SystemZInstrInfo.td revision bad769f11aadb0b4aef1c998d2cbbfdb47de12da
1//===- SystemZInstrInfo.td - SystemZ Instruction defs ---------*- tblgen-*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source 
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SystemZ instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14include "SystemZInstrFormats.td"
15
16//===----------------------------------------------------------------------===//
17// Type Constraints.
18//===----------------------------------------------------------------------===//
19class SDTCisI8<int OpNum> : SDTCisVT<OpNum, i8>;
20class SDTCisI16<int OpNum> : SDTCisVT<OpNum, i16>;
21class SDTCisI32<int OpNum> : SDTCisVT<OpNum, i32>;
22class SDTCisI64<int OpNum> : SDTCisVT<OpNum, i64>;
23
24//===----------------------------------------------------------------------===//
25// Type Profiles.
26//===----------------------------------------------------------------------===//
27def SDT_SystemZCall         : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28def SDT_SystemZCallSeqStart : SDCallSeqStart<[SDTCisI64<0>]>;
29def SDT_SystemZCallSeqEnd   : SDCallSeqEnd<[SDTCisI64<0>, SDTCisI64<1>]>;
30def SDT_CmpTest             : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
31def SDT_BrCond              : SDTypeProfile<0, 2,
32                                           [SDTCisVT<0, OtherVT>,
33                                            SDTCisI8<1>]>;
34def SDT_SelectCC            : SDTypeProfile<1, 3,
35                                           [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
36                                            SDTCisI8<3>]>;
37def SDT_Address             : SDTypeProfile<1, 1,
38                                            [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
39
40//===----------------------------------------------------------------------===//
41// SystemZ Specific Node Definitions.
42//===----------------------------------------------------------------------===//
43def SystemZretflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
44                     [SDNPHasChain, SDNPOptInFlag]>;
45def SystemZcall    : SDNode<"SystemZISD::CALL", SDT_SystemZCall,
46                     [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
47def SystemZcallseq_start :
48                 SDNode<"ISD::CALLSEQ_START", SDT_SystemZCallSeqStart,
49                        [SDNPHasChain, SDNPOutFlag]>;
50def SystemZcallseq_end :
51                 SDNode<"ISD::CALLSEQ_END",   SDT_SystemZCallSeqEnd,
52                        [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
53def SystemZcmp     : SDNode<"SystemZISD::CMP", SDT_CmpTest, [SDNPOutFlag]>;
54def SystemZucmp    : SDNode<"SystemZISD::UCMP", SDT_CmpTest, [SDNPOutFlag]>;
55def SystemZbrcond  : SDNode<"SystemZISD::BRCOND", SDT_BrCond,
56                            [SDNPHasChain, SDNPInFlag]>;
57def SystemZselect  : SDNode<"SystemZISD::SELECT", SDT_SelectCC, [SDNPInFlag]>;
58def SystemZpcrelwrapper : SDNode<"SystemZISD::PCRelativeWrapper", SDT_Address, []>;
59
60//===----------------------------------------------------------------------===//
61// Instruction Pattern Stuff.
62//===----------------------------------------------------------------------===//
63
64// SystemZ specific condition code. These correspond to CondCode in
65// SystemZ.h. They must be kept in synch.
66def SYSTEMZ_COND_E  : PatLeaf<(i8 0)>;
67def SYSTEMZ_COND_NE : PatLeaf<(i8 1)>;
68def SYSTEMZ_COND_H  : PatLeaf<(i8 2)>;
69def SYSTEMZ_COND_L  : PatLeaf<(i8 3)>;
70def SYSTEMZ_COND_HE : PatLeaf<(i8 4)>;
71def SYSTEMZ_COND_LE : PatLeaf<(i8 5)>;
72
73def LL16 : SDNodeXForm<imm, [{
74  // Transformation function: return low 16 bits.
75  return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
76}]>;
77
78def LH16 : SDNodeXForm<imm, [{
79  // Transformation function: return bits 16-31.
80  return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
81}]>;
82
83def HL16 : SDNodeXForm<imm, [{
84  // Transformation function: return bits 32-47.
85  return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
86}]>;
87
88def HH16 : SDNodeXForm<imm, [{
89  // Transformation function: return bits 48-63.
90  return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
91}]>;
92
93def LO32 : SDNodeXForm<imm, [{
94  // Transformation function: return low 32 bits.
95  return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
96}]>;
97
98def HI32 : SDNodeXForm<imm, [{
99  // Transformation function: return bits 32-63.
100  return getI32Imm(N->getZExtValue() >> 32);
101}]>;
102
103def i64ll16 : PatLeaf<(imm), [{  
104  // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
105  // bits set.
106  return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
107}], LL16>;
108
109def i64lh16 : PatLeaf<(imm), [{  
110  // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
111  return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
112}], LH16>;
113
114def i64hl16 : PatLeaf<(i64 imm), [{  
115  // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
116  return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
117}], HL16>;
118
119def i64hh16 : PatLeaf<(i64 imm), [{  
120  // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
121  return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
122}], HH16>;
123
124def immSExt16 : PatLeaf<(imm), [{
125  // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
126  // field.
127  if (N->getValueType(0) == MVT::i64) {
128    uint64_t val = N->getZExtValue();
129    return ((int64_t)val == (int16_t)val);
130  } else if (N->getValueType(0) == MVT::i32) {
131    uint32_t val = N->getZExtValue();
132    return ((int32_t)val == (int16_t)val);
133  }
134
135  return false;
136}]>;
137
138def immSExt32 : PatLeaf<(i64 imm), [{
139  // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
140  // field.
141  uint64_t val = N->getZExtValue();
142  return ((int64_t)val == (int32_t)val);
143}]>;
144
145def i64lo32 : PatLeaf<(i64 imm), [{
146  // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
147  // bits set.
148  return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
149}], LO32>;
150
151def i64hi32 : PatLeaf<(i64 imm), [{
152  // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
153  return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
154}], HI32>;
155
156def i32immSExt8  : PatLeaf<(i32 imm), [{
157  // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
158  // sign extended field.
159  return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
160}]>;
161
162def i32immSExt16 : PatLeaf<(i32 imm), [{
163  // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
164  // sign extended field.
165  return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
166}]>;
167
168def i64immSExt32 : PatLeaf<(i64 imm), [{
169  // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
170  // sign extended field.
171  return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
172}]>;
173
174def i64immZExt32 : PatLeaf<(i64 imm), [{
175  // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
176  // zero extended field.
177  return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
178}]>;
179
180// extloads
181def extloadi32i8   : PatFrag<(ops node:$ptr), (i32 (extloadi8  node:$ptr))>;
182def extloadi32i16  : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
183def extloadi64i8   : PatFrag<(ops node:$ptr), (i64 (extloadi8  node:$ptr))>;
184def extloadi64i16  : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
185def extloadi64i32  : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
186
187def sextloadi32i8   : PatFrag<(ops node:$ptr), (i32 (sextloadi8  node:$ptr))>;
188def sextloadi32i16  : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
189def sextloadi64i8   : PatFrag<(ops node:$ptr), (i64 (sextloadi8  node:$ptr))>;
190def sextloadi64i16  : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
191def sextloadi64i32  : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
192
193def zextloadi32i8   : PatFrag<(ops node:$ptr), (i32 (zextloadi8  node:$ptr))>;
194def zextloadi32i16  : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
195def zextloadi64i8   : PatFrag<(ops node:$ptr), (i64 (zextloadi8  node:$ptr))>;
196def zextloadi64i16  : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
197def zextloadi64i32  : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
198
199// A couple of more descriptive operand definitions.
200// 32-bits but only 8 bits are significant.
201def i32i8imm  : Operand<i32>;
202// 32-bits but only 16 bits are significant.
203def i32i16imm : Operand<i32>;
204// 64-bits but only 32 bits are significant.
205def i64i32imm : Operand<i64>;
206// Branch targets have OtherVT type.
207def brtarget : Operand<OtherVT>;
208
209//===----------------------------------------------------------------------===//
210// SystemZ Operand Definitions.
211//===----------------------------------------------------------------------===//
212
213// Address operands
214
215// riaddr := reg + imm
216def riaddr32 : Operand<i32>,
217               ComplexPattern<i32, 2, "SelectAddrRI", []> {
218  let PrintMethod = "printRIAddrOperand";
219  let MIOperandInfo = (ops ADDR32:$base, i32imm:$disp);
220}
221
222def riaddr : Operand<i64>,
223             ComplexPattern<i64, 2, "SelectAddrRI", []> {
224  let PrintMethod = "printRIAddrOperand";
225  let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp);
226}
227
228//===----------------------------------------------------------------------===//
229
230// rriaddr := reg + reg + imm
231def rriaddr : Operand<i64>,
232              ComplexPattern<i64, 3, "SelectAddrRRI", [], []> {
233  let PrintMethod = "printRRIAddrOperand";
234  let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp, ADDR64:$index);
235}
236def laaddr : Operand<i64>,
237             ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
238  let PrintMethod = "printRRIAddrOperand";
239  let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp, ADDR64:$index);
240}
241
242//===----------------------------------------------------------------------===//
243// Instruction list..
244
245def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
246                              "#ADJCALLSTACKDOWN",
247                              [(SystemZcallseq_start timm:$amt)]>;
248def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
249                              "#ADJCALLSTACKUP",
250                              [(SystemZcallseq_end timm:$amt1, timm:$amt2)]>;
251
252let usesCustomDAGSchedInserter = 1 in {
253  def Select32 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cc),
254                        "# Select32 PSEUDO",
255                        [(set GR32:$dst,
256                              (SystemZselect GR32:$src1, GR32:$src2, imm:$cc))]>;
257  def Select64 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$cc),
258                        "# Select64 PSEUDO",
259                        [(set GR64:$dst,
260                              (SystemZselect GR64:$src1, GR64:$src2, imm:$cc))]>;
261}
262
263
264//===----------------------------------------------------------------------===//
265//  Control Flow Instructions...
266//
267
268// FIXME: Provide proper encoding!
269let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in {
270  def RET : Pseudo<(outs), (ins), "br\t%r14", [(SystemZretflag)]>;
271}
272
273let isBranch = 1, isTerminator = 1 in {
274  let Uses = [PSW] in {
275    def JE  : Pseudo<(outs), (ins brtarget:$dst),
276                     "je\t$dst",
277                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_E)]>;
278    def JNE : Pseudo<(outs), (ins brtarget:$dst),
279                     "jne\t$dst",
280                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NE)]>;
281    def JH  : Pseudo<(outs), (ins brtarget:$dst),
282                     "jh\t$dst",
283                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_H)]>;
284    def JL  : Pseudo<(outs), (ins brtarget:$dst),
285                     "jl\t$dst",
286                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_L)]>;
287    def JHE : Pseudo<(outs), (ins brtarget:$dst),
288                     "jhe\t$dst",
289                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_HE)]>;
290    def JLE : Pseudo<(outs), (ins brtarget:$dst),
291                     "jle\t$dst",
292                     [(SystemZbrcond bb:$dst, SYSTEMZ_COND_LE)]>;
293
294  } // Uses = [PSW]
295} // isBranch = 1
296
297//===----------------------------------------------------------------------===//
298//  Call Instructions...
299//
300
301let isCall = 1 in
302  // All calls clobber the non-callee saved registers (except R14 which we
303  // handle separately). Uses for argument registers are added manually.
304  let Defs = [R0D, R1D, R3D, R4D, R5D] in {
305    def CALLi     : Pseudo<(outs), (ins i64imm:$dst, variable_ops),
306                           "brasl\t%r14, $dst", [(SystemZcall imm:$dst)]>;
307    def CALLr     : Pseudo<(outs), (ins ADDR64:$dst, variable_ops),
308                           "brasl\t%r14, $dst", [(SystemZcall ADDR64:$dst)]>;
309  }
310
311//===----------------------------------------------------------------------===//
312//  Miscellaneous Instructions.
313//
314
315let isReMaterializable = 1 in
316// FIXME: Provide imm12 variant
317def LA64r  : Pseudo<(outs GR64:$dst), (ins laaddr:$src),
318                    "lay\t{$dst, $src}",
319                    [(set GR64:$dst, laaddr:$src)]>;
320def LA64rm : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
321                    "larl\t{$dst, $src}",
322                    [(set GR64:$dst,
323                          (SystemZpcrelwrapper tglobaladdr:$src))]>;
324
325let neverHasSideEffects = 1 in
326def NOP : Pseudo<(outs), (ins), "# no-op", []>;
327
328//===----------------------------------------------------------------------===//
329// Move Instructions
330
331// FIXME: Provide proper encoding!
332let neverHasSideEffects = 1 in {
333def MOV32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src),
334                     "lr\t{$dst, $src}",
335                     []>;
336def MOV64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src),
337                     "lgr\t{$dst, $src}",
338                     []>;
339def MOV128rr : Pseudo<(outs GR128:$dst), (ins GR128:$src),
340                     "# MOV128 PSEUDO!"
341                     "lgr\t{$dst:subreg_odd, $src:subreg_odd}\n"
342                     "lgr\t{$dst:subreg_even, $src:subreg_even}",
343                     []>;
344def MOV64rrP : Pseudo<(outs GR64P:$dst), (ins GR64P:$src),
345                     "# MOV64P PSEUDO!"
346                     "lr\t{$dst:subreg_odd, $src:subreg_odd}\n"
347                     "lr\t{$dst:subreg_even, $src:subreg_even}",
348                     []>;
349}
350
351def MOVSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
352                         "lgfr\t{$dst, $src}",
353                         [(set GR64:$dst, (sext GR32:$src))]>;
354def MOVZX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
355                         "llgfr\t{$dst, $src}",
356                         [(set GR64:$dst, (zext GR32:$src))]>;
357
358// FIXME: Provide proper encoding!
359let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
360def MOV32ri16 : Pseudo<(outs GR32:$dst), (ins i32imm:$src),
361                       "lhi\t{$dst, $src}",
362                       [(set GR32:$dst, immSExt16:$src)]>;
363def MOV64ri16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
364                       "lghi\t{$dst, $src}",
365                       [(set GR64:$dst, immSExt16:$src)]>;
366
367def MOV64rill16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
368                         "llill\t{$dst, $src}",
369                         [(set GR64:$dst, i64ll16:$src)]>;
370def MOV64rilh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
371                         "llilh\t{$dst, $src}",
372                         [(set GR64:$dst, i64lh16:$src)]>;
373def MOV64rihl16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
374                         "llihl\t{$dst, $src}",
375                         [(set GR64:$dst, i64hl16:$src)]>;
376def MOV64rihh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
377                         "llihh\t{$dst, $src}",
378                         [(set GR64:$dst, i64hh16:$src)]>;
379// FIXME: these 3 instructions seem to require extimm facility
380def MOV64ri32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
381                       "lgfi\t{$dst, $src}",
382                       [(set GR64:$dst, immSExt32:$src)]>;
383def MOV64rilo32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
384                         "llilf\t{$dst, $src}",
385                         [(set GR64:$dst, i64lo32:$src)]>;
386def MOV64rihi32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
387                         "llihf\t{$dst, $src}",
388                         [(set GR64:$dst, i64hi32:$src)]>;
389}
390
391let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
392def MOV64rm : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
393                     "lg\t{$dst, $src}",
394                     [(set GR64:$dst, (load rriaddr:$src))]>;
395
396}
397
398def MOV64mr : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
399                     "stg\t{$src, $dst}",
400                     [(store GR64:$src, rriaddr:$dst)]>;
401
402// FIXME: displacements here are really 12 bit, not 20!
403def MOV8mi    : Pseudo<(outs), (ins riaddr:$dst, i32i8imm:$src),
404                       "mvi\t{$dst, $src}",
405                       [(truncstorei8 (i32 i32immSExt8:$src), riaddr:$dst)]>;
406def MOV16mi   : Pseudo<(outs), (ins riaddr:$dst, i32i16imm:$src),
407                       "mvhhi\t{$dst, $src}",
408                       [(truncstorei16 (i32 i32immSExt16:$src), riaddr:$dst)]>;
409def MOV32mi16 : Pseudo<(outs), (ins riaddr:$dst, i32imm:$src),
410                       "mvhi\t{$dst, $src}",
411                       [(store (i32 immSExt16:$src), riaddr:$dst)]>;
412def MOV64mi16 : Pseudo<(outs), (ins riaddr:$dst, i64imm:$src),
413                       "mvghi\t{$dst, $src}",
414                       [(store (i64 immSExt16:$src), riaddr:$dst)]>;
415
416// extloads
417def MOVSX32rm8  : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
418                         "lb\t{$dst, $src}",
419                         [(set GR32:$dst, (sextloadi32i8 rriaddr:$src))]>;
420def MOVSX32rm16 : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
421                         "lhy\t{$dst, $src}",
422                         [(set GR32:$dst, (sextloadi32i16 rriaddr:$src))]>;
423def MOVSX64rm8  : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
424                         "lgb\t{$dst, $src}",
425                         [(set GR64:$dst, (sextloadi64i8 rriaddr:$src))]>;
426def MOVSX64rm16 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
427                         "lgh\t{$dst, $src}",
428                         [(set GR64:$dst, (sextloadi64i16 rriaddr:$src))]>;
429def MOVSX64rm32 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
430                         "lgf\t{$dst, $src}",
431                         [(set GR64:$dst, (sextloadi64i32 rriaddr:$src))]>;
432
433def MOVZX32rm8  : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
434                         "llc\t{$dst, $src}",
435                         [(set GR32:$dst, (zextloadi32i8 rriaddr:$src))]>;
436def MOVZX32rm16 : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
437                         "llh\t{$dst, $src}",
438                         [(set GR32:$dst, (zextloadi32i16 rriaddr:$src))]>;
439def MOVZX64rm8  : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
440                         "llgc\t{$dst, $src}",
441                         [(set GR64:$dst, (zextloadi64i8 rriaddr:$src))]>;
442def MOVZX64rm16 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
443                         "llgh\t{$dst, $src}",
444                         [(set GR64:$dst, (zextloadi64i16 rriaddr:$src))]>;
445def MOVZX64rm32 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
446                         "llgf\t{$dst, $src}",
447                         [(set GR64:$dst, (zextloadi64i32 rriaddr:$src))]>;
448
449// truncstores
450// FIXME: Implement 12-bit displacement stuff someday
451def MOV32m8r  : Pseudo<(outs), (ins rriaddr:$dst, GR32:$src),
452                       "stcy\t{$src, $dst}",
453                       [(truncstorei8 GR32:$src, rriaddr:$dst)]>;
454
455def MOV32m16r : Pseudo<(outs), (ins rriaddr:$dst, GR32:$src),
456                       "sthy\t{$src, $dst}",
457                       [(truncstorei16 GR32:$src, rriaddr:$dst)]>;
458
459def MOV64m8r  : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
460                       "stcy\t{$src, $dst}",
461                       [(truncstorei8 GR64:$src, rriaddr:$dst)]>;
462
463def MOV64m16r : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
464                       "sthy\t{$src, $dst}",
465                       [(truncstorei16 GR64:$src, rriaddr:$dst)]>;
466
467def MOV64m32r : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
468                       "sty\t{$src, $dst}",
469                       [(truncstorei32 GR64:$src, rriaddr:$dst)]>;
470
471// multiple regs moves
472// FIXME: should we use multiple arg nodes?
473def MOV32mrm  : Pseudo<(outs), (ins riaddr:$dst, GR32:$from, GR32:$to),
474                       "stmy\t{$from, $to, $dst}",
475                       []>;
476def MOV64mrm  : Pseudo<(outs), (ins riaddr:$dst, GR64:$from, GR64:$to),
477                       "stmg\t{$from, $to, $dst}",
478                       []>;
479def MOV32rmm  : Pseudo<(outs GR32:$from, GR32:$to), (ins riaddr:$dst),
480                       "lmy\t{$from, $to, $dst}",
481                       []>;
482def MOV64rmm  : Pseudo<(outs GR64:$from, GR64:$to), (ins riaddr:$dst),
483                       "lmg\t{$from, $to, $dst}",
484                       []>;
485
486
487//===----------------------------------------------------------------------===//
488// Arithmetic Instructions
489
490let isTwoAddress = 1 in {
491
492let Defs = [PSW] in {
493
494let isCommutable = 1 in { // X = ADD Y, Z  == X = ADD Z, Y
495// FIXME: Provide proper encoding!
496def ADD32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
497                     "ar\t{$dst, $src2}",
498                     [(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
499                      (implicit PSW)]>;
500def ADD64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
501                     "agr\t{$dst, $src2}",
502                     [(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
503                      (implicit PSW)]>;
504}
505
506// FIXME: Provide proper encoding!
507def ADD32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
508                       "ahi\t{$dst, $src2}",
509                       [(set GR32:$dst, (add GR32:$src1, immSExt16:$src2)),
510                        (implicit PSW)]>;
511def ADD32ri   : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
512                       "afi\t{$dst, $src2}",
513                       [(set GR32:$dst, (add GR32:$src1, imm:$src2)),
514                        (implicit PSW)]>;
515def ADD64ri16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
516                       "aghi\t{$dst, $src2}",
517                       [(set GR64:$dst, (add GR64:$src1, immSExt16:$src2)),
518                        (implicit PSW)]>;
519def ADD64ri32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
520                       "agfi\t{$dst, $src2}",
521                       [(set GR64:$dst, (add GR64:$src1, immSExt32:$src2)),
522                        (implicit PSW)]>;
523
524let isCommutable = 1 in { // X = AND Y, Z  == X = AND Z, Y
525// FIXME: Provide proper encoding!
526def AND32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
527                     "nr\t{$dst, $src2}",
528                     [(set GR32:$dst, (and GR32:$src1, GR32:$src2))]>;
529def AND64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
530                     "ngr\t{$dst, $src2}",
531                     [(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
532}
533
534// FIXME: Provide proper encoding!
535def AND64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
536                         "nill\t{$dst, $src2}",
537                         [(set GR64:$dst, (and GR64:$src1, i64ll16:$src2))]>;
538def AND64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
539                         "nilh\t{$dst, $src2}",
540                         [(set GR64:$dst, (and GR64:$src1, i64lh16:$src2))]>;
541def AND64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
542                         "nihl\t{$dst, $src2}",
543                         [(set GR64:$dst, (and GR64:$src1, i64hl16:$src2))]>;
544def AND64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
545                         "nihh\t{$dst, $src2}",
546                         [(set GR64:$dst, (and GR64:$src1, i64hh16:$src2))]>;
547// FIXME: these 2 instructions seem to require extimm facility
548def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
549                         "nilf\t{$dst, $src2}",
550                         [(set GR64:$dst, (and GR64:$src1, i64lo32:$src2))]>;
551def AND64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
552                         "nihf\t{$dst, $src2}",
553                         [(set GR64:$dst, (and GR64:$src1, i64hi32:$src2))]>;
554
555let isCommutable = 1 in { // X = OR Y, Z  == X = OR Z, Y
556// FIXME: Provide proper encoding!
557def OR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
558                    "or\t{$dst, $src2}",
559                    [(set GR32:$dst, (or GR32:$src1, GR32:$src2))]>;
560def OR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
561                    "ogr\t{$dst, $src2}",
562                    [(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
563}
564
565def OR32ri16  : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
566                      "oill\t{$dst, $src2}",
567                      [(set GR32:$dst, (or GR32:$src1, i64ll16:$src2))]>;
568def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
569                      "oilh\t{$dst, $src2}",
570                      [(set GR32:$dst, (or GR32:$src1, i64lh16:$src2))]>;
571def OR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
572                    "oilf\t{$dst, $src2}",
573                    [(set GR32:$dst, (or GR32:$src1, imm:$src2))]>;
574
575def OR64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
576                        "oill\t{$dst, $src2}",
577                        [(set GR64:$dst, (or GR64:$src1, i64ll16:$src2))]>;
578def OR64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
579                        "oilh\t{$dst, $src2}",
580                        [(set GR64:$dst, (or GR64:$src1, i64lh16:$src2))]>;
581def OR64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
582                        "oihl\t{$dst, $src2}",
583                        [(set GR64:$dst, (or GR64:$src1, i64hl16:$src2))]>;
584def OR64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
585                        "oihh\t{$dst, $src2}",
586                        [(set GR64:$dst, (or GR64:$src1, i64hh16:$src2))]>;
587// FIXME: these 2 instructions seem to require extimm facility
588def OR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
589                        "oilf\t{$dst, $src2}",
590                        [(set GR64:$dst, (or GR64:$src1, i64lo32:$src2))]>;
591def OR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
592                        "oihf\t{$dst, $src2}",
593                        [(set GR64:$dst, (or GR64:$src1, i64hi32:$src2))]>;
594
595// FIXME: Provide proper encoding!
596def SUB32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
597                     "sr\t{$dst, $src2}",
598                     [(set GR32:$dst, (sub GR32:$src1, GR32:$src2))]>;
599def SUB64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
600                     "sgr\t{$dst, $src2}",
601                     [(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>;
602
603
604let isCommutable = 1 in { // X = XOR Y, Z  == X = XOR Z, Y
605// FIXME: Provide proper encoding!
606def XOR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
607                     "xr\t{$dst, $src2}",
608                     [(set GR32:$dst, (xor GR32:$src1, GR32:$src2))]>;
609def XOR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
610                     "xgr\t{$dst, $src2}",
611                     [(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
612}
613
614def XOR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
615                     "xilf\t{$dst, $src2}",
616                     [(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>;
617
618// FIXME: these 2 instructions seem to require extimm facility
619def XOR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
620                         "xilf\t{$dst, $src2}",
621                         [(set GR64:$dst, (xor GR64:$src1, i64lo32:$src2))]>;
622def XOR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
623                         "xihf\t{$dst, $src2}",
624                         [(set GR64:$dst, (xor GR64:$src1, i64hi32:$src2))]>;
625
626} // Defs = [PSW]
627
628let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y
629def MUL32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
630                     "msr\t{$dst, $src2}",
631                     [(set GR32:$dst, (mul GR32:$src1, GR32:$src2))]>;
632def MUL64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
633                     "msgr\t{$dst, $src2}",
634                     [(set GR64:$dst, (mul GR64:$src1, GR64:$src2))]>;
635
636def MUL64rrP   : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
637                        "mr\t{$dst, $src2}",
638                        []>;
639def UMUL64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
640                         "mlr\t{$dst, $src2}",
641                         []>;
642def UMUL128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
643                        "mlgr\t{$dst, $src2}",
644                        []>;
645}
646
647
648def MUL32ri16   : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32i16imm:$src2),
649                         "mhi\t{$dst, $src2}",
650                         [(set GR32:$dst, (mul GR32:$src1, i32immSExt16:$src2))]>;
651def MUL32ri     : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
652                         "msfi\t{$dst, $src2}",
653                         [(set GR32:$dst, (mul GR32:$src1, imm:$src2))]>;
654def MUL64ri16   : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
655                         "mghi\t{$dst, $src2}",
656                         [(set GR64:$dst, (mul GR64:$src1, immSExt16:$src2))]>;
657def MUL64ri32   : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
658                         "msgfi\t{$dst, $src2}",
659                         [(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2))]>;
660
661def MUL32rm : Pseudo<(outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
662                     "msy\t{$dst, $src2}",
663                     [(set GR32:$dst, (mul GR32:$src1, (load rriaddr:$src2)))]>;
664def MUL64rm : Pseudo<(outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
665                     "msgy\t{$dst, $src2}",
666                     [(set GR64:$dst, (mul GR64:$src1, (load rriaddr:$src2)))]>;
667
668def MULSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR32:$src2),
669                         "msgfr\t{$dst, $src2}",
670                         [(set GR64:$dst, (mul GR64:$src1, (sext GR32:$src2)))]>;
671
672def SDIVREM64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
673                           "dr\t{$dst, $src2}",
674                           []>;
675
676def SDIVREM128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
677                           "dsgr\t{$dst, $src2}",
678                           []>;
679
680def UDIVREM64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
681                           "dlr\t{$dst, $src2}",
682                           []>;
683
684def UDIVREM128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
685                           "dlgr\t{$dst, $src2}",
686                           []>;
687
688} // isTwoAddress = 1
689
690//===----------------------------------------------------------------------===//
691// Shifts
692
693let isTwoAddress = 1 in
694def SRL32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
695                      "srl\t{$src, $amt}",
696                      [(set GR32:$dst, (srl GR32:$src, riaddr32:$amt))]>;
697def SRL64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
698                      "srlg\t{$dst, $src, $amt}",
699                      [(set GR64:$dst, (srl GR64:$src, (i32 (trunc riaddr:$amt))))]>;
700def SRLA64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
701                      "srlg\t{$dst, $src, $amt}",
702                      [(set GR64:$dst, (srl GR64:$src, (i32 imm:$amt)))]>;
703
704let isTwoAddress = 1 in
705def SHL32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
706                      "sll\t{$src, $amt}",
707                      [(set GR32:$dst, (shl GR32:$src, riaddr32:$amt))]>;
708def SHL64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
709                      "sllg\t{$dst, $src, $amt}",
710                      [(set GR64:$dst, (shl GR64:$src, (i32 (trunc riaddr:$amt))))]>;
711def SHL64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
712                      "sllg\t{$dst, $src, $amt}",
713                      [(set GR64:$dst, (shl GR64:$src, (i32 imm:$amt)))]>;
714
715
716let Defs = [PSW] in {
717let isTwoAddress = 1 in
718def SRA32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
719                      "sra\t{$src, $amt}",
720                      [(set GR32:$dst, (sra GR32:$src, riaddr32:$amt)),
721                       (implicit PSW)]>;
722def SRA64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
723                      "srag\t{$dst, $src, $amt}",
724                      [(set GR64:$dst, (sra GR64:$src, (i32 (trunc riaddr:$amt)))),
725                       (implicit PSW)]>;
726def SRA64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
727                      "srag\t{$dst, $src, $amt}",
728                      [(set GR64:$dst, (sra GR64:$src, (i32 imm:$amt))),
729                       (implicit PSW)]>;
730} // Defs = [PSW]
731
732//===----------------------------------------------------------------------===//
733// Test instructions (like AND but do not produce any result
734
735// Integer comparisons
736let Defs = [PSW] in {
737def CMP32rr : Pseudo<(outs), (ins GR32:$src1, GR32:$src2),
738                     "cr\t$src1, $src2",
739                     [(SystemZcmp GR32:$src1, GR32:$src2), (implicit PSW)]>;
740def CMP64rr : Pseudo<(outs), (ins GR64:$src1, GR64:$src2),
741                     "cgr\t$src1, $src2",
742                     [(SystemZcmp GR64:$src1, GR64:$src2), (implicit PSW)]>;
743
744def CMP32ri   : Pseudo<(outs), (ins GR32:$src1, i32imm:$src2),
745                       "cfi\t$src1, $src2",
746                       [(SystemZcmp GR32:$src1, imm:$src2), (implicit PSW)]>;
747def CMP64ri32 : Pseudo<(outs), (ins GR64:$src1, i64i32imm:$src2),
748                       "cgfi\t$src1, $src2",
749                       [(SystemZcmp GR64:$src1, i64immSExt32:$src2),
750                        (implicit PSW)]>;
751
752def CMP32rm : Pseudo<(outs), (ins GR32:$src1, rriaddr:$src2),
753                     "cy\t$src1, $src2",
754                     [(SystemZcmp GR32:$src1, (load rriaddr:$src2)),
755                      (implicit PSW)]>;
756def CMP64rm : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
757                     "cg\t$src1, $src2",
758                     [(SystemZcmp GR64:$src1, (load rriaddr:$src2)),
759                      (implicit PSW)]>;
760
761def UCMP32rr : Pseudo<(outs), (ins GR32:$src1, GR32:$src2),
762                      "clr\t$src1, $src2",
763                      [(SystemZucmp GR32:$src1, GR32:$src2), (implicit PSW)]>;
764def UCMP64rr : Pseudo<(outs), (ins GR64:$src1, GR64:$src2),
765                      "clgr\t$src1, $src2",
766                      [(SystemZucmp GR64:$src1, GR64:$src2), (implicit PSW)]>;
767
768def UCMP32ri   : Pseudo<(outs), (ins GR32:$src1, i32imm:$src2),
769                        "clfi\t$src1, $src2",
770                        [(SystemZucmp GR32:$src1, imm:$src2), (implicit PSW)]>;
771def UCMP64ri32 : Pseudo<(outs), (ins GR64:$src1, i64i32imm:$src2),
772                        "clgfi\t$src1, $src2",
773                        [(SystemZucmp GR64:$src1, i64immZExt32:$src2),
774                         (implicit PSW)]>;
775
776def UCMP32rm : Pseudo<(outs), (ins GR32:$src1, rriaddr:$src2),
777                      "cly\t$src1, $src2",
778                      [(SystemZucmp GR32:$src1, (load rriaddr:$src2)),
779                       (implicit PSW)]>;
780def UCMP64rm : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
781                      "clg\t$src1, $src2",
782                      [(SystemZucmp GR64:$src1, (load rriaddr:$src2)),
783                       (implicit PSW)]>;
784
785def CMPSX64rr32  : Pseudo<(outs), (ins GR64:$src1, GR32:$src2),
786                          "cgfr\t$src1, $src2",
787                          [(SystemZucmp GR64:$src1, (sext GR32:$src2)),
788                           (implicit PSW)]>;
789def UCMPZX64rr32 : Pseudo<(outs), (ins GR64:$src1, GR32:$src2),
790                          "clgfr\t$src1, $src2",
791                          [(SystemZucmp GR64:$src1, (zext GR32:$src2)),
792                           (implicit PSW)]>;
793
794def CMPSX64rm32   : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
795                           "cgf\t$src1, $src2",
796                           [(SystemZucmp GR64:$src1, (sextloadi64i32 rriaddr:$src2)),
797                            (implicit PSW)]>;
798def UCMPZX64rm32  : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
799                           "clgf\t$src1, $src2",
800                           [(SystemZucmp GR64:$src1, (zextloadi64i32 rriaddr:$src2)),
801                            (implicit PSW)]>;
802
803// FIXME: Add other crazy ucmp forms
804
805} // Defs = [PSW]
806
807//===----------------------------------------------------------------------===//
808// Non-Instruction Patterns.
809//===----------------------------------------------------------------------===//
810
811// anyext
812def : Pat<(i64 (anyext GR32:$src)),
813          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
814
815//===----------------------------------------------------------------------===//
816// Peepholes.
817//===----------------------------------------------------------------------===//
818
819// FIXME: use add/sub tricks with 32678/-32768
820
821// trunc patterns
822def : Pat<(i32 (trunc GR64:$src)),
823          (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
824
825// sext_inreg patterns
826def : Pat<(sext_inreg GR64:$src, i32),
827          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
828
829// extload patterns
830def : Pat<(extloadi32i8  rriaddr:$src), (MOVZX32rm8  rriaddr:$src)>;
831def : Pat<(extloadi32i16 rriaddr:$src), (MOVZX32rm16 rriaddr:$src)>;
832def : Pat<(extloadi64i8  rriaddr:$src), (MOVZX64rm8  rriaddr:$src)>;
833def : Pat<(extloadi64i16 rriaddr:$src), (MOVZX64rm16 rriaddr:$src)>;
834def : Pat<(extloadi64i32 rriaddr:$src), (MOVZX64rm32 rriaddr:$src)>;
835
836// calls
837def : Pat<(SystemZcall (i64 tglobaladdr:$dst)),
838          (CALLi tglobaladdr:$dst)>;
839def : Pat<(SystemZcall (i64 texternalsym:$dst)),
840          (CALLi texternalsym:$dst)>;
841
842// muls
843def : Pat<(mulhs GR32:$src1, GR32:$src2),
844          (EXTRACT_SUBREG (MUL64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
845                                                   GR32:$src1, subreg_odd),
846                                    GR32:$src2),
847                          subreg_even)>;
848
849def : Pat<(mulhu GR32:$src1, GR32:$src2),
850          (EXTRACT_SUBREG (UMUL64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
851                                                    GR32:$src1, subreg_odd),
852                                     GR32:$src2),
853                          subreg_even)>;
854def : Pat<(mulhu GR64:$src1, GR64:$src2),
855          (EXTRACT_SUBREG (UMUL128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
856                                                     GR64:$src1, subreg_odd),
857                                      GR64:$src2),
858                          subreg_even)>;
859
860// divs
861// FIXME: Add memory versions
862def : Pat<(sdiv GR32:$src1, GR32:$src2),
863          (EXTRACT_SUBREG (SDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
864                                                       GR32:$src1, subreg_odd),
865                                         GR32:$src2),
866                          subreg_odd)>;
867def : Pat<(sdiv GR64:$src1, GR64:$src2),
868          (EXTRACT_SUBREG (SDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
869                                                        GR64:$src1, subreg_odd),
870                                         GR64:$src2),
871                          subreg_odd)>;
872def : Pat<(udiv GR32:$src1, GR32:$src2),
873          (EXTRACT_SUBREG (UDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
874                                                       GR32:$src1, subreg_odd),
875                                         GR32:$src2),
876                          subreg_odd)>;
877def : Pat<(udiv GR64:$src1, GR64:$src2),
878          (EXTRACT_SUBREG (UDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
879                                                        GR64:$src1, subreg_odd),
880                                         GR64:$src2),
881                          subreg_odd)>;
882
883// rems
884// FIXME: Add memory versions
885def : Pat<(srem GR32:$src1, GR32:$src2),
886          (EXTRACT_SUBREG (SDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
887                                                       GR32:$src1, subreg_odd),
888                                         GR32:$src2),
889                          subreg_even)>;
890def : Pat<(srem GR64:$src1, GR64:$src2),
891          (EXTRACT_SUBREG (SDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
892                                                        GR64:$src1, subreg_odd),
893                                         GR64:$src2),
894                          subreg_even)>;
895def : Pat<(urem GR32:$src1, GR32:$src2),
896          (EXTRACT_SUBREG (UDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
897                                                       GR32:$src1, subreg_odd),
898                                         GR32:$src2),
899                          subreg_even)>;
900def : Pat<(urem GR64:$src1, GR64:$src2),
901          (EXTRACT_SUBREG (UDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
902                                                        GR64:$src1, subreg_odd),
903                                         GR64:$src2),
904                          subreg_even)>;
905