X86InstrInfo.cpp revision 23066288fdf4867f53f208f9aaf2952b1c049394
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/LiveVariables.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Target/TargetOptions.h"
28#include "llvm/Target/TargetAsmInfo.h"
29
30using namespace llvm;
31
32namespace {
33  cl::opt<bool>
34  NoFusing("disable-spill-fusing",
35           cl::desc("Disable fusing of spill code into instructions"));
36  cl::opt<bool>
37  PrintFailedFusing("print-failed-fuse-candidates",
38                    cl::desc("Print instructions that the allocator wants to"
39                             " fuse, but the X86 backend currently can't"),
40                    cl::Hidden);
41  cl::opt<bool>
42  ReMatPICStubLoad("remat-pic-stub-load",
43                   cl::desc("Re-materialize load from stub in PIC mode"),
44                   cl::init(false), cl::Hidden);
45}
46
47X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
48  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
49    TM(tm), RI(tm, *this) {
50  SmallVector<unsigned,16> AmbEntries;
51  static const unsigned OpTbl2Addr[][2] = {
52    { X86::ADC32ri,     X86::ADC32mi },
53    { X86::ADC32ri8,    X86::ADC32mi8 },
54    { X86::ADC32rr,     X86::ADC32mr },
55    { X86::ADC64ri32,   X86::ADC64mi32 },
56    { X86::ADC64ri8,    X86::ADC64mi8 },
57    { X86::ADC64rr,     X86::ADC64mr },
58    { X86::ADD16ri,     X86::ADD16mi },
59    { X86::ADD16ri8,    X86::ADD16mi8 },
60    { X86::ADD16rr,     X86::ADD16mr },
61    { X86::ADD32ri,     X86::ADD32mi },
62    { X86::ADD32ri8,    X86::ADD32mi8 },
63    { X86::ADD32rr,     X86::ADD32mr },
64    { X86::ADD64ri32,   X86::ADD64mi32 },
65    { X86::ADD64ri8,    X86::ADD64mi8 },
66    { X86::ADD64rr,     X86::ADD64mr },
67    { X86::ADD8ri,      X86::ADD8mi },
68    { X86::ADD8rr,      X86::ADD8mr },
69    { X86::AND16ri,     X86::AND16mi },
70    { X86::AND16ri8,    X86::AND16mi8 },
71    { X86::AND16rr,     X86::AND16mr },
72    { X86::AND32ri,     X86::AND32mi },
73    { X86::AND32ri8,    X86::AND32mi8 },
74    { X86::AND32rr,     X86::AND32mr },
75    { X86::AND64ri32,   X86::AND64mi32 },
76    { X86::AND64ri8,    X86::AND64mi8 },
77    { X86::AND64rr,     X86::AND64mr },
78    { X86::AND8ri,      X86::AND8mi },
79    { X86::AND8rr,      X86::AND8mr },
80    { X86::DEC16r,      X86::DEC16m },
81    { X86::DEC32r,      X86::DEC32m },
82    { X86::DEC64_16r,   X86::DEC64_16m },
83    { X86::DEC64_32r,   X86::DEC64_32m },
84    { X86::DEC64r,      X86::DEC64m },
85    { X86::DEC8r,       X86::DEC8m },
86    { X86::INC16r,      X86::INC16m },
87    { X86::INC32r,      X86::INC32m },
88    { X86::INC64_16r,   X86::INC64_16m },
89    { X86::INC64_32r,   X86::INC64_32m },
90    { X86::INC64r,      X86::INC64m },
91    { X86::INC8r,       X86::INC8m },
92    { X86::NEG16r,      X86::NEG16m },
93    { X86::NEG32r,      X86::NEG32m },
94    { X86::NEG64r,      X86::NEG64m },
95    { X86::NEG8r,       X86::NEG8m },
96    { X86::NOT16r,      X86::NOT16m },
97    { X86::NOT32r,      X86::NOT32m },
98    { X86::NOT64r,      X86::NOT64m },
99    { X86::NOT8r,       X86::NOT8m },
100    { X86::OR16ri,      X86::OR16mi },
101    { X86::OR16ri8,     X86::OR16mi8 },
102    { X86::OR16rr,      X86::OR16mr },
103    { X86::OR32ri,      X86::OR32mi },
104    { X86::OR32ri8,     X86::OR32mi8 },
105    { X86::OR32rr,      X86::OR32mr },
106    { X86::OR64ri32,    X86::OR64mi32 },
107    { X86::OR64ri8,     X86::OR64mi8 },
108    { X86::OR64rr,      X86::OR64mr },
109    { X86::OR8ri,       X86::OR8mi },
110    { X86::OR8rr,       X86::OR8mr },
111    { X86::ROL16r1,     X86::ROL16m1 },
112    { X86::ROL16rCL,    X86::ROL16mCL },
113    { X86::ROL16ri,     X86::ROL16mi },
114    { X86::ROL32r1,     X86::ROL32m1 },
115    { X86::ROL32rCL,    X86::ROL32mCL },
116    { X86::ROL32ri,     X86::ROL32mi },
117    { X86::ROL64r1,     X86::ROL64m1 },
118    { X86::ROL64rCL,    X86::ROL64mCL },
119    { X86::ROL64ri,     X86::ROL64mi },
120    { X86::ROL8r1,      X86::ROL8m1 },
121    { X86::ROL8rCL,     X86::ROL8mCL },
122    { X86::ROL8ri,      X86::ROL8mi },
123    { X86::ROR16r1,     X86::ROR16m1 },
124    { X86::ROR16rCL,    X86::ROR16mCL },
125    { X86::ROR16ri,     X86::ROR16mi },
126    { X86::ROR32r1,     X86::ROR32m1 },
127    { X86::ROR32rCL,    X86::ROR32mCL },
128    { X86::ROR32ri,     X86::ROR32mi },
129    { X86::ROR64r1,     X86::ROR64m1 },
130    { X86::ROR64rCL,    X86::ROR64mCL },
131    { X86::ROR64ri,     X86::ROR64mi },
132    { X86::ROR8r1,      X86::ROR8m1 },
133    { X86::ROR8rCL,     X86::ROR8mCL },
134    { X86::ROR8ri,      X86::ROR8mi },
135    { X86::SAR16r1,     X86::SAR16m1 },
136    { X86::SAR16rCL,    X86::SAR16mCL },
137    { X86::SAR16ri,     X86::SAR16mi },
138    { X86::SAR32r1,     X86::SAR32m1 },
139    { X86::SAR32rCL,    X86::SAR32mCL },
140    { X86::SAR32ri,     X86::SAR32mi },
141    { X86::SAR64r1,     X86::SAR64m1 },
142    { X86::SAR64rCL,    X86::SAR64mCL },
143    { X86::SAR64ri,     X86::SAR64mi },
144    { X86::SAR8r1,      X86::SAR8m1 },
145    { X86::SAR8rCL,     X86::SAR8mCL },
146    { X86::SAR8ri,      X86::SAR8mi },
147    { X86::SBB32ri,     X86::SBB32mi },
148    { X86::SBB32ri8,    X86::SBB32mi8 },
149    { X86::SBB32rr,     X86::SBB32mr },
150    { X86::SBB64ri32,   X86::SBB64mi32 },
151    { X86::SBB64ri8,    X86::SBB64mi8 },
152    { X86::SBB64rr,     X86::SBB64mr },
153    { X86::SHL16rCL,    X86::SHL16mCL },
154    { X86::SHL16ri,     X86::SHL16mi },
155    { X86::SHL32rCL,    X86::SHL32mCL },
156    { X86::SHL32ri,     X86::SHL32mi },
157    { X86::SHL64rCL,    X86::SHL64mCL },
158    { X86::SHL64ri,     X86::SHL64mi },
159    { X86::SHL8rCL,     X86::SHL8mCL },
160    { X86::SHL8ri,      X86::SHL8mi },
161    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
162    { X86::SHLD16rri8,  X86::SHLD16mri8 },
163    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
164    { X86::SHLD32rri8,  X86::SHLD32mri8 },
165    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
166    { X86::SHLD64rri8,  X86::SHLD64mri8 },
167    { X86::SHR16r1,     X86::SHR16m1 },
168    { X86::SHR16rCL,    X86::SHR16mCL },
169    { X86::SHR16ri,     X86::SHR16mi },
170    { X86::SHR32r1,     X86::SHR32m1 },
171    { X86::SHR32rCL,    X86::SHR32mCL },
172    { X86::SHR32ri,     X86::SHR32mi },
173    { X86::SHR64r1,     X86::SHR64m1 },
174    { X86::SHR64rCL,    X86::SHR64mCL },
175    { X86::SHR64ri,     X86::SHR64mi },
176    { X86::SHR8r1,      X86::SHR8m1 },
177    { X86::SHR8rCL,     X86::SHR8mCL },
178    { X86::SHR8ri,      X86::SHR8mi },
179    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
180    { X86::SHRD16rri8,  X86::SHRD16mri8 },
181    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
182    { X86::SHRD32rri8,  X86::SHRD32mri8 },
183    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
184    { X86::SHRD64rri8,  X86::SHRD64mri8 },
185    { X86::SUB16ri,     X86::SUB16mi },
186    { X86::SUB16ri8,    X86::SUB16mi8 },
187    { X86::SUB16rr,     X86::SUB16mr },
188    { X86::SUB32ri,     X86::SUB32mi },
189    { X86::SUB32ri8,    X86::SUB32mi8 },
190    { X86::SUB32rr,     X86::SUB32mr },
191    { X86::SUB64ri32,   X86::SUB64mi32 },
192    { X86::SUB64ri8,    X86::SUB64mi8 },
193    { X86::SUB64rr,     X86::SUB64mr },
194    { X86::SUB8ri,      X86::SUB8mi },
195    { X86::SUB8rr,      X86::SUB8mr },
196    { X86::XOR16ri,     X86::XOR16mi },
197    { X86::XOR16ri8,    X86::XOR16mi8 },
198    { X86::XOR16rr,     X86::XOR16mr },
199    { X86::XOR32ri,     X86::XOR32mi },
200    { X86::XOR32ri8,    X86::XOR32mi8 },
201    { X86::XOR32rr,     X86::XOR32mr },
202    { X86::XOR64ri32,   X86::XOR64mi32 },
203    { X86::XOR64ri8,    X86::XOR64mi8 },
204    { X86::XOR64rr,     X86::XOR64mr },
205    { X86::XOR8ri,      X86::XOR8mi },
206    { X86::XOR8rr,      X86::XOR8mr }
207  };
208
209  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210    unsigned RegOp = OpTbl2Addr[i][0];
211    unsigned MemOp = OpTbl2Addr[i][1];
212    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
213                                                     MemOp)).second)
214      assert(false && "Duplicated entries?");
215    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
216    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
217                                                std::make_pair(RegOp,
218                                                              AuxInfo))).second)
219      AmbEntries.push_back(MemOp);
220  }
221
222  // If the third value is 1, then it's folding either a load or a store.
223  static const unsigned OpTbl0[][3] = {
224    { X86::CALL32r,     X86::CALL32m, 1 },
225    { X86::CALL64r,     X86::CALL64m, 1 },
226    { X86::CMP16ri,     X86::CMP16mi, 1 },
227    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
228    { X86::CMP16rr,     X86::CMP16mr, 1 },
229    { X86::CMP32ri,     X86::CMP32mi, 1 },
230    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
231    { X86::CMP32rr,     X86::CMP32mr, 1 },
232    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
233    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
234    { X86::CMP64rr,     X86::CMP64mr, 1 },
235    { X86::CMP8ri,      X86::CMP8mi, 1 },
236    { X86::CMP8rr,      X86::CMP8mr, 1 },
237    { X86::DIV16r,      X86::DIV16m, 1 },
238    { X86::DIV32r,      X86::DIV32m, 1 },
239    { X86::DIV64r,      X86::DIV64m, 1 },
240    { X86::DIV8r,       X86::DIV8m, 1 },
241    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
242    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
243    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
244    { X86::IDIV16r,     X86::IDIV16m, 1 },
245    { X86::IDIV32r,     X86::IDIV32m, 1 },
246    { X86::IDIV64r,     X86::IDIV64m, 1 },
247    { X86::IDIV8r,      X86::IDIV8m, 1 },
248    { X86::IMUL16r,     X86::IMUL16m, 1 },
249    { X86::IMUL32r,     X86::IMUL32m, 1 },
250    { X86::IMUL64r,     X86::IMUL64m, 1 },
251    { X86::IMUL8r,      X86::IMUL8m, 1 },
252    { X86::JMP32r,      X86::JMP32m, 1 },
253    { X86::JMP64r,      X86::JMP64m, 1 },
254    { X86::MOV16ri,     X86::MOV16mi, 0 },
255    { X86::MOV16rr,     X86::MOV16mr, 0 },
256    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
257    { X86::MOV32ri,     X86::MOV32mi, 0 },
258    { X86::MOV32rr,     X86::MOV32mr, 0 },
259    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
260    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
261    { X86::MOV64rr,     X86::MOV64mr, 0 },
262    { X86::MOV8ri,      X86::MOV8mi, 0 },
263    { X86::MOV8rr,      X86::MOV8mr, 0 },
264    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
265    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
266    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
267    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
268    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
269    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
270    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
271    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
272    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
273    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
274    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
275    { X86::MUL16r,      X86::MUL16m, 1 },
276    { X86::MUL32r,      X86::MUL32m, 1 },
277    { X86::MUL64r,      X86::MUL64m, 1 },
278    { X86::MUL8r,       X86::MUL8m, 1 },
279    { X86::SETAEr,      X86::SETAEm, 0 },
280    { X86::SETAr,       X86::SETAm, 0 },
281    { X86::SETBEr,      X86::SETBEm, 0 },
282    { X86::SETBr,       X86::SETBm, 0 },
283    { X86::SETEr,       X86::SETEm, 0 },
284    { X86::SETGEr,      X86::SETGEm, 0 },
285    { X86::SETGr,       X86::SETGm, 0 },
286    { X86::SETLEr,      X86::SETLEm, 0 },
287    { X86::SETLr,       X86::SETLm, 0 },
288    { X86::SETNEr,      X86::SETNEm, 0 },
289    { X86::SETNPr,      X86::SETNPm, 0 },
290    { X86::SETNSr,      X86::SETNSm, 0 },
291    { X86::SETPr,       X86::SETPm, 0 },
292    { X86::SETSr,       X86::SETSm, 0 },
293    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
294    { X86::TEST16ri,    X86::TEST16mi, 1 },
295    { X86::TEST32ri,    X86::TEST32mi, 1 },
296    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
297    { X86::TEST8ri,     X86::TEST8mi, 1 }
298  };
299
300  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
301    unsigned RegOp = OpTbl0[i][0];
302    unsigned MemOp = OpTbl0[i][1];
303    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
304                                                 MemOp)).second)
305      assert(false && "Duplicated entries?");
306    unsigned FoldedLoad = OpTbl0[i][2];
307    // Index 0, folded load or store.
308    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
309    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
310      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
311                                     std::make_pair(RegOp, AuxInfo))).second)
312        AmbEntries.push_back(MemOp);
313  }
314
315  static const unsigned OpTbl1[][2] = {
316    { X86::CMP16rr,         X86::CMP16rm },
317    { X86::CMP32rr,         X86::CMP32rm },
318    { X86::CMP64rr,         X86::CMP64rm },
319    { X86::CMP8rr,          X86::CMP8rm },
320    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
321    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
322    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
323    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
324    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
325    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
326    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
327    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
328    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
329    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
330    { X86::FsMOVAPDrr,      X86::MOVSDrm },
331    { X86::FsMOVAPSrr,      X86::MOVSSrm },
332    { X86::IMUL16rri,       X86::IMUL16rmi },
333    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
334    { X86::IMUL32rri,       X86::IMUL32rmi },
335    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
336    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
337    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
338    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
339    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
340    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
341    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
342    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
343    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
344    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
345    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
346    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
347    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
348    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
349    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
350    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
351    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
352    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
353    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
354    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
355    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
356    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
357    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
358    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
359    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
360    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
361    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
362    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
363    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
364    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
365    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
366    { X86::MOV16rr,         X86::MOV16rm },
367    { X86::MOV16to16_,      X86::MOV16_rm },
368    { X86::MOV32rr,         X86::MOV32rm },
369    { X86::MOV32to32_,      X86::MOV32_rm },
370    { X86::MOV64rr,         X86::MOV64rm },
371    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
372    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
373    { X86::MOV8rr,          X86::MOV8rm },
374    { X86::MOVAPDrr,        X86::MOVAPDrm },
375    { X86::MOVAPSrr,        X86::MOVAPSrm },
376    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
377    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
378    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
379    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
380    { X86::MOVSDrr,         X86::MOVSDrm },
381    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
382    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
383    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
384    { X86::MOVSSrr,         X86::MOVSSrm },
385    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
386    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
387    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
388    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
389    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
390    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
391    { X86::MOVUPDrr,        X86::MOVUPDrm },
392    { X86::MOVUPSrr,        X86::MOVUPSrm },
393    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
394    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
395    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
396    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
397    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
398    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
399    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
400    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
401    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
402    { X86::PSHUFDri,        X86::PSHUFDmi },
403    { X86::PSHUFHWri,       X86::PSHUFHWmi },
404    { X86::PSHUFLWri,       X86::PSHUFLWmi },
405    { X86::RCPPSr,          X86::RCPPSm },
406    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
407    { X86::RSQRTPSr,        X86::RSQRTPSm },
408    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
409    { X86::RSQRTSSr,        X86::RSQRTSSm },
410    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
411    { X86::SQRTPDr,         X86::SQRTPDm },
412    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
413    { X86::SQRTPSr,         X86::SQRTPSm },
414    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
415    { X86::SQRTSDr,         X86::SQRTSDm },
416    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
417    { X86::SQRTSSr,         X86::SQRTSSm },
418    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
419    { X86::TEST16rr,        X86::TEST16rm },
420    { X86::TEST32rr,        X86::TEST32rm },
421    { X86::TEST64rr,        X86::TEST64rm },
422    { X86::TEST8rr,         X86::TEST8rm },
423    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
424    { X86::UCOMISDrr,       X86::UCOMISDrm },
425    { X86::UCOMISSrr,       X86::UCOMISSrm }
426  };
427
428  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
429    unsigned RegOp = OpTbl1[i][0];
430    unsigned MemOp = OpTbl1[i][1];
431    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
432                                                 MemOp)).second)
433      assert(false && "Duplicated entries?");
434    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
435    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
436      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
437                                     std::make_pair(RegOp, AuxInfo))).second)
438        AmbEntries.push_back(MemOp);
439  }
440
441  static const unsigned OpTbl2[][2] = {
442    { X86::ADC32rr,         X86::ADC32rm },
443    { X86::ADC64rr,         X86::ADC64rm },
444    { X86::ADD16rr,         X86::ADD16rm },
445    { X86::ADD32rr,         X86::ADD32rm },
446    { X86::ADD64rr,         X86::ADD64rm },
447    { X86::ADD8rr,          X86::ADD8rm },
448    { X86::ADDPDrr,         X86::ADDPDrm },
449    { X86::ADDPSrr,         X86::ADDPSrm },
450    { X86::ADDSDrr,         X86::ADDSDrm },
451    { X86::ADDSSrr,         X86::ADDSSrm },
452    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
453    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
454    { X86::AND16rr,         X86::AND16rm },
455    { X86::AND32rr,         X86::AND32rm },
456    { X86::AND64rr,         X86::AND64rm },
457    { X86::AND8rr,          X86::AND8rm },
458    { X86::ANDNPDrr,        X86::ANDNPDrm },
459    { X86::ANDNPSrr,        X86::ANDNPSrm },
460    { X86::ANDPDrr,         X86::ANDPDrm },
461    { X86::ANDPSrr,         X86::ANDPSrm },
462    { X86::CMOVA16rr,       X86::CMOVA16rm },
463    { X86::CMOVA32rr,       X86::CMOVA32rm },
464    { X86::CMOVA64rr,       X86::CMOVA64rm },
465    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
466    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
467    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
468    { X86::CMOVB16rr,       X86::CMOVB16rm },
469    { X86::CMOVB32rr,       X86::CMOVB32rm },
470    { X86::CMOVB64rr,       X86::CMOVB64rm },
471    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
472    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
473    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
474    { X86::CMOVE16rr,       X86::CMOVE16rm },
475    { X86::CMOVE32rr,       X86::CMOVE32rm },
476    { X86::CMOVE64rr,       X86::CMOVE64rm },
477    { X86::CMOVG16rr,       X86::CMOVG16rm },
478    { X86::CMOVG32rr,       X86::CMOVG32rm },
479    { X86::CMOVG64rr,       X86::CMOVG64rm },
480    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
481    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
482    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
483    { X86::CMOVL16rr,       X86::CMOVL16rm },
484    { X86::CMOVL32rr,       X86::CMOVL32rm },
485    { X86::CMOVL64rr,       X86::CMOVL64rm },
486    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
487    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
488    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
489    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
490    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
491    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
492    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
493    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
494    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
495    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
496    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
497    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
498    { X86::CMOVP16rr,       X86::CMOVP16rm },
499    { X86::CMOVP32rr,       X86::CMOVP32rm },
500    { X86::CMOVP64rr,       X86::CMOVP64rm },
501    { X86::CMOVS16rr,       X86::CMOVS16rm },
502    { X86::CMOVS32rr,       X86::CMOVS32rm },
503    { X86::CMOVS64rr,       X86::CMOVS64rm },
504    { X86::CMPPDrri,        X86::CMPPDrmi },
505    { X86::CMPPSrri,        X86::CMPPSrmi },
506    { X86::CMPSDrr,         X86::CMPSDrm },
507    { X86::CMPSSrr,         X86::CMPSSrm },
508    { X86::DIVPDrr,         X86::DIVPDrm },
509    { X86::DIVPSrr,         X86::DIVPSrm },
510    { X86::DIVSDrr,         X86::DIVSDrm },
511    { X86::DIVSSrr,         X86::DIVSSrm },
512    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
513    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
514    { X86::FsANDPDrr,       X86::FsANDPDrm },
515    { X86::FsANDPSrr,       X86::FsANDPSrm },
516    { X86::FsORPDrr,        X86::FsORPDrm },
517    { X86::FsORPSrr,        X86::FsORPSrm },
518    { X86::FsXORPDrr,       X86::FsXORPDrm },
519    { X86::FsXORPSrr,       X86::FsXORPSrm },
520    { X86::HADDPDrr,        X86::HADDPDrm },
521    { X86::HADDPSrr,        X86::HADDPSrm },
522    { X86::HSUBPDrr,        X86::HSUBPDrm },
523    { X86::HSUBPSrr,        X86::HSUBPSrm },
524    { X86::IMUL16rr,        X86::IMUL16rm },
525    { X86::IMUL32rr,        X86::IMUL32rm },
526    { X86::IMUL64rr,        X86::IMUL64rm },
527    { X86::MAXPDrr,         X86::MAXPDrm },
528    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
529    { X86::MAXPSrr,         X86::MAXPSrm },
530    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
531    { X86::MAXSDrr,         X86::MAXSDrm },
532    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
533    { X86::MAXSSrr,         X86::MAXSSrm },
534    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
535    { X86::MINPDrr,         X86::MINPDrm },
536    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
537    { X86::MINPSrr,         X86::MINPSrm },
538    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
539    { X86::MINSDrr,         X86::MINSDrm },
540    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
541    { X86::MINSSrr,         X86::MINSSrm },
542    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
543    { X86::MULPDrr,         X86::MULPDrm },
544    { X86::MULPSrr,         X86::MULPSrm },
545    { X86::MULSDrr,         X86::MULSDrm },
546    { X86::MULSSrr,         X86::MULSSrm },
547    { X86::OR16rr,          X86::OR16rm },
548    { X86::OR32rr,          X86::OR32rm },
549    { X86::OR64rr,          X86::OR64rm },
550    { X86::OR8rr,           X86::OR8rm },
551    { X86::ORPDrr,          X86::ORPDrm },
552    { X86::ORPSrr,          X86::ORPSrm },
553    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
554    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
555    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
556    { X86::PADDBrr,         X86::PADDBrm },
557    { X86::PADDDrr,         X86::PADDDrm },
558    { X86::PADDQrr,         X86::PADDQrm },
559    { X86::PADDSBrr,        X86::PADDSBrm },
560    { X86::PADDSWrr,        X86::PADDSWrm },
561    { X86::PADDWrr,         X86::PADDWrm },
562    { X86::PANDNrr,         X86::PANDNrm },
563    { X86::PANDrr,          X86::PANDrm },
564    { X86::PAVGBrr,         X86::PAVGBrm },
565    { X86::PAVGWrr,         X86::PAVGWrm },
566    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
567    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
568    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
569    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
570    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
571    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
572    { X86::PINSRWrri,       X86::PINSRWrmi },
573    { X86::PMADDWDrr,       X86::PMADDWDrm },
574    { X86::PMAXSWrr,        X86::PMAXSWrm },
575    { X86::PMAXUBrr,        X86::PMAXUBrm },
576    { X86::PMINSWrr,        X86::PMINSWrm },
577    { X86::PMINUBrr,        X86::PMINUBrm },
578    { X86::PMULDQrr,        X86::PMULDQrm },
579    { X86::PMULDQrr_int,    X86::PMULDQrm_int },
580    { X86::PMULHUWrr,       X86::PMULHUWrm },
581    { X86::PMULHWrr,        X86::PMULHWrm },
582    { X86::PMULLDrr,        X86::PMULLDrm },
583    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
584    { X86::PMULLWrr,        X86::PMULLWrm },
585    { X86::PMULUDQrr,       X86::PMULUDQrm },
586    { X86::PORrr,           X86::PORrm },
587    { X86::PSADBWrr,        X86::PSADBWrm },
588    { X86::PSLLDrr,         X86::PSLLDrm },
589    { X86::PSLLQrr,         X86::PSLLQrm },
590    { X86::PSLLWrr,         X86::PSLLWrm },
591    { X86::PSRADrr,         X86::PSRADrm },
592    { X86::PSRAWrr,         X86::PSRAWrm },
593    { X86::PSRLDrr,         X86::PSRLDrm },
594    { X86::PSRLQrr,         X86::PSRLQrm },
595    { X86::PSRLWrr,         X86::PSRLWrm },
596    { X86::PSUBBrr,         X86::PSUBBrm },
597    { X86::PSUBDrr,         X86::PSUBDrm },
598    { X86::PSUBSBrr,        X86::PSUBSBrm },
599    { X86::PSUBSWrr,        X86::PSUBSWrm },
600    { X86::PSUBWrr,         X86::PSUBWrm },
601    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
602    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
603    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
604    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
605    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
606    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
607    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
608    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
609    { X86::PXORrr,          X86::PXORrm },
610    { X86::SBB32rr,         X86::SBB32rm },
611    { X86::SBB64rr,         X86::SBB64rm },
612    { X86::SHUFPDrri,       X86::SHUFPDrmi },
613    { X86::SHUFPSrri,       X86::SHUFPSrmi },
614    { X86::SUB16rr,         X86::SUB16rm },
615    { X86::SUB32rr,         X86::SUB32rm },
616    { X86::SUB64rr,         X86::SUB64rm },
617    { X86::SUB8rr,          X86::SUB8rm },
618    { X86::SUBPDrr,         X86::SUBPDrm },
619    { X86::SUBPSrr,         X86::SUBPSrm },
620    { X86::SUBSDrr,         X86::SUBSDrm },
621    { X86::SUBSSrr,         X86::SUBSSrm },
622    // FIXME: TEST*rr -> swapped operand of TEST*mr.
623    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
624    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
625    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
626    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
627    { X86::XOR16rr,         X86::XOR16rm },
628    { X86::XOR32rr,         X86::XOR32rm },
629    { X86::XOR64rr,         X86::XOR64rm },
630    { X86::XOR8rr,          X86::XOR8rm },
631    { X86::XORPDrr,         X86::XORPDrm },
632    { X86::XORPSrr,         X86::XORPSrm }
633  };
634
635  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
636    unsigned RegOp = OpTbl2[i][0];
637    unsigned MemOp = OpTbl2[i][1];
638    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
639                                                 MemOp)).second)
640      assert(false && "Duplicated entries?");
641    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
642    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
643                                   std::make_pair(RegOp, AuxInfo))).second)
644      AmbEntries.push_back(MemOp);
645  }
646
647  // Remove ambiguous entries.
648  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
649}
650
651bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
652                               unsigned& sourceReg,
653                               unsigned& destReg) const {
654  switch (MI.getOpcode()) {
655  default:
656    return false;
657  case X86::MOV8rr:
658  case X86::MOV16rr:
659  case X86::MOV32rr:
660  case X86::MOV64rr:
661  case X86::MOV16to16_:
662  case X86::MOV32to32_:
663  case X86::MOVSSrr:
664  case X86::MOVSDrr:
665
666  // FP Stack register class copies
667  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
668  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
669  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
670
671  case X86::FsMOVAPSrr:
672  case X86::FsMOVAPDrr:
673  case X86::MOVAPSrr:
674  case X86::MOVAPDrr:
675  case X86::MOVSS2PSrr:
676  case X86::MOVSD2PDrr:
677  case X86::MOVPS2SSrr:
678  case X86::MOVPD2SDrr:
679  case X86::MMX_MOVD64rr:
680  case X86::MMX_MOVQ64rr:
681    assert(MI.getNumOperands() >= 2 &&
682           MI.getOperand(0).isReg() &&
683           MI.getOperand(1).isReg() &&
684           "invalid register-register move instruction");
685    sourceReg = MI.getOperand(1).getReg();
686    destReg = MI.getOperand(0).getReg();
687    return true;
688  }
689}
690
691unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
692                                           int &FrameIndex) const {
693  switch (MI->getOpcode()) {
694  default: break;
695  case X86::MOV8rm:
696  case X86::MOV16rm:
697  case X86::MOV16_rm:
698  case X86::MOV32rm:
699  case X86::MOV32_rm:
700  case X86::MOV64rm:
701  case X86::LD_Fp64m:
702  case X86::MOVSSrm:
703  case X86::MOVSDrm:
704  case X86::MOVAPSrm:
705  case X86::MOVAPDrm:
706  case X86::MMX_MOVD64rm:
707  case X86::MMX_MOVQ64rm:
708    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
709        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
710        MI->getOperand(2).getImm() == 1 &&
711        MI->getOperand(3).getReg() == 0 &&
712        MI->getOperand(4).getImm() == 0) {
713      FrameIndex = MI->getOperand(1).getIndex();
714      return MI->getOperand(0).getReg();
715    }
716    break;
717  }
718  return 0;
719}
720
721unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
722                                          int &FrameIndex) const {
723  switch (MI->getOpcode()) {
724  default: break;
725  case X86::MOV8mr:
726  case X86::MOV16mr:
727  case X86::MOV16_mr:
728  case X86::MOV32mr:
729  case X86::MOV32_mr:
730  case X86::MOV64mr:
731  case X86::ST_FpP64m:
732  case X86::MOVSSmr:
733  case X86::MOVSDmr:
734  case X86::MOVAPSmr:
735  case X86::MOVAPDmr:
736  case X86::MMX_MOVD64mr:
737  case X86::MMX_MOVQ64mr:
738  case X86::MMX_MOVNTQmr:
739    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
740        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
741        MI->getOperand(1).getImm() == 1 &&
742        MI->getOperand(2).getReg() == 0 &&
743        MI->getOperand(3).getImm() == 0) {
744      FrameIndex = MI->getOperand(0).getIndex();
745      return MI->getOperand(4).getReg();
746    }
747    break;
748  }
749  return 0;
750}
751
752
753/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
754/// X86::MOVPC32r.
755static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
756  bool isPICBase = false;
757  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
758         E = MRI.def_end(); I != E; ++I) {
759    MachineInstr *DefMI = I.getOperand().getParent();
760    if (DefMI->getOpcode() != X86::MOVPC32r)
761      return false;
762    assert(!isPICBase && "More than one PIC base?");
763    isPICBase = true;
764  }
765  return isPICBase;
766}
767
768/// isGVStub - Return true if the GV requires an extra load to get the
769/// real address.
770static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
771  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
772}
773
774bool
775X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
776  switch (MI->getOpcode()) {
777  default: break;
778    case X86::MOV8rm:
779    case X86::MOV16rm:
780    case X86::MOV16_rm:
781    case X86::MOV32rm:
782    case X86::MOV32_rm:
783    case X86::MOV64rm:
784    case X86::LD_Fp64m:
785    case X86::MOVSSrm:
786    case X86::MOVSDrm:
787    case X86::MOVAPSrm:
788    case X86::MOVAPDrm:
789    case X86::MMX_MOVD64rm:
790    case X86::MMX_MOVQ64rm: {
791      // Loads from constant pools are trivially rematerializable.
792      if (MI->getOperand(1).isReg() &&
793          MI->getOperand(2).isImm() &&
794          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
795          (MI->getOperand(4).isCPI() ||
796           (MI->getOperand(4).isGlobal() &&
797            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
798        unsigned BaseReg = MI->getOperand(1).getReg();
799        if (BaseReg == 0)
800          return true;
801        // Allow re-materialization of PIC load.
802        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
803          return false;
804        const MachineFunction &MF = *MI->getParent()->getParent();
805        const MachineRegisterInfo &MRI = MF.getRegInfo();
806        bool isPICBase = false;
807        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
808               E = MRI.def_end(); I != E; ++I) {
809          MachineInstr *DefMI = I.getOperand().getParent();
810          if (DefMI->getOpcode() != X86::MOVPC32r)
811            return false;
812          assert(!isPICBase && "More than one PIC base?");
813          isPICBase = true;
814        }
815        return isPICBase;
816      }
817      return false;
818    }
819
820     case X86::LEA32r:
821     case X86::LEA64r: {
822       if (MI->getOperand(2).isImm() &&
823           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
824           !MI->getOperand(4).isReg()) {
825         // lea fi#, lea GV, etc. are all rematerializable.
826         if (!MI->getOperand(1).isReg())
827           return true;
828         unsigned BaseReg = MI->getOperand(1).getReg();
829         if (BaseReg == 0)
830           return true;
831         // Allow re-materialization of lea PICBase + x.
832         const MachineFunction &MF = *MI->getParent()->getParent();
833         const MachineRegisterInfo &MRI = MF.getRegInfo();
834         return regIsPICBase(BaseReg, MRI);
835       }
836       return false;
837     }
838  }
839
840  // All other instructions marked M_REMATERIALIZABLE are always trivially
841  // rematerializable.
842  return true;
843}
844
845/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
846/// would clobber the EFLAGS condition register. Note the result may be
847/// conservative. If it cannot definitely determine the safety after visiting
848/// two instructions it assumes it's not safe.
849static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
850                                  MachineBasicBlock::iterator I) {
851  // It's always safe to clobber EFLAGS at the end of a block.
852  if (I == MBB.end())
853    return true;
854
855  // For compile time consideration, if we are not able to determine the
856  // safety after visiting 2 instructions, we will assume it's not safe.
857  for (unsigned i = 0; i < 2; ++i) {
858    bool SeenDef = false;
859    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
860      MachineOperand &MO = I->getOperand(j);
861      if (!MO.isReg())
862        continue;
863      if (MO.getReg() == X86::EFLAGS) {
864        if (MO.isUse())
865          return false;
866        SeenDef = true;
867      }
868    }
869
870    if (SeenDef)
871      // This instruction defines EFLAGS, no need to look any further.
872      return true;
873    ++I;
874
875    // If we make it to the end of the block, it's safe to clobber EFLAGS.
876    if (I == MBB.end())
877      return true;
878  }
879
880  // Conservative answer.
881  return false;
882}
883
884void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
885                                 MachineBasicBlock::iterator I,
886                                 unsigned DestReg,
887                                 const MachineInstr *Orig) const {
888  unsigned SubIdx = Orig->getOperand(0).isReg()
889    ? Orig->getOperand(0).getSubReg() : 0;
890  bool ChangeSubIdx = SubIdx != 0;
891  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
892    DestReg = RI.getSubReg(DestReg, SubIdx);
893    SubIdx = 0;
894  }
895
896  // MOV32r0 etc. are implemented with xor which clobbers condition code.
897  // Re-materialize them as movri instructions to avoid side effects.
898  bool Emitted = false;
899  switch (Orig->getOpcode()) {
900  default: break;
901  case X86::MOV8r0:
902  case X86::MOV16r0:
903  case X86::MOV32r0:
904  case X86::MOV64r0: {
905    if (!isSafeToClobberEFLAGS(MBB, I)) {
906      unsigned Opc = 0;
907      switch (Orig->getOpcode()) {
908      default: break;
909      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
910      case X86::MOV16r0: Opc = X86::MOV16ri; break;
911      case X86::MOV32r0: Opc = X86::MOV32ri; break;
912      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
913      }
914      BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
915      Emitted = true;
916    }
917    break;
918  }
919  }
920
921  if (!Emitted) {
922    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
923    MI->getOperand(0).setReg(DestReg);
924    MBB.insert(I, MI);
925  }
926
927  if (ChangeSubIdx) {
928    MachineInstr *NewMI = prior(I);
929    NewMI->getOperand(0).setSubReg(SubIdx);
930  }
931}
932
933/// isInvariantLoad - Return true if the specified instruction (which is marked
934/// mayLoad) is loading from a location whose value is invariant across the
935/// function.  For example, loading a value from the constant pool or from
936/// from the argument area of a function if it does not change.  This should
937/// only return true of *all* loads the instruction does are invariant (if it
938/// does multiple loads).
939bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
940  // This code cares about loads from three cases: constant pool entries,
941  // invariant argument slots, and global stubs.  In order to handle these cases
942  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
943  // operand and base our analysis on it.  This is safe because the address of
944  // none of these three cases is ever used as anything other than a load base
945  // and X86 doesn't have any instructions that load from multiple places.
946
947  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
948    const MachineOperand &MO = MI->getOperand(i);
949    // Loads from constant pools are trivially invariant.
950    if (MO.isCPI())
951      return true;
952
953    if (MO.isGlobal())
954      return isGVStub(MO.getGlobal(), TM);
955
956    // If this is a load from an invariant stack slot, the load is a constant.
957    if (MO.isFI()) {
958      const MachineFrameInfo &MFI =
959        *MI->getParent()->getParent()->getFrameInfo();
960      int Idx = MO.getIndex();
961      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
962    }
963  }
964
965  // All other instances of these instructions are presumed to have other
966  // issues.
967  return false;
968}
969
970/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
971/// is not marked dead.
972static bool hasLiveCondCodeDef(MachineInstr *MI) {
973  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
974    MachineOperand &MO = MI->getOperand(i);
975    if (MO.isReg() && MO.isDef() &&
976        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
977      return true;
978    }
979  }
980  return false;
981}
982
983/// convertToThreeAddress - This method must be implemented by targets that
984/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
985/// may be able to convert a two-address instruction into a true
986/// three-address instruction on demand.  This allows the X86 target (for
987/// example) to convert ADD and SHL instructions into LEA instructions if they
988/// would require register copies due to two-addressness.
989///
990/// This method returns a null pointer if the transformation cannot be
991/// performed, otherwise it returns the new instruction.
992///
993MachineInstr *
994X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
995                                    MachineBasicBlock::iterator &MBBI,
996                                    LiveVariables *LV) const {
997  MachineInstr *MI = MBBI;
998  MachineFunction &MF = *MI->getParent()->getParent();
999  // All instructions input are two-addr instructions.  Get the known operands.
1000  unsigned Dest = MI->getOperand(0).getReg();
1001  unsigned Src = MI->getOperand(1).getReg();
1002  bool isDead = MI->getOperand(0).isDead();
1003  bool isKill = MI->getOperand(1).isKill();
1004
1005  MachineInstr *NewMI = NULL;
1006  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1007  // we have better subtarget support, enable the 16-bit LEA generation here.
1008  bool DisableLEA16 = true;
1009
1010  unsigned MIOpc = MI->getOpcode();
1011  switch (MIOpc) {
1012  case X86::SHUFPSrri: {
1013    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1014    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1015
1016    unsigned B = MI->getOperand(1).getReg();
1017    unsigned C = MI->getOperand(2).getReg();
1018    if (B != C) return 0;
1019    unsigned A = MI->getOperand(0).getReg();
1020    unsigned M = MI->getOperand(3).getImm();
1021    NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
1022      .addReg(B, false, false, isKill).addImm(M);
1023    break;
1024  }
1025  case X86::SHL64ri: {
1026    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1027    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1028    // the flags produced by a shift yet, so this is safe.
1029    unsigned ShAmt = MI->getOperand(2).getImm();
1030    if (ShAmt == 0 || ShAmt >= 4) return 0;
1031
1032    NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
1033      .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
1034    break;
1035  }
1036  case X86::SHL32ri: {
1037    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1038    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1039    // the flags produced by a shift yet, so this is safe.
1040    unsigned ShAmt = MI->getOperand(2).getImm();
1041    if (ShAmt == 0 || ShAmt >= 4) return 0;
1042
1043    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1044      X86::LEA64_32r : X86::LEA32r;
1045    NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
1046      .addReg(0).addImm(1 << ShAmt)
1047      .addReg(Src, false, false, isKill).addImm(0);
1048    break;
1049  }
1050  case X86::SHL16ri: {
1051    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1052    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1053    // the flags produced by a shift yet, so this is safe.
1054    unsigned ShAmt = MI->getOperand(2).getImm();
1055    if (ShAmt == 0 || ShAmt >= 4) return 0;
1056
1057    if (DisableLEA16) {
1058      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1059      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1060      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1061        ? X86::LEA64_32r : X86::LEA32r;
1062      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1063      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1064
1065      // Build and insert into an implicit UNDEF value. This is OK because
1066      // well be shifting and then extracting the lower 16-bits.
1067      BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1068      MachineInstr *InsMI =  BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
1069        .addReg(leaInReg).addReg(Src, false, false, isKill)
1070        .addImm(X86::SUBREG_16BIT);
1071
1072      NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
1073        .addReg(leaInReg, false, false, true).addImm(0);
1074
1075      MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
1076        .addReg(Dest, true, false, false, isDead)
1077        .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
1078      if (LV) {
1079        // Update live variables
1080        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1081        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1082        if (isKill)
1083          LV->replaceKillInstruction(Src, MI, InsMI);
1084        if (isDead)
1085          LV->replaceKillInstruction(Dest, MI, ExtMI);
1086      }
1087      return ExtMI;
1088    } else {
1089      NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
1090        .addReg(0).addImm(1 << ShAmt)
1091        .addReg(Src, false, false, isKill).addImm(0);
1092    }
1093    break;
1094  }
1095  default: {
1096    // The following opcodes also sets the condition code register(s). Only
1097    // convert them to equivalent lea if the condition code register def's
1098    // are dead!
1099    if (hasLiveCondCodeDef(MI))
1100      return 0;
1101
1102    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1103    switch (MIOpc) {
1104    default: return 0;
1105    case X86::INC64r:
1106    case X86::INC32r: {
1107      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1108      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1109        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1110      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1111                           .addReg(Dest, true, false, false, isDead),
1112                           Src, isKill, 1);
1113      break;
1114    }
1115    case X86::INC16r:
1116    case X86::INC64_16r:
1117      if (DisableLEA16) return 0;
1118      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1119      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1120                           .addReg(Dest, true, false, false, isDead),
1121                           Src, isKill, 1);
1122      break;
1123    case X86::DEC64r:
1124    case X86::DEC32r: {
1125      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1126      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1127        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1128      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1129                           .addReg(Dest, true, false, false, isDead),
1130                           Src, isKill, -1);
1131      break;
1132    }
1133    case X86::DEC16r:
1134    case X86::DEC64_16r:
1135      if (DisableLEA16) return 0;
1136      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1137      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1138                           .addReg(Dest, true, false, false, isDead),
1139                           Src, isKill, -1);
1140      break;
1141    case X86::ADD64rr:
1142    case X86::ADD32rr: {
1143      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1144      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1145        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1146      unsigned Src2 = MI->getOperand(2).getReg();
1147      bool isKill2 = MI->getOperand(2).isKill();
1148      NewMI = addRegReg(BuildMI(MF, get(Opc))
1149                        .addReg(Dest, true, false, false, isDead),
1150                        Src, isKill, Src2, isKill2);
1151      if (LV && isKill2)
1152        LV->replaceKillInstruction(Src2, MI, NewMI);
1153      break;
1154    }
1155    case X86::ADD16rr: {
1156      if (DisableLEA16) return 0;
1157      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1158      unsigned Src2 = MI->getOperand(2).getReg();
1159      bool isKill2 = MI->getOperand(2).isKill();
1160      NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
1161                        .addReg(Dest, true, false, false, isDead),
1162                        Src, isKill, Src2, isKill2);
1163      if (LV && isKill2)
1164        LV->replaceKillInstruction(Src2, MI, NewMI);
1165      break;
1166    }
1167    case X86::ADD64ri32:
1168    case X86::ADD64ri8:
1169      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1170      if (MI->getOperand(2).isImm())
1171        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
1172                             .addReg(Dest, true, false, false, isDead),
1173                             Src, isKill, MI->getOperand(2).getImm());
1174      break;
1175    case X86::ADD32ri:
1176    case X86::ADD32ri8:
1177      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1178      if (MI->getOperand(2).isImm()) {
1179        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1180        NewMI = addRegOffset(BuildMI(MF, get(Opc))
1181                             .addReg(Dest, true, false, false, isDead),
1182                             Src, isKill, MI->getOperand(2).getImm());
1183      }
1184      break;
1185    case X86::ADD16ri:
1186    case X86::ADD16ri8:
1187      if (DisableLEA16) return 0;
1188      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1189      if (MI->getOperand(2).isImm())
1190        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1191                             .addReg(Dest, true, false, false, isDead),
1192                             Src, isKill, MI->getOperand(2).getImm());
1193      break;
1194    case X86::SHL16ri:
1195      if (DisableLEA16) return 0;
1196    case X86::SHL32ri:
1197    case X86::SHL64ri: {
1198      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1199             "Unknown shl instruction!");
1200      unsigned ShAmt = MI->getOperand(2).getImm();
1201      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1202        X86AddressMode AM;
1203        AM.Scale = 1 << ShAmt;
1204        AM.IndexReg = Src;
1205        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1206          : (MIOpc == X86::SHL32ri
1207             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1208        NewMI = addFullAddress(BuildMI(MF, get(Opc))
1209                               .addReg(Dest, true, false, false, isDead), AM);
1210        if (isKill)
1211          NewMI->getOperand(3).setIsKill(true);
1212      }
1213      break;
1214    }
1215    }
1216  }
1217  }
1218
1219  if (!NewMI) return 0;
1220
1221  if (LV) {  // Update live variables
1222    if (isKill)
1223      LV->replaceKillInstruction(Src, MI, NewMI);
1224    if (isDead)
1225      LV->replaceKillInstruction(Dest, MI, NewMI);
1226  }
1227
1228  MFI->insert(MBBI, NewMI);          // Insert the new inst
1229  return NewMI;
1230}
1231
1232/// commuteInstruction - We have a few instructions that must be hacked on to
1233/// commute them.
1234///
1235MachineInstr *
1236X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1237  switch (MI->getOpcode()) {
1238  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1239  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1240  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1241  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1242  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1243  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1244    unsigned Opc;
1245    unsigned Size;
1246    switch (MI->getOpcode()) {
1247    default: assert(0 && "Unreachable!");
1248    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1249    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1250    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1251    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1252    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1253    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1254    }
1255    unsigned Amt = MI->getOperand(3).getImm();
1256    if (NewMI) {
1257      MachineFunction &MF = *MI->getParent()->getParent();
1258      MI = MF.CloneMachineInstr(MI);
1259      NewMI = false;
1260    }
1261    MI->setDesc(get(Opc));
1262    MI->getOperand(3).setImm(Size-Amt);
1263    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1264  }
1265  case X86::CMOVB16rr:
1266  case X86::CMOVB32rr:
1267  case X86::CMOVB64rr:
1268  case X86::CMOVAE16rr:
1269  case X86::CMOVAE32rr:
1270  case X86::CMOVAE64rr:
1271  case X86::CMOVE16rr:
1272  case X86::CMOVE32rr:
1273  case X86::CMOVE64rr:
1274  case X86::CMOVNE16rr:
1275  case X86::CMOVNE32rr:
1276  case X86::CMOVNE64rr:
1277  case X86::CMOVBE16rr:
1278  case X86::CMOVBE32rr:
1279  case X86::CMOVBE64rr:
1280  case X86::CMOVA16rr:
1281  case X86::CMOVA32rr:
1282  case X86::CMOVA64rr:
1283  case X86::CMOVL16rr:
1284  case X86::CMOVL32rr:
1285  case X86::CMOVL64rr:
1286  case X86::CMOVGE16rr:
1287  case X86::CMOVGE32rr:
1288  case X86::CMOVGE64rr:
1289  case X86::CMOVLE16rr:
1290  case X86::CMOVLE32rr:
1291  case X86::CMOVLE64rr:
1292  case X86::CMOVG16rr:
1293  case X86::CMOVG32rr:
1294  case X86::CMOVG64rr:
1295  case X86::CMOVS16rr:
1296  case X86::CMOVS32rr:
1297  case X86::CMOVS64rr:
1298  case X86::CMOVNS16rr:
1299  case X86::CMOVNS32rr:
1300  case X86::CMOVNS64rr:
1301  case X86::CMOVP16rr:
1302  case X86::CMOVP32rr:
1303  case X86::CMOVP64rr:
1304  case X86::CMOVNP16rr:
1305  case X86::CMOVNP32rr:
1306  case X86::CMOVNP64rr: {
1307    unsigned Opc = 0;
1308    switch (MI->getOpcode()) {
1309    default: break;
1310    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1311    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1312    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1313    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1314    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1315    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1316    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1317    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1318    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1319    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1320    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1321    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1322    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1323    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1324    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1325    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1326    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1327    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1328    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1329    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1330    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1331    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1332    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1333    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1334    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1335    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1336    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1337    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1338    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1339    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1340    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1341    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1342    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
1343    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1344    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1345    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1346    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1347    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1348    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
1349    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1350    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1351    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1352    }
1353    if (NewMI) {
1354      MachineFunction &MF = *MI->getParent()->getParent();
1355      MI = MF.CloneMachineInstr(MI);
1356      NewMI = false;
1357    }
1358    MI->setDesc(get(Opc));
1359    // Fallthrough intended.
1360  }
1361  default:
1362    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1363  }
1364}
1365
1366static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1367  switch (BrOpc) {
1368  default: return X86::COND_INVALID;
1369  case X86::JE:  return X86::COND_E;
1370  case X86::JNE: return X86::COND_NE;
1371  case X86::JL:  return X86::COND_L;
1372  case X86::JLE: return X86::COND_LE;
1373  case X86::JG:  return X86::COND_G;
1374  case X86::JGE: return X86::COND_GE;
1375  case X86::JB:  return X86::COND_B;
1376  case X86::JBE: return X86::COND_BE;
1377  case X86::JA:  return X86::COND_A;
1378  case X86::JAE: return X86::COND_AE;
1379  case X86::JS:  return X86::COND_S;
1380  case X86::JNS: return X86::COND_NS;
1381  case X86::JP:  return X86::COND_P;
1382  case X86::JNP: return X86::COND_NP;
1383  case X86::JO:  return X86::COND_O;
1384  case X86::JNO: return X86::COND_NO;
1385  }
1386}
1387
1388unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1389  switch (CC) {
1390  default: assert(0 && "Illegal condition code!");
1391  case X86::COND_E:  return X86::JE;
1392  case X86::COND_NE: return X86::JNE;
1393  case X86::COND_L:  return X86::JL;
1394  case X86::COND_LE: return X86::JLE;
1395  case X86::COND_G:  return X86::JG;
1396  case X86::COND_GE: return X86::JGE;
1397  case X86::COND_B:  return X86::JB;
1398  case X86::COND_BE: return X86::JBE;
1399  case X86::COND_A:  return X86::JA;
1400  case X86::COND_AE: return X86::JAE;
1401  case X86::COND_S:  return X86::JS;
1402  case X86::COND_NS: return X86::JNS;
1403  case X86::COND_P:  return X86::JP;
1404  case X86::COND_NP: return X86::JNP;
1405  case X86::COND_O:  return X86::JO;
1406  case X86::COND_NO: return X86::JNO;
1407  }
1408}
1409
1410/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1411/// e.g. turning COND_E to COND_NE.
1412X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1413  switch (CC) {
1414  default: assert(0 && "Illegal condition code!");
1415  case X86::COND_E:  return X86::COND_NE;
1416  case X86::COND_NE: return X86::COND_E;
1417  case X86::COND_L:  return X86::COND_GE;
1418  case X86::COND_LE: return X86::COND_G;
1419  case X86::COND_G:  return X86::COND_LE;
1420  case X86::COND_GE: return X86::COND_L;
1421  case X86::COND_B:  return X86::COND_AE;
1422  case X86::COND_BE: return X86::COND_A;
1423  case X86::COND_A:  return X86::COND_BE;
1424  case X86::COND_AE: return X86::COND_B;
1425  case X86::COND_S:  return X86::COND_NS;
1426  case X86::COND_NS: return X86::COND_S;
1427  case X86::COND_P:  return X86::COND_NP;
1428  case X86::COND_NP: return X86::COND_P;
1429  case X86::COND_O:  return X86::COND_NO;
1430  case X86::COND_NO: return X86::COND_O;
1431  }
1432}
1433
1434bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1435  const TargetInstrDesc &TID = MI->getDesc();
1436  if (!TID.isTerminator()) return false;
1437
1438  // Conditional branch is a special case.
1439  if (TID.isBranch() && !TID.isBarrier())
1440    return true;
1441  if (!TID.isPredicable())
1442    return true;
1443  return !isPredicated(MI);
1444}
1445
1446// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1447static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1448                                               const X86InstrInfo &TII) {
1449  if (MI->getOpcode() == X86::FP_REG_KILL)
1450    return false;
1451  return TII.isUnpredicatedTerminator(MI);
1452}
1453
1454bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1455                                 MachineBasicBlock *&TBB,
1456                                 MachineBasicBlock *&FBB,
1457                                 SmallVectorImpl<MachineOperand> &Cond) const {
1458  // Start from the bottom of the block and work up, examining the
1459  // terminator instructions.
1460  MachineBasicBlock::iterator I = MBB.end();
1461  while (I != MBB.begin()) {
1462    --I;
1463    // Working from the bottom, when we see a non-terminator
1464    // instruction, we're done.
1465    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1466      break;
1467    // A terminator that isn't a branch can't easily be handled
1468    // by this analysis.
1469    if (!I->getDesc().isBranch())
1470      return true;
1471    // Handle unconditional branches.
1472    if (I->getOpcode() == X86::JMP) {
1473      // If the block has any instructions after a JMP, delete them.
1474      while (next(I) != MBB.end())
1475        next(I)->eraseFromParent();
1476      Cond.clear();
1477      FBB = 0;
1478      // Delete the JMP if it's equivalent to a fall-through.
1479      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1480        TBB = 0;
1481        I->eraseFromParent();
1482        I = MBB.end();
1483        continue;
1484      }
1485      // TBB is used to indicate the unconditinal destination.
1486      TBB = I->getOperand(0).getMBB();
1487      continue;
1488    }
1489    // Handle conditional branches.
1490    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1491    if (BranchCode == X86::COND_INVALID)
1492      return true;  // Can't handle indirect branch.
1493    // Working from the bottom, handle the first conditional branch.
1494    if (Cond.empty()) {
1495      FBB = TBB;
1496      TBB = I->getOperand(0).getMBB();
1497      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1498      continue;
1499    }
1500    // Handle subsequent conditional branches. Only handle the case
1501    // where all conditional branches branch to the same destination
1502    // and their condition opcodes fit one of the special
1503    // multi-branch idioms.
1504    assert(Cond.size() == 1);
1505    assert(TBB);
1506    // Only handle the case where all conditional branches branch to
1507    // the same destination.
1508    if (TBB != I->getOperand(0).getMBB())
1509      return true;
1510    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1511    // If the conditions are the same, we can leave them alone.
1512    if (OldBranchCode == BranchCode)
1513      continue;
1514    // If they differ, see if they fit one of the known patterns.
1515    // Theoretically we could handle more patterns here, but
1516    // we shouldn't expect to see them if instruction selection
1517    // has done a reasonable job.
1518    if ((OldBranchCode == X86::COND_NP &&
1519         BranchCode == X86::COND_E) ||
1520        (OldBranchCode == X86::COND_E &&
1521         BranchCode == X86::COND_NP))
1522      BranchCode = X86::COND_NP_OR_E;
1523    else if ((OldBranchCode == X86::COND_P &&
1524              BranchCode == X86::COND_NE) ||
1525             (OldBranchCode == X86::COND_NE &&
1526              BranchCode == X86::COND_P))
1527      BranchCode = X86::COND_NE_OR_P;
1528    else
1529      return true;
1530    // Update the MachineOperand.
1531    Cond[0].setImm(BranchCode);
1532  }
1533
1534  return false;
1535}
1536
1537unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1538  MachineBasicBlock::iterator I = MBB.end();
1539  unsigned Count = 0;
1540
1541  while (I != MBB.begin()) {
1542    --I;
1543    if (I->getOpcode() != X86::JMP &&
1544        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1545      break;
1546    // Remove the branch.
1547    I->eraseFromParent();
1548    I = MBB.end();
1549    ++Count;
1550  }
1551
1552  return Count;
1553}
1554
1555static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1556                                                     const MachineOperand &MO) {
1557  if (MO.isReg())
1558    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1559                     MO.isKill(), MO.isDead(), MO.getSubReg());
1560  else if (MO.isImm())
1561    MIB = MIB.addImm(MO.getImm());
1562  else if (MO.isFI())
1563    MIB = MIB.addFrameIndex(MO.getIndex());
1564  else if (MO.isGlobal())
1565    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1566  else if (MO.isCPI())
1567    MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1568  else if (MO.isJTI())
1569    MIB = MIB.addJumpTableIndex(MO.getIndex());
1570  else if (MO.isSymbol())
1571    MIB = MIB.addExternalSymbol(MO.getSymbolName());
1572  else
1573    assert(0 && "Unknown operand for X86InstrAddOperand!");
1574
1575  return MIB;
1576}
1577
1578unsigned
1579X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1580                           MachineBasicBlock *FBB,
1581                           const SmallVectorImpl<MachineOperand> &Cond) const {
1582  // Shouldn't be a fall through.
1583  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1584  assert((Cond.size() == 1 || Cond.size() == 0) &&
1585         "X86 branch conditions have one component!");
1586
1587  if (Cond.empty()) {
1588    // Unconditional branch?
1589    assert(!FBB && "Unconditional branch with multiple successors!");
1590    BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1591    return 1;
1592  }
1593
1594  // Conditional branch.
1595  unsigned Count = 0;
1596  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1597  switch (CC) {
1598  case X86::COND_NP_OR_E:
1599    // Synthesize NP_OR_E with two branches.
1600    BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1601    ++Count;
1602    BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1603    ++Count;
1604    break;
1605  case X86::COND_NE_OR_P:
1606    // Synthesize NE_OR_P with two branches.
1607    BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1608    ++Count;
1609    BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1610    ++Count;
1611    break;
1612  default: {
1613    unsigned Opc = GetCondBranchFromCond(CC);
1614    BuildMI(&MBB, get(Opc)).addMBB(TBB);
1615    ++Count;
1616  }
1617  }
1618  if (FBB) {
1619    // Two-way Conditional branch. Insert the second branch.
1620    BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1621    ++Count;
1622  }
1623  return Count;
1624}
1625
1626bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1627                                MachineBasicBlock::iterator MI,
1628                                unsigned DestReg, unsigned SrcReg,
1629                                const TargetRegisterClass *DestRC,
1630                                const TargetRegisterClass *SrcRC) const {
1631  if (DestRC == SrcRC) {
1632    unsigned Opc;
1633    if (DestRC == &X86::GR64RegClass) {
1634      Opc = X86::MOV64rr;
1635    } else if (DestRC == &X86::GR32RegClass) {
1636      Opc = X86::MOV32rr;
1637    } else if (DestRC == &X86::GR16RegClass) {
1638      Opc = X86::MOV16rr;
1639    } else if (DestRC == &X86::GR8RegClass) {
1640      Opc = X86::MOV8rr;
1641    } else if (DestRC == &X86::GR32_RegClass) {
1642      Opc = X86::MOV32_rr;
1643    } else if (DestRC == &X86::GR16_RegClass) {
1644      Opc = X86::MOV16_rr;
1645    } else if (DestRC == &X86::RFP32RegClass) {
1646      Opc = X86::MOV_Fp3232;
1647    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1648      Opc = X86::MOV_Fp6464;
1649    } else if (DestRC == &X86::RFP80RegClass) {
1650      Opc = X86::MOV_Fp8080;
1651    } else if (DestRC == &X86::FR32RegClass) {
1652      Opc = X86::FsMOVAPSrr;
1653    } else if (DestRC == &X86::FR64RegClass) {
1654      Opc = X86::FsMOVAPDrr;
1655    } else if (DestRC == &X86::VR128RegClass) {
1656      Opc = X86::MOVAPSrr;
1657    } else if (DestRC == &X86::VR64RegClass) {
1658      Opc = X86::MMX_MOVQ64rr;
1659    } else {
1660      return false;
1661    }
1662    BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1663    return true;
1664  }
1665
1666  // Moving EFLAGS to / from another register requires a push and a pop.
1667  if (SrcRC == &X86::CCRRegClass) {
1668    if (SrcReg != X86::EFLAGS)
1669      return false;
1670    if (DestRC == &X86::GR64RegClass) {
1671      BuildMI(MBB, MI, get(X86::PUSHFQ));
1672      BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1673      return true;
1674    } else if (DestRC == &X86::GR32RegClass) {
1675      BuildMI(MBB, MI, get(X86::PUSHFD));
1676      BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1677      return true;
1678    }
1679  } else if (DestRC == &X86::CCRRegClass) {
1680    if (DestReg != X86::EFLAGS)
1681      return false;
1682    if (SrcRC == &X86::GR64RegClass) {
1683      BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1684      BuildMI(MBB, MI, get(X86::POPFQ));
1685      return true;
1686    } else if (SrcRC == &X86::GR32RegClass) {
1687      BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1688      BuildMI(MBB, MI, get(X86::POPFD));
1689      return true;
1690    }
1691  }
1692
1693  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1694  if (SrcRC == &X86::RSTRegClass) {
1695    // Copying from ST(0)/ST(1).
1696    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1697      // Can only copy from ST(0)/ST(1) right now
1698      return false;
1699    bool isST0 = SrcReg == X86::ST0;
1700    unsigned Opc;
1701    if (DestRC == &X86::RFP32RegClass)
1702      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1703    else if (DestRC == &X86::RFP64RegClass)
1704      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1705    else {
1706      if (DestRC != &X86::RFP80RegClass)
1707        return false;
1708      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1709    }
1710    BuildMI(MBB, MI, get(Opc), DestReg);
1711    return true;
1712  }
1713
1714  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1715  if (DestRC == &X86::RSTRegClass) {
1716    // Copying to ST(0).  FIXME: handle ST(1) also
1717    if (DestReg != X86::ST0)
1718      // Can only copy to TOS right now
1719      return false;
1720    unsigned Opc;
1721    if (SrcRC == &X86::RFP32RegClass)
1722      Opc = X86::FpSET_ST0_32;
1723    else if (SrcRC == &X86::RFP64RegClass)
1724      Opc = X86::FpSET_ST0_64;
1725    else {
1726      if (SrcRC != &X86::RFP80RegClass)
1727        return false;
1728      Opc = X86::FpSET_ST0_80;
1729    }
1730    BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1731    return true;
1732  }
1733
1734  // Not yet supported!
1735  return false;
1736}
1737
1738static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1739                                  bool isStackAligned) {
1740  unsigned Opc = 0;
1741  if (RC == &X86::GR64RegClass) {
1742    Opc = X86::MOV64mr;
1743  } else if (RC == &X86::GR32RegClass) {
1744    Opc = X86::MOV32mr;
1745  } else if (RC == &X86::GR16RegClass) {
1746    Opc = X86::MOV16mr;
1747  } else if (RC == &X86::GR8RegClass) {
1748    Opc = X86::MOV8mr;
1749  } else if (RC == &X86::GR32_RegClass) {
1750    Opc = X86::MOV32_mr;
1751  } else if (RC == &X86::GR16_RegClass) {
1752    Opc = X86::MOV16_mr;
1753  } else if (RC == &X86::RFP80RegClass) {
1754    Opc = X86::ST_FpP80m;   // pops
1755  } else if (RC == &X86::RFP64RegClass) {
1756    Opc = X86::ST_Fp64m;
1757  } else if (RC == &X86::RFP32RegClass) {
1758    Opc = X86::ST_Fp32m;
1759  } else if (RC == &X86::FR32RegClass) {
1760    Opc = X86::MOVSSmr;
1761  } else if (RC == &X86::FR64RegClass) {
1762    Opc = X86::MOVSDmr;
1763  } else if (RC == &X86::VR128RegClass) {
1764    // If stack is realigned we can use aligned stores.
1765    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1766  } else if (RC == &X86::VR64RegClass) {
1767    Opc = X86::MMX_MOVQ64mr;
1768  } else {
1769    assert(0 && "Unknown regclass");
1770    abort();
1771  }
1772
1773  return Opc;
1774}
1775
1776void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1777                                       MachineBasicBlock::iterator MI,
1778                                       unsigned SrcReg, bool isKill, int FrameIdx,
1779                                       const TargetRegisterClass *RC) const {
1780  const MachineFunction &MF = *MBB.getParent();
1781  bool isAligned = (RI.getStackAlignment() >= 16) ||
1782    RI.needsStackRealignment(MF);
1783  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1784  addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1785    .addReg(SrcReg, false, false, isKill);
1786}
1787
1788void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1789                                  bool isKill,
1790                                  SmallVectorImpl<MachineOperand> &Addr,
1791                                  const TargetRegisterClass *RC,
1792                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1793  bool isAligned = (RI.getStackAlignment() >= 16) ||
1794    RI.needsStackRealignment(MF);
1795  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1796  MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
1797  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1798    MIB = X86InstrAddOperand(MIB, Addr[i]);
1799  MIB.addReg(SrcReg, false, false, isKill);
1800  NewMIs.push_back(MIB);
1801}
1802
1803static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1804                                 bool isStackAligned) {
1805  unsigned Opc = 0;
1806  if (RC == &X86::GR64RegClass) {
1807    Opc = X86::MOV64rm;
1808  } else if (RC == &X86::GR32RegClass) {
1809    Opc = X86::MOV32rm;
1810  } else if (RC == &X86::GR16RegClass) {
1811    Opc = X86::MOV16rm;
1812  } else if (RC == &X86::GR8RegClass) {
1813    Opc = X86::MOV8rm;
1814  } else if (RC == &X86::GR32_RegClass) {
1815    Opc = X86::MOV32_rm;
1816  } else if (RC == &X86::GR16_RegClass) {
1817    Opc = X86::MOV16_rm;
1818  } else if (RC == &X86::RFP80RegClass) {
1819    Opc = X86::LD_Fp80m;
1820  } else if (RC == &X86::RFP64RegClass) {
1821    Opc = X86::LD_Fp64m;
1822  } else if (RC == &X86::RFP32RegClass) {
1823    Opc = X86::LD_Fp32m;
1824  } else if (RC == &X86::FR32RegClass) {
1825    Opc = X86::MOVSSrm;
1826  } else if (RC == &X86::FR64RegClass) {
1827    Opc = X86::MOVSDrm;
1828  } else if (RC == &X86::VR128RegClass) {
1829    // If stack is realigned we can use aligned loads.
1830    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1831  } else if (RC == &X86::VR64RegClass) {
1832    Opc = X86::MMX_MOVQ64rm;
1833  } else {
1834    assert(0 && "Unknown regclass");
1835    abort();
1836  }
1837
1838  return Opc;
1839}
1840
1841void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1842                                        MachineBasicBlock::iterator MI,
1843                                        unsigned DestReg, int FrameIdx,
1844                                        const TargetRegisterClass *RC) const{
1845  const MachineFunction &MF = *MBB.getParent();
1846  bool isAligned = (RI.getStackAlignment() >= 16) ||
1847    RI.needsStackRealignment(MF);
1848  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1849  addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1850}
1851
1852void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1853                                 SmallVectorImpl<MachineOperand> &Addr,
1854                                 const TargetRegisterClass *RC,
1855                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1856  bool isAligned = (RI.getStackAlignment() >= 16) ||
1857    RI.needsStackRealignment(MF);
1858  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1859  MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
1860  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1861    MIB = X86InstrAddOperand(MIB, Addr[i]);
1862  NewMIs.push_back(MIB);
1863}
1864
1865bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1866                                                MachineBasicBlock::iterator MI,
1867                                const std::vector<CalleeSavedInfo> &CSI) const {
1868  if (CSI.empty())
1869    return false;
1870
1871  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1872  unsigned SlotSize = is64Bit ? 8 : 4;
1873
1874  MachineFunction &MF = *MBB.getParent();
1875  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1876  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1877
1878  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1879  for (unsigned i = CSI.size(); i != 0; --i) {
1880    unsigned Reg = CSI[i-1].getReg();
1881    // Add the callee-saved register as live-in. It's killed at the spill.
1882    MBB.addLiveIn(Reg);
1883    BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1884  }
1885  return true;
1886}
1887
1888bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1889                                                 MachineBasicBlock::iterator MI,
1890                                const std::vector<CalleeSavedInfo> &CSI) const {
1891  if (CSI.empty())
1892    return false;
1893
1894  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1895
1896  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1897  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1898    unsigned Reg = CSI[i].getReg();
1899    BuildMI(MBB, MI, get(Opc), Reg);
1900  }
1901  return true;
1902}
1903
1904static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
1905                                     const SmallVector<MachineOperand,4> &MOs,
1906                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1907  // Create the base instruction with the memory operand as the first part.
1908  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1909  MachineInstrBuilder MIB(NewMI);
1910  unsigned NumAddrOps = MOs.size();
1911  for (unsigned i = 0; i != NumAddrOps; ++i)
1912    MIB = X86InstrAddOperand(MIB, MOs[i]);
1913  if (NumAddrOps < 4)  // FrameIndex only
1914    MIB.addImm(1).addReg(0).addImm(0);
1915
1916  // Loop over the rest of the ri operands, converting them over.
1917  unsigned NumOps = MI->getDesc().getNumOperands()-2;
1918  for (unsigned i = 0; i != NumOps; ++i) {
1919    MachineOperand &MO = MI->getOperand(i+2);
1920    MIB = X86InstrAddOperand(MIB, MO);
1921  }
1922  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1923    MachineOperand &MO = MI->getOperand(i);
1924    MIB = X86InstrAddOperand(MIB, MO);
1925  }
1926  return MIB;
1927}
1928
1929static MachineInstr *FuseInst(MachineFunction &MF,
1930                              unsigned Opcode, unsigned OpNo,
1931                              const SmallVector<MachineOperand,4> &MOs,
1932                              MachineInstr *MI, const TargetInstrInfo &TII) {
1933  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1934  MachineInstrBuilder MIB(NewMI);
1935
1936  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1937    MachineOperand &MO = MI->getOperand(i);
1938    if (i == OpNo) {
1939      assert(MO.isReg() && "Expected to fold into reg operand!");
1940      unsigned NumAddrOps = MOs.size();
1941      for (unsigned i = 0; i != NumAddrOps; ++i)
1942        MIB = X86InstrAddOperand(MIB, MOs[i]);
1943      if (NumAddrOps < 4)  // FrameIndex only
1944        MIB.addImm(1).addReg(0).addImm(0);
1945    } else {
1946      MIB = X86InstrAddOperand(MIB, MO);
1947    }
1948  }
1949  return MIB;
1950}
1951
1952static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1953                                const SmallVector<MachineOperand,4> &MOs,
1954                                MachineInstr *MI) {
1955  MachineFunction &MF = *MI->getParent()->getParent();
1956  MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
1957
1958  unsigned NumAddrOps = MOs.size();
1959  for (unsigned i = 0; i != NumAddrOps; ++i)
1960    MIB = X86InstrAddOperand(MIB, MOs[i]);
1961  if (NumAddrOps < 4)  // FrameIndex only
1962    MIB.addImm(1).addReg(0).addImm(0);
1963  return MIB.addImm(0);
1964}
1965
1966MachineInstr*
1967X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1968                                MachineInstr *MI, unsigned i,
1969                                const SmallVector<MachineOperand,4> &MOs) const{
1970  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1971  bool isTwoAddrFold = false;
1972  unsigned NumOps = MI->getDesc().getNumOperands();
1973  bool isTwoAddr = NumOps > 1 &&
1974    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
1975
1976  MachineInstr *NewMI = NULL;
1977  // Folding a memory location into the two-address part of a two-address
1978  // instruction is different than folding it other places.  It requires
1979  // replacing the *two* registers with the memory location.
1980  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1981      MI->getOperand(0).isReg() &&
1982      MI->getOperand(1).isReg() &&
1983      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1984    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1985    isTwoAddrFold = true;
1986  } else if (i == 0) { // If operand 0
1987    if (MI->getOpcode() == X86::MOV16r0)
1988      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1989    else if (MI->getOpcode() == X86::MOV32r0)
1990      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1991    else if (MI->getOpcode() == X86::MOV64r0)
1992      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1993    else if (MI->getOpcode() == X86::MOV8r0)
1994      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1995    if (NewMI)
1996      return NewMI;
1997
1998    OpcodeTablePtr = &RegOp2MemOpTable0;
1999  } else if (i == 1) {
2000    OpcodeTablePtr = &RegOp2MemOpTable1;
2001  } else if (i == 2) {
2002    OpcodeTablePtr = &RegOp2MemOpTable2;
2003  }
2004
2005  // If table selected...
2006  if (OpcodeTablePtr) {
2007    // Find the Opcode to fuse
2008    DenseMap<unsigned*, unsigned>::iterator I =
2009      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2010    if (I != OpcodeTablePtr->end()) {
2011      if (isTwoAddrFold)
2012        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2013      else
2014        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2015      return NewMI;
2016    }
2017  }
2018
2019  // No fusion
2020  if (PrintFailedFusing)
2021    cerr << "We failed to fuse operand " << i << *MI;
2022  return NULL;
2023}
2024
2025
2026MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2027                                              MachineInstr *MI,
2028                                        const SmallVectorImpl<unsigned> &Ops,
2029                                              int FrameIndex) const {
2030  // Check switch flag
2031  if (NoFusing) return NULL;
2032
2033  const MachineFrameInfo *MFI = MF.getFrameInfo();
2034  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2035  // FIXME: Move alignment requirement into tables?
2036  if (Alignment < 16) {
2037    switch (MI->getOpcode()) {
2038    default: break;
2039    // Not always safe to fold movsd into these instructions since their load
2040    // folding variants expects the address to be 16 byte aligned.
2041    case X86::FsANDNPDrr:
2042    case X86::FsANDNPSrr:
2043    case X86::FsANDPDrr:
2044    case X86::FsANDPSrr:
2045    case X86::FsORPDrr:
2046    case X86::FsORPSrr:
2047    case X86::FsXORPDrr:
2048    case X86::FsXORPSrr:
2049      return NULL;
2050    }
2051  }
2052
2053  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2054    unsigned NewOpc = 0;
2055    switch (MI->getOpcode()) {
2056    default: return NULL;
2057    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2058    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2059    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2060    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2061    }
2062    // Change to CMPXXri r, 0 first.
2063    MI->setDesc(get(NewOpc));
2064    MI->getOperand(1).ChangeToImmediate(0);
2065  } else if (Ops.size() != 1)
2066    return NULL;
2067
2068  SmallVector<MachineOperand,4> MOs;
2069  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2070  return foldMemoryOperand(MF, MI, Ops[0], MOs);
2071}
2072
2073MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2074                                              MachineInstr *MI,
2075                                        const SmallVectorImpl<unsigned> &Ops,
2076                                              MachineInstr *LoadMI) const {
2077  // Check switch flag
2078  if (NoFusing) return NULL;
2079
2080  // Determine the alignment of the load.
2081  unsigned Alignment = 0;
2082  if (LoadMI->hasOneMemOperand())
2083    Alignment = LoadMI->memoperands_begin()->getAlignment();
2084
2085  // FIXME: Move alignment requirement into tables?
2086  if (Alignment < 16) {
2087    switch (MI->getOpcode()) {
2088    default: break;
2089    // Not always safe to fold movsd into these instructions since their load
2090    // folding variants expects the address to be 16 byte aligned.
2091    case X86::FsANDNPDrr:
2092    case X86::FsANDNPSrr:
2093    case X86::FsANDPDrr:
2094    case X86::FsANDPSrr:
2095    case X86::FsORPDrr:
2096    case X86::FsORPSrr:
2097    case X86::FsXORPDrr:
2098    case X86::FsXORPSrr:
2099      return NULL;
2100    }
2101  }
2102
2103  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2104    unsigned NewOpc = 0;
2105    switch (MI->getOpcode()) {
2106    default: return NULL;
2107    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2108    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2109    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2110    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2111    }
2112    // Change to CMPXXri r, 0 first.
2113    MI->setDesc(get(NewOpc));
2114    MI->getOperand(1).ChangeToImmediate(0);
2115  } else if (Ops.size() != 1)
2116    return NULL;
2117
2118  SmallVector<MachineOperand,4> MOs;
2119  unsigned NumOps = LoadMI->getDesc().getNumOperands();
2120  for (unsigned i = NumOps - 4; i != NumOps; ++i)
2121    MOs.push_back(LoadMI->getOperand(i));
2122  return foldMemoryOperand(MF, MI, Ops[0], MOs);
2123}
2124
2125
2126bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2127                                  const SmallVectorImpl<unsigned> &Ops) const {
2128  // Check switch flag
2129  if (NoFusing) return 0;
2130
2131  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2132    switch (MI->getOpcode()) {
2133    default: return false;
2134    case X86::TEST8rr:
2135    case X86::TEST16rr:
2136    case X86::TEST32rr:
2137    case X86::TEST64rr:
2138      return true;
2139    }
2140  }
2141
2142  if (Ops.size() != 1)
2143    return false;
2144
2145  unsigned OpNum = Ops[0];
2146  unsigned Opc = MI->getOpcode();
2147  unsigned NumOps = MI->getDesc().getNumOperands();
2148  bool isTwoAddr = NumOps > 1 &&
2149    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2150
2151  // Folding a memory location into the two-address part of a two-address
2152  // instruction is different than folding it other places.  It requires
2153  // replacing the *two* registers with the memory location.
2154  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2155  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2156    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2157  } else if (OpNum == 0) { // If operand 0
2158    switch (Opc) {
2159    case X86::MOV16r0:
2160    case X86::MOV32r0:
2161    case X86::MOV64r0:
2162    case X86::MOV8r0:
2163      return true;
2164    default: break;
2165    }
2166    OpcodeTablePtr = &RegOp2MemOpTable0;
2167  } else if (OpNum == 1) {
2168    OpcodeTablePtr = &RegOp2MemOpTable1;
2169  } else if (OpNum == 2) {
2170    OpcodeTablePtr = &RegOp2MemOpTable2;
2171  }
2172
2173  if (OpcodeTablePtr) {
2174    // Find the Opcode to fuse
2175    DenseMap<unsigned*, unsigned>::iterator I =
2176      OpcodeTablePtr->find((unsigned*)Opc);
2177    if (I != OpcodeTablePtr->end())
2178      return true;
2179  }
2180  return false;
2181}
2182
2183bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2184                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2185                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2186  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2187    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2188  if (I == MemOp2RegOpTable.end())
2189    return false;
2190  unsigned Opc = I->second.first;
2191  unsigned Index = I->second.second & 0xf;
2192  bool FoldedLoad = I->second.second & (1 << 4);
2193  bool FoldedStore = I->second.second & (1 << 5);
2194  if (UnfoldLoad && !FoldedLoad)
2195    return false;
2196  UnfoldLoad &= FoldedLoad;
2197  if (UnfoldStore && !FoldedStore)
2198    return false;
2199  UnfoldStore &= FoldedStore;
2200
2201  const TargetInstrDesc &TID = get(Opc);
2202  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2203  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2204    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2205  SmallVector<MachineOperand,4> AddrOps;
2206  SmallVector<MachineOperand,2> BeforeOps;
2207  SmallVector<MachineOperand,2> AfterOps;
2208  SmallVector<MachineOperand,4> ImpOps;
2209  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2210    MachineOperand &Op = MI->getOperand(i);
2211    if (i >= Index && i < Index+4)
2212      AddrOps.push_back(Op);
2213    else if (Op.isReg() && Op.isImplicit())
2214      ImpOps.push_back(Op);
2215    else if (i < Index)
2216      BeforeOps.push_back(Op);
2217    else if (i > Index)
2218      AfterOps.push_back(Op);
2219  }
2220
2221  // Emit the load instruction.
2222  if (UnfoldLoad) {
2223    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2224    if (UnfoldStore) {
2225      // Address operands cannot be marked isKill.
2226      for (unsigned i = 1; i != 5; ++i) {
2227        MachineOperand &MO = NewMIs[0]->getOperand(i);
2228        if (MO.isReg())
2229          MO.setIsKill(false);
2230      }
2231    }
2232  }
2233
2234  // Emit the data processing instruction.
2235  MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
2236  MachineInstrBuilder MIB(DataMI);
2237
2238  if (FoldedStore)
2239    MIB.addReg(Reg, true);
2240  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2241    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2242  if (FoldedLoad)
2243    MIB.addReg(Reg);
2244  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2245    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2246  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2247    MachineOperand &MO = ImpOps[i];
2248    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2249  }
2250  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2251  unsigned NewOpc = 0;
2252  switch (DataMI->getOpcode()) {
2253  default: break;
2254  case X86::CMP64ri32:
2255  case X86::CMP32ri:
2256  case X86::CMP16ri:
2257  case X86::CMP8ri: {
2258    MachineOperand &MO0 = DataMI->getOperand(0);
2259    MachineOperand &MO1 = DataMI->getOperand(1);
2260    if (MO1.getImm() == 0) {
2261      switch (DataMI->getOpcode()) {
2262      default: break;
2263      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2264      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2265      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2266      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2267      }
2268      DataMI->setDesc(get(NewOpc));
2269      MO1.ChangeToRegister(MO0.getReg(), false);
2270    }
2271  }
2272  }
2273  NewMIs.push_back(DataMI);
2274
2275  // Emit the store instruction.
2276  if (UnfoldStore) {
2277    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2278    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2279      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2280    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2281  }
2282
2283  return true;
2284}
2285
2286bool
2287X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2288                                     SmallVectorImpl<SDNode*> &NewNodes) const {
2289  if (!N->isMachineOpcode())
2290    return false;
2291
2292  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2293    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2294  if (I == MemOp2RegOpTable.end())
2295    return false;
2296  unsigned Opc = I->second.first;
2297  unsigned Index = I->second.second & 0xf;
2298  bool FoldedLoad = I->second.second & (1 << 4);
2299  bool FoldedStore = I->second.second & (1 << 5);
2300  const TargetInstrDesc &TID = get(Opc);
2301  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2302  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2303    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2304  std::vector<SDValue> AddrOps;
2305  std::vector<SDValue> BeforeOps;
2306  std::vector<SDValue> AfterOps;
2307  unsigned NumOps = N->getNumOperands();
2308  for (unsigned i = 0; i != NumOps-1; ++i) {
2309    SDValue Op = N->getOperand(i);
2310    if (i >= Index && i < Index+4)
2311      AddrOps.push_back(Op);
2312    else if (i < Index)
2313      BeforeOps.push_back(Op);
2314    else if (i > Index)
2315      AfterOps.push_back(Op);
2316  }
2317  SDValue Chain = N->getOperand(NumOps-1);
2318  AddrOps.push_back(Chain);
2319
2320  // Emit the load instruction.
2321  SDNode *Load = 0;
2322  const MachineFunction &MF = DAG.getMachineFunction();
2323  if (FoldedLoad) {
2324    MVT VT = *RC->vt_begin();
2325    bool isAligned = (RI.getStackAlignment() >= 16) ||
2326      RI.needsStackRealignment(MF);
2327    Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
2328                             VT, MVT::Other,
2329                             &AddrOps[0], AddrOps.size());
2330    NewNodes.push_back(Load);
2331  }
2332
2333  // Emit the data processing instruction.
2334  std::vector<MVT> VTs;
2335  const TargetRegisterClass *DstRC = 0;
2336  if (TID.getNumDefs() > 0) {
2337    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2338    DstRC = DstTOI.isLookupPtrRegClass()
2339      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2340    VTs.push_back(*DstRC->vt_begin());
2341  }
2342  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2343    MVT VT = N->getValueType(i);
2344    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2345      VTs.push_back(VT);
2346  }
2347  if (Load)
2348    BeforeOps.push_back(SDValue(Load, 0));
2349  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2350  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2351  NewNodes.push_back(NewNode);
2352
2353  // Emit the store instruction.
2354  if (FoldedStore) {
2355    AddrOps.pop_back();
2356    AddrOps.push_back(SDValue(NewNode, 0));
2357    AddrOps.push_back(Chain);
2358    bool isAligned = (RI.getStackAlignment() >= 16) ||
2359      RI.needsStackRealignment(MF);
2360    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2361                                      MVT::Other, &AddrOps[0], AddrOps.size());
2362    NewNodes.push_back(Store);
2363  }
2364
2365  return true;
2366}
2367
2368unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2369                                      bool UnfoldLoad, bool UnfoldStore) const {
2370  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2371    MemOp2RegOpTable.find((unsigned*)Opc);
2372  if (I == MemOp2RegOpTable.end())
2373    return 0;
2374  bool FoldedLoad = I->second.second & (1 << 4);
2375  bool FoldedStore = I->second.second & (1 << 5);
2376  if (UnfoldLoad && !FoldedLoad)
2377    return 0;
2378  if (UnfoldStore && !FoldedStore)
2379    return 0;
2380  return I->second.first;
2381}
2382
2383bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2384  if (MBB.empty()) return false;
2385
2386  switch (MBB.back().getOpcode()) {
2387  case X86::TCRETURNri:
2388  case X86::TCRETURNdi:
2389  case X86::RET:     // Return.
2390  case X86::RETI:
2391  case X86::TAILJMPd:
2392  case X86::TAILJMPr:
2393  case X86::TAILJMPm:
2394  case X86::JMP:     // Uncond branch.
2395  case X86::JMP32r:  // Indirect branch.
2396  case X86::JMP64r:  // Indirect branch (64-bit).
2397  case X86::JMP32m:  // Indirect branch through mem.
2398  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2399    return true;
2400  default: return false;
2401  }
2402}
2403
2404bool X86InstrInfo::
2405ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2406  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2407  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2408  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2409    return true;
2410  Cond[0].setImm(GetOppositeBranchCondition(CC));
2411  return false;
2412}
2413
2414bool X86InstrInfo::
2415IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2416  // FIXME: Ignore bariers of x87 stack registers for now. We can't
2417  // allow any loads of these registers before FpGet_ST0_80.
2418  return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2419    RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2420}
2421
2422const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2423  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2424  if (Subtarget->is64Bit())
2425    return &X86::GR64RegClass;
2426  else
2427    return &X86::GR32RegClass;
2428}
2429
2430unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2431  switch (Desc->TSFlags & X86II::ImmMask) {
2432  case X86II::Imm8:   return 1;
2433  case X86II::Imm16:  return 2;
2434  case X86II::Imm32:  return 4;
2435  case X86II::Imm64:  return 8;
2436  default: assert(0 && "Immediate size not set!");
2437    return 0;
2438  }
2439}
2440
2441/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2442/// e.g. r8, xmm8, etc.
2443bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2444  if (!MO.isReg()) return false;
2445  switch (MO.getReg()) {
2446  default: break;
2447  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2448  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2449  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2450  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2451  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2452  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2453  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2454  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2455  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2456  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2457    return true;
2458  }
2459  return false;
2460}
2461
2462
2463/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2464/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2465/// size, and 3) use of X86-64 extended registers.
2466unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2467  unsigned REX = 0;
2468  const TargetInstrDesc &Desc = MI.getDesc();
2469
2470  // Pseudo instructions do not need REX prefix byte.
2471  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2472    return 0;
2473  if (Desc.TSFlags & X86II::REX_W)
2474    REX |= 1 << 3;
2475
2476  unsigned NumOps = Desc.getNumOperands();
2477  if (NumOps) {
2478    bool isTwoAddr = NumOps > 1 &&
2479      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2480
2481    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2482    unsigned i = isTwoAddr ? 1 : 0;
2483    for (unsigned e = NumOps; i != e; ++i) {
2484      const MachineOperand& MO = MI.getOperand(i);
2485      if (MO.isReg()) {
2486        unsigned Reg = MO.getReg();
2487        if (isX86_64NonExtLowByteReg(Reg))
2488          REX |= 0x40;
2489      }
2490    }
2491
2492    switch (Desc.TSFlags & X86II::FormMask) {
2493    case X86II::MRMInitReg:
2494      if (isX86_64ExtendedReg(MI.getOperand(0)))
2495        REX |= (1 << 0) | (1 << 2);
2496      break;
2497    case X86II::MRMSrcReg: {
2498      if (isX86_64ExtendedReg(MI.getOperand(0)))
2499        REX |= 1 << 2;
2500      i = isTwoAddr ? 2 : 1;
2501      for (unsigned e = NumOps; i != e; ++i) {
2502        const MachineOperand& MO = MI.getOperand(i);
2503        if (isX86_64ExtendedReg(MO))
2504          REX |= 1 << 0;
2505      }
2506      break;
2507    }
2508    case X86II::MRMSrcMem: {
2509      if (isX86_64ExtendedReg(MI.getOperand(0)))
2510        REX |= 1 << 2;
2511      unsigned Bit = 0;
2512      i = isTwoAddr ? 2 : 1;
2513      for (; i != NumOps; ++i) {
2514        const MachineOperand& MO = MI.getOperand(i);
2515        if (MO.isReg()) {
2516          if (isX86_64ExtendedReg(MO))
2517            REX |= 1 << Bit;
2518          Bit++;
2519        }
2520      }
2521      break;
2522    }
2523    case X86II::MRM0m: case X86II::MRM1m:
2524    case X86II::MRM2m: case X86II::MRM3m:
2525    case X86II::MRM4m: case X86II::MRM5m:
2526    case X86II::MRM6m: case X86II::MRM7m:
2527    case X86II::MRMDestMem: {
2528      unsigned e = isTwoAddr ? 5 : 4;
2529      i = isTwoAddr ? 1 : 0;
2530      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2531        REX |= 1 << 2;
2532      unsigned Bit = 0;
2533      for (; i != e; ++i) {
2534        const MachineOperand& MO = MI.getOperand(i);
2535        if (MO.isReg()) {
2536          if (isX86_64ExtendedReg(MO))
2537            REX |= 1 << Bit;
2538          Bit++;
2539        }
2540      }
2541      break;
2542    }
2543    default: {
2544      if (isX86_64ExtendedReg(MI.getOperand(0)))
2545        REX |= 1 << 0;
2546      i = isTwoAddr ? 2 : 1;
2547      for (unsigned e = NumOps; i != e; ++i) {
2548        const MachineOperand& MO = MI.getOperand(i);
2549        if (isX86_64ExtendedReg(MO))
2550          REX |= 1 << 2;
2551      }
2552      break;
2553    }
2554    }
2555  }
2556  return REX;
2557}
2558
2559/// sizePCRelativeBlockAddress - This method returns the size of a PC
2560/// relative block address instruction
2561///
2562static unsigned sizePCRelativeBlockAddress() {
2563  return 4;
2564}
2565
2566/// sizeGlobalAddress - Give the size of the emission of this global address
2567///
2568static unsigned sizeGlobalAddress(bool dword) {
2569  return dword ? 8 : 4;
2570}
2571
2572/// sizeConstPoolAddress - Give the size of the emission of this constant
2573/// pool address
2574///
2575static unsigned sizeConstPoolAddress(bool dword) {
2576  return dword ? 8 : 4;
2577}
2578
2579/// sizeExternalSymbolAddress - Give the size of the emission of this external
2580/// symbol
2581///
2582static unsigned sizeExternalSymbolAddress(bool dword) {
2583  return dword ? 8 : 4;
2584}
2585
2586/// sizeJumpTableAddress - Give the size of the emission of this jump
2587/// table address
2588///
2589static unsigned sizeJumpTableAddress(bool dword) {
2590  return dword ? 8 : 4;
2591}
2592
2593static unsigned sizeConstant(unsigned Size) {
2594  return Size;
2595}
2596
2597static unsigned sizeRegModRMByte(){
2598  return 1;
2599}
2600
2601static unsigned sizeSIBByte(){
2602  return 1;
2603}
2604
2605static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2606  unsigned FinalSize = 0;
2607  // If this is a simple integer displacement that doesn't require a relocation.
2608  if (!RelocOp) {
2609    FinalSize += sizeConstant(4);
2610    return FinalSize;
2611  }
2612
2613  // Otherwise, this is something that requires a relocation.
2614  if (RelocOp->isGlobal()) {
2615    FinalSize += sizeGlobalAddress(false);
2616  } else if (RelocOp->isCPI()) {
2617    FinalSize += sizeConstPoolAddress(false);
2618  } else if (RelocOp->isJTI()) {
2619    FinalSize += sizeJumpTableAddress(false);
2620  } else {
2621    assert(0 && "Unknown value to relocate!");
2622  }
2623  return FinalSize;
2624}
2625
2626static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2627                                    bool IsPIC, bool Is64BitMode) {
2628  const MachineOperand &Op3 = MI.getOperand(Op+3);
2629  int DispVal = 0;
2630  const MachineOperand *DispForReloc = 0;
2631  unsigned FinalSize = 0;
2632
2633  // Figure out what sort of displacement we have to handle here.
2634  if (Op3.isGlobal()) {
2635    DispForReloc = &Op3;
2636  } else if (Op3.isCPI()) {
2637    if (Is64BitMode || IsPIC) {
2638      DispForReloc = &Op3;
2639    } else {
2640      DispVal = 1;
2641    }
2642  } else if (Op3.isJTI()) {
2643    if (Is64BitMode || IsPIC) {
2644      DispForReloc = &Op3;
2645    } else {
2646      DispVal = 1;
2647    }
2648  } else {
2649    DispVal = 1;
2650  }
2651
2652  const MachineOperand &Base     = MI.getOperand(Op);
2653  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2654
2655  unsigned BaseReg = Base.getReg();
2656
2657  // Is a SIB byte needed?
2658  if (IndexReg.getReg() == 0 &&
2659      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2660    if (BaseReg == 0) {  // Just a displacement?
2661      // Emit special case [disp32] encoding
2662      ++FinalSize;
2663      FinalSize += getDisplacementFieldSize(DispForReloc);
2664    } else {
2665      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2666      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2667        // Emit simple indirect register encoding... [EAX] f.e.
2668        ++FinalSize;
2669      // Be pessimistic and assume it's a disp32, not a disp8
2670      } else {
2671        // Emit the most general non-SIB encoding: [REG+disp32]
2672        ++FinalSize;
2673        FinalSize += getDisplacementFieldSize(DispForReloc);
2674      }
2675    }
2676
2677  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2678    assert(IndexReg.getReg() != X86::ESP &&
2679           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2680
2681    bool ForceDisp32 = false;
2682    if (BaseReg == 0 || DispForReloc) {
2683      // Emit the normal disp32 encoding.
2684      ++FinalSize;
2685      ForceDisp32 = true;
2686    } else {
2687      ++FinalSize;
2688    }
2689
2690    FinalSize += sizeSIBByte();
2691
2692    // Do we need to output a displacement?
2693    if (DispVal != 0 || ForceDisp32) {
2694      FinalSize += getDisplacementFieldSize(DispForReloc);
2695    }
2696  }
2697  return FinalSize;
2698}
2699
2700
2701static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2702                                    const TargetInstrDesc *Desc,
2703                                    bool IsPIC, bool Is64BitMode) {
2704
2705  unsigned Opcode = Desc->Opcode;
2706  unsigned FinalSize = 0;
2707
2708  // Emit the lock opcode prefix as needed.
2709  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2710
2711  // Emit segment overrid opcode prefix as needed.
2712  switch (Desc->TSFlags & X86II::SegOvrMask) {
2713  case X86II::FS:
2714  case X86II::GS:
2715   ++FinalSize;
2716   break;
2717  default: assert(0 && "Invalid segment!");
2718  case 0: break;  // No segment override!
2719  }
2720
2721  // Emit the repeat opcode prefix as needed.
2722  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2723
2724  // Emit the operand size opcode prefix as needed.
2725  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2726
2727  // Emit the address size opcode prefix as needed.
2728  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2729
2730  bool Need0FPrefix = false;
2731  switch (Desc->TSFlags & X86II::Op0Mask) {
2732  case X86II::TB:  // Two-byte opcode prefix
2733  case X86II::T8:  // 0F 38
2734  case X86II::TA:  // 0F 3A
2735    Need0FPrefix = true;
2736    break;
2737  case X86II::REP: break; // already handled.
2738  case X86II::XS:   // F3 0F
2739    ++FinalSize;
2740    Need0FPrefix = true;
2741    break;
2742  case X86II::XD:   // F2 0F
2743    ++FinalSize;
2744    Need0FPrefix = true;
2745    break;
2746  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2747  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2748    ++FinalSize;
2749    break; // Two-byte opcode prefix
2750  default: assert(0 && "Invalid prefix!");
2751  case 0: break;  // No prefix!
2752  }
2753
2754  if (Is64BitMode) {
2755    // REX prefix
2756    unsigned REX = X86InstrInfo::determineREX(MI);
2757    if (REX)
2758      ++FinalSize;
2759  }
2760
2761  // 0x0F escape code must be emitted just before the opcode.
2762  if (Need0FPrefix)
2763    ++FinalSize;
2764
2765  switch (Desc->TSFlags & X86II::Op0Mask) {
2766  case X86II::T8:  // 0F 38
2767    ++FinalSize;
2768    break;
2769  case X86II::TA:    // 0F 3A
2770    ++FinalSize;
2771    break;
2772  }
2773
2774  // If this is a two-address instruction, skip one of the register operands.
2775  unsigned NumOps = Desc->getNumOperands();
2776  unsigned CurOp = 0;
2777  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2778    CurOp++;
2779
2780  switch (Desc->TSFlags & X86II::FormMask) {
2781  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2782  case X86II::Pseudo:
2783    // Remember the current PC offset, this is the PIC relocation
2784    // base address.
2785    switch (Opcode) {
2786    default:
2787      break;
2788    case TargetInstrInfo::INLINEASM: {
2789      const MachineFunction *MF = MI.getParent()->getParent();
2790      const char *AsmStr = MI.getOperand(0).getSymbolName();
2791      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2792      FinalSize += AI->getInlineAsmLength(AsmStr);
2793      break;
2794    }
2795    case TargetInstrInfo::DBG_LABEL:
2796    case TargetInstrInfo::EH_LABEL:
2797      break;
2798    case TargetInstrInfo::IMPLICIT_DEF:
2799    case TargetInstrInfo::DECLARE:
2800    case X86::DWARF_LOC:
2801    case X86::FP_REG_KILL:
2802      break;
2803    case X86::MOVPC32r: {
2804      // This emits the "call" portion of this pseudo instruction.
2805      ++FinalSize;
2806      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2807      break;
2808    }
2809    case X86::TLS_tp:
2810    case X86::TLS_gs_ri:
2811      FinalSize += 2;
2812      FinalSize += sizeGlobalAddress(false);
2813      break;
2814    }
2815    CurOp = NumOps;
2816    break;
2817  case X86II::RawFrm:
2818    ++FinalSize;
2819
2820    if (CurOp != NumOps) {
2821      const MachineOperand &MO = MI.getOperand(CurOp++);
2822      if (MO.isMBB()) {
2823        FinalSize += sizePCRelativeBlockAddress();
2824      } else if (MO.isGlobal()) {
2825        FinalSize += sizeGlobalAddress(false);
2826      } else if (MO.isSymbol()) {
2827        FinalSize += sizeExternalSymbolAddress(false);
2828      } else if (MO.isImm()) {
2829        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2830      } else {
2831        assert(0 && "Unknown RawFrm operand!");
2832      }
2833    }
2834    break;
2835
2836  case X86II::AddRegFrm:
2837    ++FinalSize;
2838    ++CurOp;
2839
2840    if (CurOp != NumOps) {
2841      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2842      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2843      if (MO1.isImm())
2844        FinalSize += sizeConstant(Size);
2845      else {
2846        bool dword = false;
2847        if (Opcode == X86::MOV64ri)
2848          dword = true;
2849        if (MO1.isGlobal()) {
2850          FinalSize += sizeGlobalAddress(dword);
2851        } else if (MO1.isSymbol())
2852          FinalSize += sizeExternalSymbolAddress(dword);
2853        else if (MO1.isCPI())
2854          FinalSize += sizeConstPoolAddress(dword);
2855        else if (MO1.isJTI())
2856          FinalSize += sizeJumpTableAddress(dword);
2857      }
2858    }
2859    break;
2860
2861  case X86II::MRMDestReg: {
2862    ++FinalSize;
2863    FinalSize += sizeRegModRMByte();
2864    CurOp += 2;
2865    if (CurOp != NumOps) {
2866      ++CurOp;
2867      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2868    }
2869    break;
2870  }
2871  case X86II::MRMDestMem: {
2872    ++FinalSize;
2873    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2874    CurOp += 5;
2875    if (CurOp != NumOps) {
2876      ++CurOp;
2877      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2878    }
2879    break;
2880  }
2881
2882  case X86II::MRMSrcReg:
2883    ++FinalSize;
2884    FinalSize += sizeRegModRMByte();
2885    CurOp += 2;
2886    if (CurOp != NumOps) {
2887      ++CurOp;
2888      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2889    }
2890    break;
2891
2892  case X86II::MRMSrcMem: {
2893
2894    ++FinalSize;
2895    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2896    CurOp += 5;
2897    if (CurOp != NumOps) {
2898      ++CurOp;
2899      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2900    }
2901    break;
2902  }
2903
2904  case X86II::MRM0r: case X86II::MRM1r:
2905  case X86II::MRM2r: case X86II::MRM3r:
2906  case X86II::MRM4r: case X86II::MRM5r:
2907  case X86II::MRM6r: case X86II::MRM7r:
2908    ++FinalSize;
2909    ++CurOp;
2910    FinalSize += sizeRegModRMByte();
2911
2912    if (CurOp != NumOps) {
2913      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2914      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2915      if (MO1.isImm())
2916        FinalSize += sizeConstant(Size);
2917      else {
2918        bool dword = false;
2919        if (Opcode == X86::MOV64ri32)
2920          dword = true;
2921        if (MO1.isGlobal()) {
2922          FinalSize += sizeGlobalAddress(dword);
2923        } else if (MO1.isSymbol())
2924          FinalSize += sizeExternalSymbolAddress(dword);
2925        else if (MO1.isCPI())
2926          FinalSize += sizeConstPoolAddress(dword);
2927        else if (MO1.isJTI())
2928          FinalSize += sizeJumpTableAddress(dword);
2929      }
2930    }
2931    break;
2932
2933  case X86II::MRM0m: case X86II::MRM1m:
2934  case X86II::MRM2m: case X86II::MRM3m:
2935  case X86II::MRM4m: case X86II::MRM5m:
2936  case X86II::MRM6m: case X86II::MRM7m: {
2937
2938    ++FinalSize;
2939    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2940    CurOp += 4;
2941
2942    if (CurOp != NumOps) {
2943      const MachineOperand &MO = MI.getOperand(CurOp++);
2944      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2945      if (MO.isImm())
2946        FinalSize += sizeConstant(Size);
2947      else {
2948        bool dword = false;
2949        if (Opcode == X86::MOV64mi32)
2950          dword = true;
2951        if (MO.isGlobal()) {
2952          FinalSize += sizeGlobalAddress(dword);
2953        } else if (MO.isSymbol())
2954          FinalSize += sizeExternalSymbolAddress(dword);
2955        else if (MO.isCPI())
2956          FinalSize += sizeConstPoolAddress(dword);
2957        else if (MO.isJTI())
2958          FinalSize += sizeJumpTableAddress(dword);
2959      }
2960    }
2961    break;
2962  }
2963
2964  case X86II::MRMInitReg:
2965    ++FinalSize;
2966    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2967    FinalSize += sizeRegModRMByte();
2968    ++CurOp;
2969    break;
2970  }
2971
2972  if (!Desc->isVariadic() && CurOp != NumOps) {
2973    cerr << "Cannot determine size: ";
2974    MI.dump();
2975    cerr << '\n';
2976    abort();
2977  }
2978
2979
2980  return FinalSize;
2981}
2982
2983
2984unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2985  const TargetInstrDesc &Desc = MI->getDesc();
2986  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
2987  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
2988  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2989  if (Desc.getOpcode() == X86::MOVPC32r) {
2990    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2991  }
2992  return Size;
2993}
2994
2995/// getGlobalBaseReg - Return a virtual register initialized with the
2996/// the global base register value. Output instructions required to
2997/// initialize the register in the function entry block, if necessary.
2998///
2999unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3000  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3001         "X86-64 PIC uses RIP relative addressing");
3002
3003  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3004  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3005  if (GlobalBaseReg != 0)
3006    return GlobalBaseReg;
3007
3008  // Insert the set of GlobalBaseReg into the first MBB of the function
3009  MachineBasicBlock &FirstMBB = MF->front();
3010  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3011  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3012  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3013
3014  const TargetInstrInfo *TII = TM.getInstrInfo();
3015  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3016  // only used in JIT code emission as displacement to pc.
3017  BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3018
3019  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3020  // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3021  if (TM.getRelocationModel() == Reloc::PIC_ &&
3022      TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3023    GlobalBaseReg =
3024      RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3025    BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3026      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3027  } else {
3028    GlobalBaseReg = PC;
3029  }
3030
3031  X86FI->setGlobalBaseReg(GlobalBaseReg);
3032  return GlobalBaseReg;
3033}
3034