SystemZInstrInfo.td revision b9dcca8265e9da01119c47e65f114c3adc972ba6
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15                              [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17                              [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20  // Takes as input the value of the stack pointer after a dynamic allocation
21  // has been made.  Sets the output to the address of the dynamically-
22  // allocated area itself, skipping the outgoing arguments.
23  //
24  // This expands to an LA or LAY instruction.  We restrict the offset
25  // to the range of LA and keep the LAY range in reserve for when
26  // the size of the outgoing arguments is added.
27  def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28                           [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction (br %r14).
36let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
37  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
38
39// Unconditional branches.  R1 is the condition-code mask (all 1s).
40let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
41  let isIndirectBranch = 1 in
42    def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
43                    "br\t$R2", [(brind ADDR64:$R2)]>;
44
45  // An assembler extended mnemonic for BRC.
46  def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
47                 [(br bb:$I2)]>;
48
49  // An assembler extended mnemonic for BRCL.  (The extension is "G"
50  // rather than "L" because "JL" is "Jump if Less".)
51  def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
52}
53
54// Conditional branches.  It's easier for LLVM to handle these branches
55// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
56// the first operand.  It seems friendlier to use mnemonic forms like
57// JE and JLH when writing out the assembly though.
58let isBranch = 1, isTerminator = 1, Uses = [CC] in {
59  let isCodeGenOnly = 1, CCMaskFirst = 1 in {
60    def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
61                                         brtarget16:$I2), "j$R1\t$I2",
62                     [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
63    def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
64                                           brtarget32:$I2), "jg$R1\t$I2", []>;
65  }
66  def AsmBRC : InstRI<0xA74, (outs), (ins uimm8zx4:$R1, brtarget16:$I2),
67                      "brc\t$R1, $I2", []>;
68  def AsmBRCL : InstRIL<0xC04, (outs), (ins uimm8zx4:$R1, brtarget32:$I2),
69                        "brcl\t$R1, $I2", []>;
70}
71
72// Fused compare-and-branch instructions.  As for normal branches,
73// we handle these instructions internally in their raw CRJ-like form,
74// but use assembly macros like CRJE when writing them out.
75//
76// These instructions do not use or clobber the condition codes.
77// We nevertheless pretend that they clobber CC, so that we can lower
78// them to separate comparisons and BRCLs if the branch ends up being
79// out of range.
80multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
81  let isBranch = 1, isTerminator = 1, Defs = [CC] in {
82    def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
83                                            brtarget16:$RI4),
84                       "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
85    def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
86                                            brtarget16:$RI4),
87                       "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
88    def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
89                                            brtarget16:$RI4),
90                       "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
91    def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
92                                            brtarget16:$RI4),
93                       "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
94    def LRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
95                                             brtarget16:$RI4),
96                        "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
97    def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
98                                             brtarget16:$RI4),
99                        "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
100    def LIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
101                                             brtarget16:$RI4),
102                        "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
103    def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
104                                             brtarget16:$RI4),
105                        "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
106  }
107}
108let isCodeGenOnly = 1 in
109  defm C : CompareBranches<cond4, "$M3", "">;
110defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
111
112// Define AsmParser mnemonics for each general condition-code mask
113// (integer or floating-point)
114multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
115  let R1 = ccmask in {
116    def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
117                   "j"##name##"\t$I2", []>;
118    def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
119                     "jg"##name##"\t$I2", []>;
120  }
121  def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
122  def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
123  def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
124  def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
125  def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
126  def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
127}
128defm AsmO   : CondExtendedMnemonic<1,  "o">;
129defm AsmH   : CondExtendedMnemonic<2,  "h">;
130defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
131defm AsmL   : CondExtendedMnemonic<4,  "l">;
132defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
133defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
134defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
135defm AsmE   : CondExtendedMnemonic<8,  "e">;
136defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
137defm AsmHE  : CondExtendedMnemonic<10, "he">;
138defm AsmNL  : CondExtendedMnemonic<11, "nl">;
139defm AsmLE  : CondExtendedMnemonic<12, "le">;
140defm AsmNH  : CondExtendedMnemonic<13, "nh">;
141defm AsmNO  : CondExtendedMnemonic<14, "no">;
142
143// Define AsmParser mnemonics for each integer condition-code mask.
144// This is like the list above, except that condition 3 is not possible
145// and that the low bit of the mask is therefore always 0.  This means
146// that each condition has two names.  Conditions "o" and "no" are not used.
147//
148// We don't make one of the two names an alias of the other because
149// we need the custom parsing routines to select the correct register class.
150multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
151  let M3 = ccmask in {
152    def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
153                                            brtarget16:$RI4),
154                       "crj"##name##"\t$R1, $R2, $RI4", []>;
155    def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
156                                            brtarget16:$RI4),
157                       "cgrj"##name##"\t$R1, $R2, $RI4", []>;
158    def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
159                                            brtarget16:$RI4),
160                       "cij"##name##"\t$R1, $I2, $RI4", []>;
161    def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
162                                            brtarget16:$RI4),
163                       "cgij"##name##"\t$R1, $I2, $RI4", []>;
164    def CLR  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
165                                            brtarget16:$RI4),
166                        "clrj"##name##"\t$R1, $R2, $RI4", []>;
167    def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
168                                             brtarget16:$RI4),
169                        "clgrj"##name##"\t$R1, $R2, $RI4", []>;
170    def CLI  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
171                                             brtarget16:$RI4),
172                        "clij"##name##"\t$R1, $I2, $RI4", []>;
173    def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
174                                             brtarget16:$RI4),
175                        "clgij"##name##"\t$R1, $I2, $RI4", []>;
176  }
177}
178multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
179  : IntCondExtendedMnemonicA<ccmask, name1> {
180  let isAsmParserOnly = 1 in
181    defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
182}
183defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
184defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
185defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
186defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
187defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
188defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
189
190// Decrement a register and branch if it is nonzero.  These don't clobber CC,
191// but we might need to split long branches into sequences that do.
192let Defs = [CC] in {
193  def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
194  def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
195}
196
197//===----------------------------------------------------------------------===//
198// Select instructions
199//===----------------------------------------------------------------------===//
200
201def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
202def Select32    : SelectWrapper<GR32>;
203def Select64    : SelectWrapper<GR64>;
204
205defm CondStore8  : CondStores<GR32, nonvolatile_truncstorei8,
206                              nonvolatile_anyextloadi8, bdxaddr20only>;
207defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16,
208                              nonvolatile_anyextloadi16, bdxaddr20only>;
209defm CondStore32 : CondStores<GR32, nonvolatile_store,
210                              nonvolatile_load, bdxaddr20only>;
211
212defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
213                    nonvolatile_anyextloadi8, bdxaddr20only>;
214defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
215                    nonvolatile_anyextloadi16, bdxaddr20only>;
216defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
217                    nonvolatile_anyextloadi32, bdxaddr20only>;
218defm CondStore64 : CondStores<GR64, nonvolatile_store,
219                              nonvolatile_load, bdxaddr20only>;
220
221//===----------------------------------------------------------------------===//
222// Call instructions
223//===----------------------------------------------------------------------===//
224
225// The definitions here are for the call-clobbered registers.
226let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
227                        F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D, CC] in {
228  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
229                        [(z_call pcrel32:$I2)]>;
230  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
231                        [(z_call ADDR64:$R2)]>;
232}
233
234// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
235// are argument registers and since branching to R0 is a no-op.
236let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
237  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
238                     [(z_sibcall pcrel32:$I2)]>;
239  let Uses = [R1D] in
240    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
241}
242
243// Define the general form of the call instructions for the asm parser.
244// These instructions don't hard-code %r14 as the return address register.
245def BRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
246                   "bras\t$R1, $I2", []>;
247def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
248                    "brasl\t$R1, $I2", []>;
249def BASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
250                   "basr\t$R1, $R2", []>;
251
252//===----------------------------------------------------------------------===//
253// Move instructions
254//===----------------------------------------------------------------------===//
255
256// Register moves.
257let neverHasSideEffects = 1 in {
258  // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
259  def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
260              Requires<[FeatureHighWord]>;
261  def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
262  def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
263}
264let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
265  def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
266  def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
267}
268
269// Move on condition.
270let isCodeGenOnly = 1, Uses = [CC] in {
271  def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
272  def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
273}
274let Uses = [CC] in {
275  def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
276  def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
277}
278
279// Immediate moves.
280let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
281    isReMaterializable = 1 in {
282  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
283  // deopending on the choice of register.
284  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
285               Requires<[FeatureHighWord]>;
286  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
287  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
288
289  // Other 16-bit immediates.
290  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
291  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
292  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
293  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
294
295  // 32-bit immediates.
296  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
297  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
298  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
299}
300
301// Register loads.
302let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
303  // Expands to L, LY or LFH, depending on the choice of register.
304  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
305             Requires<[FeatureHighWord]>;
306  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
307  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
308            Requires<[FeatureHighWord]>;
309  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
310
311  // These instructions are split after register allocation, so we don't
312  // want a custom inserter.
313  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
314    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
315                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
316  }
317}
318let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
319  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
320  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
321}
322
323let canFoldAsLoad = 1 in {
324  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
325  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
326}
327
328// Load on condition.
329let isCodeGenOnly = 1, Uses = [CC] in {
330  def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
331  def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
332}
333let Uses = [CC] in {
334  def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
335  def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
336}
337
338// Register stores.
339let SimpleBDXStore = 1 in {
340  // Expands to ST, STY or STFH, depending on the choice of register.
341  def STMux : StoreRXYPseudo<store, GRX32, 4>,
342              Requires<[FeatureHighWord]>;
343  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
344  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
345             Requires<[FeatureHighWord]>;
346  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
347
348  // These instructions are split after register allocation, so we don't
349  // want a custom inserter.
350  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
351    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
352                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
353  }
354}
355def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
356def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
357
358// Store on condition.
359let isCodeGenOnly = 1, Uses = [CC] in {
360  def STOC  : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
361  def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
362}
363let Uses = [CC] in {
364  def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
365  def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
366}
367
368// 8-bit immediate stores to 8-bit fields.
369defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
370
371// 16-bit immediate stores to 16-, 32- or 64-bit fields.
372def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
373def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
374def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
375
376// Memory-to-memory moves.
377let mayLoad = 1, mayStore = 1 in
378  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
379
380// String moves.
381let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in
382  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
383
384//===----------------------------------------------------------------------===//
385// Sign extensions
386//===----------------------------------------------------------------------===//
387//
388// Note that putting these before zero extensions mean that we will prefer
389// them for anyextload*.  There's not really much to choose between the two
390// either way, but signed-extending loads have a short LH and a long LHY,
391// while zero-extending loads have only the long LLH.
392//
393//===----------------------------------------------------------------------===//
394
395// 32-bit extensions from registers.
396let neverHasSideEffects = 1 in {
397  def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
398  def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
399}
400
401// 64-bit extensions from registers.
402let neverHasSideEffects = 1 in {
403  def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
404  def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
405  def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
406}
407let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
408  def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
409
410// Match 32-to-64-bit sign extensions in which the source is already
411// in a 64-bit register.
412def : Pat<(sext_inreg GR64:$src, i32),
413          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
414
415// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
416// depending on the choice of register.
417def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
418            Requires<[FeatureHighWord]>;
419def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
420def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
421          Requires<[FeatureHighWord]>;
422
423// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
424// depending on the choice of register.
425def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
426            Requires<[FeatureHighWord]>;
427defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
428def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
429            Requires<[FeatureHighWord]>;
430def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
431
432// 64-bit extensions from memory.
433def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
434def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
435def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
436def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
437def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
438let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
439  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
440
441//===----------------------------------------------------------------------===//
442// Zero extensions
443//===----------------------------------------------------------------------===//
444
445// 32-bit extensions from registers.
446let neverHasSideEffects = 1 in {
447  // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
448  def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
449                Requires<[FeatureHighWord]>;
450  def LLCR    : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
451  // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
452  def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
453                Requires<[FeatureHighWord]>;
454  def LLHR    : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
455}
456
457// 64-bit extensions from registers.
458let neverHasSideEffects = 1 in {
459  def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
460  def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
461  def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
462}
463
464// Match 32-to-64-bit zero extensions in which the source is already
465// in a 64-bit register.
466def : Pat<(and GR64:$src, 0xffffffff),
467          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
468
469// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
470// depending on the choice of register.
471def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
472             Requires<[FeatureHighWord]>;
473def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
474def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GR32, 1>,
475           Requires<[FeatureHighWord]>;
476
477// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
478// depending on the choice of register.
479def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
480             Requires<[FeatureHighWord]>;
481def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
482def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GR32, 2>,
483            Requires<[FeatureHighWord]>;
484def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
485
486// 64-bit extensions from memory.
487def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
488def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
489def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
490def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
491def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
492
493//===----------------------------------------------------------------------===//
494// Truncations
495//===----------------------------------------------------------------------===//
496
497// Truncations of 64-bit registers to 32-bit registers.
498def : Pat<(i32 (trunc GR64:$src)),
499          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
500
501// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
502// STC, STCY or STCH, depending on the choice of register.
503def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
504             Requires<[FeatureHighWord]>;
505defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
506def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
507           Requires<[FeatureHighWord]>;
508
509// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
510// STH, STHY or STHH, depending on the choice of register.
511def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
512             Requires<[FeatureHighWord]>;
513defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
514def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
515           Requires<[FeatureHighWord]>;
516def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
517
518// Truncations of 64-bit registers to memory.
519defm : StoreGR64Pair<STC, STCY, truncstorei8>;
520defm : StoreGR64Pair<STH, STHY, truncstorei16>;
521def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
522defm : StoreGR64Pair<ST, STY, truncstorei32>;
523def  : StoreGR64PC<STRL, aligned_truncstorei32>;
524
525//===----------------------------------------------------------------------===//
526// Multi-register moves
527//===----------------------------------------------------------------------===//
528
529// Multi-register loads.
530def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
531
532// Multi-register stores.
533def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
534
535//===----------------------------------------------------------------------===//
536// Byte swaps
537//===----------------------------------------------------------------------===//
538
539// Byte-swapping register moves.
540let neverHasSideEffects = 1 in {
541  def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
542  def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
543}
544
545// Byte-swapping loads.  Unlike normal loads, these instructions are
546// allowed to access storage more than once.
547def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
548def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
549
550// Likewise byte-swapping stores.
551def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
552def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
553                     GR64, 8>;
554
555//===----------------------------------------------------------------------===//
556// Load address instructions
557//===----------------------------------------------------------------------===//
558
559// Load BDX-style addresses.
560let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
561    DispKey = "la" in {
562  let DispSize = "12" in
563    def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
564                    "la\t$R1, $XBD2",
565                    [(set GR64:$R1, laaddr12pair:$XBD2)]>;
566  let DispSize = "20" in
567    def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
568                      "lay\t$R1, $XBD2",
569                      [(set GR64:$R1, laaddr20pair:$XBD2)]>;
570}
571
572// Load a PC-relative address.  There's no version of this instruction
573// with a 16-bit offset, so there's no relaxation.
574let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
575    isReMaterializable = 1 in {
576  def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
577                     "larl\t$R1, $I2",
578                     [(set GR64:$R1, pcrel32:$I2)]>;
579}
580
581//===----------------------------------------------------------------------===//
582// Absolute and Negation
583//===----------------------------------------------------------------------===//
584
585let Defs = [CC] in {
586  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
587    def LPR  : UnaryRR <"lp",  0x10,   z_iabs32, GR32, GR32>;
588    def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs64, GR64, GR64>;
589  }
590  let CCValues = 0xE, CompareZeroCCMask = 0xE in
591    def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
592}
593defm : SXU<z_iabs64, LPGFR>;
594
595let Defs = [CC] in {
596  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
597    def LNR  : UnaryRR <"ln",  0x11,   z_inegabs32, GR32, GR32>;
598    def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs64, GR64, GR64>;
599  }
600  let CCValues = 0xE, CompareZeroCCMask = 0xE in
601    def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
602}
603defm : SXU<z_inegabs64, LNGFR>;
604
605let Defs = [CC] in {
606  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
607    def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
608    def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
609  }
610  let CCValues = 0xE, CompareZeroCCMask = 0xE in
611    def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
612}
613defm : SXU<ineg, LCGFR>;
614
615//===----------------------------------------------------------------------===//
616// Insertion
617//===----------------------------------------------------------------------===//
618
619let isCodeGenOnly = 1 in
620  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
621defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
622
623defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
624defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
625
626defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
627defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
628
629// Insertions of a 16-bit immediate, leaving other bits unaffected.
630// We don't have or_as_insert equivalents of these operations because
631// OI is available instead.
632//
633// IIxMux expands to II[LH]x, depending on the choice of register.
634def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
635             Requires<[FeatureHighWord]>;
636def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
637             Requires<[FeatureHighWord]>;
638def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
639def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
640def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
641def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
642def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
643def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
644def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
645def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
646
647// ...likewise for 32-bit immediates.  For GR32s this is a general
648// full-width move.  (We use IILF rather than something like LLILF
649// for 32-bit moves because IILF leaves the upper 32 bits of the
650// GR64 unchanged.)
651let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
652  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
653               Requires<[FeatureHighWord]>;
654  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
655  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
656}
657def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
658def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
659
660// An alternative model of inserthf, with the first operand being
661// a zero-extended value.
662def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
663          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
664                  imm64hf32:$imm)>;
665
666//===----------------------------------------------------------------------===//
667// Addition
668//===----------------------------------------------------------------------===//
669
670// Plain addition.
671let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
672  // Addition of a register.
673  let isCommutable = 1 in {
674    defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
675    defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
676  }
677  def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
678
679  // Addition of signed 16-bit immediates.
680  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
681  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
682
683  // Addition of signed 32-bit immediates.
684  def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
685  def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
686
687  // Addition of memory.
688  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
689  defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
690  def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
691  def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
692
693  // Addition to memory.
694  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
695  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
696}
697defm : SXB<add, GR64, AGFR>;
698
699// Addition producing a carry.
700let Defs = [CC] in {
701  // Addition of a register.
702  let isCommutable = 1 in {
703    defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
704    defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
705  }
706  def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
707
708  // Addition of signed 16-bit immediates.
709  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
710                Requires<[FeatureDistinctOps]>;
711  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
712                Requires<[FeatureDistinctOps]>;
713
714  // Addition of unsigned 32-bit immediates.
715  def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
716  def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
717
718  // Addition of memory.
719  defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
720  def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
721  def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
722}
723defm : ZXB<addc, GR64, ALGFR>;
724
725// Addition producing and using a carry.
726let Defs = [CC], Uses = [CC] in {
727  // Addition of a register.
728  def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
729  def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
730
731  // Addition of memory.
732  def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
733  def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
734}
735
736//===----------------------------------------------------------------------===//
737// Subtraction
738//===----------------------------------------------------------------------===//
739
740// Plain substraction.  Although immediate forms exist, we use the
741// add-immediate instruction instead.
742let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
743  // Subtraction of a register.
744  defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
745  def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
746  defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
747
748  // Subtraction of memory.
749  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
750  defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
751  def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
752  def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
753}
754defm : SXB<sub, GR64, SGFR>;
755
756// Subtraction producing a carry.
757let Defs = [CC] in {
758  // Subtraction of a register.
759  defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
760  def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
761  defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
762
763  // Subtraction of unsigned 32-bit immediates.  These don't match
764  // subc because we prefer addc for constants.
765  def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
766  def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
767
768  // Subtraction of memory.
769  defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
770  def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
771  def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
772}
773defm : ZXB<subc, GR64, SLGFR>;
774
775// Subtraction producing and using a carry.
776let Defs = [CC], Uses = [CC] in {
777  // Subtraction of a register.
778  def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
779  def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
780
781  // Subtraction of memory.
782  def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
783  def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
784}
785
786//===----------------------------------------------------------------------===//
787// AND
788//===----------------------------------------------------------------------===//
789
790let Defs = [CC] in {
791  // ANDs of a register.
792  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
793    defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
794    defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
795  }
796
797  let isConvertibleToThreeAddress = 1 in {
798    // ANDs of a 16-bit immediate, leaving other bits unaffected.
799    // The CC result only reflects the 16-bit field, not the full register.
800    //
801    // NIxMux expands to NI[LH]x, depending on the choice of register.
802    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
803                 Requires<[FeatureHighWord]>;
804    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
805                 Requires<[FeatureHighWord]>;
806    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
807    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
808    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
809    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
810    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
811    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
812    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
813    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
814
815    // ANDs of a 32-bit immediate, leaving other bits unaffected.
816    // The CC result only reflects the 32-bit field, which means we can
817    // use it as a zero indicator for i32 operations but not otherwise.
818    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
819      // Expands to NILF or NIHF, depending on the choice of register.
820      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
821                   Requires<[FeatureHighWord]>;
822      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
823      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
824    }
825    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
826    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
827  }
828
829  // ANDs of memory.
830  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
831    defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
832    def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
833  }
834
835  // AND to memory
836  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
837
838  // Block AND.
839  let mayLoad = 1, mayStore = 1 in
840    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
841}
842defm : RMWIByte<and, bdaddr12pair, NI>;
843defm : RMWIByte<and, bdaddr20pair, NIY>;
844
845//===----------------------------------------------------------------------===//
846// OR
847//===----------------------------------------------------------------------===//
848
849let Defs = [CC] in {
850  // ORs of a register.
851  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
852    defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
853    defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
854  }
855
856  // ORs of a 16-bit immediate, leaving other bits unaffected.
857  // The CC result only reflects the 16-bit field, not the full register.
858  //
859  // OIxMux expands to OI[LH]x, depending on the choice of register.
860  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
861               Requires<[FeatureHighWord]>;
862  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
863               Requires<[FeatureHighWord]>;
864  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
865  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
866  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
867  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
868  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
869  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
870  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
871  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
872
873  // ORs of a 32-bit immediate, leaving other bits unaffected.
874  // The CC result only reflects the 32-bit field, which means we can
875  // use it as a zero indicator for i32 operations but not otherwise.
876  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
877    // Expands to OILF or OIHF, depending on the choice of register.
878    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
879                 Requires<[FeatureHighWord]>;
880    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
881    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
882  }
883  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
884  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
885
886  // ORs of memory.
887  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
888    defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
889    def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
890  }
891
892  // OR to memory
893  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
894
895  // Block OR.
896  let mayLoad = 1, mayStore = 1 in
897    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
898}
899defm : RMWIByte<or, bdaddr12pair, OI>;
900defm : RMWIByte<or, bdaddr20pair, OIY>;
901
902//===----------------------------------------------------------------------===//
903// XOR
904//===----------------------------------------------------------------------===//
905
906let Defs = [CC] in {
907  // XORs of a register.
908  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
909    defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
910    defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
911  }
912
913  // XORs of a 32-bit immediate, leaving other bits unaffected.
914  // The CC result only reflects the 32-bit field, which means we can
915  // use it as a zero indicator for i32 operations but not otherwise.
916  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
917    // Expands to XILF or XIHF, depending on the choice of register.
918    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
919                 Requires<[FeatureHighWord]>;
920    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
921    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
922  }
923  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
924  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
925
926  // XORs of memory.
927  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
928    defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
929    def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
930  }
931
932  // XOR to memory
933  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
934
935  // Block XOR.
936  let mayLoad = 1, mayStore = 1 in
937    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
938}
939defm : RMWIByte<xor, bdaddr12pair, XI>;
940defm : RMWIByte<xor, bdaddr20pair, XIY>;
941
942//===----------------------------------------------------------------------===//
943// Multiplication
944//===----------------------------------------------------------------------===//
945
946// Multiplication of a register.
947let isCommutable = 1 in {
948  def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
949  def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
950}
951def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
952defm : SXB<mul, GR64, MSGFR>;
953
954// Multiplication of a signed 16-bit immediate.
955def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
956def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
957
958// Multiplication of a signed 32-bit immediate.
959def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
960def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
961
962// Multiplication of memory.
963defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
964defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
965def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
966def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
967
968// Multiplication of a register, producing two results.
969def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
970
971// Multiplication of memory, producing two results.
972def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
973
974//===----------------------------------------------------------------------===//
975// Division and remainder
976//===----------------------------------------------------------------------===//
977
978// Division and remainder, from registers.
979def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
980def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
981def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
982def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
983
984// Division and remainder, from memory.
985def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
986def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
987def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
988def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
989
990//===----------------------------------------------------------------------===//
991// Shifts
992//===----------------------------------------------------------------------===//
993
994// Shift left.
995let neverHasSideEffects = 1 in {
996  defm SLL : ShiftRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
997  def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64>;
998}
999
1000// Logical shift right.
1001let neverHasSideEffects = 1 in {
1002  defm SRL : ShiftRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
1003  def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64>;
1004}
1005
1006// Arithmetic shift right.
1007let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1008  defm SRA : ShiftRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
1009  def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64>;
1010}
1011
1012// Rotate left.
1013let neverHasSideEffects = 1 in {
1014  def RLL  : ShiftRSY<"rll",  0xEB1D, rotl, GR32>;
1015  def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64>;
1016}
1017
1018// Rotate second operand left and inserted selected bits into first operand.
1019// These can act like 32-bit operands provided that the constant start and
1020// end bits (operands 2 and 3) are in the range [32, 64).
1021let Defs = [CC] in {
1022  let isCodeGenOnly = 1 in
1023    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1024  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1025    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1026}
1027
1028// Forms of RISBG that only affect one word of the destination register.
1029// They do not set CC.
1030def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>, Requires<[FeatureHighWord]>;
1031def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>,  Requires<[FeatureHighWord]>;
1032def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>, Requires<[FeatureHighWord]>;
1033def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>,  Requires<[FeatureHighWord]>;
1034def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>, Requires<[FeatureHighWord]>;
1035def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>,
1036              Requires<[FeatureHighWord]>;
1037def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>,
1038              Requires<[FeatureHighWord]>;
1039
1040// Rotate second operand left and perform a logical operation with selected
1041// bits of the first operand.  The CC result only describes the selected bits,
1042// so isn't useful for a full comparison against zero.
1043let Defs = [CC] in {
1044  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1045  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1046  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1047}
1048
1049//===----------------------------------------------------------------------===//
1050// Comparison
1051//===----------------------------------------------------------------------===//
1052
1053// Signed comparisons.  We put these before the unsigned comparisons because
1054// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1055// of the unsigned forms do.
1056let Defs = [CC], CCValues = 0xE in {
1057  // Comparison with a register.
1058  def CR   : CompareRR <"c",   0x19,   z_scmp,    GR32, GR32>;
1059  def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
1060  def CGR  : CompareRRE<"cg",  0xB920, z_scmp,    GR64, GR64>;
1061
1062  // Comparison with a signed 16-bit immediate.
1063  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1064  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1065
1066  // Comparison with a signed 32-bit immediate.
1067  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1068  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1069
1070  // Comparison with memory.
1071  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1072  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1073  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1074  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1075  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1076  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1077  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1078  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1079  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1080  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1081
1082  // Comparison between memory and a signed 16-bit immediate.
1083  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1084  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1085  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1086}
1087defm : SXB<z_scmp, GR64, CGFR>;
1088
1089// Unsigned comparisons.
1090let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1091  // Comparison with a register.
1092  def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
1093  def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
1094  def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
1095
1096  // Comparison with a signed 32-bit immediate.
1097  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1098  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1099
1100  // Comparison with memory.
1101  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1102  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1103  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1104  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1105                             aligned_azextloadi16>;
1106  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1107                             aligned_load>;
1108  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1109                             aligned_azextloadi16>;
1110  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1111                             aligned_azextloadi32>;
1112  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1113                             aligned_load>;
1114
1115  // Comparison between memory and an unsigned 8-bit immediate.
1116  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1117
1118  // Comparison between memory and an unsigned 16-bit immediate.
1119  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1120  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1121  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1122}
1123defm : ZXB<z_ucmp, GR64, CLGFR>;
1124
1125// Memory-to-memory comparison.
1126let mayLoad = 1, Defs = [CC] in
1127  defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
1128
1129// String comparison.
1130let mayLoad = 1, Defs = [CC], Uses = [R0L] in
1131  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1132
1133// Test under mask.
1134let Defs = [CC] in {
1135  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1136  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1137
1138  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GR64, imm64hl16>;
1139  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GR64, imm64hh16>;
1140
1141  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1142}
1143def : CompareGR64RI<TMLL, z_tm_reg, imm64ll16>;
1144def : CompareGR64RI<TMLH, z_tm_reg, imm64lh16>;
1145
1146//===----------------------------------------------------------------------===//
1147// Prefetch
1148//===----------------------------------------------------------------------===//
1149
1150def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1151def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1152
1153//===----------------------------------------------------------------------===//
1154// Atomic operations
1155//===----------------------------------------------------------------------===//
1156
1157def ATOMIC_SWAPW        : AtomicLoadWBinaryReg<z_atomic_swapw>;
1158def ATOMIC_SWAP_32      : AtomicLoadBinaryReg32<atomic_swap_32>;
1159def ATOMIC_SWAP_64      : AtomicLoadBinaryReg64<atomic_swap_64>;
1160
1161def ATOMIC_LOADW_AR     : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1162def ATOMIC_LOADW_AFI    : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1163def ATOMIC_LOAD_AR      : AtomicLoadBinaryReg32<atomic_load_add_32>;
1164def ATOMIC_LOAD_AHI     : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1165def ATOMIC_LOAD_AFI     : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1166def ATOMIC_LOAD_AGR     : AtomicLoadBinaryReg64<atomic_load_add_64>;
1167def ATOMIC_LOAD_AGHI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1168def ATOMIC_LOAD_AGFI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1169
1170def ATOMIC_LOADW_SR     : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1171def ATOMIC_LOAD_SR      : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1172def ATOMIC_LOAD_SGR     : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1173
1174def ATOMIC_LOADW_NR     : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1175def ATOMIC_LOADW_NILH   : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1176def ATOMIC_LOAD_NR      : AtomicLoadBinaryReg32<atomic_load_and_32>;
1177def ATOMIC_LOAD_NILL    : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
1178def ATOMIC_LOAD_NILH    : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
1179def ATOMIC_LOAD_NILF    : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1180def ATOMIC_LOAD_NGR     : AtomicLoadBinaryReg64<atomic_load_and_64>;
1181def ATOMIC_LOAD_NILL64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
1182def ATOMIC_LOAD_NILH64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
1183def ATOMIC_LOAD_NIHL64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
1184def ATOMIC_LOAD_NIHH64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
1185def ATOMIC_LOAD_NILF64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
1186def ATOMIC_LOAD_NIHF64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
1187
1188def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1189def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1190def ATOMIC_LOAD_OR      : AtomicLoadBinaryReg32<atomic_load_or_32>;
1191def ATOMIC_LOAD_OILL    : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1192def ATOMIC_LOAD_OILH    : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1193def ATOMIC_LOAD_OILF    : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1194def ATOMIC_LOAD_OGR     : AtomicLoadBinaryReg64<atomic_load_or_64>;
1195def ATOMIC_LOAD_OILL64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1196def ATOMIC_LOAD_OILH64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1197def ATOMIC_LOAD_OIHL64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1198def ATOMIC_LOAD_OIHH64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1199def ATOMIC_LOAD_OILF64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1200def ATOMIC_LOAD_OIHF64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1201
1202def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1203def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1204def ATOMIC_LOAD_XR      : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1205def ATOMIC_LOAD_XILF    : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1206def ATOMIC_LOAD_XGR     : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1207def ATOMIC_LOAD_XILF64  : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1208def ATOMIC_LOAD_XIHF64  : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1209
1210def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1211def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1212                                               imm32lh16c>;
1213def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1214def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1215                                                imm32ll16c>;
1216def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1217                                                imm32lh16c>;
1218def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1219def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1220def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1221                                                imm64ll16c>;
1222def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1223                                                imm64lh16c>;
1224def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1225                                                imm64hl16c>;
1226def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1227                                                imm64hh16c>;
1228def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1229                                                imm64lf32c>;
1230def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1231                                                imm64hf32c>;
1232
1233def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1234def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1235def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1236
1237def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1238def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1239def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1240
1241def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1242def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1243def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1244
1245def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1246def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1247def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1248
1249def ATOMIC_CMP_SWAPW
1250  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1251                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1252                                  uimm32:$bitsize),
1253           [(set GR32:$dst,
1254                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1255                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1256                                     uimm32:$bitsize))]> {
1257  let Defs = [CC];
1258  let mayLoad = 1;
1259  let mayStore = 1;
1260  let usesCustomInserter = 1;
1261}
1262
1263let Defs = [CC] in {
1264  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
1265  def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
1266}
1267
1268//===----------------------------------------------------------------------===//
1269// Miscellaneous Instructions.
1270//===----------------------------------------------------------------------===//
1271
1272// Extract CC into bits 29 and 28 of a register.
1273let Uses = [CC] in
1274  def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
1275
1276// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1277// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1278// when a 64-bit address is stored in a pair of access registers.
1279def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
1280                  "ear\t$R1, $R2",
1281                  [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
1282
1283// Find leftmost one, AKA count leading zeros.  The instruction actually
1284// returns a pair of GR64s, the first giving the number of leading zeros
1285// and the second giving a copy of the source with the leftmost one bit
1286// cleared.  We only use the first result here.
1287let Defs = [CC] in {
1288  def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
1289}
1290def : Pat<(ctlz GR64:$src),
1291          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
1292
1293// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
1294def : Pat<(i64 (anyext GR32:$src)),
1295          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
1296
1297// Extend GR32s and GR64s to GR128s.
1298let usesCustomInserter = 1 in {
1299  def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1300  def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
1301  def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1302}
1303
1304// Search a block of memory for a character.
1305let mayLoad = 1, Defs = [CC], Uses = [R0L] in
1306  defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
1307
1308//===----------------------------------------------------------------------===//
1309// Peepholes.
1310//===----------------------------------------------------------------------===//
1311
1312// Use AL* for GR64 additions of unsigned 32-bit values.
1313defm : ZXB<add, GR64, ALGFR>;
1314def  : Pat<(add GR64:$src1, imm64zx32:$src2),
1315           (ALGFI GR64:$src1, imm64zx32:$src2)>;
1316def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
1317           (ALGF GR64:$src1, bdxaddr20only:$addr)>;
1318
1319// Use SL* for GR64 subtractions of unsigned 32-bit values.
1320defm : ZXB<sub, GR64, SLGFR>;
1321def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
1322           (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1323def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
1324           (SLGF GR64:$src1, bdxaddr20only:$addr)>;
1325
1326// Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
1327// for vector legalization.
1328def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)),
1329                         (i32 31)),
1330                    (i32 31)),
1331          (Select32 (LHI -1), (LHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
1332def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid,
1333                                                       uimm8zx4:$cc)))),
1334                    (i32 63)),
1335               (i32 63)),
1336          (Select64 (LGHI -1), (LGHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
1337
1338// Peepholes for turning scalar operations into block operations.
1339defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
1340                      XCSequence, 1>;
1341defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
1342                      XCSequence, 2>;
1343defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
1344                      XCSequence, 4>;
1345defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
1346                      OCSequence, XCSequence, 1>;
1347defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
1348                      XCSequence, 2>;
1349defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
1350                      XCSequence, 4>;
1351defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
1352                      XCSequence, 8>;
1353