SystemZInstrInfo.td revision 22836d1b31e553ef3b60cede659889365aaf672a
1//===- SystemZInstrInfo.td - SystemZ Instruction defs ---------*- tblgen-*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source 
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SystemZ instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14include "SystemZInstrFormats.td"
15
16//===----------------------------------------------------------------------===//
17// Type Constraints.
18//===----------------------------------------------------------------------===//
19class SDTCisI8<int OpNum> : SDTCisVT<OpNum, i8>;
20class SDTCisI16<int OpNum> : SDTCisVT<OpNum, i16>;
21class SDTCisI32<int OpNum> : SDTCisVT<OpNum, i32>;
22class SDTCisI64<int OpNum> : SDTCisVT<OpNum, i64>;
23
24//===----------------------------------------------------------------------===//
25// Type Profiles.
26//===----------------------------------------------------------------------===//
27def SDT_SystemZCall         : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28def SDT_SystemZCallSeqStart : SDCallSeqStart<[SDTCisI64<0>]>;
29def SDT_SystemZCallSeqEnd   : SDCallSeqEnd<[SDTCisI64<0>, SDTCisI64<1>]>;
30def SDT_CmpTest             : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
31def SDT_BrCond              : SDTypeProfile<0, 2,
32                                           [SDTCisVT<0, OtherVT>,
33                                            SDTCisI8<1>]>;
34def SDT_SelectCC            : SDTypeProfile<1, 3,
35                                           [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
36                                            SDTCisI8<3>]>;
37def SDT_Address             : SDTypeProfile<1, 1,
38                                            [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
39
40//===----------------------------------------------------------------------===//
41// SystemZ Specific Node Definitions.
42//===----------------------------------------------------------------------===//
43def SystemZretflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
44                     [SDNPHasChain, SDNPOptInFlag]>;
45def SystemZcall    : SDNode<"SystemZISD::CALL", SDT_SystemZCall,
46                     [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
47def SystemZcallseq_start :
48                 SDNode<"ISD::CALLSEQ_START", SDT_SystemZCallSeqStart,
49                        [SDNPHasChain, SDNPOutFlag]>;
50def SystemZcallseq_end :
51                 SDNode<"ISD::CALLSEQ_END",   SDT_SystemZCallSeqEnd,
52                        [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
53def SystemZcmp     : SDNode<"SystemZISD::CMP", SDT_CmpTest, [SDNPOutFlag]>;
54def SystemZucmp    : SDNode<"SystemZISD::UCMP", SDT_CmpTest, [SDNPOutFlag]>;
55def SystemZbrcond  : SDNode<"SystemZISD::BRCOND", SDT_BrCond,
56                            [SDNPHasChain, SDNPInFlag]>;
57def SystemZselect  : SDNode<"SystemZISD::SELECT", SDT_SelectCC, [SDNPInFlag]>;
58def SystemZpcrelwrapper : SDNode<"SystemZISD::PCRelativeWrapper", SDT_Address, []>;
59
60//===----------------------------------------------------------------------===//
61// Instruction Pattern Stuff.
62//===----------------------------------------------------------------------===//
63
64// SystemZ specific condition code. These correspond to CondCode in
65// SystemZ.h. They must be kept in synch.
66def SYSTEMZ_COND_E  : PatLeaf<(i8 0)>;
67def SYSTEMZ_COND_NE : PatLeaf<(i8 1)>;
68def SYSTEMZ_COND_H  : PatLeaf<(i8 2)>;
69def SYSTEMZ_COND_L  : PatLeaf<(i8 3)>;
70def SYSTEMZ_COND_HE : PatLeaf<(i8 4)>;
71def SYSTEMZ_COND_LE : PatLeaf<(i8 5)>;
72
73def LL16 : SDNodeXForm<imm, [{
74  // Transformation function: return low 16 bits.
75  return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
76}]>;
77
78def LH16 : SDNodeXForm<imm, [{
79  // Transformation function: return bits 16-31.
80  return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
81}]>;
82
83def HL16 : SDNodeXForm<imm, [{
84  // Transformation function: return bits 32-47.
85  return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
86}]>;
87
88def HH16 : SDNodeXForm<imm, [{
89  // Transformation function: return bits 48-63.
90  return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
91}]>;
92
93def LO32 : SDNodeXForm<imm, [{
94  // Transformation function: return low 32 bits.
95  return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
96}]>;
97
98def HI32 : SDNodeXForm<imm, [{
99  // Transformation function: return bits 32-63.
100  return getI32Imm(N->getZExtValue() >> 32);
101}]>;
102
103def i64ll16 : PatLeaf<(imm), [{  
104  // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
105  // bits set.
106  return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
107}], LL16>;
108
109def i64lh16 : PatLeaf<(imm), [{  
110  // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
111  return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
112}], LH16>;
113
114def i64hl16 : PatLeaf<(i64 imm), [{  
115  // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
116  return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
117}], HL16>;
118
119def i64hh16 : PatLeaf<(i64 imm), [{  
120  // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
121  return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
122}], HH16>;
123
124def immSExt16 : PatLeaf<(imm), [{
125  // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
126  // field.
127  if (N->getValueType(0) == MVT::i64) {
128    uint64_t val = N->getZExtValue();
129    return ((int64_t)val == (int16_t)val);
130  } else if (N->getValueType(0) == MVT::i32) {
131    uint32_t val = N->getZExtValue();
132    return ((int32_t)val == (int16_t)val);
133  }
134
135  return false;
136}]>;
137
138def immSExt32 : PatLeaf<(i64 imm), [{
139  // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
140  // field.
141  uint64_t val = N->getZExtValue();
142  return ((int64_t)val == (int32_t)val);
143}]>;
144
145def i64lo32 : PatLeaf<(i64 imm), [{
146  // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
147  // bits set.
148  return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
149}], LO32>;
150
151def i64hi32 : PatLeaf<(i64 imm), [{
152  // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
153  return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
154}], HI32>;
155
156def i32immSExt8  : PatLeaf<(i32 imm), [{
157  // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
158  // sign extended field.
159  return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
160}]>;
161
162def i32immSExt16 : PatLeaf<(i32 imm), [{
163  // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
164  // sign extended field.
165  return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
166}]>;
167
168def i64immSExt32 : PatLeaf<(i64 imm), [{
169  // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
170  // sign extended field.
171  return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
172}]>;
173
174def i64immZExt32 : PatLeaf<(i64 imm), [{
175  // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
176  // zero extended field.
177  return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
178}]>;
179
180// extloads
181def extloadi32i8   : PatFrag<(ops node:$ptr), (i32 (extloadi8  node:$ptr))>;
182def extloadi32i16  : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
183def extloadi64i8   : PatFrag<(ops node:$ptr), (i64 (extloadi8  node:$ptr))>;
184def extloadi64i16  : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
185def extloadi64i32  : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
186
187def sextloadi32i8   : PatFrag<(ops node:$ptr), (i32 (sextloadi8  node:$ptr))>;
188def sextloadi32i16  : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
189def sextloadi64i8   : PatFrag<(ops node:$ptr), (i64 (sextloadi8  node:$ptr))>;
190def sextloadi64i16  : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
191def sextloadi64i32  : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
192
193def zextloadi32i8   : PatFrag<(ops node:$ptr), (i32 (zextloadi8  node:$ptr))>;
194def zextloadi32i16  : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
195def zextloadi64i8   : PatFrag<(ops node:$ptr), (i64 (zextloadi8  node:$ptr))>;
196def zextloadi64i16  : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
197def zextloadi64i32  : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
198
199// A couple of more descriptive operand definitions.
200// 32-bits but only 8 bits are significant.
201def i32i8imm  : Operand<i32>;
202// 32-bits but only 16 bits are significant.
203def i32i16imm : Operand<i32>;
204// 64-bits but only 32 bits are significant.
205def i64i32imm : Operand<i64>;
206// Branch targets have OtherVT type.
207def brtarget : Operand<OtherVT>;
208
209//===----------------------------------------------------------------------===//
210// SystemZ Operand Definitions.
211//===----------------------------------------------------------------------===//
212
213// Address operands
214
215// riaddr := reg + imm
216def riaddr32 : Operand<i32>,
217               ComplexPattern<i32, 2, "SelectAddrRI", []> {
218  let PrintMethod = "printRIAddrOperand";
219  let MIOperandInfo = (ops ADDR32:$base, i32imm:$disp);
220}
221
222def riaddr : Operand<i64>,
223             ComplexPattern<i64, 2, "SelectAddrRI", []> {
224  let PrintMethod = "printRIAddrOperand";
225  let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp);
226}
227
228//===----------------------------------------------------------------------===//
229
230// rriaddr := reg + reg + imm
231def rriaddr : Operand<i64>,
232              ComplexPattern<i64, 3, "SelectAddrRRI", [], []> {
233  let PrintMethod = "printRRIAddrOperand";
234  let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp, ADDR64:$index);
235}
236def laaddr : Operand<i64>,
237             ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
238  let PrintMethod = "printRRIAddrOperand";
239  let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp, ADDR64:$index);
240}
241
242//===----------------------------------------------------------------------===//
243// Instruction list..
244
245def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
246                              "#ADJCALLSTACKDOWN",
247                              [(SystemZcallseq_start timm:$amt)]>;
248def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
249                              "#ADJCALLSTACKUP",
250                              [(SystemZcallseq_end timm:$amt1, timm:$amt2)]>;
251
252let usesCustomDAGSchedInserter = 1 in {
253  def Select32 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cc),
254                        "# Select32 PSEUDO",
255                        [(set GR32:$dst,
256                              (SystemZselect GR32:$src1, GR32:$src2, imm:$cc))]>;
257  def Select64 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$cc),
258                        "# Select64 PSEUDO",
259                        [(set GR64:$dst,
260                              (SystemZselect GR64:$src1, GR64:$src2, imm:$cc))]>;
261}
262
263
264//===----------------------------------------------------------------------===//
265//  Control Flow Instructions...
266//
267
268// FIXME: Provide proper encoding!
269let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in {
270  def RET : Pseudo<(outs), (ins), "br\t%r14", [(SystemZretflag)]>;
271}
272
273let isBranch = 1, isTerminator = 1 in {
274  let isBarrier = 1 in
275    def JMP  : Pseudo<(outs), (ins brtarget:$dst), "j\t{$dst}", [(br bb:$dst)]>;
276
277  let Uses = [PSW] in {
278    def JE  : Pseudo<(outs), (ins brtarget:$dst),
279                     "je\t$dst",
280                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_E)]>;
281    def JNE : Pseudo<(outs), (ins brtarget:$dst),
282                     "jne\t$dst",
283                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NE)]>;
284    def JH  : Pseudo<(outs), (ins brtarget:$dst),
285                     "jh\t$dst",
286                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_H)]>;
287    def JL  : Pseudo<(outs), (ins brtarget:$dst),
288                     "jl\t$dst",
289                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_L)]>;
290    def JHE : Pseudo<(outs), (ins brtarget:$dst),
291                     "jhe\t$dst",
292                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_HE)]>;
293    def JLE : Pseudo<(outs), (ins brtarget:$dst),
294                     "jle\t$dst",
295                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_LE)]>;
296
297  } // Uses = [PSW]
298} // isBranch = 1
299
300//===----------------------------------------------------------------------===//
301//  Call Instructions...
302//
303
304let isCall = 1 in
305  // All calls clobber the non-callee saved registers (except R14 which we
306  // handle separately). Uses for argument registers are added manually.
307  let Defs = [R0D, R1D, R2D, R3D, R4D, R5D] in {
308    def CALLi     : Pseudo<(outs), (ins i64imm:$dst, variable_ops),
309                           "brasl\t%r14, $dst", [(SystemZcall imm:$dst)]>;
310    def CALLr     : Pseudo<(outs), (ins ADDR64:$dst, variable_ops),
311                           "brasl\t%r14, $dst", [(SystemZcall ADDR64:$dst)]>;
312  }
313
314//===----------------------------------------------------------------------===//
315//  Miscellaneous Instructions.
316//
317
318let isReMaterializable = 1 in
319// FIXME: Provide imm12 variant
320def LA64r  : Pseudo<(outs GR64:$dst), (ins laaddr:$src),
321                    "lay\t{$dst, $src}",
322                    [(set GR64:$dst, laaddr:$src)]>;
323def LA64rm : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
324                    "larl\t{$dst, $src}",
325                    [(set GR64:$dst,
326                          (SystemZpcrelwrapper tglobaladdr:$src))]>;
327
328let neverHasSideEffects = 1 in
329def NOP : Pseudo<(outs), (ins), "# no-op", []>;
330
331//===----------------------------------------------------------------------===//
332// Move Instructions
333
334// FIXME: Provide proper encoding!
335let neverHasSideEffects = 1 in {
336def MOV32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src),
337                     "lr\t{$dst, $src}",
338                     []>;
339def MOV64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src),
340                     "lgr\t{$dst, $src}",
341                     []>;
342def MOV128rr : Pseudo<(outs GR128:$dst), (ins GR128:$src),
343                     "# MOV128 PSEUDO!"
344                     "lgr\t{$dst:subreg_odd, $src:subreg_odd}\n"
345                     "lgr\t{$dst:subreg_even, $src:subreg_even}",
346                     []>;
347def MOV64rrP : Pseudo<(outs GR64P:$dst), (ins GR64P:$src),
348                     "# MOV64P PSEUDO!"
349                     "lr\t{$dst:subreg_odd, $src:subreg_odd}\n"
350                     "lr\t{$dst:subreg_even, $src:subreg_even}",
351                     []>;
352}
353
354def MOVSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
355                         "lgfr\t{$dst, $src}",
356                         [(set GR64:$dst, (sext GR32:$src))]>;
357def MOVZX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
358                         "llgfr\t{$dst, $src}",
359                         [(set GR64:$dst, (zext GR32:$src))]>;
360
361// FIXME: Provide proper encoding!
362let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
363def MOV32ri16 : Pseudo<(outs GR32:$dst), (ins i32imm:$src),
364                       "lhi\t{$dst, $src}",
365                       [(set GR32:$dst, immSExt16:$src)]>;
366def MOV64ri16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
367                       "lghi\t{$dst, $src}",
368                       [(set GR64:$dst, immSExt16:$src)]>;
369
370def MOV64rill16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
371                         "llill\t{$dst, $src}",
372                         [(set GR64:$dst, i64ll16:$src)]>;
373def MOV64rilh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
374                         "llilh\t{$dst, $src}",
375                         [(set GR64:$dst, i64lh16:$src)]>;
376def MOV64rihl16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
377                         "llihl\t{$dst, $src}",
378                         [(set GR64:$dst, i64hl16:$src)]>;
379def MOV64rihh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
380                         "llihh\t{$dst, $src}",
381                         [(set GR64:$dst, i64hh16:$src)]>;
382// FIXME: these 3 instructions seem to require extimm facility
383def MOV64ri32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
384                       "lgfi\t{$dst, $src}",
385                       [(set GR64:$dst, immSExt32:$src)]>;
386def MOV64rilo32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
387                         "llilf\t{$dst, $src}",
388                         [(set GR64:$dst, i64lo32:$src)]>;
389def MOV64rihi32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
390                         "llihf\t{$dst, $src}",
391                         [(set GR64:$dst, i64hi32:$src)]>;
392}
393
394let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
395def MOV64rm : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
396                     "lg\t{$dst, $src}",
397                     [(set GR64:$dst, (load rriaddr:$src))]>;
398
399}
400
401def MOV64mr : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
402                     "stg\t{$src, $dst}",
403                     [(store GR64:$src, rriaddr:$dst)]>;
404
405// FIXME: displacements here are really 12 bit, not 20!
406def MOV8mi    : Pseudo<(outs), (ins riaddr:$dst, i32i8imm:$src),
407                       "mvi\t{$dst, $src}",
408                       [(truncstorei8 (i32 i32immSExt8:$src), riaddr:$dst)]>;
409def MOV16mi   : Pseudo<(outs), (ins riaddr:$dst, i32i16imm:$src),
410                       "mvhhi\t{$dst, $src}",
411                       [(truncstorei16 (i32 i32immSExt16:$src), riaddr:$dst)]>;
412def MOV32mi16 : Pseudo<(outs), (ins riaddr:$dst, i32imm:$src),
413                       "mvhi\t{$dst, $src}",
414                       [(store (i32 immSExt16:$src), riaddr:$dst)]>;
415def MOV64mi16 : Pseudo<(outs), (ins riaddr:$dst, i64imm:$src),
416                       "mvghi\t{$dst, $src}",
417                       [(store (i64 immSExt16:$src), riaddr:$dst)]>;
418
419// extloads
420def MOVSX32rm8  : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
421                         "lb\t{$dst, $src}",
422                         [(set GR32:$dst, (sextloadi32i8 rriaddr:$src))]>;
423def MOVSX32rm16 : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
424                         "lhy\t{$dst, $src}",
425                         [(set GR32:$dst, (sextloadi32i16 rriaddr:$src))]>;
426def MOVSX64rm8  : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
427                         "lgb\t{$dst, $src}",
428                         [(set GR64:$dst, (sextloadi64i8 rriaddr:$src))]>;
429def MOVSX64rm16 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
430                         "lgh\t{$dst, $src}",
431                         [(set GR64:$dst, (sextloadi64i16 rriaddr:$src))]>;
432def MOVSX64rm32 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
433                         "lgf\t{$dst, $src}",
434                         [(set GR64:$dst, (sextloadi64i32 rriaddr:$src))]>;
435
436def MOVZX32rm8  : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
437                         "llc\t{$dst, $src}",
438                         [(set GR32:$dst, (zextloadi32i8 rriaddr:$src))]>;
439def MOVZX32rm16 : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
440                         "llh\t{$dst, $src}",
441                         [(set GR32:$dst, (zextloadi32i16 rriaddr:$src))]>;
442def MOVZX64rm8  : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
443                         "llgc\t{$dst, $src}",
444                         [(set GR64:$dst, (zextloadi64i8 rriaddr:$src))]>;
445def MOVZX64rm16 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
446                         "llgh\t{$dst, $src}",
447                         [(set GR64:$dst, (zextloadi64i16 rriaddr:$src))]>;
448def MOVZX64rm32 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
449                         "llgf\t{$dst, $src}",
450                         [(set GR64:$dst, (zextloadi64i32 rriaddr:$src))]>;
451
452// truncstores
453// FIXME: Implement 12-bit displacement stuff someday
454def MOV32m8r  : Pseudo<(outs), (ins rriaddr:$dst, GR32:$src),
455                       "stcy\t{$src, $dst}",
456                       [(truncstorei8 GR32:$src, rriaddr:$dst)]>;
457
458def MOV32m16r : Pseudo<(outs), (ins rriaddr:$dst, GR32:$src),
459                       "sthy\t{$src, $dst}",
460                       [(truncstorei16 GR32:$src, rriaddr:$dst)]>;
461
462def MOV64m8r  : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
463                       "stcy\t{$src, $dst}",
464                       [(truncstorei8 GR64:$src, rriaddr:$dst)]>;
465
466def MOV64m16r : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
467                       "sthy\t{$src, $dst}",
468                       [(truncstorei16 GR64:$src, rriaddr:$dst)]>;
469
470def MOV64m32r : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
471                       "sty\t{$src, $dst}",
472                       [(truncstorei32 GR64:$src, rriaddr:$dst)]>;
473
474// multiple regs moves
475// FIXME: should we use multiple arg nodes?
476def MOV32mrm  : Pseudo<(outs), (ins riaddr:$dst, GR32:$from, GR32:$to),
477                       "stmy\t{$from, $to, $dst}",
478                       []>;
479def MOV64mrm  : Pseudo<(outs), (ins riaddr:$dst, GR64:$from, GR64:$to),
480                       "stmg\t{$from, $to, $dst}",
481                       []>;
482def MOV32rmm  : Pseudo<(outs GR32:$from, GR32:$to), (ins riaddr:$dst),
483                       "lmy\t{$from, $to, $dst}",
484                       []>;
485def MOV64rmm  : Pseudo<(outs GR64:$from, GR64:$to), (ins riaddr:$dst),
486                       "lmg\t{$from, $to, $dst}",
487                       []>;
488
489
490//===----------------------------------------------------------------------===//
491// Arithmetic Instructions
492
493let isTwoAddress = 1 in {
494
495let Defs = [PSW] in {
496
497let isCommutable = 1 in { // X = ADD Y, Z  == X = ADD Z, Y
498// FIXME: Provide proper encoding!
499def ADD32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
500                     "ar\t{$dst, $src2}",
501                     [(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
502                      (implicit PSW)]>;
503def ADD64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
504                     "agr\t{$dst, $src2}",
505                     [(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
506                      (implicit PSW)]>;
507}
508
509// FIXME: Provide proper encoding!
510def ADD32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
511                       "ahi\t{$dst, $src2}",
512                       [(set GR32:$dst, (add GR32:$src1, immSExt16:$src2)),
513                        (implicit PSW)]>;
514def ADD32ri   : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
515                       "afi\t{$dst, $src2}",
516                       [(set GR32:$dst, (add GR32:$src1, imm:$src2)),
517                        (implicit PSW)]>;
518def ADD64ri16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
519                       "aghi\t{$dst, $src2}",
520                       [(set GR64:$dst, (add GR64:$src1, immSExt16:$src2)),
521                        (implicit PSW)]>;
522def ADD64ri32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
523                       "agfi\t{$dst, $src2}",
524                       [(set GR64:$dst, (add GR64:$src1, immSExt32:$src2)),
525                        (implicit PSW)]>;
526
527let isCommutable = 1 in { // X = AND Y, Z  == X = AND Z, Y
528// FIXME: Provide proper encoding!
529def AND32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
530                     "nr\t{$dst, $src2}",
531                     [(set GR32:$dst, (and GR32:$src1, GR32:$src2))]>;
532def AND64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
533                     "ngr\t{$dst, $src2}",
534                     [(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
535}
536
537// FIXME: Provide proper encoding!
538def AND64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
539                         "nill\t{$dst, $src2}",
540                         [(set GR64:$dst, (and GR64:$src1, i64ll16:$src2))]>;
541def AND64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
542                         "nilh\t{$dst, $src2}",
543                         [(set GR64:$dst, (and GR64:$src1, i64lh16:$src2))]>;
544def AND64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
545                         "nihl\t{$dst, $src2}",
546                         [(set GR64:$dst, (and GR64:$src1, i64hl16:$src2))]>;
547def AND64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
548                         "nihh\t{$dst, $src2}",
549                         [(set GR64:$dst, (and GR64:$src1, i64hh16:$src2))]>;
550// FIXME: these 2 instructions seem to require extimm facility
551def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
552                         "nilf\t{$dst, $src2}",
553                         [(set GR64:$dst, (and GR64:$src1, i64lo32:$src2))]>;
554def AND64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
555                         "nihf\t{$dst, $src2}",
556                         [(set GR64:$dst, (and GR64:$src1, i64hi32:$src2))]>;
557
558let isCommutable = 1 in { // X = OR Y, Z  == X = OR Z, Y
559// FIXME: Provide proper encoding!
560def OR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
561                    "or\t{$dst, $src2}",
562                    [(set GR32:$dst, (or GR32:$src1, GR32:$src2))]>;
563def OR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
564                    "ogr\t{$dst, $src2}",
565                    [(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
566}
567
568def OR32ri16  : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
569                      "oill\t{$dst, $src2}",
570                      [(set GR32:$dst, (or GR32:$src1, i64ll16:$src2))]>;
571def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
572                      "oilh\t{$dst, $src2}",
573                      [(set GR32:$dst, (or GR32:$src1, i64lh16:$src2))]>;
574def OR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
575                    "oilf\t{$dst, $src2}",
576                    [(set GR32:$dst, (or GR32:$src1, imm:$src2))]>;
577
578def OR64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
579                        "oill\t{$dst, $src2}",
580                        [(set GR64:$dst, (or GR64:$src1, i64ll16:$src2))]>;
581def OR64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
582                        "oilh\t{$dst, $src2}",
583                        [(set GR64:$dst, (or GR64:$src1, i64lh16:$src2))]>;
584def OR64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
585                        "oihl\t{$dst, $src2}",
586                        [(set GR64:$dst, (or GR64:$src1, i64hl16:$src2))]>;
587def OR64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
588                        "oihh\t{$dst, $src2}",
589                        [(set GR64:$dst, (or GR64:$src1, i64hh16:$src2))]>;
590// FIXME: these 2 instructions seem to require extimm facility
591def OR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
592                        "oilf\t{$dst, $src2}",
593                        [(set GR64:$dst, (or GR64:$src1, i64lo32:$src2))]>;
594def OR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
595                        "oihf\t{$dst, $src2}",
596                        [(set GR64:$dst, (or GR64:$src1, i64hi32:$src2))]>;
597
598// FIXME: Provide proper encoding!
599def SUB32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
600                     "sr\t{$dst, $src2}",
601                     [(set GR32:$dst, (sub GR32:$src1, GR32:$src2))]>;
602def SUB64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
603                     "sgr\t{$dst, $src2}",
604                     [(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>;
605
606
607let isCommutable = 1 in { // X = XOR Y, Z  == X = XOR Z, Y
608// FIXME: Provide proper encoding!
609def XOR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
610                     "xr\t{$dst, $src2}",
611                     [(set GR32:$dst, (xor GR32:$src1, GR32:$src2))]>;
612def XOR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
613                     "xgr\t{$dst, $src2}",
614                     [(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
615}
616
617def XOR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
618                     "xilf\t{$dst, $src2}",
619                     [(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>;
620
621// FIXME: these 2 instructions seem to require extimm facility
622def XOR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
623                         "xilf\t{$dst, $src2}",
624                         [(set GR64:$dst, (xor GR64:$src1, i64lo32:$src2))]>;
625def XOR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
626                         "xihf\t{$dst, $src2}",
627                         [(set GR64:$dst, (xor GR64:$src1, i64hi32:$src2))]>;
628
629} // Defs = [PSW]
630
631let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y
632def MUL32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
633                     "msr\t{$dst, $src2}",
634                     [(set GR32:$dst, (mul GR32:$src1, GR32:$src2))]>;
635def MUL64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
636                     "msgr\t{$dst, $src2}",
637                     [(set GR64:$dst, (mul GR64:$src1, GR64:$src2))]>;
638
639def MUL64rrP   : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
640                        "mr\t{$dst, $src2}",
641                        []>;
642def UMUL64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
643                         "mlr\t{$dst, $src2}",
644                         []>;
645def UMUL128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
646                        "mlgr\t{$dst, $src2}",
647                        []>;
648}
649
650
651def MUL32ri16   : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32i16imm:$src2),
652                         "mhi\t{$dst, $src2}",
653                         [(set GR32:$dst, (mul GR32:$src1, i32immSExt16:$src2))]>;
654def MUL32ri     : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
655                         "msfi\t{$dst, $src2}",
656                         [(set GR32:$dst, (mul GR32:$src1, imm:$src2))]>;
657def MUL64ri16   : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
658                         "mghi\t{$dst, $src2}",
659                         [(set GR64:$dst, (mul GR64:$src1, immSExt16:$src2))]>;
660def MUL64ri32   : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
661                         "msgfi\t{$dst, $src2}",
662                         [(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2))]>;
663
664def MUL32rm : Pseudo<(outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
665                     "msy\t{$dst, $src2}",
666                     [(set GR32:$dst, (mul GR32:$src1, (load rriaddr:$src2)))]>;
667def MUL64rm : Pseudo<(outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
668                     "msgy\t{$dst, $src2}",
669                     [(set GR64:$dst, (mul GR64:$src1, (load rriaddr:$src2)))]>;
670
671def MULSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR32:$src2),
672                         "msgfr\t{$dst, $src2}",
673                         [(set GR64:$dst, (mul GR64:$src1, (sext GR32:$src2)))]>;
674
675def SDIVREM64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
676                           "dr\t{$dst, $src2}",
677                           []>;
678
679def SDIVREM128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
680                           "dsgr\t{$dst, $src2}",
681                           []>;
682
683def UDIVREM64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
684                           "dlr\t{$dst, $src2}",
685                           []>;
686
687def UDIVREM128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
688                           "dlgr\t{$dst, $src2}",
689                           []>;
690
691} // isTwoAddress = 1
692
693//===----------------------------------------------------------------------===//
694// Shifts
695
696let isTwoAddress = 1 in
697def SRL32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
698                      "srl\t{$src, $amt}",
699                      [(set GR32:$dst, (srl GR32:$src, riaddr32:$amt))]>;
700def SRL64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
701                      "srlg\t{$dst, $src, $amt}",
702                      [(set GR64:$dst, (srl GR64:$src, (i32 (trunc riaddr:$amt))))]>;
703def SRLA64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
704                      "srlg\t{$dst, $src, $amt}",
705                      [(set GR64:$dst, (srl GR64:$src, (i32 imm:$amt)))]>;
706
707let isTwoAddress = 1 in
708def SHL32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
709                      "sll\t{$src, $amt}",
710                      [(set GR32:$dst, (shl GR32:$src, riaddr32:$amt))]>;
711def SHL64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
712                      "sllg\t{$dst, $src, $amt}",
713                      [(set GR64:$dst, (shl GR64:$src, (i32 (trunc riaddr:$amt))))]>;
714def SHL64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
715                      "sllg\t{$dst, $src, $amt}",
716                      [(set GR64:$dst, (shl GR64:$src, (i32 imm:$amt)))]>;
717
718
719let Defs = [PSW] in {
720let isTwoAddress = 1 in
721def SRA32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
722                      "sra\t{$src, $amt}",
723                      [(set GR32:$dst, (sra GR32:$src, riaddr32:$amt)),
724                       (implicit PSW)]>;
725def SRA64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
726                      "srag\t{$dst, $src, $amt}",
727                      [(set GR64:$dst, (sra GR64:$src, (i32 (trunc riaddr:$amt)))),
728                       (implicit PSW)]>;
729def SRA64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
730                      "srag\t{$dst, $src, $amt}",
731                      [(set GR64:$dst, (sra GR64:$src, (i32 imm:$amt))),
732                       (implicit PSW)]>;
733} // Defs = [PSW]
734
735//===----------------------------------------------------------------------===//
736// Test instructions (like AND but do not produce any result
737
738// Integer comparisons
739let Defs = [PSW] in {
740def CMP32rr : Pseudo<(outs), (ins GR32:$src1, GR32:$src2),
741                     "cr\t$src1, $src2",
742                     [(SystemZcmp GR32:$src1, GR32:$src2), (implicit PSW)]>;
743def CMP64rr : Pseudo<(outs), (ins GR64:$src1, GR64:$src2),
744                     "cgr\t$src1, $src2",
745                     [(SystemZcmp GR64:$src1, GR64:$src2), (implicit PSW)]>;
746
747def CMP32ri   : Pseudo<(outs), (ins GR32:$src1, i32imm:$src2),
748                       "cfi\t$src1, $src2",
749                       [(SystemZcmp GR32:$src1, imm:$src2), (implicit PSW)]>;
750def CMP64ri32 : Pseudo<(outs), (ins GR64:$src1, i64i32imm:$src2),
751                       "cgfi\t$src1, $src2",
752                       [(SystemZcmp GR64:$src1, i64immSExt32:$src2),
753                        (implicit PSW)]>;
754
755def CMP32rm : Pseudo<(outs), (ins GR32:$src1, rriaddr:$src2),
756                     "cy\t$src1, $src2",
757                     [(SystemZcmp GR32:$src1, (load rriaddr:$src2)),
758                      (implicit PSW)]>;
759def CMP64rm : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
760                     "cg\t$src1, $src2",
761                     [(SystemZcmp GR64:$src1, (load rriaddr:$src2)),
762                      (implicit PSW)]>;
763
764def UCMP32rr : Pseudo<(outs), (ins GR32:$src1, GR32:$src2),
765                      "clr\t$src1, $src2",
766                      [(SystemZucmp GR32:$src1, GR32:$src2), (implicit PSW)]>;
767def UCMP64rr : Pseudo<(outs), (ins GR64:$src1, GR64:$src2),
768                      "clgr\t$src1, $src2",
769                      [(SystemZucmp GR64:$src1, GR64:$src2), (implicit PSW)]>;
770
771def UCMP32ri   : Pseudo<(outs), (ins GR32:$src1, i32imm:$src2),
772                        "clfi\t$src1, $src2",
773                        [(SystemZucmp GR32:$src1, imm:$src2), (implicit PSW)]>;
774def UCMP64ri32 : Pseudo<(outs), (ins GR64:$src1, i64i32imm:$src2),
775                        "clgfi\t$src1, $src2",
776                        [(SystemZucmp GR64:$src1, i64immZExt32:$src2),
777                         (implicit PSW)]>;
778
779def UCMP32rm : Pseudo<(outs), (ins GR32:$src1, rriaddr:$src2),
780                      "cly\t$src1, $src2",
781                      [(SystemZucmp GR32:$src1, (load rriaddr:$src2)),
782                       (implicit PSW)]>;
783def UCMP64rm : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
784                      "clg\t$src1, $src2",
785                      [(SystemZucmp GR64:$src1, (load rriaddr:$src2)),
786                       (implicit PSW)]>;
787
788def CMPSX64rr32  : Pseudo<(outs), (ins GR64:$src1, GR32:$src2),
789                          "cgfr\t$src1, $src2",
790                          [(SystemZucmp GR64:$src1, (sext GR32:$src2)),
791                           (implicit PSW)]>;
792def UCMPZX64rr32 : Pseudo<(outs), (ins GR64:$src1, GR32:$src2),
793                          "clgfr\t$src1, $src2",
794                          [(SystemZucmp GR64:$src1, (zext GR32:$src2)),
795                           (implicit PSW)]>;
796
797def CMPSX64rm32   : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
798                           "cgf\t$src1, $src2",
799                           [(SystemZucmp GR64:$src1, (sextloadi64i32 rriaddr:$src2)),
800                            (implicit PSW)]>;
801def UCMPZX64rm32  : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
802                           "clgf\t$src1, $src2",
803                           [(SystemZucmp GR64:$src1, (zextloadi64i32 rriaddr:$src2)),
804                            (implicit PSW)]>;
805
806// FIXME: Add other crazy ucmp forms
807
808} // Defs = [PSW]
809
810//===----------------------------------------------------------------------===//
811// Non-Instruction Patterns.
812//===----------------------------------------------------------------------===//
813
814// anyext
815def : Pat<(i64 (anyext GR32:$src)),
816          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
817
818//===----------------------------------------------------------------------===//
819// Peepholes.
820//===----------------------------------------------------------------------===//
821
822// FIXME: use add/sub tricks with 32678/-32768
823
824// trunc patterns
825def : Pat<(i32 (trunc GR64:$src)),
826          (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
827
828// sext_inreg patterns
829def : Pat<(sext_inreg GR64:$src, i32),
830          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
831
832// extload patterns
833def : Pat<(extloadi32i8  rriaddr:$src), (MOVZX32rm8  rriaddr:$src)>;
834def : Pat<(extloadi32i16 rriaddr:$src), (MOVZX32rm16 rriaddr:$src)>;
835def : Pat<(extloadi64i8  rriaddr:$src), (MOVZX64rm8  rriaddr:$src)>;
836def : Pat<(extloadi64i16 rriaddr:$src), (MOVZX64rm16 rriaddr:$src)>;
837def : Pat<(extloadi64i32 rriaddr:$src), (MOVZX64rm32 rriaddr:$src)>;
838
839// calls
840def : Pat<(SystemZcall (i64 tglobaladdr:$dst)),
841          (CALLi tglobaladdr:$dst)>;
842def : Pat<(SystemZcall (i64 texternalsym:$dst)),
843          (CALLi texternalsym:$dst)>;
844
845// muls
846def : Pat<(mulhs GR32:$src1, GR32:$src2),
847          (EXTRACT_SUBREG (MUL64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
848                                                   GR32:$src1, subreg_odd),
849                                    GR32:$src2),
850                          subreg_even)>;
851
852def : Pat<(mulhu GR32:$src1, GR32:$src2),
853          (EXTRACT_SUBREG (UMUL64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
854                                                    GR32:$src1, subreg_odd),
855                                     GR32:$src2),
856                          subreg_even)>;
857def : Pat<(mulhu GR64:$src1, GR64:$src2),
858          (EXTRACT_SUBREG (UMUL128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
859                                                     GR64:$src1, subreg_odd),
860                                      GR64:$src2),
861                          subreg_even)>;
862
863// divs
864// FIXME: Add memory versions
865def : Pat<(sdiv GR32:$src1, GR32:$src2),
866          (EXTRACT_SUBREG (SDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
867                                                       GR32:$src1, subreg_odd),
868                                         GR32:$src2),
869                          subreg_odd)>;
870def : Pat<(sdiv GR64:$src1, GR64:$src2),
871          (EXTRACT_SUBREG (SDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
872                                                        GR64:$src1, subreg_odd),
873                                         GR64:$src2),
874                          subreg_odd)>;
875def : Pat<(udiv GR32:$src1, GR32:$src2),
876          (EXTRACT_SUBREG (UDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
877                                                       GR32:$src1, subreg_odd),
878                                         GR32:$src2),
879                          subreg_odd)>;
880def : Pat<(udiv GR64:$src1, GR64:$src2),
881          (EXTRACT_SUBREG (UDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
882                                                        GR64:$src1, subreg_odd),
883                                         GR64:$src2),
884                          subreg_odd)>;
885
886// rems
887// FIXME: Add memory versions
888def : Pat<(srem GR32:$src1, GR32:$src2),
889          (EXTRACT_SUBREG (SDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
890                                                       GR32:$src1, subreg_odd),
891                                         GR32:$src2),
892                          subreg_even)>;
893def : Pat<(srem GR64:$src1, GR64:$src2),
894          (EXTRACT_SUBREG (SDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
895                                                        GR64:$src1, subreg_odd),
896                                         GR64:$src2),
897                          subreg_even)>;
898def : Pat<(urem GR32:$src1, GR32:$src2),
899          (EXTRACT_SUBREG (UDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
900                                                       GR32:$src1, subreg_odd),
901                                         GR32:$src2),
902                          subreg_even)>;
903def : Pat<(urem GR64:$src1, GR64:$src2),
904          (EXTRACT_SUBREG (UDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
905                                                        GR64:$src1, subreg_odd),
906                                         GR64:$src2),
907                          subreg_even)>;
908