SystemZInstrInfo.td revision e22c56d6d81b84d6f4ba24c2f5b0b203e7ddffe9
1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Stack allocation
12//===----------------------------------------------------------------------===//
13
14def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
15                              [(callseq_start timm:$amt)]>;
16def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
17                              [(callseq_end timm:$amt1, timm:$amt2)]>;
18
19let neverHasSideEffects = 1 in {
20  // Takes as input the value of the stack pointer after a dynamic allocation
21  // has been made.  Sets the output to the address of the dynamically-
22  // allocated area itself, skipping the outgoing arguments.
23  //
24  // This expands to an LA or LAY instruction.  We restrict the offset
25  // to the range of LA and keep the LAY range in reserve for when
26  // the size of the outgoing arguments is added.
27  def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
28                           [(set GR64:$dst, dynalloc12only:$src)]>;
29}
30
31//===----------------------------------------------------------------------===//
32// Control flow instructions
33//===----------------------------------------------------------------------===//
34
35// A return instruction (br %r14).
36let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
37  def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
38
39// Unconditional branches.  R1 is the condition-code mask (all 1s).
40let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
41  let isIndirectBranch = 1 in
42    def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
43                    "br\t$R2", [(brind ADDR64:$R2)]>;
44
45  // An assembler extended mnemonic for BRC.
46  def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
47                 [(br bb:$I2)]>;
48
49  // An assembler extended mnemonic for BRCL.  (The extension is "G"
50  // rather than "L" because "JL" is "Jump if Less".)
51  def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
52}
53
54// Conditional branches.  It's easier for LLVM to handle these branches
55// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
56// the first operand.  It seems friendlier to use mnemonic forms like
57// JE and JLH when writing out the assembly though.
58let isBranch = 1, isTerminator = 1, Uses = [CC] in {
59  let isCodeGenOnly = 1, CCMaskFirst = 1 in {
60    def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
61                                         brtarget16:$I2), "j$R1\t$I2",
62                     [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
63    def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
64                                           brtarget32:$I2), "jg$R1\t$I2", []>;
65  }
66  def AsmBRC : InstRI<0xA74, (outs), (ins uimm8zx4:$R1, brtarget16:$I2),
67                      "brc\t$R1, $I2", []>;
68  def AsmBRCL : InstRIL<0xC04, (outs), (ins uimm8zx4:$R1, brtarget32:$I2),
69                        "brcl\t$R1, $I2", []>;
70}
71
72// Fused compare-and-branch instructions.  As for normal branches,
73// we handle these instructions internally in their raw CRJ-like form,
74// but use assembly macros like CRJE when writing them out.
75//
76// These instructions do not use or clobber the condition codes.
77// We nevertheless pretend that they clobber CC, so that we can lower
78// them to separate comparisons and BRCLs if the branch ends up being
79// out of range.
80multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
81  let isBranch = 1, isTerminator = 1, Defs = [CC] in {
82    def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
83                                            brtarget16:$RI4),
84                       "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
85    def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
86                                            brtarget16:$RI4),
87                       "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
88    def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
89                                            brtarget16:$RI4),
90                       "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
91    def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
92                                            brtarget16:$RI4),
93                       "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
94    def LRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
95                                             brtarget16:$RI4),
96                        "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
97    def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
98                                             brtarget16:$RI4),
99                        "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
100    def LIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
101                                             brtarget16:$RI4),
102                        "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
103    def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
104                                             brtarget16:$RI4),
105                        "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
106  }
107}
108let isCodeGenOnly = 1 in
109  defm C : CompareBranches<cond4, "$M3", "">;
110defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
111
112// Define AsmParser mnemonics for each general condition-code mask
113// (integer or floating-point)
114multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
115  let R1 = ccmask in {
116    def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
117                   "j"##name##"\t$I2", []>;
118    def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
119                     "jg"##name##"\t$I2", []>;
120  }
121  def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
122  def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
123  def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
124  def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
125  def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
126  def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
127}
128defm AsmO   : CondExtendedMnemonic<1,  "o">;
129defm AsmH   : CondExtendedMnemonic<2,  "h">;
130defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
131defm AsmL   : CondExtendedMnemonic<4,  "l">;
132defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
133defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
134defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
135defm AsmE   : CondExtendedMnemonic<8,  "e">;
136defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
137defm AsmHE  : CondExtendedMnemonic<10, "he">;
138defm AsmNL  : CondExtendedMnemonic<11, "nl">;
139defm AsmLE  : CondExtendedMnemonic<12, "le">;
140defm AsmNH  : CondExtendedMnemonic<13, "nh">;
141defm AsmNO  : CondExtendedMnemonic<14, "no">;
142
143// Define AsmParser mnemonics for each integer condition-code mask.
144// This is like the list above, except that condition 3 is not possible
145// and that the low bit of the mask is therefore always 0.  This means
146// that each condition has two names.  Conditions "o" and "no" are not used.
147//
148// We don't make one of the two names an alias of the other because
149// we need the custom parsing routines to select the correct register class.
150multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
151  let M3 = ccmask in {
152    def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
153                                            brtarget16:$RI4),
154                       "crj"##name##"\t$R1, $R2, $RI4", []>;
155    def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
156                                            brtarget16:$RI4),
157                       "cgrj"##name##"\t$R1, $R2, $RI4", []>;
158    def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
159                                            brtarget16:$RI4),
160                       "cij"##name##"\t$R1, $I2, $RI4", []>;
161    def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
162                                            brtarget16:$RI4),
163                       "cgij"##name##"\t$R1, $I2, $RI4", []>;
164    def CLR  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
165                                            brtarget16:$RI4),
166                        "clrj"##name##"\t$R1, $R2, $RI4", []>;
167    def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
168                                             brtarget16:$RI4),
169                        "clgrj"##name##"\t$R1, $R2, $RI4", []>;
170    def CLI  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
171                                             brtarget16:$RI4),
172                        "clij"##name##"\t$R1, $I2, $RI4", []>;
173    def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
174                                             brtarget16:$RI4),
175                        "clgij"##name##"\t$R1, $I2, $RI4", []>;
176  }
177}
178multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
179  : IntCondExtendedMnemonicA<ccmask, name1> {
180  let isAsmParserOnly = 1 in
181    defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
182}
183defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
184defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
185defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
186defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
187defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
188defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
189
190// Decrement a register and branch if it is nonzero.  These don't clobber CC,
191// but we might need to split long branches into sequences that do.
192let Defs = [CC] in {
193  def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
194  def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
195}
196
197//===----------------------------------------------------------------------===//
198// Select instructions
199//===----------------------------------------------------------------------===//
200
201def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
202def Select32    : SelectWrapper<GR32>;
203def Select64    : SelectWrapper<GR64>;
204
205// We don't define 32-bit Mux stores because the low-only STOC should
206// always be used if possible.
207defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
208                                 nonvolatile_anyextloadi8, bdxaddr20only>,
209                      Requires<[FeatureHighWord]>;
210defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
211                                 nonvolatile_anyextloadi16, bdxaddr20only>,
212                      Requires<[FeatureHighWord]>;
213defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
214                                 nonvolatile_anyextloadi8, bdxaddr20only>;
215defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
216                                 nonvolatile_anyextloadi16, bdxaddr20only>;
217defm CondStore32    : CondStores<GR32, nonvolatile_store,
218                                 nonvolatile_load, bdxaddr20only>;
219
220defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
221                    nonvolatile_anyextloadi8, bdxaddr20only>;
222defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
223                    nonvolatile_anyextloadi16, bdxaddr20only>;
224defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
225                    nonvolatile_anyextloadi32, bdxaddr20only>;
226defm CondStore64 : CondStores<GR64, nonvolatile_store,
227                              nonvolatile_load, bdxaddr20only>;
228
229//===----------------------------------------------------------------------===//
230// Call instructions
231//===----------------------------------------------------------------------===//
232
233// The definitions here are for the call-clobbered registers.
234let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
235                        F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D, CC] in {
236  def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
237                        [(z_call pcrel32:$I2)]>;
238  def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
239                        [(z_call ADDR64:$R2)]>;
240}
241
242// Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
243// are argument registers and since branching to R0 is a no-op.
244let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
245  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
246                     [(z_sibcall pcrel32:$I2)]>;
247  let Uses = [R1D] in
248    def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
249}
250
251// Define the general form of the call instructions for the asm parser.
252// These instructions don't hard-code %r14 as the return address register.
253def BRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
254                   "bras\t$R1, $I2", []>;
255def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
256                    "brasl\t$R1, $I2", []>;
257def BASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
258                   "basr\t$R1, $R2", []>;
259
260//===----------------------------------------------------------------------===//
261// Move instructions
262//===----------------------------------------------------------------------===//
263
264// Register moves.
265let neverHasSideEffects = 1 in {
266  // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
267  def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
268              Requires<[FeatureHighWord]>;
269  def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
270  def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
271}
272let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
273  def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
274  def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
275}
276
277// Move on condition.
278let isCodeGenOnly = 1, Uses = [CC] in {
279  def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
280  def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
281}
282let Uses = [CC] in {
283  def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
284  def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
285}
286
287// Immediate moves.
288let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
289    isReMaterializable = 1 in {
290  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
291  // deopending on the choice of register.
292  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
293               Requires<[FeatureHighWord]>;
294  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
295  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
296
297  // Other 16-bit immediates.
298  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
299  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
300  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
301  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
302
303  // 32-bit immediates.
304  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
305  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
306  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
307}
308
309// Register loads.
310let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
311  // Expands to L, LY or LFH, depending on the choice of register.
312  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
313             Requires<[FeatureHighWord]>;
314  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
315  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
316            Requires<[FeatureHighWord]>;
317  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
318
319  // These instructions are split after register allocation, so we don't
320  // want a custom inserter.
321  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
322    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
323                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
324  }
325}
326let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
327  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
328  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
329}
330
331let canFoldAsLoad = 1 in {
332  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
333  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
334}
335
336// Load on condition.
337let isCodeGenOnly = 1, Uses = [CC] in {
338  def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
339  def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
340}
341let Uses = [CC] in {
342  def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
343  def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
344}
345
346// Register stores.
347let SimpleBDXStore = 1 in {
348  // Expands to ST, STY or STFH, depending on the choice of register.
349  def STMux : StoreRXYPseudo<store, GRX32, 4>,
350              Requires<[FeatureHighWord]>;
351  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
352  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
353             Requires<[FeatureHighWord]>;
354  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
355
356  // These instructions are split after register allocation, so we don't
357  // want a custom inserter.
358  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
359    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
360                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
361  }
362}
363def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
364def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
365
366// Store on condition.
367let isCodeGenOnly = 1, Uses = [CC] in {
368  def STOC  : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
369  def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
370}
371let Uses = [CC] in {
372  def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
373  def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
374}
375
376// 8-bit immediate stores to 8-bit fields.
377defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
378
379// 16-bit immediate stores to 16-, 32- or 64-bit fields.
380def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
381def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
382def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
383
384// Memory-to-memory moves.
385let mayLoad = 1, mayStore = 1 in
386  defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
387
388// String moves.
389let mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L] in
390  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
391
392//===----------------------------------------------------------------------===//
393// Sign extensions
394//===----------------------------------------------------------------------===//
395//
396// Note that putting these before zero extensions mean that we will prefer
397// them for anyextload*.  There's not really much to choose between the two
398// either way, but signed-extending loads have a short LH and a long LHY,
399// while zero-extending loads have only the long LLH.
400//
401//===----------------------------------------------------------------------===//
402
403// 32-bit extensions from registers.
404let neverHasSideEffects = 1 in {
405  def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
406  def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
407}
408
409// 64-bit extensions from registers.
410let neverHasSideEffects = 1 in {
411  def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
412  def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
413  def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
414}
415let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
416  def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR64>;
417
418// Match 32-to-64-bit sign extensions in which the source is already
419// in a 64-bit register.
420def : Pat<(sext_inreg GR64:$src, i32),
421          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
422
423// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
424// depending on the choice of register.
425def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
426            Requires<[FeatureHighWord]>;
427def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
428def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
429          Requires<[FeatureHighWord]>;
430
431// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
432// depending on the choice of register.
433def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
434            Requires<[FeatureHighWord]>;
435defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
436def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
437            Requires<[FeatureHighWord]>;
438def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
439
440// 64-bit extensions from memory.
441def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
442def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
443def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
444def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
445def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
446let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
447  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
448
449//===----------------------------------------------------------------------===//
450// Zero extensions
451//===----------------------------------------------------------------------===//
452
453// 32-bit extensions from registers.
454let neverHasSideEffects = 1 in {
455  // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
456  def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
457                Requires<[FeatureHighWord]>;
458  def LLCR    : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
459  // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
460  def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
461                Requires<[FeatureHighWord]>;
462  def LLHR    : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
463}
464
465// 64-bit extensions from registers.
466let neverHasSideEffects = 1 in {
467  def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
468  def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
469  def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
470}
471
472// Match 32-to-64-bit zero extensions in which the source is already
473// in a 64-bit register.
474def : Pat<(and GR64:$src, 0xffffffff),
475          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
476
477// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
478// depending on the choice of register.
479def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
480             Requires<[FeatureHighWord]>;
481def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
482def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GR32, 1>,
483           Requires<[FeatureHighWord]>;
484
485// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
486// depending on the choice of register.
487def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
488             Requires<[FeatureHighWord]>;
489def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
490def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GR32, 2>,
491            Requires<[FeatureHighWord]>;
492def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
493
494// 64-bit extensions from memory.
495def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
496def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
497def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
498def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
499def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
500
501//===----------------------------------------------------------------------===//
502// Truncations
503//===----------------------------------------------------------------------===//
504
505// Truncations of 64-bit registers to 32-bit registers.
506def : Pat<(i32 (trunc GR64:$src)),
507          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
508
509// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
510// STC, STCY or STCH, depending on the choice of register.
511def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
512             Requires<[FeatureHighWord]>;
513defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
514def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
515           Requires<[FeatureHighWord]>;
516
517// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
518// STH, STHY or STHH, depending on the choice of register.
519def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
520             Requires<[FeatureHighWord]>;
521defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
522def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
523           Requires<[FeatureHighWord]>;
524def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
525
526// Truncations of 64-bit registers to memory.
527defm : StoreGR64Pair<STC, STCY, truncstorei8>;
528defm : StoreGR64Pair<STH, STHY, truncstorei16>;
529def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
530defm : StoreGR64Pair<ST, STY, truncstorei32>;
531def  : StoreGR64PC<STRL, aligned_truncstorei32>;
532
533//===----------------------------------------------------------------------===//
534// Multi-register moves
535//===----------------------------------------------------------------------===//
536
537// Multi-register loads.
538def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
539
540// Multi-register stores.
541def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
542
543//===----------------------------------------------------------------------===//
544// Byte swaps
545//===----------------------------------------------------------------------===//
546
547// Byte-swapping register moves.
548let neverHasSideEffects = 1 in {
549  def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
550  def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
551}
552
553// Byte-swapping loads.  Unlike normal loads, these instructions are
554// allowed to access storage more than once.
555def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
556def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
557
558// Likewise byte-swapping stores.
559def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
560def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
561                     GR64, 8>;
562
563//===----------------------------------------------------------------------===//
564// Load address instructions
565//===----------------------------------------------------------------------===//
566
567// Load BDX-style addresses.
568let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
569    DispKey = "la" in {
570  let DispSize = "12" in
571    def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
572                    "la\t$R1, $XBD2",
573                    [(set GR64:$R1, laaddr12pair:$XBD2)]>;
574  let DispSize = "20" in
575    def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
576                      "lay\t$R1, $XBD2",
577                      [(set GR64:$R1, laaddr20pair:$XBD2)]>;
578}
579
580// Load a PC-relative address.  There's no version of this instruction
581// with a 16-bit offset, so there's no relaxation.
582let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
583    isReMaterializable = 1 in {
584  def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
585                     "larl\t$R1, $I2",
586                     [(set GR64:$R1, pcrel32:$I2)]>;
587}
588
589//===----------------------------------------------------------------------===//
590// Absolute and Negation
591//===----------------------------------------------------------------------===//
592
593let Defs = [CC] in {
594  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
595    def LPR  : UnaryRR <"lp",  0x10,   z_iabs32, GR32, GR32>;
596    def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs64, GR64, GR64>;
597  }
598  let CCValues = 0xE, CompareZeroCCMask = 0xE in
599    def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
600}
601defm : SXU<z_iabs64, LPGFR>;
602
603let Defs = [CC] in {
604  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
605    def LNR  : UnaryRR <"ln",  0x11,   z_inegabs32, GR32, GR32>;
606    def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs64, GR64, GR64>;
607  }
608  let CCValues = 0xE, CompareZeroCCMask = 0xE in
609    def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
610}
611defm : SXU<z_inegabs64, LNGFR>;
612
613let Defs = [CC] in {
614  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
615    def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
616    def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
617  }
618  let CCValues = 0xE, CompareZeroCCMask = 0xE in
619    def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
620}
621defm : SXU<ineg, LCGFR>;
622
623//===----------------------------------------------------------------------===//
624// Insertion
625//===----------------------------------------------------------------------===//
626
627let isCodeGenOnly = 1 in
628  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
629defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
630
631defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
632defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
633
634defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
635defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
636
637// Insertions of a 16-bit immediate, leaving other bits unaffected.
638// We don't have or_as_insert equivalents of these operations because
639// OI is available instead.
640//
641// IIxMux expands to II[LH]x, depending on the choice of register.
642def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
643             Requires<[FeatureHighWord]>;
644def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
645             Requires<[FeatureHighWord]>;
646def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
647def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
648def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
649def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
650def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
651def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
652def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
653def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
654
655// ...likewise for 32-bit immediates.  For GR32s this is a general
656// full-width move.  (We use IILF rather than something like LLILF
657// for 32-bit moves because IILF leaves the upper 32 bits of the
658// GR64 unchanged.)
659let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
660  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
661               Requires<[FeatureHighWord]>;
662  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
663  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
664}
665def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
666def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
667
668// An alternative model of inserthf, with the first operand being
669// a zero-extended value.
670def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
671          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
672                  imm64hf32:$imm)>;
673
674//===----------------------------------------------------------------------===//
675// Addition
676//===----------------------------------------------------------------------===//
677
678// Plain addition.
679let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
680  // Addition of a register.
681  let isCommutable = 1 in {
682    defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
683    defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
684  }
685  def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
686
687  // Addition of signed 16-bit immediates.
688  defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
689  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
690  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
691
692  // Addition of signed 32-bit immediates.
693  def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
694               Requires<[FeatureHighWord]>;
695  def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
696  def AIH  : BinaryRIL<"aih",  0xCC8, add, GRH32, simm32>,
697             Requires<[FeatureHighWord]>;
698  def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
699
700  // Addition of memory.
701  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
702  defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
703  def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
704  def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
705
706  // Addition to memory.
707  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
708  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
709}
710defm : SXB<add, GR64, AGFR>;
711
712// Addition producing a carry.
713let Defs = [CC] in {
714  // Addition of a register.
715  let isCommutable = 1 in {
716    defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
717    defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
718  }
719  def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
720
721  // Addition of signed 16-bit immediates.
722  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
723                Requires<[FeatureDistinctOps]>;
724  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
725                Requires<[FeatureDistinctOps]>;
726
727  // Addition of unsigned 32-bit immediates.
728  def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
729  def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
730
731  // Addition of memory.
732  defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
733  def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
734  def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
735}
736defm : ZXB<addc, GR64, ALGFR>;
737
738// Addition producing and using a carry.
739let Defs = [CC], Uses = [CC] in {
740  // Addition of a register.
741  def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
742  def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
743
744  // Addition of memory.
745  def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
746  def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
747}
748
749//===----------------------------------------------------------------------===//
750// Subtraction
751//===----------------------------------------------------------------------===//
752
753// Plain substraction.  Although immediate forms exist, we use the
754// add-immediate instruction instead.
755let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
756  // Subtraction of a register.
757  defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
758  def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
759  defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
760
761  // Subtraction of memory.
762  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
763  defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
764  def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
765  def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
766}
767defm : SXB<sub, GR64, SGFR>;
768
769// Subtraction producing a carry.
770let Defs = [CC] in {
771  // Subtraction of a register.
772  defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
773  def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
774  defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
775
776  // Subtraction of unsigned 32-bit immediates.  These don't match
777  // subc because we prefer addc for constants.
778  def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
779  def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
780
781  // Subtraction of memory.
782  defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
783  def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
784  def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
785}
786defm : ZXB<subc, GR64, SLGFR>;
787
788// Subtraction producing and using a carry.
789let Defs = [CC], Uses = [CC] in {
790  // Subtraction of a register.
791  def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
792  def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
793
794  // Subtraction of memory.
795  def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
796  def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
797}
798
799//===----------------------------------------------------------------------===//
800// AND
801//===----------------------------------------------------------------------===//
802
803let Defs = [CC] in {
804  // ANDs of a register.
805  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
806    defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
807    defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
808  }
809
810  let isConvertibleToThreeAddress = 1 in {
811    // ANDs of a 16-bit immediate, leaving other bits unaffected.
812    // The CC result only reflects the 16-bit field, not the full register.
813    //
814    // NIxMux expands to NI[LH]x, depending on the choice of register.
815    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
816                 Requires<[FeatureHighWord]>;
817    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
818                 Requires<[FeatureHighWord]>;
819    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
820    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
821    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
822    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
823    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
824    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
825    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
826    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
827
828    // ANDs of a 32-bit immediate, leaving other bits unaffected.
829    // The CC result only reflects the 32-bit field, which means we can
830    // use it as a zero indicator for i32 operations but not otherwise.
831    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
832      // Expands to NILF or NIHF, depending on the choice of register.
833      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
834                   Requires<[FeatureHighWord]>;
835      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
836      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
837    }
838    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
839    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
840  }
841
842  // ANDs of memory.
843  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
844    defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
845    def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
846  }
847
848  // AND to memory
849  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
850
851  // Block AND.
852  let mayLoad = 1, mayStore = 1 in
853    defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
854}
855defm : RMWIByte<and, bdaddr12pair, NI>;
856defm : RMWIByte<and, bdaddr20pair, NIY>;
857
858//===----------------------------------------------------------------------===//
859// OR
860//===----------------------------------------------------------------------===//
861
862let Defs = [CC] in {
863  // ORs of a register.
864  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
865    defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
866    defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
867  }
868
869  // ORs of a 16-bit immediate, leaving other bits unaffected.
870  // The CC result only reflects the 16-bit field, not the full register.
871  //
872  // OIxMux expands to OI[LH]x, depending on the choice of register.
873  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
874               Requires<[FeatureHighWord]>;
875  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
876               Requires<[FeatureHighWord]>;
877  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
878  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
879  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
880  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
881  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
882  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
883  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
884  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
885
886  // ORs of a 32-bit immediate, leaving other bits unaffected.
887  // The CC result only reflects the 32-bit field, which means we can
888  // use it as a zero indicator for i32 operations but not otherwise.
889  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
890    // Expands to OILF or OIHF, depending on the choice of register.
891    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
892                 Requires<[FeatureHighWord]>;
893    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
894    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
895  }
896  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
897  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
898
899  // ORs of memory.
900  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
901    defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
902    def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
903  }
904
905  // OR to memory
906  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
907
908  // Block OR.
909  let mayLoad = 1, mayStore = 1 in
910    defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
911}
912defm : RMWIByte<or, bdaddr12pair, OI>;
913defm : RMWIByte<or, bdaddr20pair, OIY>;
914
915//===----------------------------------------------------------------------===//
916// XOR
917//===----------------------------------------------------------------------===//
918
919let Defs = [CC] in {
920  // XORs of a register.
921  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
922    defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
923    defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
924  }
925
926  // XORs of a 32-bit immediate, leaving other bits unaffected.
927  // The CC result only reflects the 32-bit field, which means we can
928  // use it as a zero indicator for i32 operations but not otherwise.
929  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
930    // Expands to XILF or XIHF, depending on the choice of register.
931    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
932                 Requires<[FeatureHighWord]>;
933    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
934    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
935  }
936  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
937  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
938
939  // XORs of memory.
940  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
941    defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
942    def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
943  }
944
945  // XOR to memory
946  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
947
948  // Block XOR.
949  let mayLoad = 1, mayStore = 1 in
950    defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
951}
952defm : RMWIByte<xor, bdaddr12pair, XI>;
953defm : RMWIByte<xor, bdaddr20pair, XIY>;
954
955//===----------------------------------------------------------------------===//
956// Multiplication
957//===----------------------------------------------------------------------===//
958
959// Multiplication of a register.
960let isCommutable = 1 in {
961  def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
962  def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
963}
964def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
965defm : SXB<mul, GR64, MSGFR>;
966
967// Multiplication of a signed 16-bit immediate.
968def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
969def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
970
971// Multiplication of a signed 32-bit immediate.
972def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
973def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
974
975// Multiplication of memory.
976defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
977defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
978def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
979def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
980
981// Multiplication of a register, producing two results.
982def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
983
984// Multiplication of memory, producing two results.
985def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
986
987//===----------------------------------------------------------------------===//
988// Division and remainder
989//===----------------------------------------------------------------------===//
990
991// Division and remainder, from registers.
992def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
993def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
994def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
995def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
996
997// Division and remainder, from memory.
998def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
999def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
1000def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
1001def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
1002
1003//===----------------------------------------------------------------------===//
1004// Shifts
1005//===----------------------------------------------------------------------===//
1006
1007// Shift left.
1008let neverHasSideEffects = 1 in {
1009  defm SLL : ShiftRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
1010  def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64>;
1011}
1012
1013// Logical shift right.
1014let neverHasSideEffects = 1 in {
1015  defm SRL : ShiftRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
1016  def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64>;
1017}
1018
1019// Arithmetic shift right.
1020let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1021  defm SRA : ShiftRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
1022  def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64>;
1023}
1024
1025// Rotate left.
1026let neverHasSideEffects = 1 in {
1027  def RLL  : ShiftRSY<"rll",  0xEB1D, rotl, GR32>;
1028  def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64>;
1029}
1030
1031// Rotate second operand left and inserted selected bits into first operand.
1032// These can act like 32-bit operands provided that the constant start and
1033// end bits (operands 2 and 3) are in the range [32, 64).
1034let Defs = [CC] in {
1035  let isCodeGenOnly = 1 in
1036    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1037  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1038    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1039}
1040
1041// Forms of RISBG that only affect one word of the destination register.
1042// They do not set CC.
1043def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>, Requires<[FeatureHighWord]>;
1044def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>,  Requires<[FeatureHighWord]>;
1045def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>, Requires<[FeatureHighWord]>;
1046def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>,  Requires<[FeatureHighWord]>;
1047def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>, Requires<[FeatureHighWord]>;
1048def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>,
1049              Requires<[FeatureHighWord]>;
1050def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>,
1051              Requires<[FeatureHighWord]>;
1052
1053// Rotate second operand left and perform a logical operation with selected
1054// bits of the first operand.  The CC result only describes the selected bits,
1055// so isn't useful for a full comparison against zero.
1056let Defs = [CC] in {
1057  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1058  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1059  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1060}
1061
1062//===----------------------------------------------------------------------===//
1063// Comparison
1064//===----------------------------------------------------------------------===//
1065
1066// Signed comparisons.  We put these before the unsigned comparisons because
1067// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1068// of the unsigned forms do.
1069let Defs = [CC], CCValues = 0xE in {
1070  // Comparison with a register.
1071  def CR   : CompareRR <"c",   0x19,   z_scmp,    GR32, GR32>;
1072  def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
1073  def CGR  : CompareRRE<"cg",  0xB920, z_scmp,    GR64, GR64>;
1074
1075  // Comparison with a signed 16-bit immediate.
1076  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1077  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1078
1079  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1080  // depending on the choice of register.
1081  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1082               Requires<[FeatureHighWord]>;
1083  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1084  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1085             Requires<[FeatureHighWord]>;
1086  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1087
1088  // Comparison with memory.
1089  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1090  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1091               Requires<[FeatureHighWord]>;
1092  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1093  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1094               Requires<[FeatureHighWord]>;
1095  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1096  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1097  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1098  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1099  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1100  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1101  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1102  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1103
1104  // Comparison between memory and a signed 16-bit immediate.
1105  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1106  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1107  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1108}
1109defm : SXB<z_scmp, GR64, CGFR>;
1110
1111// Unsigned comparisons.
1112let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1113  // Comparison with a register.
1114  def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
1115  def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
1116  def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
1117
1118  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1119  // or CLIH, depending on the choice of register.
1120  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1121                Requires<[FeatureHighWord]>;
1122  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1123  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GR32, uimm32>,
1124              Requires<[FeatureHighWord]>;
1125  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1126
1127  // Comparison with memory.
1128  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1129                Requires<[FeatureHighWord]>;
1130  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1131  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1132                Requires<[FeatureHighWord]>;
1133  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1134  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1135  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1136                             aligned_azextloadi16>;
1137  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1138                             aligned_load>;
1139  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1140                             aligned_azextloadi16>;
1141  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1142                             aligned_azextloadi32>;
1143  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1144                             aligned_load>;
1145
1146  // Comparison between memory and an unsigned 8-bit immediate.
1147  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1148
1149  // Comparison between memory and an unsigned 16-bit immediate.
1150  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1151  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1152  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1153}
1154defm : ZXB<z_ucmp, GR64, CLGFR>;
1155
1156// Memory-to-memory comparison.
1157let mayLoad = 1, Defs = [CC] in
1158  defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
1159
1160// String comparison.
1161let mayLoad = 1, Defs = [CC], Uses = [R0L] in
1162  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1163
1164// Test under mask.
1165let Defs = [CC] in {
1166  // TMxMux expands to TM[LH]x, depending on the choice of register.
1167  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1168               Requires<[FeatureHighWord]>;
1169  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1170               Requires<[FeatureHighWord]>;
1171  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1172  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1173  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1174  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1175
1176  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1177}
1178def : CompareGR64RI<TMLL, z_tm_reg, imm64ll16, subreg_l32>;
1179def : CompareGR64RI<TMLH, z_tm_reg, imm64lh16, subreg_l32>;
1180def : CompareGR64RI<TMHL, z_tm_reg, imm64hl16, subreg_h32>;
1181def : CompareGR64RI<TMHH, z_tm_reg, imm64hh16, subreg_h32>;
1182
1183//===----------------------------------------------------------------------===//
1184// Prefetch
1185//===----------------------------------------------------------------------===//
1186
1187def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1188def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1189
1190//===----------------------------------------------------------------------===//
1191// Atomic operations
1192//===----------------------------------------------------------------------===//
1193
1194def ATOMIC_SWAPW        : AtomicLoadWBinaryReg<z_atomic_swapw>;
1195def ATOMIC_SWAP_32      : AtomicLoadBinaryReg32<atomic_swap_32>;
1196def ATOMIC_SWAP_64      : AtomicLoadBinaryReg64<atomic_swap_64>;
1197
1198def ATOMIC_LOADW_AR     : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1199def ATOMIC_LOADW_AFI    : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1200def ATOMIC_LOAD_AR      : AtomicLoadBinaryReg32<atomic_load_add_32>;
1201def ATOMIC_LOAD_AHI     : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1202def ATOMIC_LOAD_AFI     : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1203def ATOMIC_LOAD_AGR     : AtomicLoadBinaryReg64<atomic_load_add_64>;
1204def ATOMIC_LOAD_AGHI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1205def ATOMIC_LOAD_AGFI    : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1206
1207def ATOMIC_LOADW_SR     : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1208def ATOMIC_LOAD_SR      : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1209def ATOMIC_LOAD_SGR     : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1210
1211def ATOMIC_LOADW_NR     : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1212def ATOMIC_LOADW_NILH   : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1213def ATOMIC_LOAD_NR      : AtomicLoadBinaryReg32<atomic_load_and_32>;
1214def ATOMIC_LOAD_NILL    : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
1215def ATOMIC_LOAD_NILH    : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
1216def ATOMIC_LOAD_NILF    : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1217def ATOMIC_LOAD_NGR     : AtomicLoadBinaryReg64<atomic_load_and_64>;
1218def ATOMIC_LOAD_NILL64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
1219def ATOMIC_LOAD_NILH64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
1220def ATOMIC_LOAD_NIHL64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
1221def ATOMIC_LOAD_NIHH64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
1222def ATOMIC_LOAD_NILF64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
1223def ATOMIC_LOAD_NIHF64  : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
1224
1225def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1226def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1227def ATOMIC_LOAD_OR      : AtomicLoadBinaryReg32<atomic_load_or_32>;
1228def ATOMIC_LOAD_OILL    : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1229def ATOMIC_LOAD_OILH    : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1230def ATOMIC_LOAD_OILF    : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1231def ATOMIC_LOAD_OGR     : AtomicLoadBinaryReg64<atomic_load_or_64>;
1232def ATOMIC_LOAD_OILL64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1233def ATOMIC_LOAD_OILH64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1234def ATOMIC_LOAD_OIHL64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1235def ATOMIC_LOAD_OIHH64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1236def ATOMIC_LOAD_OILF64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1237def ATOMIC_LOAD_OIHF64  : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1238
1239def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1240def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1241def ATOMIC_LOAD_XR      : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1242def ATOMIC_LOAD_XILF    : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1243def ATOMIC_LOAD_XGR     : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1244def ATOMIC_LOAD_XILF64  : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1245def ATOMIC_LOAD_XIHF64  : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1246
1247def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1248def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1249                                               imm32lh16c>;
1250def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1251def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1252                                                imm32ll16c>;
1253def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1254                                                imm32lh16c>;
1255def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1256def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1257def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1258                                                imm64ll16c>;
1259def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1260                                                imm64lh16c>;
1261def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1262                                                imm64hl16c>;
1263def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1264                                                imm64hh16c>;
1265def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1266                                                imm64lf32c>;
1267def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1268                                                imm64hf32c>;
1269
1270def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1271def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1272def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1273
1274def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1275def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1276def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1277
1278def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1279def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1280def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1281
1282def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1283def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1284def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1285
1286def ATOMIC_CMP_SWAPW
1287  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1288                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1289                                  uimm32:$bitsize),
1290           [(set GR32:$dst,
1291                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1292                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1293                                     uimm32:$bitsize))]> {
1294  let Defs = [CC];
1295  let mayLoad = 1;
1296  let mayStore = 1;
1297  let usesCustomInserter = 1;
1298}
1299
1300let Defs = [CC] in {
1301  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
1302  def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
1303}
1304
1305//===----------------------------------------------------------------------===//
1306// Miscellaneous Instructions.
1307//===----------------------------------------------------------------------===//
1308
1309// Extract CC into bits 29 and 28 of a register.
1310let Uses = [CC] in
1311  def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
1312
1313// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1314// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1315// when a 64-bit address is stored in a pair of access registers.
1316def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
1317                  "ear\t$R1, $R2",
1318                  [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
1319
1320// Find leftmost one, AKA count leading zeros.  The instruction actually
1321// returns a pair of GR64s, the first giving the number of leading zeros
1322// and the second giving a copy of the source with the leftmost one bit
1323// cleared.  We only use the first result here.
1324let Defs = [CC] in {
1325  def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
1326}
1327def : Pat<(ctlz GR64:$src),
1328          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
1329
1330// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
1331def : Pat<(i64 (anyext GR32:$src)),
1332          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
1333
1334// Extend GR32s and GR64s to GR128s.
1335let usesCustomInserter = 1 in {
1336  def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1337  def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
1338  def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
1339}
1340
1341// Search a block of memory for a character.
1342let mayLoad = 1, Defs = [CC], Uses = [R0L] in
1343  defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
1344
1345//===----------------------------------------------------------------------===//
1346// Peepholes.
1347//===----------------------------------------------------------------------===//
1348
1349// Use AL* for GR64 additions of unsigned 32-bit values.
1350defm : ZXB<add, GR64, ALGFR>;
1351def  : Pat<(add GR64:$src1, imm64zx32:$src2),
1352           (ALGFI GR64:$src1, imm64zx32:$src2)>;
1353def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
1354           (ALGF GR64:$src1, bdxaddr20only:$addr)>;
1355
1356// Use SL* for GR64 subtractions of unsigned 32-bit values.
1357defm : ZXB<sub, GR64, SLGFR>;
1358def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
1359           (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1360def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
1361           (SLGF GR64:$src1, bdxaddr20only:$addr)>;
1362
1363// Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
1364// for vector legalization.
1365def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid, uimm8zx4:$cc)),
1366                         (i32 31)),
1367                    (i32 31)),
1368          (Select32 (LHI -1), (LHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
1369def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, uimm8zx4:$valid,
1370                                                       uimm8zx4:$cc)))),
1371                    (i32 63)),
1372               (i32 63)),
1373          (Select64 (LGHI -1), (LGHI 0), uimm8zx4:$valid, uimm8zx4:$cc)>;
1374
1375// Peepholes for turning scalar operations into block operations.
1376defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
1377                      XCSequence, 1>;
1378defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
1379                      XCSequence, 2>;
1380defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
1381                      XCSequence, 4>;
1382defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
1383                      OCSequence, XCSequence, 1>;
1384defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
1385                      XCSequence, 2>;
1386defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
1387                      XCSequence, 4>;
1388defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
1389                      XCSequence, 8>;
1390