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
407          (IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
408                imm64hf32:$imm)>;
409
410//===----------------------------------------------------------------------===//
411// Addition
412//===----------------------------------------------------------------------===//
413
414// Plain addition.
415let Defs = [PSW] in {
416  // Addition of a register.
417  let isCommutable = 1 in {
418    def AR  : BinaryRR <"ar",  0x1A,   add, GR32, GR32>;
419    def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
420  }
421  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
422
423  // Addition of signed 16-bit immediates.
424  def AHI  : BinaryRI<"ahi",  0xA7A, add, GR32, imm32sx16>;
425  def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
426
427  // Addition of signed 32-bit immediates.
428  def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
429  def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
430
431  // Addition of memory.
432  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
433  defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load>;
434  def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
435  def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load>;
436
437  // Addition to memory.
438  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
439  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
440}
441defm : SXB<add, GR64, AGFR>;
442
443// Addition producing a carry.
444let Defs = [PSW] in {
445  // Addition of a register.
446  let isCommutable = 1 in {
447    def ALR  : BinaryRR <"alr",  0x1E,   addc, GR32, GR32>;
448    def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
449  }
450  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
451
452  // Addition of unsigned 32-bit immediates.
453  def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
454  def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
455
456  // Addition of memory.
457  defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
458  def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
459  def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load>;
460}
461defm : ZXB<addc, GR64, ALGFR>;
462
463// Addition producing and using a carry.
464let Defs = [PSW], Uses = [PSW] in {
465  // Addition of a register.
466  def ALCR  : BinaryRRE<"alcr",  0xB998, adde, GR32, GR32>;
467  def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
468
469  // Addition of memory.
470  def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load>;
471  def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
472}
473
474//===----------------------------------------------------------------------===//
475// Subtraction
476//===----------------------------------------------------------------------===//
477
478// Plain substraction.  Although immediate forms exist, we use the
479// add-immediate instruction instead.
480let Defs = [PSW] in {
481  // Subtraction of a register.
482  def SR   : BinaryRR <"sr",   0x1B,   sub,       GR32, GR32>;
483  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
484  def SGR  : BinaryRRE<"sgr",  0xB909, sub,       GR64, GR64>;
485
486  // Subtraction of memory.
487  defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
488  def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
489  def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load>;
490}
491defm : SXB<sub, GR64, SGFR>;
492
493// Subtraction producing a carry.
494let Defs = [PSW] in {
495  // Subtraction of a register.
496  def SLR   : BinaryRR <"slr",   0x1F,   subc,      GR32, GR32>;
497  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
498  def SLGR  : BinaryRRE<"slgr",  0xB90B, subc,      GR64, GR64>;
499
500  // Subtraction of unsigned 32-bit immediates.  These don't match
501  // subc because we prefer addc for constants.
502  def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
503  def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
504
505  // Subtraction of memory.
506  defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
507  def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
508  def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load>;
509}
510defm : ZXB<subc, GR64, SLGFR>;
511
512// Subtraction producing and using a carry.
513let Defs = [PSW], Uses = [PSW] in {
514  // Subtraction of a register.
515  def SLBR  : BinaryRRE<"slbr",  0xB999, sube, GR32, GR32>;
516  def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
517
518  // Subtraction of memory.
519  def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load>;
520  def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
521}
522
523//===----------------------------------------------------------------------===//
524// AND
525//===----------------------------------------------------------------------===//
526
527let Defs = [PSW] in {
528  // ANDs of a register.
529  let isCommutable = 1 in {
530    def NR  : BinaryRR <"nr",  0x14,   and, GR32, GR32>;
531    def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
532  }
533
534  // ANDs of a 16-bit immediate, leaving other bits unaffected.
535  let isCodeGenOnly = 1 in {
536    def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
537    def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
538  }
539  def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
540  def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
541  def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
542  def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
543
544  // ANDs of a 32-bit immediate, leaving other bits unaffected.
545  let isCodeGenOnly = 1 in
546    def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
547  def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
548  def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
549
550  // ANDs of memory.
551  defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
552  def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
553
554  // AND to memory
555  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
556}
557defm : RMWIByte<and, bdaddr12pair, NI>;
558defm : RMWIByte<and, bdaddr20pair, NIY>;
559
560//===----------------------------------------------------------------------===//
561// OR
562//===----------------------------------------------------------------------===//
563
564let Defs = [PSW] in {
565  // ORs of a register.
566  let isCommutable = 1 in {
567    def OR  : BinaryRR <"or",  0x16,   or, GR32, GR32>;
568    def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
569  }
570
571  // ORs of a 16-bit immediate, leaving other bits unaffected.
572  let isCodeGenOnly = 1 in {
573    def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
574    def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
575  }
576  def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
577  def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
578  def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
579  def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
580
581  // ORs of a 32-bit immediate, leaving other bits unaffected.
582  let isCodeGenOnly = 1 in
583    def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
584  def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
585  def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
586
587  // ORs of memory.
588  defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
589  def  OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
590
591  // OR to memory
592  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
593}
594defm : RMWIByte<or, bdaddr12pair, OI>;
595defm : RMWIByte<or, bdaddr20pair, OIY>;
596
597//===----------------------------------------------------------------------===//
598// XOR
599//===----------------------------------------------------------------------===//
600
601let Defs = [PSW] in {
602  // XORs of a register.
603  let isCommutable = 1 in {
604    def XR  : BinaryRR <"xr",  0x17,   xor, GR32, GR32>;
605    def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
606  }
607
608  // XORs of a 32-bit immediate, leaving other bits unaffected.
609  let isCodeGenOnly = 1 in
610    def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
611  def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
612  def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
613
614  // XORs of memory.
615  defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
616  def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
617
618  // XOR to memory
619  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
620}
621defm : RMWIByte<xor, bdaddr12pair, XI>;
622defm : RMWIByte<xor, bdaddr20pair, XIY>;
623
624//===----------------------------------------------------------------------===//
625// Multiplication
626//===----------------------------------------------------------------------===//
627
628// Multiplication of a register.
629let isCommutable = 1 in {
630  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
631  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
632}
633def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
634defm : SXB<mul, GR64, MSGFR>;
635
636// Multiplication of a signed 16-bit immediate.
637def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
638def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
639
640// Multiplication of a signed 32-bit immediate.
641def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
642def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
643
644// Multiplication of memory.
645defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
646defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
647def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
648def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load>;
649
650// Multiplication of a register, producing two results.
651def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
652
653// Multiplication of memory, producing two results.
654def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
655
656//===----------------------------------------------------------------------===//
657// Division and remainder
658//===----------------------------------------------------------------------===//
659
660// Division and remainder, from registers.
661def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag,   GR128, GR32>;
662def DSGR  : BinaryRRE<"dsgr",  0xB90D, z_sdivrem64, GR128, GR64>;
663def DLR   : BinaryRRE<"dlr",   0xB997, z_udivrem32, GR128, GR32>;
664def DLGR  : BinaryRRE<"dlgr",  0xB987, z_udivrem64, GR128, GR64>;
665defm : SXB<z_sdivrem64, GR128, DSGFR>;
666
667// Division and remainder, from memory.
668def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
669def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load>;
670def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load>;
671def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load>;
672
673//===----------------------------------------------------------------------===//
674// Shifts
675//===----------------------------------------------------------------------===//
676
677// Shift left.
678let neverHasSideEffects = 1 in {
679  def SLL  : ShiftRS <"sll",  0x89,   shl, GR32, shift12only>;
680  def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
681}
682
683// Logical shift right.
684let neverHasSideEffects = 1 in {
685  def SRL  : ShiftRS <"srl",  0x88,   srl, GR32, shift12only>;
686  def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
687}
688
689// Arithmetic shift right.
690let Defs = [PSW] in {
691  def SRA  : ShiftRS <"sra",  0x8A,   sra, GR32, shift12only>;
692  def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
693}
694
695// Rotate left.
696let neverHasSideEffects = 1 in {
697  def RLL  : ShiftRSY<"rll",  0xEB1D, rotl, GR32, shift20only>;
698  def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
699}
700
701// Rotate second operand left and inserted selected bits into first operand.
702// These can act like 32-bit operands provided that the constant start and
703// end bits (operands 2 and 3) are in the range [32, 64)
704let Defs = [PSW] in {
705  let isCodeGenOnly = 1 in
706    def RISBG32 : RotateSelectRIEf<"risbg",  0xEC55, GR32, GR32>;
707  def RISBG : RotateSelectRIEf<"risbg",  0xEC55, GR64, GR64>;
708}
709
710//===----------------------------------------------------------------------===//
711// Comparison
712//===----------------------------------------------------------------------===//
713
714// Signed comparisons.
715let Defs = [PSW] in {
716  // Comparison with a register.
717  def CR   : CompareRR <"cr",   0x19,   z_cmp,     GR32, GR32>;
718  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
719  def CGR  : CompareRRE<"cgr",  0xB920, z_cmp,     GR64, GR64>;
720
721  // Comparison with a signed 16-bit immediate.
722  def CHI  : CompareRI<"chi",  0xA7E, z_cmp, GR32, imm32sx16>;
723  def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
724
725  // Comparison with a signed 32-bit immediate.
726  def CFI  : CompareRIL<"cfi",  0xC2D, z_cmp, GR32, simm32>;
727  def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
728
729  // Comparison with memory.
730  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
731  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_cmp, GR32, load>;
732  def  CGH   : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
733  def  CGF   : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
734  def  CG    : CompareRXY<"cg",  0xE320, z_cmp, GR64, load>;
735  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_cmp, GR32, aligned_sextloadi16>;
736  def  CRL   : CompareRILPC<"crl",   0xC6D, z_cmp, GR32, aligned_load>;
737  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
738  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
739  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_cmp, GR64, aligned_load>;
740
741  // Comparison between memory and a signed 16-bit immediate.
742  def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
743  def CHSI  : CompareSIL<"chsi",  0xE55C, z_cmp, load,        imm32sx16>;
744  def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load,        imm64sx16>;
745}
746defm : SXB<z_cmp, GR64, CGFR>;
747
748// Unsigned comparisons.
749let Defs = [PSW] in {
750  // Comparison with a register.
751  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
752  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
753  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
754
755  // Comparison with a signed 32-bit immediate.
756  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
757  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
758
759  // Comparison with memory.
760  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
761  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
762  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load>;
763  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
764                             aligned_zextloadi16>;
765  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
766                             aligned_load>;
767  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
768                             aligned_zextloadi16>;
769  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
770                             aligned_zextloadi32>;
771  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
772                             aligned_load>;
773
774  // Comparison between memory and an unsigned 8-bit immediate.
775  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
776
777  // Comparison between memory and an unsigned 16-bit immediate.
778  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
779  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load,        imm32zx16>;
780  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load,        imm64zx16>;
781}
782defm : ZXB<z_ucmp, GR64, CLGFR>;
783
784//===----------------------------------------------------------------------===//
785// Atomic operations
786//===----------------------------------------------------------------------===//
787
788def ATOMIC_SWAPW        : AtomicLoadWBinaryReg<z_atomic_swapw>;
789def ATOMIC_SWAP_32      : AtomicLoadBinaryReg32<atomic_swap_32>;
790def ATOMIC_SWAP_64      : AtomicLoadBinaryReg64<atomic_swap_64>;
791
792def ATOMIC_LOADW_AR     : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
793def ATOMIC_LOADW_AFI    : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
794def ATOMIC_LOAD_AR      : AtomicLoadBinaryReg32<atomic_load_add_32>;
795def ATOMIC_LOAD_AHI     : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
796def ATOMIC_LOAD_AFI     : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
797def ATOMIC_LOAD_AGR     : AtomicLoadBinaryReg64<atomic_load_add_64>;
798def ATOMIC_LOAD_AGHI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
799def ATOMIC_LOAD_AGFI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
800
801def ATOMIC_LOADW_SR     : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
802def ATOMIC_LOAD_SR      : AtomicLoadBinaryReg32<atomic_load_sub_32>;
803def ATOMIC_LOAD_SGR     : AtomicLoadBinaryReg64<atomic_load_sub_64>;
804
805def ATOMIC_LOADW_NR     : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
806def ATOMIC_LOADW_NILH   : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
807def ATOMIC_LOAD_NR      : AtomicLoadBinaryReg32<atomic_load_and_32>;
808def ATOMIC_LOAD_NILL32  : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
809def ATOMIC_LOAD_NILH32  : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
810def ATOMIC_LOAD_NILF32  : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
811def ATOMIC_LOAD_NGR     : AtomicLoadBinaryReg64<atomic_load_and_64>;
812def ATOMIC_LOAD_NILL    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
813def ATOMIC_LOAD_NILH    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
814def ATOMIC_LOAD_NIHL    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
815def ATOMIC_LOAD_NIHH    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
816def ATOMIC_LOAD_NILF    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
817def ATOMIC_LOAD_NIHF    : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
818
819def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
820def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
821def ATOMIC_LOAD_OR      : AtomicLoadBinaryReg32<atomic_load_or_32>;
822def ATOMIC_LOAD_OILL32  : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
823def ATOMIC_LOAD_OILH32  : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
824def ATOMIC_LOAD_OILF32  : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
825def ATOMIC_LOAD_OGR     : AtomicLoadBinaryReg64<atomic_load_or_64>;
826def ATOMIC_LOAD_OILL    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
827def ATOMIC_LOAD_OILH    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
828def ATOMIC_LOAD_OIHL    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
829def ATOMIC_LOAD_OIHH    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
830def ATOMIC_LOAD_OILF    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
831def ATOMIC_LOAD_OIHF    : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
832
833def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
834def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
835def ATOMIC_LOAD_XR      : AtomicLoadBinaryReg32<atomic_load_xor_32>;
836def ATOMIC_LOAD_XILF32  : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
837def ATOMIC_LOAD_XGR     : AtomicLoadBinaryReg64<atomic_load_xor_64>;
838def ATOMIC_LOAD_XILF    : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
839def ATOMIC_LOAD_XIHF    : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
840
841def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
842def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
843                                               imm32lh16c>;
844def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
845def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
846                                                imm32ll16c>;
847def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
848                                                imm32lh16c>;
849def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
850def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
851def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
852                                                imm64ll16c>;
853def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
854                                                imm64lh16c>;
855def ATOMIC_LOAD_NIHLi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
856                                                imm64hl16c>;
857def ATOMIC_LOAD_NIHHi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
858                                                imm64hh16c>;
859def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
860                                                imm64lf32c>;
861def ATOMIC_LOAD_NIHFi   : AtomicLoadBinaryImm64<atomic_load_nand_64,
862                                                imm64hf32c>;
863
864def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
865def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
866def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
867
868def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
869def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
870def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
871
872def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
873def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
874def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
875
876def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
877def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
878def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
879
880def ATOMIC_CMP_SWAPW
881  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
882                                  ADDR32:$bitshift, ADDR32:$negbitshift,
883                                  uimm32:$bitsize),
884           [(set GR32:$dst,
885                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
886                                     ADDR32:$bitshift, ADDR32:$negbitshift,
887                                     uimm32:$bitsize))]> {
888  let Defs = [PSW];
889  let mayLoad = 1;
890  let mayStore = 1;
891  let usesCustomInserter = 1;
892}
893
894let Defs = [PSW] in {
895  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
896  def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
897}
898
899//===----------------------------------------------------------------------===//
900// Miscellaneous Instructions.
901//===----------------------------------------------------------------------===//
902
903// Read a 32-bit access register into a GR32.  As with all GR32 operations,
904// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
905// when a 64-bit address is stored in a pair of access registers.
906def EAR : InstRRE<0xB24F, (outs GR32:$dst), (ins access_reg:$src),
907                  "ear\t$dst, $src",
908                  [(set GR32:$dst, (z_extract_access access_reg:$src))]>;
909
910// Find leftmost one, AKA count leading zeros.  The instruction actually
911// returns a pair of GR64s, the first giving the number of leading zeros
912// and the second giving a copy of the source with the leftmost one bit
913// cleared.  We only use the first result here.
914let Defs = [PSW] in {
915  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
916}
917def : Pat<(ctlz GR64:$src),
918          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
919
920// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
921def : Pat<(i64 (anyext GR32:$src)),
922          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
923
924// There are no 32-bit equivalents of LLILL and LLILH, so use a full
925// 64-bit move followed by a subreg.  This preserves the invariant that
926// all GR32 operations only modify the low 32 bits.
927def : Pat<(i32 imm32ll16:$src),
928          (EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
929def : Pat<(i32 imm32lh16:$src),
930          (EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
931
932// Extend GR32s and GR64s to GR128s.
933let usesCustomInserter = 1 in {
934  def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
935  def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
936  def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
937}
938
939//===----------------------------------------------------------------------===//
940// Peepholes.
941//===----------------------------------------------------------------------===//
942
943// Use AL* for GR64 additions of unsigned 32-bit values.
944defm : ZXB<add, GR64, ALGFR>;
945def  : Pat<(add GR64:$src1, imm64zx32:$src2),
946           (ALGFI GR64:$src1, imm64zx32:$src2)>;
947def  : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
948           (ALGF GR64:$src1, bdxaddr20only:$addr)>;
949
950// Use SL* for GR64 subtractions of unsigned 32-bit values.
951defm : ZXB<sub, GR64, SLGFR>;
952def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
953           (SLGFI GR64:$src1, imm64zx32n:$src2)>;
954def  : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
955           (SLGF GR64:$src1, bdxaddr20only:$addr)>;
956