X86InstrInfo.cpp revision 5446274bd242e1f23547ce57aa4d411e46e9acb8
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/Target/TargetAsmInfo.h"
31
32using namespace llvm;
33
34namespace {
35  cl::opt<bool>
36  NoFusing("disable-spill-fusing",
37           cl::desc("Disable fusing of spill code into instructions"));
38  cl::opt<bool>
39  PrintFailedFusing("print-failed-fuse-candidates",
40                    cl::desc("Print instructions that the allocator wants to"
41                             " fuse, but the X86 backend currently can't"),
42                    cl::Hidden);
43  cl::opt<bool>
44  ReMatPICStubLoad("remat-pic-stub-load",
45                   cl::desc("Re-materialize load from stub in PIC mode"),
46                   cl::init(false), cl::Hidden);
47}
48
49X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
50  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
51    TM(tm), RI(tm, *this) {
52  SmallVector<unsigned,16> AmbEntries;
53  static const unsigned OpTbl2Addr[][2] = {
54    { X86::ADC32ri,     X86::ADC32mi },
55    { X86::ADC32ri8,    X86::ADC32mi8 },
56    { X86::ADC32rr,     X86::ADC32mr },
57    { X86::ADC64ri32,   X86::ADC64mi32 },
58    { X86::ADC64ri8,    X86::ADC64mi8 },
59    { X86::ADC64rr,     X86::ADC64mr },
60    { X86::ADD16ri,     X86::ADD16mi },
61    { X86::ADD16ri8,    X86::ADD16mi8 },
62    { X86::ADD16rr,     X86::ADD16mr },
63    { X86::ADD32ri,     X86::ADD32mi },
64    { X86::ADD32ri8,    X86::ADD32mi8 },
65    { X86::ADD32rr,     X86::ADD32mr },
66    { X86::ADD64ri32,   X86::ADD64mi32 },
67    { X86::ADD64ri8,    X86::ADD64mi8 },
68    { X86::ADD64rr,     X86::ADD64mr },
69    { X86::ADD8ri,      X86::ADD8mi },
70    { X86::ADD8rr,      X86::ADD8mr },
71    { X86::AND16ri,     X86::AND16mi },
72    { X86::AND16ri8,    X86::AND16mi8 },
73    { X86::AND16rr,     X86::AND16mr },
74    { X86::AND32ri,     X86::AND32mi },
75    { X86::AND32ri8,    X86::AND32mi8 },
76    { X86::AND32rr,     X86::AND32mr },
77    { X86::AND64ri32,   X86::AND64mi32 },
78    { X86::AND64ri8,    X86::AND64mi8 },
79    { X86::AND64rr,     X86::AND64mr },
80    { X86::AND8ri,      X86::AND8mi },
81    { X86::AND8rr,      X86::AND8mr },
82    { X86::DEC16r,      X86::DEC16m },
83    { X86::DEC32r,      X86::DEC32m },
84    { X86::DEC64_16r,   X86::DEC64_16m },
85    { X86::DEC64_32r,   X86::DEC64_32m },
86    { X86::DEC64r,      X86::DEC64m },
87    { X86::DEC8r,       X86::DEC8m },
88    { X86::INC16r,      X86::INC16m },
89    { X86::INC32r,      X86::INC32m },
90    { X86::INC64_16r,   X86::INC64_16m },
91    { X86::INC64_32r,   X86::INC64_32m },
92    { X86::INC64r,      X86::INC64m },
93    { X86::INC8r,       X86::INC8m },
94    { X86::NEG16r,      X86::NEG16m },
95    { X86::NEG32r,      X86::NEG32m },
96    { X86::NEG64r,      X86::NEG64m },
97    { X86::NEG8r,       X86::NEG8m },
98    { X86::NOT16r,      X86::NOT16m },
99    { X86::NOT32r,      X86::NOT32m },
100    { X86::NOT64r,      X86::NOT64m },
101    { X86::NOT8r,       X86::NOT8m },
102    { X86::OR16ri,      X86::OR16mi },
103    { X86::OR16ri8,     X86::OR16mi8 },
104    { X86::OR16rr,      X86::OR16mr },
105    { X86::OR32ri,      X86::OR32mi },
106    { X86::OR32ri8,     X86::OR32mi8 },
107    { X86::OR32rr,      X86::OR32mr },
108    { X86::OR64ri32,    X86::OR64mi32 },
109    { X86::OR64ri8,     X86::OR64mi8 },
110    { X86::OR64rr,      X86::OR64mr },
111    { X86::OR8ri,       X86::OR8mi },
112    { X86::OR8rr,       X86::OR8mr },
113    { X86::ROL16r1,     X86::ROL16m1 },
114    { X86::ROL16rCL,    X86::ROL16mCL },
115    { X86::ROL16ri,     X86::ROL16mi },
116    { X86::ROL32r1,     X86::ROL32m1 },
117    { X86::ROL32rCL,    X86::ROL32mCL },
118    { X86::ROL32ri,     X86::ROL32mi },
119    { X86::ROL64r1,     X86::ROL64m1 },
120    { X86::ROL64rCL,    X86::ROL64mCL },
121    { X86::ROL64ri,     X86::ROL64mi },
122    { X86::ROL8r1,      X86::ROL8m1 },
123    { X86::ROL8rCL,     X86::ROL8mCL },
124    { X86::ROL8ri,      X86::ROL8mi },
125    { X86::ROR16r1,     X86::ROR16m1 },
126    { X86::ROR16rCL,    X86::ROR16mCL },
127    { X86::ROR16ri,     X86::ROR16mi },
128    { X86::ROR32r1,     X86::ROR32m1 },
129    { X86::ROR32rCL,    X86::ROR32mCL },
130    { X86::ROR32ri,     X86::ROR32mi },
131    { X86::ROR64r1,     X86::ROR64m1 },
132    { X86::ROR64rCL,    X86::ROR64mCL },
133    { X86::ROR64ri,     X86::ROR64mi },
134    { X86::ROR8r1,      X86::ROR8m1 },
135    { X86::ROR8rCL,     X86::ROR8mCL },
136    { X86::ROR8ri,      X86::ROR8mi },
137    { X86::SAR16r1,     X86::SAR16m1 },
138    { X86::SAR16rCL,    X86::SAR16mCL },
139    { X86::SAR16ri,     X86::SAR16mi },
140    { X86::SAR32r1,     X86::SAR32m1 },
141    { X86::SAR32rCL,    X86::SAR32mCL },
142    { X86::SAR32ri,     X86::SAR32mi },
143    { X86::SAR64r1,     X86::SAR64m1 },
144    { X86::SAR64rCL,    X86::SAR64mCL },
145    { X86::SAR64ri,     X86::SAR64mi },
146    { X86::SAR8r1,      X86::SAR8m1 },
147    { X86::SAR8rCL,     X86::SAR8mCL },
148    { X86::SAR8ri,      X86::SAR8mi },
149    { X86::SBB32ri,     X86::SBB32mi },
150    { X86::SBB32ri8,    X86::SBB32mi8 },
151    { X86::SBB32rr,     X86::SBB32mr },
152    { X86::SBB64ri32,   X86::SBB64mi32 },
153    { X86::SBB64ri8,    X86::SBB64mi8 },
154    { X86::SBB64rr,     X86::SBB64mr },
155    { X86::SHL16rCL,    X86::SHL16mCL },
156    { X86::SHL16ri,     X86::SHL16mi },
157    { X86::SHL32rCL,    X86::SHL32mCL },
158    { X86::SHL32ri,     X86::SHL32mi },
159    { X86::SHL64rCL,    X86::SHL64mCL },
160    { X86::SHL64ri,     X86::SHL64mi },
161    { X86::SHL8rCL,     X86::SHL8mCL },
162    { X86::SHL8ri,      X86::SHL8mi },
163    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
164    { X86::SHLD16rri8,  X86::SHLD16mri8 },
165    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
166    { X86::SHLD32rri8,  X86::SHLD32mri8 },
167    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
168    { X86::SHLD64rri8,  X86::SHLD64mri8 },
169    { X86::SHR16r1,     X86::SHR16m1 },
170    { X86::SHR16rCL,    X86::SHR16mCL },
171    { X86::SHR16ri,     X86::SHR16mi },
172    { X86::SHR32r1,     X86::SHR32m1 },
173    { X86::SHR32rCL,    X86::SHR32mCL },
174    { X86::SHR32ri,     X86::SHR32mi },
175    { X86::SHR64r1,     X86::SHR64m1 },
176    { X86::SHR64rCL,    X86::SHR64mCL },
177    { X86::SHR64ri,     X86::SHR64mi },
178    { X86::SHR8r1,      X86::SHR8m1 },
179    { X86::SHR8rCL,     X86::SHR8mCL },
180    { X86::SHR8ri,      X86::SHR8mi },
181    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
182    { X86::SHRD16rri8,  X86::SHRD16mri8 },
183    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
184    { X86::SHRD32rri8,  X86::SHRD32mri8 },
185    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
186    { X86::SHRD64rri8,  X86::SHRD64mri8 },
187    { X86::SUB16ri,     X86::SUB16mi },
188    { X86::SUB16ri8,    X86::SUB16mi8 },
189    { X86::SUB16rr,     X86::SUB16mr },
190    { X86::SUB32ri,     X86::SUB32mi },
191    { X86::SUB32ri8,    X86::SUB32mi8 },
192    { X86::SUB32rr,     X86::SUB32mr },
193    { X86::SUB64ri32,   X86::SUB64mi32 },
194    { X86::SUB64ri8,    X86::SUB64mi8 },
195    { X86::SUB64rr,     X86::SUB64mr },
196    { X86::SUB8ri,      X86::SUB8mi },
197    { X86::SUB8rr,      X86::SUB8mr },
198    { X86::XOR16ri,     X86::XOR16mi },
199    { X86::XOR16ri8,    X86::XOR16mi8 },
200    { X86::XOR16rr,     X86::XOR16mr },
201    { X86::XOR32ri,     X86::XOR32mi },
202    { X86::XOR32ri8,    X86::XOR32mi8 },
203    { X86::XOR32rr,     X86::XOR32mr },
204    { X86::XOR64ri32,   X86::XOR64mi32 },
205    { X86::XOR64ri8,    X86::XOR64mi8 },
206    { X86::XOR64rr,     X86::XOR64mr },
207    { X86::XOR8ri,      X86::XOR8mi },
208    { X86::XOR8rr,      X86::XOR8mr }
209  };
210
211  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212    unsigned RegOp = OpTbl2Addr[i][0];
213    unsigned MemOp = OpTbl2Addr[i][1];
214    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215                                                     MemOp)).second)
216      assert(false && "Duplicated entries?");
217    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
219                                                std::make_pair(RegOp,
220                                                              AuxInfo))).second)
221      AmbEntries.push_back(MemOp);
222  }
223
224  // If the third value is 1, then it's folding either a load or a store.
225  static const unsigned OpTbl0[][3] = {
226    { X86::CALL32r,     X86::CALL32m, 1 },
227    { X86::CALL64r,     X86::CALL64m, 1 },
228    { X86::CMP16ri,     X86::CMP16mi, 1 },
229    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
230    { X86::CMP16rr,     X86::CMP16mr, 1 },
231    { X86::CMP32ri,     X86::CMP32mi, 1 },
232    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
233    { X86::CMP32rr,     X86::CMP32mr, 1 },
234    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
235    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
236    { X86::CMP64rr,     X86::CMP64mr, 1 },
237    { X86::CMP8ri,      X86::CMP8mi, 1 },
238    { X86::CMP8rr,      X86::CMP8mr, 1 },
239    { X86::DIV16r,      X86::DIV16m, 1 },
240    { X86::DIV32r,      X86::DIV32m, 1 },
241    { X86::DIV64r,      X86::DIV64m, 1 },
242    { X86::DIV8r,       X86::DIV8m, 1 },
243    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
244    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
245    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
246    { X86::IDIV16r,     X86::IDIV16m, 1 },
247    { X86::IDIV32r,     X86::IDIV32m, 1 },
248    { X86::IDIV64r,     X86::IDIV64m, 1 },
249    { X86::IDIV8r,      X86::IDIV8m, 1 },
250    { X86::IMUL16r,     X86::IMUL16m, 1 },
251    { X86::IMUL32r,     X86::IMUL32m, 1 },
252    { X86::IMUL64r,     X86::IMUL64m, 1 },
253    { X86::IMUL8r,      X86::IMUL8m, 1 },
254    { X86::JMP32r,      X86::JMP32m, 1 },
255    { X86::JMP64r,      X86::JMP64m, 1 },
256    { X86::MOV16ri,     X86::MOV16mi, 0 },
257    { X86::MOV16rr,     X86::MOV16mr, 0 },
258    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
259    { X86::MOV32ri,     X86::MOV32mi, 0 },
260    { X86::MOV32rr,     X86::MOV32mr, 0 },
261    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
262    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
263    { X86::MOV64rr,     X86::MOV64mr, 0 },
264    { X86::MOV8ri,      X86::MOV8mi, 0 },
265    { X86::MOV8rr,      X86::MOV8mr, 0 },
266    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
267    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
268    { X86::MOVDQArr,    X86::MOVDQAmr, 0 },
269    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
270    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
271    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
272    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
273    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
274    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
275    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
276    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
277    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
278    { X86::MUL16r,      X86::MUL16m, 1 },
279    { X86::MUL32r,      X86::MUL32m, 1 },
280    { X86::MUL64r,      X86::MUL64m, 1 },
281    { X86::MUL8r,       X86::MUL8m, 1 },
282    { X86::SETAEr,      X86::SETAEm, 0 },
283    { X86::SETAr,       X86::SETAm, 0 },
284    { X86::SETBEr,      X86::SETBEm, 0 },
285    { X86::SETBr,       X86::SETBm, 0 },
286    { X86::SETEr,       X86::SETEm, 0 },
287    { X86::SETGEr,      X86::SETGEm, 0 },
288    { X86::SETGr,       X86::SETGm, 0 },
289    { X86::SETLEr,      X86::SETLEm, 0 },
290    { X86::SETLr,       X86::SETLm, 0 },
291    { X86::SETNEr,      X86::SETNEm, 0 },
292    { X86::SETNOr,      X86::SETNOm, 0 },
293    { X86::SETNPr,      X86::SETNPm, 0 },
294    { X86::SETNSr,      X86::SETNSm, 0 },
295    { X86::SETOr,       X86::SETOm, 0 },
296    { X86::SETPr,       X86::SETPm, 0 },
297    { X86::SETSr,       X86::SETSm, 0 },
298    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
299    { X86::TEST16ri,    X86::TEST16mi, 1 },
300    { X86::TEST32ri,    X86::TEST32mi, 1 },
301    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
302    { X86::TEST8ri,     X86::TEST8mi, 1 }
303  };
304
305  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
306    unsigned RegOp = OpTbl0[i][0];
307    unsigned MemOp = OpTbl0[i][1];
308    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
309                                                 MemOp)).second)
310      assert(false && "Duplicated entries?");
311    unsigned FoldedLoad = OpTbl0[i][2];
312    // Index 0, folded load or store.
313    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
314    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
315      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
316                                     std::make_pair(RegOp, AuxInfo))).second)
317        AmbEntries.push_back(MemOp);
318  }
319
320  static const unsigned OpTbl1[][2] = {
321    { X86::CMP16rr,         X86::CMP16rm },
322    { X86::CMP32rr,         X86::CMP32rm },
323    { X86::CMP64rr,         X86::CMP64rm },
324    { X86::CMP8rr,          X86::CMP8rm },
325    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
326    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
327    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
328    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
329    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
330    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
331    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
332    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
333    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
334    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
335    { X86::FsMOVAPDrr,      X86::MOVSDrm },
336    { X86::FsMOVAPSrr,      X86::MOVSSrm },
337    { X86::IMUL16rri,       X86::IMUL16rmi },
338    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
339    { X86::IMUL32rri,       X86::IMUL32rmi },
340    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
341    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
342    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
343    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
344    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
345    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
346    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
347    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
348    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
349    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
350    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
351    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
352    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
353    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
354    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
355    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
356    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
357    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
358    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
359    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
360    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
361    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
362    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
363    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
364    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
365    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
366    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
367    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
368    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
369    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
370    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
371    { X86::MOV16rr,         X86::MOV16rm },
372    { X86::MOV16to16_,      X86::MOV16_rm },
373    { X86::MOV32rr,         X86::MOV32rm },
374    { X86::MOV32to32_,      X86::MOV32_rm },
375    { X86::MOV64rr,         X86::MOV64rm },
376    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
377    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
378    { X86::MOV8rr,          X86::MOV8rm },
379    { X86::MOVAPDrr,        X86::MOVAPDrm },
380    { X86::MOVAPSrr,        X86::MOVAPSrm },
381    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
382    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
383    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
384    { X86::MOVDQArr,        X86::MOVDQArm },
385    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
386    { X86::MOVSDrr,         X86::MOVSDrm },
387    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
388    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
389    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
390    { X86::MOVSSrr,         X86::MOVSSrm },
391    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
392    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
393    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
394    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
395    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
396    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
397    { X86::MOVUPDrr,        X86::MOVUPDrm },
398    { X86::MOVUPSrr,        X86::MOVUPSrm },
399    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
400    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
401    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
402    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
403    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
404    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
405    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
406    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
407    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
408    { X86::PSHUFDri,        X86::PSHUFDmi },
409    { X86::PSHUFHWri,       X86::PSHUFHWmi },
410    { X86::PSHUFLWri,       X86::PSHUFLWmi },
411    { X86::RCPPSr,          X86::RCPPSm },
412    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
413    { X86::RSQRTPSr,        X86::RSQRTPSm },
414    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
415    { X86::RSQRTSSr,        X86::RSQRTSSm },
416    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
417    { X86::SQRTPDr,         X86::SQRTPDm },
418    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
419    { X86::SQRTPSr,         X86::SQRTPSm },
420    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
421    { X86::SQRTSDr,         X86::SQRTSDm },
422    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
423    { X86::SQRTSSr,         X86::SQRTSSm },
424    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
425    { X86::TEST16rr,        X86::TEST16rm },
426    { X86::TEST32rr,        X86::TEST32rm },
427    { X86::TEST64rr,        X86::TEST64rm },
428    { X86::TEST8rr,         X86::TEST8rm },
429    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
430    { X86::UCOMISDrr,       X86::UCOMISDrm },
431    { X86::UCOMISSrr,       X86::UCOMISSrm }
432  };
433
434  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
435    unsigned RegOp = OpTbl1[i][0];
436    unsigned MemOp = OpTbl1[i][1];
437    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
438                                                 MemOp)).second)
439      assert(false && "Duplicated entries?");
440    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
441    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
442      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
443                                     std::make_pair(RegOp, AuxInfo))).second)
444        AmbEntries.push_back(MemOp);
445  }
446
447  static const unsigned OpTbl2[][2] = {
448    { X86::ADC32rr,         X86::ADC32rm },
449    { X86::ADC64rr,         X86::ADC64rm },
450    { X86::ADD16rr,         X86::ADD16rm },
451    { X86::ADD32rr,         X86::ADD32rm },
452    { X86::ADD64rr,         X86::ADD64rm },
453    { X86::ADD8rr,          X86::ADD8rm },
454    { X86::ADDPDrr,         X86::ADDPDrm },
455    { X86::ADDPSrr,         X86::ADDPSrm },
456    { X86::ADDSDrr,         X86::ADDSDrm },
457    { X86::ADDSSrr,         X86::ADDSSrm },
458    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
459    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
460    { X86::AND16rr,         X86::AND16rm },
461    { X86::AND32rr,         X86::AND32rm },
462    { X86::AND64rr,         X86::AND64rm },
463    { X86::AND8rr,          X86::AND8rm },
464    { X86::ANDNPDrr,        X86::ANDNPDrm },
465    { X86::ANDNPSrr,        X86::ANDNPSrm },
466    { X86::ANDPDrr,         X86::ANDPDrm },
467    { X86::ANDPSrr,         X86::ANDPSrm },
468    { X86::CMOVA16rr,       X86::CMOVA16rm },
469    { X86::CMOVA32rr,       X86::CMOVA32rm },
470    { X86::CMOVA64rr,       X86::CMOVA64rm },
471    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
472    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
473    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
474    { X86::CMOVB16rr,       X86::CMOVB16rm },
475    { X86::CMOVB32rr,       X86::CMOVB32rm },
476    { X86::CMOVB64rr,       X86::CMOVB64rm },
477    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
478    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
479    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
480    { X86::CMOVE16rr,       X86::CMOVE16rm },
481    { X86::CMOVE32rr,       X86::CMOVE32rm },
482    { X86::CMOVE64rr,       X86::CMOVE64rm },
483    { X86::CMOVG16rr,       X86::CMOVG16rm },
484    { X86::CMOVG32rr,       X86::CMOVG32rm },
485    { X86::CMOVG64rr,       X86::CMOVG64rm },
486    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
487    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
488    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
489    { X86::CMOVL16rr,       X86::CMOVL16rm },
490    { X86::CMOVL32rr,       X86::CMOVL32rm },
491    { X86::CMOVL64rr,       X86::CMOVL64rm },
492    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
493    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
494    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
495    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
496    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
497    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
498    { X86::CMOVNO16rr,      X86::CMOVNO16rm },
499    { X86::CMOVNO32rr,      X86::CMOVNO32rm },
500    { X86::CMOVNO64rr,      X86::CMOVNO64rm },
501    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
502    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
503    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
504    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
505    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
506    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
507    { X86::CMOVO16rr,       X86::CMOVO16rm },
508    { X86::CMOVO32rr,       X86::CMOVO32rm },
509    { X86::CMOVO64rr,       X86::CMOVO64rm },
510    { X86::CMOVP16rr,       X86::CMOVP16rm },
511    { X86::CMOVP32rr,       X86::CMOVP32rm },
512    { X86::CMOVP64rr,       X86::CMOVP64rm },
513    { X86::CMOVS16rr,       X86::CMOVS16rm },
514    { X86::CMOVS32rr,       X86::CMOVS32rm },
515    { X86::CMOVS64rr,       X86::CMOVS64rm },
516    { X86::CMPPDrri,        X86::CMPPDrmi },
517    { X86::CMPPSrri,        X86::CMPPSrmi },
518    { X86::CMPSDrr,         X86::CMPSDrm },
519    { X86::CMPSSrr,         X86::CMPSSrm },
520    { X86::DIVPDrr,         X86::DIVPDrm },
521    { X86::DIVPSrr,         X86::DIVPSrm },
522    { X86::DIVSDrr,         X86::DIVSDrm },
523    { X86::DIVSSrr,         X86::DIVSSrm },
524    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
525    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
526    { X86::FsANDPDrr,       X86::FsANDPDrm },
527    { X86::FsANDPSrr,       X86::FsANDPSrm },
528    { X86::FsORPDrr,        X86::FsORPDrm },
529    { X86::FsORPSrr,        X86::FsORPSrm },
530    { X86::FsXORPDrr,       X86::FsXORPDrm },
531    { X86::FsXORPSrr,       X86::FsXORPSrm },
532    { X86::HADDPDrr,        X86::HADDPDrm },
533    { X86::HADDPSrr,        X86::HADDPSrm },
534    { X86::HSUBPDrr,        X86::HSUBPDrm },
535    { X86::HSUBPSrr,        X86::HSUBPSrm },
536    { X86::IMUL16rr,        X86::IMUL16rm },
537    { X86::IMUL32rr,        X86::IMUL32rm },
538    { X86::IMUL64rr,        X86::IMUL64rm },
539    { X86::MAXPDrr,         X86::MAXPDrm },
540    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
541    { X86::MAXPSrr,         X86::MAXPSrm },
542    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
543    { X86::MAXSDrr,         X86::MAXSDrm },
544    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
545    { X86::MAXSSrr,         X86::MAXSSrm },
546    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
547    { X86::MINPDrr,         X86::MINPDrm },
548    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
549    { X86::MINPSrr,         X86::MINPSrm },
550    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
551    { X86::MINSDrr,         X86::MINSDrm },
552    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
553    { X86::MINSSrr,         X86::MINSSrm },
554    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
555    { X86::MULPDrr,         X86::MULPDrm },
556    { X86::MULPSrr,         X86::MULPSrm },
557    { X86::MULSDrr,         X86::MULSDrm },
558    { X86::MULSSrr,         X86::MULSSrm },
559    { X86::OR16rr,          X86::OR16rm },
560    { X86::OR32rr,          X86::OR32rm },
561    { X86::OR64rr,          X86::OR64rm },
562    { X86::OR8rr,           X86::OR8rm },
563    { X86::ORPDrr,          X86::ORPDrm },
564    { X86::ORPSrr,          X86::ORPSrm },
565    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
566    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
567    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
568    { X86::PADDBrr,         X86::PADDBrm },
569    { X86::PADDDrr,         X86::PADDDrm },
570    { X86::PADDQrr,         X86::PADDQrm },
571    { X86::PADDSBrr,        X86::PADDSBrm },
572    { X86::PADDSWrr,        X86::PADDSWrm },
573    { X86::PADDWrr,         X86::PADDWrm },
574    { X86::PANDNrr,         X86::PANDNrm },
575    { X86::PANDrr,          X86::PANDrm },
576    { X86::PAVGBrr,         X86::PAVGBrm },
577    { X86::PAVGWrr,         X86::PAVGWrm },
578    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
579    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
580    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
581    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
582    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
583    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
584    { X86::PINSRWrri,       X86::PINSRWrmi },
585    { X86::PMADDWDrr,       X86::PMADDWDrm },
586    { X86::PMAXSWrr,        X86::PMAXSWrm },
587    { X86::PMAXUBrr,        X86::PMAXUBrm },
588    { X86::PMINSWrr,        X86::PMINSWrm },
589    { X86::PMINUBrr,        X86::PMINUBrm },
590    { X86::PMULDQrr,        X86::PMULDQrm },
591    { X86::PMULHUWrr,       X86::PMULHUWrm },
592    { X86::PMULHWrr,        X86::PMULHWrm },
593    { X86::PMULLDrr,        X86::PMULLDrm },
594    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
595    { X86::PMULLWrr,        X86::PMULLWrm },
596    { X86::PMULUDQrr,       X86::PMULUDQrm },
597    { X86::PORrr,           X86::PORrm },
598    { X86::PSADBWrr,        X86::PSADBWrm },
599    { X86::PSLLDrr,         X86::PSLLDrm },
600    { X86::PSLLQrr,         X86::PSLLQrm },
601    { X86::PSLLWrr,         X86::PSLLWrm },
602    { X86::PSRADrr,         X86::PSRADrm },
603    { X86::PSRAWrr,         X86::PSRAWrm },
604    { X86::PSRLDrr,         X86::PSRLDrm },
605    { X86::PSRLQrr,         X86::PSRLQrm },
606    { X86::PSRLWrr,         X86::PSRLWrm },
607    { X86::PSUBBrr,         X86::PSUBBrm },
608    { X86::PSUBDrr,         X86::PSUBDrm },
609    { X86::PSUBSBrr,        X86::PSUBSBrm },
610    { X86::PSUBSWrr,        X86::PSUBSWrm },
611    { X86::PSUBWrr,         X86::PSUBWrm },
612    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
613    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
614    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
615    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
616    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
617    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
618    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
619    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
620    { X86::PXORrr,          X86::PXORrm },
621    { X86::SBB32rr,         X86::SBB32rm },
622    { X86::SBB64rr,         X86::SBB64rm },
623    { X86::SHUFPDrri,       X86::SHUFPDrmi },
624    { X86::SHUFPSrri,       X86::SHUFPSrmi },
625    { X86::SUB16rr,         X86::SUB16rm },
626    { X86::SUB32rr,         X86::SUB32rm },
627    { X86::SUB64rr,         X86::SUB64rm },
628    { X86::SUB8rr,          X86::SUB8rm },
629    { X86::SUBPDrr,         X86::SUBPDrm },
630    { X86::SUBPSrr,         X86::SUBPSrm },
631    { X86::SUBSDrr,         X86::SUBSDrm },
632    { X86::SUBSSrr,         X86::SUBSSrm },
633    // FIXME: TEST*rr -> swapped operand of TEST*mr.
634    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
635    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
636    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
637    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
638    { X86::XOR16rr,         X86::XOR16rm },
639    { X86::XOR32rr,         X86::XOR32rm },
640    { X86::XOR64rr,         X86::XOR64rm },
641    { X86::XOR8rr,          X86::XOR8rm },
642    { X86::XORPDrr,         X86::XORPDrm },
643    { X86::XORPSrr,         X86::XORPSrm }
644  };
645
646  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
647    unsigned RegOp = OpTbl2[i][0];
648    unsigned MemOp = OpTbl2[i][1];
649    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
650                                                 MemOp)).second)
651      assert(false && "Duplicated entries?");
652    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
653    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
654                                   std::make_pair(RegOp, AuxInfo))).second)
655      AmbEntries.push_back(MemOp);
656  }
657
658  // Remove ambiguous entries.
659  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
660}
661
662bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
663                               unsigned& sourceReg,
664                               unsigned& destReg) const {
665  switch (MI.getOpcode()) {
666  default:
667    return false;
668  case X86::MOV8rr:
669  case X86::MOV16rr:
670  case X86::MOV32rr:
671  case X86::MOV64rr:
672  case X86::MOV16to16_:
673  case X86::MOV32to32_:
674  case X86::MOVSSrr:
675  case X86::MOVSDrr:
676
677  // FP Stack register class copies
678  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
679  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
680  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
681
682  case X86::FsMOVAPSrr:
683  case X86::FsMOVAPDrr:
684  case X86::MOVAPSrr:
685  case X86::MOVAPDrr:
686  case X86::MOVDQArr:
687  case X86::MOVSS2PSrr:
688  case X86::MOVSD2PDrr:
689  case X86::MOVPS2SSrr:
690  case X86::MOVPD2SDrr:
691  case X86::MMX_MOVD64rr:
692  case X86::MMX_MOVQ64rr:
693    assert(MI.getNumOperands() >= 2 &&
694           MI.getOperand(0).isReg() &&
695           MI.getOperand(1).isReg() &&
696           "invalid register-register move instruction");
697    sourceReg = MI.getOperand(1).getReg();
698    destReg = MI.getOperand(0).getReg();
699    return true;
700  }
701}
702
703unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
704                                           int &FrameIndex) const {
705  switch (MI->getOpcode()) {
706  default: break;
707  case X86::MOV8rm:
708  case X86::MOV16rm:
709  case X86::MOV16_rm:
710  case X86::MOV32rm:
711  case X86::MOV32_rm:
712  case X86::MOV64rm:
713  case X86::LD_Fp64m:
714  case X86::MOVSSrm:
715  case X86::MOVSDrm:
716  case X86::MOVAPSrm:
717  case X86::MOVAPDrm:
718  case X86::MOVDQArm:
719  case X86::MMX_MOVD64rm:
720  case X86::MMX_MOVQ64rm:
721    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
722        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
723        MI->getOperand(2).getImm() == 1 &&
724        MI->getOperand(3).getReg() == 0 &&
725        MI->getOperand(4).getImm() == 0) {
726      FrameIndex = MI->getOperand(1).getIndex();
727      return MI->getOperand(0).getReg();
728    }
729    break;
730  }
731  return 0;
732}
733
734unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
735                                          int &FrameIndex) const {
736  switch (MI->getOpcode()) {
737  default: break;
738  case X86::MOV8mr:
739  case X86::MOV16mr:
740  case X86::MOV16_mr:
741  case X86::MOV32mr:
742  case X86::MOV32_mr:
743  case X86::MOV64mr:
744  case X86::ST_FpP64m:
745  case X86::MOVSSmr:
746  case X86::MOVSDmr:
747  case X86::MOVAPSmr:
748  case X86::MOVAPDmr:
749  case X86::MOVDQAmr:
750  case X86::MMX_MOVD64mr:
751  case X86::MMX_MOVQ64mr:
752  case X86::MMX_MOVNTQmr:
753    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
754        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
755        MI->getOperand(1).getImm() == 1 &&
756        MI->getOperand(2).getReg() == 0 &&
757        MI->getOperand(3).getImm() == 0) {
758      FrameIndex = MI->getOperand(0).getIndex();
759      return MI->getOperand(4).getReg();
760    }
761    break;
762  }
763  return 0;
764}
765
766
767/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
768/// X86::MOVPC32r.
769static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
770  bool isPICBase = false;
771  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
772         E = MRI.def_end(); I != E; ++I) {
773    MachineInstr *DefMI = I.getOperand().getParent();
774    if (DefMI->getOpcode() != X86::MOVPC32r)
775      return false;
776    assert(!isPICBase && "More than one PIC base?");
777    isPICBase = true;
778  }
779  return isPICBase;
780}
781
782/// isGVStub - Return true if the GV requires an extra load to get the
783/// real address.
784static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
785  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
786}
787
788bool
789X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
790  switch (MI->getOpcode()) {
791  default: break;
792    case X86::MOV8rm:
793    case X86::MOV16rm:
794    case X86::MOV16_rm:
795    case X86::MOV32rm:
796    case X86::MOV32_rm:
797    case X86::MOV64rm:
798    case X86::LD_Fp64m:
799    case X86::MOVSSrm:
800    case X86::MOVSDrm:
801    case X86::MOVAPSrm:
802    case X86::MOVAPDrm:
803    case X86::MOVDQArm:
804    case X86::MMX_MOVD64rm:
805    case X86::MMX_MOVQ64rm: {
806      // Loads from constant pools are trivially rematerializable.
807      if (MI->getOperand(1).isReg() &&
808          MI->getOperand(2).isImm() &&
809          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
810          (MI->getOperand(4).isCPI() ||
811           (MI->getOperand(4).isGlobal() &&
812            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
813        unsigned BaseReg = MI->getOperand(1).getReg();
814        if (BaseReg == 0)
815          return true;
816        // Allow re-materialization of PIC load.
817        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
818          return false;
819        const MachineFunction &MF = *MI->getParent()->getParent();
820        const MachineRegisterInfo &MRI = MF.getRegInfo();
821        bool isPICBase = false;
822        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
823               E = MRI.def_end(); I != E; ++I) {
824          MachineInstr *DefMI = I.getOperand().getParent();
825          if (DefMI->getOpcode() != X86::MOVPC32r)
826            return false;
827          assert(!isPICBase && "More than one PIC base?");
828          isPICBase = true;
829        }
830        return isPICBase;
831      }
832      return false;
833    }
834
835     case X86::LEA32r:
836     case X86::LEA64r: {
837       if (MI->getOperand(2).isImm() &&
838           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
839           !MI->getOperand(4).isReg()) {
840         // lea fi#, lea GV, etc. are all rematerializable.
841         if (!MI->getOperand(1).isReg())
842           return true;
843         unsigned BaseReg = MI->getOperand(1).getReg();
844         if (BaseReg == 0)
845           return true;
846         // Allow re-materialization of lea PICBase + x.
847         const MachineFunction &MF = *MI->getParent()->getParent();
848         const MachineRegisterInfo &MRI = MF.getRegInfo();
849         return regIsPICBase(BaseReg, MRI);
850       }
851       return false;
852     }
853  }
854
855  // All other instructions marked M_REMATERIALIZABLE are always trivially
856  // rematerializable.
857  return true;
858}
859
860/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
861/// would clobber the EFLAGS condition register. Note the result may be
862/// conservative. If it cannot definitely determine the safety after visiting
863/// two instructions it assumes it's not safe.
864static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
865                                  MachineBasicBlock::iterator I) {
866  // It's always safe to clobber EFLAGS at the end of a block.
867  if (I == MBB.end())
868    return true;
869
870  // For compile time consideration, if we are not able to determine the
871  // safety after visiting 2 instructions, we will assume it's not safe.
872  for (unsigned i = 0; i < 2; ++i) {
873    bool SeenDef = false;
874    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
875      MachineOperand &MO = I->getOperand(j);
876      if (!MO.isReg())
877        continue;
878      if (MO.getReg() == X86::EFLAGS) {
879        if (MO.isUse())
880          return false;
881        SeenDef = true;
882      }
883    }
884
885    if (SeenDef)
886      // This instruction defines EFLAGS, no need to look any further.
887      return true;
888    ++I;
889
890    // If we make it to the end of the block, it's safe to clobber EFLAGS.
891    if (I == MBB.end())
892      return true;
893  }
894
895  // Conservative answer.
896  return false;
897}
898
899void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
900                                 MachineBasicBlock::iterator I,
901                                 unsigned DestReg,
902                                 const MachineInstr *Orig) const {
903  unsigned SubIdx = Orig->getOperand(0).isReg()
904    ? Orig->getOperand(0).getSubReg() : 0;
905  bool ChangeSubIdx = SubIdx != 0;
906  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
907    DestReg = RI.getSubReg(DestReg, SubIdx);
908    SubIdx = 0;
909  }
910
911  // MOV32r0 etc. are implemented with xor which clobbers condition code.
912  // Re-materialize them as movri instructions to avoid side effects.
913  bool Emitted = false;
914  switch (Orig->getOpcode()) {
915  default: break;
916  case X86::MOV8r0:
917  case X86::MOV16r0:
918  case X86::MOV32r0:
919  case X86::MOV64r0: {
920    if (!isSafeToClobberEFLAGS(MBB, I)) {
921      unsigned Opc = 0;
922      switch (Orig->getOpcode()) {
923      default: break;
924      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
925      case X86::MOV16r0: Opc = X86::MOV16ri; break;
926      case X86::MOV32r0: Opc = X86::MOV32ri; break;
927      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
928      }
929      BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
930      Emitted = true;
931    }
932    break;
933  }
934  }
935
936  if (!Emitted) {
937    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
938    MI->getOperand(0).setReg(DestReg);
939    MBB.insert(I, MI);
940  }
941
942  if (ChangeSubIdx) {
943    MachineInstr *NewMI = prior(I);
944    NewMI->getOperand(0).setSubReg(SubIdx);
945  }
946}
947
948/// isInvariantLoad - Return true if the specified instruction (which is marked
949/// mayLoad) is loading from a location whose value is invariant across the
950/// function.  For example, loading a value from the constant pool or from
951/// from the argument area of a function if it does not change.  This should
952/// only return true of *all* loads the instruction does are invariant (if it
953/// does multiple loads).
954bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
955  // This code cares about loads from three cases: constant pool entries,
956  // invariant argument slots, and global stubs.  In order to handle these cases
957  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
958  // operand and base our analysis on it.  This is safe because the address of
959  // none of these three cases is ever used as anything other than a load base
960  // and X86 doesn't have any instructions that load from multiple places.
961
962  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
963    const MachineOperand &MO = MI->getOperand(i);
964    // Loads from constant pools are trivially invariant.
965    if (MO.isCPI())
966      return true;
967
968    if (MO.isGlobal())
969      return isGVStub(MO.getGlobal(), TM);
970
971    // If this is a load from an invariant stack slot, the load is a constant.
972    if (MO.isFI()) {
973      const MachineFrameInfo &MFI =
974        *MI->getParent()->getParent()->getFrameInfo();
975      int Idx = MO.getIndex();
976      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
977    }
978  }
979
980  // All other instances of these instructions are presumed to have other
981  // issues.
982  return false;
983}
984
985/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
986/// is not marked dead.
987static bool hasLiveCondCodeDef(MachineInstr *MI) {
988  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
989    MachineOperand &MO = MI->getOperand(i);
990    if (MO.isReg() && MO.isDef() &&
991        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
992      return true;
993    }
994  }
995  return false;
996}
997
998/// convertToThreeAddress - This method must be implemented by targets that
999/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1000/// may be able to convert a two-address instruction into a true
1001/// three-address instruction on demand.  This allows the X86 target (for
1002/// example) to convert ADD and SHL instructions into LEA instructions if they
1003/// would require register copies due to two-addressness.
1004///
1005/// This method returns a null pointer if the transformation cannot be
1006/// performed, otherwise it returns the new instruction.
1007///
1008MachineInstr *
1009X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1010                                    MachineBasicBlock::iterator &MBBI,
1011                                    LiveVariables *LV) const {
1012  MachineInstr *MI = MBBI;
1013  MachineFunction &MF = *MI->getParent()->getParent();
1014  // All instructions input are two-addr instructions.  Get the known operands.
1015  unsigned Dest = MI->getOperand(0).getReg();
1016  unsigned Src = MI->getOperand(1).getReg();
1017  bool isDead = MI->getOperand(0).isDead();
1018  bool isKill = MI->getOperand(1).isKill();
1019
1020  MachineInstr *NewMI = NULL;
1021  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1022  // we have better subtarget support, enable the 16-bit LEA generation here.
1023  bool DisableLEA16 = true;
1024
1025  unsigned MIOpc = MI->getOpcode();
1026  switch (MIOpc) {
1027  case X86::SHUFPSrri: {
1028    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1029    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1030
1031    unsigned B = MI->getOperand(1).getReg();
1032    unsigned C = MI->getOperand(2).getReg();
1033    if (B != C) return 0;
1034    unsigned A = MI->getOperand(0).getReg();
1035    unsigned M = MI->getOperand(3).getImm();
1036    NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
1037      .addReg(B, false, false, isKill).addImm(M);
1038    break;
1039  }
1040  case X86::SHL64ri: {
1041    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1042    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1043    // the flags produced by a shift yet, so this is safe.
1044    unsigned ShAmt = MI->getOperand(2).getImm();
1045    if (ShAmt == 0 || ShAmt >= 4) return 0;
1046
1047    NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
1048      .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
1049    break;
1050  }
1051  case X86::SHL32ri: {
1052    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1053    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1054    // the flags produced by a shift yet, so this is safe.
1055    unsigned ShAmt = MI->getOperand(2).getImm();
1056    if (ShAmt == 0 || ShAmt >= 4) return 0;
1057
1058    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1059      X86::LEA64_32r : X86::LEA32r;
1060    NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
1061      .addReg(0).addImm(1 << ShAmt)
1062      .addReg(Src, false, false, isKill).addImm(0);
1063    break;
1064  }
1065  case X86::SHL16ri: {
1066    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1067    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1068    // the flags produced by a shift yet, so this is safe.
1069    unsigned ShAmt = MI->getOperand(2).getImm();
1070    if (ShAmt == 0 || ShAmt >= 4) return 0;
1071
1072    if (DisableLEA16) {
1073      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1074      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1075      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1076        ? X86::LEA64_32r : X86::LEA32r;
1077      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1078      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1079
1080      // Build and insert into an implicit UNDEF value. This is OK because
1081      // well be shifting and then extracting the lower 16-bits.
1082      BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1083      MachineInstr *InsMI =  BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
1084        .addReg(leaInReg).addReg(Src, false, false, isKill)
1085        .addImm(X86::SUBREG_16BIT);
1086
1087      NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
1088        .addReg(leaInReg, false, false, true).addImm(0);
1089
1090      MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
1091        .addReg(Dest, true, false, false, isDead)
1092        .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
1093      if (LV) {
1094        // Update live variables
1095        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1096        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1097        if (isKill)
1098          LV->replaceKillInstruction(Src, MI, InsMI);
1099        if (isDead)
1100          LV->replaceKillInstruction(Dest, MI, ExtMI);
1101      }
1102      return ExtMI;
1103    } else {
1104      NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
1105        .addReg(0).addImm(1 << ShAmt)
1106        .addReg(Src, false, false, isKill).addImm(0);
1107    }
1108    break;
1109  }
1110  default: {
1111    // The following opcodes also sets the condition code register(s). Only
1112    // convert them to equivalent lea if the condition code register def's
1113    // are dead!
1114    if (hasLiveCondCodeDef(MI))
1115      return 0;
1116
1117    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1118    switch (MIOpc) {
1119    default: return 0;
1120    case X86::INC64r:
1121    case X86::INC32r:
1122    case X86::INC64_32r: {
1123      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1124      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1125        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1126      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1127                           .addReg(Dest, true, false, false, isDead),
1128                           Src, isKill, 1);
1129      break;
1130    }
1131    case X86::INC16r:
1132    case X86::INC64_16r:
1133      if (DisableLEA16) return 0;
1134      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1135      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1136                           .addReg(Dest, true, false, false, isDead),
1137                           Src, isKill, 1);
1138      break;
1139    case X86::DEC64r:
1140    case X86::DEC32r:
1141    case X86::DEC64_32r: {
1142      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1143      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1144        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1145      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1146                           .addReg(Dest, true, false, false, isDead),
1147                           Src, isKill, -1);
1148      break;
1149    }
1150    case X86::DEC16r:
1151    case X86::DEC64_16r:
1152      if (DisableLEA16) return 0;
1153      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1154      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1155                           .addReg(Dest, true, false, false, isDead),
1156                           Src, isKill, -1);
1157      break;
1158    case X86::ADD64rr:
1159    case X86::ADD32rr: {
1160      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1161      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1162        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1163      unsigned Src2 = MI->getOperand(2).getReg();
1164      bool isKill2 = MI->getOperand(2).isKill();
1165      NewMI = addRegReg(BuildMI(MF, get(Opc))
1166                        .addReg(Dest, true, false, false, isDead),
1167                        Src, isKill, Src2, isKill2);
1168      if (LV && isKill2)
1169        LV->replaceKillInstruction(Src2, MI, NewMI);
1170      break;
1171    }
1172    case X86::ADD16rr: {
1173      if (DisableLEA16) return 0;
1174      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1175      unsigned Src2 = MI->getOperand(2).getReg();
1176      bool isKill2 = MI->getOperand(2).isKill();
1177      NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
1178                        .addReg(Dest, true, false, false, isDead),
1179                        Src, isKill, Src2, isKill2);
1180      if (LV && isKill2)
1181        LV->replaceKillInstruction(Src2, MI, NewMI);
1182      break;
1183    }
1184    case X86::ADD64ri32:
1185    case X86::ADD64ri8:
1186      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1187      if (MI->getOperand(2).isImm())
1188        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
1189                             .addReg(Dest, true, false, false, isDead),
1190                             Src, isKill, MI->getOperand(2).getImm());
1191      break;
1192    case X86::ADD32ri:
1193    case X86::ADD32ri8:
1194      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1195      if (MI->getOperand(2).isImm()) {
1196        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1197        NewMI = addRegOffset(BuildMI(MF, get(Opc))
1198                             .addReg(Dest, true, false, false, isDead),
1199                             Src, isKill, MI->getOperand(2).getImm());
1200      }
1201      break;
1202    case X86::ADD16ri:
1203    case X86::ADD16ri8:
1204      if (DisableLEA16) return 0;
1205      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1206      if (MI->getOperand(2).isImm())
1207        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1208                             .addReg(Dest, true, false, false, isDead),
1209                             Src, isKill, MI->getOperand(2).getImm());
1210      break;
1211    case X86::SHL16ri:
1212      if (DisableLEA16) return 0;
1213    case X86::SHL32ri:
1214    case X86::SHL64ri: {
1215      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1216             "Unknown shl instruction!");
1217      unsigned ShAmt = MI->getOperand(2).getImm();
1218      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1219        X86AddressMode AM;
1220        AM.Scale = 1 << ShAmt;
1221        AM.IndexReg = Src;
1222        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1223          : (MIOpc == X86::SHL32ri
1224             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1225        NewMI = addFullAddress(BuildMI(MF, get(Opc))
1226                               .addReg(Dest, true, false, false, isDead), AM);
1227        if (isKill)
1228          NewMI->getOperand(3).setIsKill(true);
1229      }
1230      break;
1231    }
1232    }
1233  }
1234  }
1235
1236  if (!NewMI) return 0;
1237
1238  if (LV) {  // Update live variables
1239    if (isKill)
1240      LV->replaceKillInstruction(Src, MI, NewMI);
1241    if (isDead)
1242      LV->replaceKillInstruction(Dest, MI, NewMI);
1243  }
1244
1245  MFI->insert(MBBI, NewMI);          // Insert the new inst
1246  return NewMI;
1247}
1248
1249/// commuteInstruction - We have a few instructions that must be hacked on to
1250/// commute them.
1251///
1252MachineInstr *
1253X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1254  switch (MI->getOpcode()) {
1255  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1256  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1257  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1258  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1259  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1260  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1261    unsigned Opc;
1262    unsigned Size;
1263    switch (MI->getOpcode()) {
1264    default: assert(0 && "Unreachable!");
1265    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1266    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1267    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1268    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1269    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1270    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1271    }
1272    unsigned Amt = MI->getOperand(3).getImm();
1273    if (NewMI) {
1274      MachineFunction &MF = *MI->getParent()->getParent();
1275      MI = MF.CloneMachineInstr(MI);
1276      NewMI = false;
1277    }
1278    MI->setDesc(get(Opc));
1279    MI->getOperand(3).setImm(Size-Amt);
1280    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1281  }
1282  case X86::CMOVB16rr:
1283  case X86::CMOVB32rr:
1284  case X86::CMOVB64rr:
1285  case X86::CMOVAE16rr:
1286  case X86::CMOVAE32rr:
1287  case X86::CMOVAE64rr:
1288  case X86::CMOVE16rr:
1289  case X86::CMOVE32rr:
1290  case X86::CMOVE64rr:
1291  case X86::CMOVNE16rr:
1292  case X86::CMOVNE32rr:
1293  case X86::CMOVNE64rr:
1294  case X86::CMOVBE16rr:
1295  case X86::CMOVBE32rr:
1296  case X86::CMOVBE64rr:
1297  case X86::CMOVA16rr:
1298  case X86::CMOVA32rr:
1299  case X86::CMOVA64rr:
1300  case X86::CMOVL16rr:
1301  case X86::CMOVL32rr:
1302  case X86::CMOVL64rr:
1303  case X86::CMOVGE16rr:
1304  case X86::CMOVGE32rr:
1305  case X86::CMOVGE64rr:
1306  case X86::CMOVLE16rr:
1307  case X86::CMOVLE32rr:
1308  case X86::CMOVLE64rr:
1309  case X86::CMOVG16rr:
1310  case X86::CMOVG32rr:
1311  case X86::CMOVG64rr:
1312  case X86::CMOVS16rr:
1313  case X86::CMOVS32rr:
1314  case X86::CMOVS64rr:
1315  case X86::CMOVNS16rr:
1316  case X86::CMOVNS32rr:
1317  case X86::CMOVNS64rr:
1318  case X86::CMOVP16rr:
1319  case X86::CMOVP32rr:
1320  case X86::CMOVP64rr:
1321  case X86::CMOVNP16rr:
1322  case X86::CMOVNP32rr:
1323  case X86::CMOVNP64rr:
1324  case X86::CMOVO16rr:
1325  case X86::CMOVO32rr:
1326  case X86::CMOVO64rr:
1327  case X86::CMOVNO16rr:
1328  case X86::CMOVNO32rr:
1329  case X86::CMOVNO64rr: {
1330    unsigned Opc = 0;
1331    switch (MI->getOpcode()) {
1332    default: break;
1333    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1334    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1335    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1336    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1337    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1338    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1339    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1340    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1341    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1342    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1343    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1344    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1345    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1346    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1347    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1348    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1349    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1350    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1351    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1352    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1353    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1354    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1355    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1356    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1357    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1358    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1359    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1360    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1361    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1362    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1363    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1364    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1365    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
1366    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1367    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1368    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1369    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1370    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1371    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
1372    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1373    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1374    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1375    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1376    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1377    case X86::CMOVO64rr:  Opc = X86::CMOVNO32rr; break;
1378    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1379    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1380    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1381    }
1382    if (NewMI) {
1383      MachineFunction &MF = *MI->getParent()->getParent();
1384      MI = MF.CloneMachineInstr(MI);
1385      NewMI = false;
1386    }
1387    MI->setDesc(get(Opc));
1388    // Fallthrough intended.
1389  }
1390  default:
1391    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1392  }
1393}
1394
1395static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1396  switch (BrOpc) {
1397  default: return X86::COND_INVALID;
1398  case X86::JE:  return X86::COND_E;
1399  case X86::JNE: return X86::COND_NE;
1400  case X86::JL:  return X86::COND_L;
1401  case X86::JLE: return X86::COND_LE;
1402  case X86::JG:  return X86::COND_G;
1403  case X86::JGE: return X86::COND_GE;
1404  case X86::JB:  return X86::COND_B;
1405  case X86::JBE: return X86::COND_BE;
1406  case X86::JA:  return X86::COND_A;
1407  case X86::JAE: return X86::COND_AE;
1408  case X86::JS:  return X86::COND_S;
1409  case X86::JNS: return X86::COND_NS;
1410  case X86::JP:  return X86::COND_P;
1411  case X86::JNP: return X86::COND_NP;
1412  case X86::JO:  return X86::COND_O;
1413  case X86::JNO: return X86::COND_NO;
1414  }
1415}
1416
1417unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1418  switch (CC) {
1419  default: assert(0 && "Illegal condition code!");
1420  case X86::COND_E:  return X86::JE;
1421  case X86::COND_NE: return X86::JNE;
1422  case X86::COND_L:  return X86::JL;
1423  case X86::COND_LE: return X86::JLE;
1424  case X86::COND_G:  return X86::JG;
1425  case X86::COND_GE: return X86::JGE;
1426  case X86::COND_B:  return X86::JB;
1427  case X86::COND_BE: return X86::JBE;
1428  case X86::COND_A:  return X86::JA;
1429  case X86::COND_AE: return X86::JAE;
1430  case X86::COND_S:  return X86::JS;
1431  case X86::COND_NS: return X86::JNS;
1432  case X86::COND_P:  return X86::JP;
1433  case X86::COND_NP: return X86::JNP;
1434  case X86::COND_O:  return X86::JO;
1435  case X86::COND_NO: return X86::JNO;
1436  }
1437}
1438
1439/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1440/// e.g. turning COND_E to COND_NE.
1441X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1442  switch (CC) {
1443  default: assert(0 && "Illegal condition code!");
1444  case X86::COND_E:  return X86::COND_NE;
1445  case X86::COND_NE: return X86::COND_E;
1446  case X86::COND_L:  return X86::COND_GE;
1447  case X86::COND_LE: return X86::COND_G;
1448  case X86::COND_G:  return X86::COND_LE;
1449  case X86::COND_GE: return X86::COND_L;
1450  case X86::COND_B:  return X86::COND_AE;
1451  case X86::COND_BE: return X86::COND_A;
1452  case X86::COND_A:  return X86::COND_BE;
1453  case X86::COND_AE: return X86::COND_B;
1454  case X86::COND_S:  return X86::COND_NS;
1455  case X86::COND_NS: return X86::COND_S;
1456  case X86::COND_P:  return X86::COND_NP;
1457  case X86::COND_NP: return X86::COND_P;
1458  case X86::COND_O:  return X86::COND_NO;
1459  case X86::COND_NO: return X86::COND_O;
1460  }
1461}
1462
1463bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1464  const TargetInstrDesc &TID = MI->getDesc();
1465  if (!TID.isTerminator()) return false;
1466
1467  // Conditional branch is a special case.
1468  if (TID.isBranch() && !TID.isBarrier())
1469    return true;
1470  if (!TID.isPredicable())
1471    return true;
1472  return !isPredicated(MI);
1473}
1474
1475// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1476static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1477                                               const X86InstrInfo &TII) {
1478  if (MI->getOpcode() == X86::FP_REG_KILL)
1479    return false;
1480  return TII.isUnpredicatedTerminator(MI);
1481}
1482
1483bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1484                                 MachineBasicBlock *&TBB,
1485                                 MachineBasicBlock *&FBB,
1486                                 SmallVectorImpl<MachineOperand> &Cond) const {
1487  // Start from the bottom of the block and work up, examining the
1488  // terminator instructions.
1489  MachineBasicBlock::iterator I = MBB.end();
1490  while (I != MBB.begin()) {
1491    --I;
1492    // Working from the bottom, when we see a non-terminator
1493    // instruction, we're done.
1494    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1495      break;
1496    // A terminator that isn't a branch can't easily be handled
1497    // by this analysis.
1498    if (!I->getDesc().isBranch())
1499      return true;
1500    // Handle unconditional branches.
1501    if (I->getOpcode() == X86::JMP) {
1502      // If the block has any instructions after a JMP, delete them.
1503      while (next(I) != MBB.end())
1504        next(I)->eraseFromParent();
1505      Cond.clear();
1506      FBB = 0;
1507      // Delete the JMP if it's equivalent to a fall-through.
1508      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1509        TBB = 0;
1510        I->eraseFromParent();
1511        I = MBB.end();
1512        continue;
1513      }
1514      // TBB is used to indicate the unconditinal destination.
1515      TBB = I->getOperand(0).getMBB();
1516      continue;
1517    }
1518    // Handle conditional branches.
1519    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1520    if (BranchCode == X86::COND_INVALID)
1521      return true;  // Can't handle indirect branch.
1522    // Working from the bottom, handle the first conditional branch.
1523    if (Cond.empty()) {
1524      FBB = TBB;
1525      TBB = I->getOperand(0).getMBB();
1526      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1527      continue;
1528    }
1529    // Handle subsequent conditional branches. Only handle the case
1530    // where all conditional branches branch to the same destination
1531    // and their condition opcodes fit one of the special
1532    // multi-branch idioms.
1533    assert(Cond.size() == 1);
1534    assert(TBB);
1535    // Only handle the case where all conditional branches branch to
1536    // the same destination.
1537    if (TBB != I->getOperand(0).getMBB())
1538      return true;
1539    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1540    // If the conditions are the same, we can leave them alone.
1541    if (OldBranchCode == BranchCode)
1542      continue;
1543    // If they differ, see if they fit one of the known patterns.
1544    // Theoretically we could handle more patterns here, but
1545    // we shouldn't expect to see them if instruction selection
1546    // has done a reasonable job.
1547    if ((OldBranchCode == X86::COND_NP &&
1548         BranchCode == X86::COND_E) ||
1549        (OldBranchCode == X86::COND_E &&
1550         BranchCode == X86::COND_NP))
1551      BranchCode = X86::COND_NP_OR_E;
1552    else if ((OldBranchCode == X86::COND_P &&
1553              BranchCode == X86::COND_NE) ||
1554             (OldBranchCode == X86::COND_NE &&
1555              BranchCode == X86::COND_P))
1556      BranchCode = X86::COND_NE_OR_P;
1557    else
1558      return true;
1559    // Update the MachineOperand.
1560    Cond[0].setImm(BranchCode);
1561  }
1562
1563  return false;
1564}
1565
1566unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1567  MachineBasicBlock::iterator I = MBB.end();
1568  unsigned Count = 0;
1569
1570  while (I != MBB.begin()) {
1571    --I;
1572    if (I->getOpcode() != X86::JMP &&
1573        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1574      break;
1575    // Remove the branch.
1576    I->eraseFromParent();
1577    I = MBB.end();
1578    ++Count;
1579  }
1580
1581  return Count;
1582}
1583
1584static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1585                                                     const MachineOperand &MO) {
1586  if (MO.isReg())
1587    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1588                     MO.isKill(), MO.isDead(), MO.getSubReg());
1589  else if (MO.isImm())
1590    MIB = MIB.addImm(MO.getImm());
1591  else if (MO.isFI())
1592    MIB = MIB.addFrameIndex(MO.getIndex());
1593  else if (MO.isGlobal())
1594    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1595  else if (MO.isCPI())
1596    MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1597  else if (MO.isJTI())
1598    MIB = MIB.addJumpTableIndex(MO.getIndex());
1599  else if (MO.isSymbol())
1600    MIB = MIB.addExternalSymbol(MO.getSymbolName());
1601  else
1602    assert(0 && "Unknown operand for X86InstrAddOperand!");
1603
1604  return MIB;
1605}
1606
1607unsigned
1608X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1609                           MachineBasicBlock *FBB,
1610                           const SmallVectorImpl<MachineOperand> &Cond) const {
1611  // Shouldn't be a fall through.
1612  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1613  assert((Cond.size() == 1 || Cond.size() == 0) &&
1614         "X86 branch conditions have one component!");
1615
1616  if (Cond.empty()) {
1617    // Unconditional branch?
1618    assert(!FBB && "Unconditional branch with multiple successors!");
1619    BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1620    return 1;
1621  }
1622
1623  // Conditional branch.
1624  unsigned Count = 0;
1625  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1626  switch (CC) {
1627  case X86::COND_NP_OR_E:
1628    // Synthesize NP_OR_E with two branches.
1629    BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1630    ++Count;
1631    BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1632    ++Count;
1633    break;
1634  case X86::COND_NE_OR_P:
1635    // Synthesize NE_OR_P with two branches.
1636    BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1637    ++Count;
1638    BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1639    ++Count;
1640    break;
1641  default: {
1642    unsigned Opc = GetCondBranchFromCond(CC);
1643    BuildMI(&MBB, get(Opc)).addMBB(TBB);
1644    ++Count;
1645  }
1646  }
1647  if (FBB) {
1648    // Two-way Conditional branch. Insert the second branch.
1649    BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1650    ++Count;
1651  }
1652  return Count;
1653}
1654
1655bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1656                                MachineBasicBlock::iterator MI,
1657                                unsigned DestReg, unsigned SrcReg,
1658                                const TargetRegisterClass *DestRC,
1659                                const TargetRegisterClass *SrcRC) const {
1660  if (DestRC == SrcRC) {
1661    unsigned Opc;
1662    if (DestRC == &X86::GR64RegClass) {
1663      Opc = X86::MOV64rr;
1664    } else if (DestRC == &X86::GR32RegClass) {
1665      Opc = X86::MOV32rr;
1666    } else if (DestRC == &X86::GR16RegClass) {
1667      Opc = X86::MOV16rr;
1668    } else if (DestRC == &X86::GR8RegClass) {
1669      Opc = X86::MOV8rr;
1670    } else if (DestRC == &X86::GR32_RegClass) {
1671      Opc = X86::MOV32_rr;
1672    } else if (DestRC == &X86::GR16_RegClass) {
1673      Opc = X86::MOV16_rr;
1674    } else if (DestRC == &X86::RFP32RegClass) {
1675      Opc = X86::MOV_Fp3232;
1676    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1677      Opc = X86::MOV_Fp6464;
1678    } else if (DestRC == &X86::RFP80RegClass) {
1679      Opc = X86::MOV_Fp8080;
1680    } else if (DestRC == &X86::FR32RegClass) {
1681      Opc = X86::FsMOVAPSrr;
1682    } else if (DestRC == &X86::FR64RegClass) {
1683      Opc = X86::FsMOVAPDrr;
1684    } else if (DestRC == &X86::VR128RegClass) {
1685      Opc = X86::MOVAPSrr;
1686    } else if (DestRC == &X86::VR64RegClass) {
1687      Opc = X86::MMX_MOVQ64rr;
1688    } else {
1689      return false;
1690    }
1691    BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1692    return true;
1693  }
1694
1695  // Moving EFLAGS to / from another register requires a push and a pop.
1696  if (SrcRC == &X86::CCRRegClass) {
1697    if (SrcReg != X86::EFLAGS)
1698      return false;
1699    if (DestRC == &X86::GR64RegClass) {
1700      BuildMI(MBB, MI, get(X86::PUSHFQ));
1701      BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1702      return true;
1703    } else if (DestRC == &X86::GR32RegClass) {
1704      BuildMI(MBB, MI, get(X86::PUSHFD));
1705      BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1706      return true;
1707    }
1708  } else if (DestRC == &X86::CCRRegClass) {
1709    if (DestReg != X86::EFLAGS)
1710      return false;
1711    if (SrcRC == &X86::GR64RegClass) {
1712      BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1713      BuildMI(MBB, MI, get(X86::POPFQ));
1714      return true;
1715    } else if (SrcRC == &X86::GR32RegClass) {
1716      BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1717      BuildMI(MBB, MI, get(X86::POPFD));
1718      return true;
1719    }
1720  }
1721
1722  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1723  if (SrcRC == &X86::RSTRegClass) {
1724    // Copying from ST(0)/ST(1).
1725    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1726      // Can only copy from ST(0)/ST(1) right now
1727      return false;
1728    bool isST0 = SrcReg == X86::ST0;
1729    unsigned Opc;
1730    if (DestRC == &X86::RFP32RegClass)
1731      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1732    else if (DestRC == &X86::RFP64RegClass)
1733      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1734    else {
1735      if (DestRC != &X86::RFP80RegClass)
1736        return false;
1737      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1738    }
1739    BuildMI(MBB, MI, get(Opc), DestReg);
1740    return true;
1741  }
1742
1743  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1744  if (DestRC == &X86::RSTRegClass) {
1745    // Copying to ST(0).  FIXME: handle ST(1) also
1746    if (DestReg != X86::ST0)
1747      // Can only copy to TOS right now
1748      return false;
1749    unsigned Opc;
1750    if (SrcRC == &X86::RFP32RegClass)
1751      Opc = X86::FpSET_ST0_32;
1752    else if (SrcRC == &X86::RFP64RegClass)
1753      Opc = X86::FpSET_ST0_64;
1754    else {
1755      if (SrcRC != &X86::RFP80RegClass)
1756        return false;
1757      Opc = X86::FpSET_ST0_80;
1758    }
1759    BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1760    return true;
1761  }
1762
1763  // Not yet supported!
1764  return false;
1765}
1766
1767static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1768                                  bool isStackAligned) {
1769  unsigned Opc = 0;
1770  if (RC == &X86::GR64RegClass) {
1771    Opc = X86::MOV64mr;
1772  } else if (RC == &X86::GR32RegClass) {
1773    Opc = X86::MOV32mr;
1774  } else if (RC == &X86::GR16RegClass) {
1775    Opc = X86::MOV16mr;
1776  } else if (RC == &X86::GR8RegClass) {
1777    Opc = X86::MOV8mr;
1778  } else if (RC == &X86::GR32_RegClass) {
1779    Opc = X86::MOV32_mr;
1780  } else if (RC == &X86::GR16_RegClass) {
1781    Opc = X86::MOV16_mr;
1782  } else if (RC == &X86::RFP80RegClass) {
1783    Opc = X86::ST_FpP80m;   // pops
1784  } else if (RC == &X86::RFP64RegClass) {
1785    Opc = X86::ST_Fp64m;
1786  } else if (RC == &X86::RFP32RegClass) {
1787    Opc = X86::ST_Fp32m;
1788  } else if (RC == &X86::FR32RegClass) {
1789    Opc = X86::MOVSSmr;
1790  } else if (RC == &X86::FR64RegClass) {
1791    Opc = X86::MOVSDmr;
1792  } else if (RC == &X86::VR128RegClass) {
1793    // If stack is realigned we can use aligned stores.
1794    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1795  } else if (RC == &X86::VR64RegClass) {
1796    Opc = X86::MMX_MOVQ64mr;
1797  } else {
1798    assert(0 && "Unknown regclass");
1799    abort();
1800  }
1801
1802  return Opc;
1803}
1804
1805void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1806                                       MachineBasicBlock::iterator MI,
1807                                       unsigned SrcReg, bool isKill, int FrameIdx,
1808                                       const TargetRegisterClass *RC) const {
1809  const MachineFunction &MF = *MBB.getParent();
1810  bool isAligned = (RI.getStackAlignment() >= 16) ||
1811    RI.needsStackRealignment(MF);
1812  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1813  addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1814    .addReg(SrcReg, false, false, isKill);
1815}
1816
1817void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1818                                  bool isKill,
1819                                  SmallVectorImpl<MachineOperand> &Addr,
1820                                  const TargetRegisterClass *RC,
1821                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1822  bool isAligned = (RI.getStackAlignment() >= 16) ||
1823    RI.needsStackRealignment(MF);
1824  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1825  MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
1826  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1827    MIB = X86InstrAddOperand(MIB, Addr[i]);
1828  MIB.addReg(SrcReg, false, false, isKill);
1829  NewMIs.push_back(MIB);
1830}
1831
1832static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1833                                 bool isStackAligned) {
1834  unsigned Opc = 0;
1835  if (RC == &X86::GR64RegClass) {
1836    Opc = X86::MOV64rm;
1837  } else if (RC == &X86::GR32RegClass) {
1838    Opc = X86::MOV32rm;
1839  } else if (RC == &X86::GR16RegClass) {
1840    Opc = X86::MOV16rm;
1841  } else if (RC == &X86::GR8RegClass) {
1842    Opc = X86::MOV8rm;
1843  } else if (RC == &X86::GR32_RegClass) {
1844    Opc = X86::MOV32_rm;
1845  } else if (RC == &X86::GR16_RegClass) {
1846    Opc = X86::MOV16_rm;
1847  } else if (RC == &X86::RFP80RegClass) {
1848    Opc = X86::LD_Fp80m;
1849  } else if (RC == &X86::RFP64RegClass) {
1850    Opc = X86::LD_Fp64m;
1851  } else if (RC == &X86::RFP32RegClass) {
1852    Opc = X86::LD_Fp32m;
1853  } else if (RC == &X86::FR32RegClass) {
1854    Opc = X86::MOVSSrm;
1855  } else if (RC == &X86::FR64RegClass) {
1856    Opc = X86::MOVSDrm;
1857  } else if (RC == &X86::VR128RegClass) {
1858    // If stack is realigned we can use aligned loads.
1859    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1860  } else if (RC == &X86::VR64RegClass) {
1861    Opc = X86::MMX_MOVQ64rm;
1862  } else {
1863    assert(0 && "Unknown regclass");
1864    abort();
1865  }
1866
1867  return Opc;
1868}
1869
1870void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1871                                        MachineBasicBlock::iterator MI,
1872                                        unsigned DestReg, int FrameIdx,
1873                                        const TargetRegisterClass *RC) const{
1874  const MachineFunction &MF = *MBB.getParent();
1875  bool isAligned = (RI.getStackAlignment() >= 16) ||
1876    RI.needsStackRealignment(MF);
1877  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1878  addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1879}
1880
1881void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1882                                 SmallVectorImpl<MachineOperand> &Addr,
1883                                 const TargetRegisterClass *RC,
1884                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1885  bool isAligned = (RI.getStackAlignment() >= 16) ||
1886    RI.needsStackRealignment(MF);
1887  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1888  MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
1889  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1890    MIB = X86InstrAddOperand(MIB, Addr[i]);
1891  NewMIs.push_back(MIB);
1892}
1893
1894bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1895                                                MachineBasicBlock::iterator MI,
1896                                const std::vector<CalleeSavedInfo> &CSI) const {
1897  if (CSI.empty())
1898    return false;
1899
1900  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1901  unsigned SlotSize = is64Bit ? 8 : 4;
1902
1903  MachineFunction &MF = *MBB.getParent();
1904  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1905  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1906
1907  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1908  for (unsigned i = CSI.size(); i != 0; --i) {
1909    unsigned Reg = CSI[i-1].getReg();
1910    // Add the callee-saved register as live-in. It's killed at the spill.
1911    MBB.addLiveIn(Reg);
1912    BuildMI(MBB, MI, get(Opc))
1913      .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
1914  }
1915  return true;
1916}
1917
1918bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1919                                                 MachineBasicBlock::iterator MI,
1920                                const std::vector<CalleeSavedInfo> &CSI) const {
1921  if (CSI.empty())
1922    return false;
1923
1924  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1925
1926  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1927  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1928    unsigned Reg = CSI[i].getReg();
1929    BuildMI(MBB, MI, get(Opc), Reg);
1930  }
1931  return true;
1932}
1933
1934static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
1935                                     const SmallVectorImpl<MachineOperand> &MOs,
1936                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1937  // Create the base instruction with the memory operand as the first part.
1938  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1939  MachineInstrBuilder MIB(NewMI);
1940  unsigned NumAddrOps = MOs.size();
1941  for (unsigned i = 0; i != NumAddrOps; ++i)
1942    MIB = X86InstrAddOperand(MIB, MOs[i]);
1943  if (NumAddrOps < 4)  // FrameIndex only
1944    MIB.addImm(1).addReg(0).addImm(0);
1945
1946  // Loop over the rest of the ri operands, converting them over.
1947  unsigned NumOps = MI->getDesc().getNumOperands()-2;
1948  for (unsigned i = 0; i != NumOps; ++i) {
1949    MachineOperand &MO = MI->getOperand(i+2);
1950    MIB = X86InstrAddOperand(MIB, MO);
1951  }
1952  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1953    MachineOperand &MO = MI->getOperand(i);
1954    MIB = X86InstrAddOperand(MIB, MO);
1955  }
1956  return MIB;
1957}
1958
1959static MachineInstr *FuseInst(MachineFunction &MF,
1960                              unsigned Opcode, unsigned OpNo,
1961                              const SmallVectorImpl<MachineOperand> &MOs,
1962                              MachineInstr *MI, const TargetInstrInfo &TII) {
1963  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1964  MachineInstrBuilder MIB(NewMI);
1965
1966  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1967    MachineOperand &MO = MI->getOperand(i);
1968    if (i == OpNo) {
1969      assert(MO.isReg() && "Expected to fold into reg operand!");
1970      unsigned NumAddrOps = MOs.size();
1971      for (unsigned i = 0; i != NumAddrOps; ++i)
1972        MIB = X86InstrAddOperand(MIB, MOs[i]);
1973      if (NumAddrOps < 4)  // FrameIndex only
1974        MIB.addImm(1).addReg(0).addImm(0);
1975    } else {
1976      MIB = X86InstrAddOperand(MIB, MO);
1977    }
1978  }
1979  return MIB;
1980}
1981
1982static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1983                                const SmallVectorImpl<MachineOperand> &MOs,
1984                                MachineInstr *MI) {
1985  MachineFunction &MF = *MI->getParent()->getParent();
1986  MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
1987
1988  unsigned NumAddrOps = MOs.size();
1989  for (unsigned i = 0; i != NumAddrOps; ++i)
1990    MIB = X86InstrAddOperand(MIB, MOs[i]);
1991  if (NumAddrOps < 4)  // FrameIndex only
1992    MIB.addImm(1).addReg(0).addImm(0);
1993  return MIB.addImm(0);
1994}
1995
1996MachineInstr*
1997X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
1998                                    MachineInstr *MI, unsigned i,
1999                                    const SmallVectorImpl<MachineOperand> &MOs) const{
2000  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2001  bool isTwoAddrFold = false;
2002  unsigned NumOps = MI->getDesc().getNumOperands();
2003  bool isTwoAddr = NumOps > 1 &&
2004    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2005
2006  MachineInstr *NewMI = NULL;
2007  // Folding a memory location into the two-address part of a two-address
2008  // instruction is different than folding it other places.  It requires
2009  // replacing the *two* registers with the memory location.
2010  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2011      MI->getOperand(0).isReg() &&
2012      MI->getOperand(1).isReg() &&
2013      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2014    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2015    isTwoAddrFold = true;
2016  } else if (i == 0) { // If operand 0
2017    if (MI->getOpcode() == X86::MOV16r0)
2018      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2019    else if (MI->getOpcode() == X86::MOV32r0)
2020      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2021    else if (MI->getOpcode() == X86::MOV64r0)
2022      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2023    else if (MI->getOpcode() == X86::MOV8r0)
2024      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2025    if (NewMI)
2026      return NewMI;
2027
2028    OpcodeTablePtr = &RegOp2MemOpTable0;
2029  } else if (i == 1) {
2030    OpcodeTablePtr = &RegOp2MemOpTable1;
2031  } else if (i == 2) {
2032    OpcodeTablePtr = &RegOp2MemOpTable2;
2033  }
2034
2035  // If table selected...
2036  if (OpcodeTablePtr) {
2037    // Find the Opcode to fuse
2038    DenseMap<unsigned*, unsigned>::iterator I =
2039      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2040    if (I != OpcodeTablePtr->end()) {
2041      if (isTwoAddrFold)
2042        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2043      else
2044        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2045      return NewMI;
2046    }
2047  }
2048
2049  // No fusion
2050  if (PrintFailedFusing)
2051    cerr << "We failed to fuse operand " << i << " in " << *MI;
2052  return NULL;
2053}
2054
2055
2056MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2057                                                  MachineInstr *MI,
2058                                                  const SmallVectorImpl<unsigned> &Ops,
2059                                                  int FrameIndex) const {
2060  // Check switch flag
2061  if (NoFusing) return NULL;
2062
2063  const MachineFrameInfo *MFI = MF.getFrameInfo();
2064  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2065  // FIXME: Move alignment requirement into tables?
2066  if (Alignment < 16) {
2067    switch (MI->getOpcode()) {
2068    default: break;
2069    // Not always safe to fold movsd into these instructions since their load
2070    // folding variants expects the address to be 16 byte aligned.
2071    case X86::FsANDNPDrr:
2072    case X86::FsANDNPSrr:
2073    case X86::FsANDPDrr:
2074    case X86::FsANDPSrr:
2075    case X86::FsORPDrr:
2076    case X86::FsORPSrr:
2077    case X86::FsXORPDrr:
2078    case X86::FsXORPSrr:
2079      return NULL;
2080    }
2081  }
2082
2083  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2084    unsigned NewOpc = 0;
2085    switch (MI->getOpcode()) {
2086    default: return NULL;
2087    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2088    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2089    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2090    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2091    }
2092    // Change to CMPXXri r, 0 first.
2093    MI->setDesc(get(NewOpc));
2094    MI->getOperand(1).ChangeToImmediate(0);
2095  } else if (Ops.size() != 1)
2096    return NULL;
2097
2098  SmallVector<MachineOperand,4> MOs;
2099  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2100  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2101}
2102
2103MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2104                                                  MachineInstr *MI,
2105                                            const SmallVectorImpl<unsigned> &Ops,
2106                                                  MachineInstr *LoadMI) const {
2107  // Check switch flag
2108  if (NoFusing) return NULL;
2109
2110  // Determine the alignment of the load.
2111  unsigned Alignment = 0;
2112  if (LoadMI->hasOneMemOperand())
2113    Alignment = LoadMI->memoperands_begin()->getAlignment();
2114
2115  // FIXME: Move alignment requirement into tables?
2116  if (Alignment < 16) {
2117    switch (MI->getOpcode()) {
2118    default: break;
2119    // Not always safe to fold movsd into these instructions since their load
2120    // folding variants expects the address to be 16 byte aligned.
2121    case X86::FsANDNPDrr:
2122    case X86::FsANDNPSrr:
2123    case X86::FsANDPDrr:
2124    case X86::FsANDPSrr:
2125    case X86::FsORPDrr:
2126    case X86::FsORPSrr:
2127    case X86::FsXORPDrr:
2128    case X86::FsXORPSrr:
2129      return NULL;
2130    }
2131  }
2132
2133  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2134    unsigned NewOpc = 0;
2135    switch (MI->getOpcode()) {
2136    default: return NULL;
2137    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2138    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2139    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2140    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2141    }
2142    // Change to CMPXXri r, 0 first.
2143    MI->setDesc(get(NewOpc));
2144    MI->getOperand(1).ChangeToImmediate(0);
2145  } else if (Ops.size() != 1)
2146    return NULL;
2147
2148  SmallVector<MachineOperand,4> MOs;
2149  if (LoadMI->getOpcode() == X86::V_SET0 ||
2150      LoadMI->getOpcode() == X86::V_SETALLONES) {
2151    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2152    // Create a constant-pool entry and operands to load from it.
2153
2154    // x86-32 PIC requires a PIC base register for constant pools.
2155    unsigned PICBase = 0;
2156    if (TM.getRelocationModel() == Reloc::PIC_ &&
2157        !TM.getSubtarget<X86Subtarget>().is64Bit())
2158      // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2159      // This doesn't work for several reasons.
2160      // 1. GlobalBaseReg may have been spilled.
2161      // 2. It may not be live at MI.
2162      return false;
2163
2164    // Create a v4i32 constant-pool entry.
2165    MachineConstantPool &MCP = *MF.getConstantPool();
2166    const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2167    Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2168                    ConstantVector::getNullValue(Ty) :
2169                    ConstantVector::getAllOnesValue(Ty);
2170    unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2171
2172    // Create operands to load from the constant pool entry.
2173    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2174    MOs.push_back(MachineOperand::CreateImm(1));
2175    MOs.push_back(MachineOperand::CreateReg(0, false));
2176    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2177  } else {
2178    // Folding a normal load. Just copy the load's address operands.
2179    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2180    for (unsigned i = NumOps - 4; i != NumOps; ++i)
2181      MOs.push_back(LoadMI->getOperand(i));
2182  }
2183  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
2184}
2185
2186
2187bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2188                                  const SmallVectorImpl<unsigned> &Ops) const {
2189  // Check switch flag
2190  if (NoFusing) return 0;
2191
2192  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2193    switch (MI->getOpcode()) {
2194    default: return false;
2195    case X86::TEST8rr:
2196    case X86::TEST16rr:
2197    case X86::TEST32rr:
2198    case X86::TEST64rr:
2199      return true;
2200    }
2201  }
2202
2203  if (Ops.size() != 1)
2204    return false;
2205
2206  unsigned OpNum = Ops[0];
2207  unsigned Opc = MI->getOpcode();
2208  unsigned NumOps = MI->getDesc().getNumOperands();
2209  bool isTwoAddr = NumOps > 1 &&
2210    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2211
2212  // Folding a memory location into the two-address part of a two-address
2213  // instruction is different than folding it other places.  It requires
2214  // replacing the *two* registers with the memory location.
2215  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2216  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2217    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2218  } else if (OpNum == 0) { // If operand 0
2219    switch (Opc) {
2220    case X86::MOV16r0:
2221    case X86::MOV32r0:
2222    case X86::MOV64r0:
2223    case X86::MOV8r0:
2224      return true;
2225    default: break;
2226    }
2227    OpcodeTablePtr = &RegOp2MemOpTable0;
2228  } else if (OpNum == 1) {
2229    OpcodeTablePtr = &RegOp2MemOpTable1;
2230  } else if (OpNum == 2) {
2231    OpcodeTablePtr = &RegOp2MemOpTable2;
2232  }
2233
2234  if (OpcodeTablePtr) {
2235    // Find the Opcode to fuse
2236    DenseMap<unsigned*, unsigned>::iterator I =
2237      OpcodeTablePtr->find((unsigned*)Opc);
2238    if (I != OpcodeTablePtr->end())
2239      return true;
2240  }
2241  return false;
2242}
2243
2244bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2245                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2246                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2247  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2248    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2249  if (I == MemOp2RegOpTable.end())
2250    return false;
2251  unsigned Opc = I->second.first;
2252  unsigned Index = I->second.second & 0xf;
2253  bool FoldedLoad = I->second.second & (1 << 4);
2254  bool FoldedStore = I->second.second & (1 << 5);
2255  if (UnfoldLoad && !FoldedLoad)
2256    return false;
2257  UnfoldLoad &= FoldedLoad;
2258  if (UnfoldStore && !FoldedStore)
2259    return false;
2260  UnfoldStore &= FoldedStore;
2261
2262  const TargetInstrDesc &TID = get(Opc);
2263  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2264  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2265    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2266  SmallVector<MachineOperand,4> AddrOps;
2267  SmallVector<MachineOperand,2> BeforeOps;
2268  SmallVector<MachineOperand,2> AfterOps;
2269  SmallVector<MachineOperand,4> ImpOps;
2270  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2271    MachineOperand &Op = MI->getOperand(i);
2272    if (i >= Index && i < Index+4)
2273      AddrOps.push_back(Op);
2274    else if (Op.isReg() && Op.isImplicit())
2275      ImpOps.push_back(Op);
2276    else if (i < Index)
2277      BeforeOps.push_back(Op);
2278    else if (i > Index)
2279      AfterOps.push_back(Op);
2280  }
2281
2282  // Emit the load instruction.
2283  if (UnfoldLoad) {
2284    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2285    if (UnfoldStore) {
2286      // Address operands cannot be marked isKill.
2287      for (unsigned i = 1; i != 5; ++i) {
2288        MachineOperand &MO = NewMIs[0]->getOperand(i);
2289        if (MO.isReg())
2290          MO.setIsKill(false);
2291      }
2292    }
2293  }
2294
2295  // Emit the data processing instruction.
2296  MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
2297  MachineInstrBuilder MIB(DataMI);
2298
2299  if (FoldedStore)
2300    MIB.addReg(Reg, true);
2301  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2302    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2303  if (FoldedLoad)
2304    MIB.addReg(Reg);
2305  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2306    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2307  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2308    MachineOperand &MO = ImpOps[i];
2309    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2310  }
2311  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2312  unsigned NewOpc = 0;
2313  switch (DataMI->getOpcode()) {
2314  default: break;
2315  case X86::CMP64ri32:
2316  case X86::CMP32ri:
2317  case X86::CMP16ri:
2318  case X86::CMP8ri: {
2319    MachineOperand &MO0 = DataMI->getOperand(0);
2320    MachineOperand &MO1 = DataMI->getOperand(1);
2321    if (MO1.getImm() == 0) {
2322      switch (DataMI->getOpcode()) {
2323      default: break;
2324      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2325      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2326      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2327      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2328      }
2329      DataMI->setDesc(get(NewOpc));
2330      MO1.ChangeToRegister(MO0.getReg(), false);
2331    }
2332  }
2333  }
2334  NewMIs.push_back(DataMI);
2335
2336  // Emit the store instruction.
2337  if (UnfoldStore) {
2338    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2339    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2340      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2341    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2342  }
2343
2344  return true;
2345}
2346
2347bool
2348X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2349                                     SmallVectorImpl<SDNode*> &NewNodes) const {
2350  if (!N->isMachineOpcode())
2351    return false;
2352
2353  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2354    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2355  if (I == MemOp2RegOpTable.end())
2356    return false;
2357  unsigned Opc = I->second.first;
2358  unsigned Index = I->second.second & 0xf;
2359  bool FoldedLoad = I->second.second & (1 << 4);
2360  bool FoldedStore = I->second.second & (1 << 5);
2361  const TargetInstrDesc &TID = get(Opc);
2362  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2363  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2364    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2365  std::vector<SDValue> AddrOps;
2366  std::vector<SDValue> BeforeOps;
2367  std::vector<SDValue> AfterOps;
2368  unsigned NumOps = N->getNumOperands();
2369  for (unsigned i = 0; i != NumOps-1; ++i) {
2370    SDValue Op = N->getOperand(i);
2371    if (i >= Index && i < Index+4)
2372      AddrOps.push_back(Op);
2373    else if (i < Index)
2374      BeforeOps.push_back(Op);
2375    else if (i > Index)
2376      AfterOps.push_back(Op);
2377  }
2378  SDValue Chain = N->getOperand(NumOps-1);
2379  AddrOps.push_back(Chain);
2380
2381  // Emit the load instruction.
2382  SDNode *Load = 0;
2383  const MachineFunction &MF = DAG.getMachineFunction();
2384  if (FoldedLoad) {
2385    MVT VT = *RC->vt_begin();
2386    bool isAligned = (RI.getStackAlignment() >= 16) ||
2387      RI.needsStackRealignment(MF);
2388    Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
2389                             VT, MVT::Other,
2390                             &AddrOps[0], AddrOps.size());
2391    NewNodes.push_back(Load);
2392  }
2393
2394  // Emit the data processing instruction.
2395  std::vector<MVT> VTs;
2396  const TargetRegisterClass *DstRC = 0;
2397  if (TID.getNumDefs() > 0) {
2398    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2399    DstRC = DstTOI.isLookupPtrRegClass()
2400      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2401    VTs.push_back(*DstRC->vt_begin());
2402  }
2403  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2404    MVT VT = N->getValueType(i);
2405    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2406      VTs.push_back(VT);
2407  }
2408  if (Load)
2409    BeforeOps.push_back(SDValue(Load, 0));
2410  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2411  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2412  NewNodes.push_back(NewNode);
2413
2414  // Emit the store instruction.
2415  if (FoldedStore) {
2416    AddrOps.pop_back();
2417    AddrOps.push_back(SDValue(NewNode, 0));
2418    AddrOps.push_back(Chain);
2419    bool isAligned = (RI.getStackAlignment() >= 16) ||
2420      RI.needsStackRealignment(MF);
2421    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2422                                      MVT::Other, &AddrOps[0], AddrOps.size());
2423    NewNodes.push_back(Store);
2424  }
2425
2426  return true;
2427}
2428
2429unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2430                                      bool UnfoldLoad, bool UnfoldStore) const {
2431  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2432    MemOp2RegOpTable.find((unsigned*)Opc);
2433  if (I == MemOp2RegOpTable.end())
2434    return 0;
2435  bool FoldedLoad = I->second.second & (1 << 4);
2436  bool FoldedStore = I->second.second & (1 << 5);
2437  if (UnfoldLoad && !FoldedLoad)
2438    return 0;
2439  if (UnfoldStore && !FoldedStore)
2440    return 0;
2441  return I->second.first;
2442}
2443
2444bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2445  if (MBB.empty()) return false;
2446
2447  switch (MBB.back().getOpcode()) {
2448  case X86::TCRETURNri:
2449  case X86::TCRETURNdi:
2450  case X86::RET:     // Return.
2451  case X86::RETI:
2452  case X86::TAILJMPd:
2453  case X86::TAILJMPr:
2454  case X86::TAILJMPm:
2455  case X86::JMP:     // Uncond branch.
2456  case X86::JMP32r:  // Indirect branch.
2457  case X86::JMP64r:  // Indirect branch (64-bit).
2458  case X86::JMP32m:  // Indirect branch through mem.
2459  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2460    return true;
2461  default: return false;
2462  }
2463}
2464
2465bool X86InstrInfo::
2466ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2467  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2468  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2469  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2470    return true;
2471  Cond[0].setImm(GetOppositeBranchCondition(CC));
2472  return false;
2473}
2474
2475bool X86InstrInfo::
2476IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2477  // FIXME: Ignore bariers of x87 stack registers for now. We can't
2478  // allow any loads of these registers before FpGet_ST0_80.
2479  return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2480    RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2481}
2482
2483const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2484  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2485  if (Subtarget->is64Bit())
2486    return &X86::GR64RegClass;
2487  else
2488    return &X86::GR32RegClass;
2489}
2490
2491unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2492  switch (Desc->TSFlags & X86II::ImmMask) {
2493  case X86II::Imm8:   return 1;
2494  case X86II::Imm16:  return 2;
2495  case X86II::Imm32:  return 4;
2496  case X86II::Imm64:  return 8;
2497  default: assert(0 && "Immediate size not set!");
2498    return 0;
2499  }
2500}
2501
2502/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2503/// e.g. r8, xmm8, etc.
2504bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2505  if (!MO.isReg()) return false;
2506  switch (MO.getReg()) {
2507  default: break;
2508  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2509  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2510  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2511  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2512  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2513  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2514  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2515  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2516  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2517  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2518    return true;
2519  }
2520  return false;
2521}
2522
2523
2524/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2525/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2526/// size, and 3) use of X86-64 extended registers.
2527unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2528  unsigned REX = 0;
2529  const TargetInstrDesc &Desc = MI.getDesc();
2530
2531  // Pseudo instructions do not need REX prefix byte.
2532  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2533    return 0;
2534  if (Desc.TSFlags & X86II::REX_W)
2535    REX |= 1 << 3;
2536
2537  unsigned NumOps = Desc.getNumOperands();
2538  if (NumOps) {
2539    bool isTwoAddr = NumOps > 1 &&
2540      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2541
2542    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2543    unsigned i = isTwoAddr ? 1 : 0;
2544    for (unsigned e = NumOps; i != e; ++i) {
2545      const MachineOperand& MO = MI.getOperand(i);
2546      if (MO.isReg()) {
2547        unsigned Reg = MO.getReg();
2548        if (isX86_64NonExtLowByteReg(Reg))
2549          REX |= 0x40;
2550      }
2551    }
2552
2553    switch (Desc.TSFlags & X86II::FormMask) {
2554    case X86II::MRMInitReg:
2555      if (isX86_64ExtendedReg(MI.getOperand(0)))
2556        REX |= (1 << 0) | (1 << 2);
2557      break;
2558    case X86II::MRMSrcReg: {
2559      if (isX86_64ExtendedReg(MI.getOperand(0)))
2560        REX |= 1 << 2;
2561      i = isTwoAddr ? 2 : 1;
2562      for (unsigned e = NumOps; i != e; ++i) {
2563        const MachineOperand& MO = MI.getOperand(i);
2564        if (isX86_64ExtendedReg(MO))
2565          REX |= 1 << 0;
2566      }
2567      break;
2568    }
2569    case X86II::MRMSrcMem: {
2570      if (isX86_64ExtendedReg(MI.getOperand(0)))
2571        REX |= 1 << 2;
2572      unsigned Bit = 0;
2573      i = isTwoAddr ? 2 : 1;
2574      for (; i != NumOps; ++i) {
2575        const MachineOperand& MO = MI.getOperand(i);
2576        if (MO.isReg()) {
2577          if (isX86_64ExtendedReg(MO))
2578            REX |= 1 << Bit;
2579          Bit++;
2580        }
2581      }
2582      break;
2583    }
2584    case X86II::MRM0m: case X86II::MRM1m:
2585    case X86II::MRM2m: case X86II::MRM3m:
2586    case X86II::MRM4m: case X86II::MRM5m:
2587    case X86II::MRM6m: case X86II::MRM7m:
2588    case X86II::MRMDestMem: {
2589      unsigned e = isTwoAddr ? 5 : 4;
2590      i = isTwoAddr ? 1 : 0;
2591      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2592        REX |= 1 << 2;
2593      unsigned Bit = 0;
2594      for (; i != e; ++i) {
2595        const MachineOperand& MO = MI.getOperand(i);
2596        if (MO.isReg()) {
2597          if (isX86_64ExtendedReg(MO))
2598            REX |= 1 << Bit;
2599          Bit++;
2600        }
2601      }
2602      break;
2603    }
2604    default: {
2605      if (isX86_64ExtendedReg(MI.getOperand(0)))
2606        REX |= 1 << 0;
2607      i = isTwoAddr ? 2 : 1;
2608      for (unsigned e = NumOps; i != e; ++i) {
2609        const MachineOperand& MO = MI.getOperand(i);
2610        if (isX86_64ExtendedReg(MO))
2611          REX |= 1 << 2;
2612      }
2613      break;
2614    }
2615    }
2616  }
2617  return REX;
2618}
2619
2620/// sizePCRelativeBlockAddress - This method returns the size of a PC
2621/// relative block address instruction
2622///
2623static unsigned sizePCRelativeBlockAddress() {
2624  return 4;
2625}
2626
2627/// sizeGlobalAddress - Give the size of the emission of this global address
2628///
2629static unsigned sizeGlobalAddress(bool dword) {
2630  return dword ? 8 : 4;
2631}
2632
2633/// sizeConstPoolAddress - Give the size of the emission of this constant
2634/// pool address
2635///
2636static unsigned sizeConstPoolAddress(bool dword) {
2637  return dword ? 8 : 4;
2638}
2639
2640/// sizeExternalSymbolAddress - Give the size of the emission of this external
2641/// symbol
2642///
2643static unsigned sizeExternalSymbolAddress(bool dword) {
2644  return dword ? 8 : 4;
2645}
2646
2647/// sizeJumpTableAddress - Give the size of the emission of this jump
2648/// table address
2649///
2650static unsigned sizeJumpTableAddress(bool dword) {
2651  return dword ? 8 : 4;
2652}
2653
2654static unsigned sizeConstant(unsigned Size) {
2655  return Size;
2656}
2657
2658static unsigned sizeRegModRMByte(){
2659  return 1;
2660}
2661
2662static unsigned sizeSIBByte(){
2663  return 1;
2664}
2665
2666static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2667  unsigned FinalSize = 0;
2668  // If this is a simple integer displacement that doesn't require a relocation.
2669  if (!RelocOp) {
2670    FinalSize += sizeConstant(4);
2671    return FinalSize;
2672  }
2673
2674  // Otherwise, this is something that requires a relocation.
2675  if (RelocOp->isGlobal()) {
2676    FinalSize += sizeGlobalAddress(false);
2677  } else if (RelocOp->isCPI()) {
2678    FinalSize += sizeConstPoolAddress(false);
2679  } else if (RelocOp->isJTI()) {
2680    FinalSize += sizeJumpTableAddress(false);
2681  } else {
2682    assert(0 && "Unknown value to relocate!");
2683  }
2684  return FinalSize;
2685}
2686
2687static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2688                                    bool IsPIC, bool Is64BitMode) {
2689  const MachineOperand &Op3 = MI.getOperand(Op+3);
2690  int DispVal = 0;
2691  const MachineOperand *DispForReloc = 0;
2692  unsigned FinalSize = 0;
2693
2694  // Figure out what sort of displacement we have to handle here.
2695  if (Op3.isGlobal()) {
2696    DispForReloc = &Op3;
2697  } else if (Op3.isCPI()) {
2698    if (Is64BitMode || IsPIC) {
2699      DispForReloc = &Op3;
2700    } else {
2701      DispVal = 1;
2702    }
2703  } else if (Op3.isJTI()) {
2704    if (Is64BitMode || IsPIC) {
2705      DispForReloc = &Op3;
2706    } else {
2707      DispVal = 1;
2708    }
2709  } else {
2710    DispVal = 1;
2711  }
2712
2713  const MachineOperand &Base     = MI.getOperand(Op);
2714  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2715
2716  unsigned BaseReg = Base.getReg();
2717
2718  // Is a SIB byte needed?
2719  if (IndexReg.getReg() == 0 &&
2720      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2721    if (BaseReg == 0) {  // Just a displacement?
2722      // Emit special case [disp32] encoding
2723      ++FinalSize;
2724      FinalSize += getDisplacementFieldSize(DispForReloc);
2725    } else {
2726      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2727      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2728        // Emit simple indirect register encoding... [EAX] f.e.
2729        ++FinalSize;
2730      // Be pessimistic and assume it's a disp32, not a disp8
2731      } else {
2732        // Emit the most general non-SIB encoding: [REG+disp32]
2733        ++FinalSize;
2734        FinalSize += getDisplacementFieldSize(DispForReloc);
2735      }
2736    }
2737
2738  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2739    assert(IndexReg.getReg() != X86::ESP &&
2740           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2741
2742    bool ForceDisp32 = false;
2743    if (BaseReg == 0 || DispForReloc) {
2744      // Emit the normal disp32 encoding.
2745      ++FinalSize;
2746      ForceDisp32 = true;
2747    } else {
2748      ++FinalSize;
2749    }
2750
2751    FinalSize += sizeSIBByte();
2752
2753    // Do we need to output a displacement?
2754    if (DispVal != 0 || ForceDisp32) {
2755      FinalSize += getDisplacementFieldSize(DispForReloc);
2756    }
2757  }
2758  return FinalSize;
2759}
2760
2761
2762static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2763                                    const TargetInstrDesc *Desc,
2764                                    bool IsPIC, bool Is64BitMode) {
2765
2766  unsigned Opcode = Desc->Opcode;
2767  unsigned FinalSize = 0;
2768
2769  // Emit the lock opcode prefix as needed.
2770  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2771
2772  // Emit segment overrid opcode prefix as needed.
2773  switch (Desc->TSFlags & X86II::SegOvrMask) {
2774  case X86II::FS:
2775  case X86II::GS:
2776   ++FinalSize;
2777   break;
2778  default: assert(0 && "Invalid segment!");
2779  case 0: break;  // No segment override!
2780  }
2781
2782  // Emit the repeat opcode prefix as needed.
2783  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2784
2785  // Emit the operand size opcode prefix as needed.
2786  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2787
2788  // Emit the address size opcode prefix as needed.
2789  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2790
2791  bool Need0FPrefix = false;
2792  switch (Desc->TSFlags & X86II::Op0Mask) {
2793  case X86II::TB:  // Two-byte opcode prefix
2794  case X86II::T8:  // 0F 38
2795  case X86II::TA:  // 0F 3A
2796    Need0FPrefix = true;
2797    break;
2798  case X86II::REP: break; // already handled.
2799  case X86II::XS:   // F3 0F
2800    ++FinalSize;
2801    Need0FPrefix = true;
2802    break;
2803  case X86II::XD:   // F2 0F
2804    ++FinalSize;
2805    Need0FPrefix = true;
2806    break;
2807  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2808  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2809    ++FinalSize;
2810    break; // Two-byte opcode prefix
2811  default: assert(0 && "Invalid prefix!");
2812  case 0: break;  // No prefix!
2813  }
2814
2815  if (Is64BitMode) {
2816    // REX prefix
2817    unsigned REX = X86InstrInfo::determineREX(MI);
2818    if (REX)
2819      ++FinalSize;
2820  }
2821
2822  // 0x0F escape code must be emitted just before the opcode.
2823  if (Need0FPrefix)
2824    ++FinalSize;
2825
2826  switch (Desc->TSFlags & X86II::Op0Mask) {
2827  case X86II::T8:  // 0F 38
2828    ++FinalSize;
2829    break;
2830  case X86II::TA:    // 0F 3A
2831    ++FinalSize;
2832    break;
2833  }
2834
2835  // If this is a two-address instruction, skip one of the register operands.
2836  unsigned NumOps = Desc->getNumOperands();
2837  unsigned CurOp = 0;
2838  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2839    CurOp++;
2840
2841  switch (Desc->TSFlags & X86II::FormMask) {
2842  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2843  case X86II::Pseudo:
2844    // Remember the current PC offset, this is the PIC relocation
2845    // base address.
2846    switch (Opcode) {
2847    default:
2848      break;
2849    case TargetInstrInfo::INLINEASM: {
2850      const MachineFunction *MF = MI.getParent()->getParent();
2851      const char *AsmStr = MI.getOperand(0).getSymbolName();
2852      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2853      FinalSize += AI->getInlineAsmLength(AsmStr);
2854      break;
2855    }
2856    case TargetInstrInfo::DBG_LABEL:
2857    case TargetInstrInfo::EH_LABEL:
2858      break;
2859    case TargetInstrInfo::IMPLICIT_DEF:
2860    case TargetInstrInfo::DECLARE:
2861    case X86::DWARF_LOC:
2862    case X86::FP_REG_KILL:
2863      break;
2864    case X86::MOVPC32r: {
2865      // This emits the "call" portion of this pseudo instruction.
2866      ++FinalSize;
2867      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2868      break;
2869    }
2870    case X86::TLS_tp:
2871    case X86::TLS_gs_ri:
2872      FinalSize += 2;
2873      FinalSize += sizeGlobalAddress(false);
2874      break;
2875    }
2876    CurOp = NumOps;
2877    break;
2878  case X86II::RawFrm:
2879    ++FinalSize;
2880
2881    if (CurOp != NumOps) {
2882      const MachineOperand &MO = MI.getOperand(CurOp++);
2883      if (MO.isMBB()) {
2884        FinalSize += sizePCRelativeBlockAddress();
2885      } else if (MO.isGlobal()) {
2886        FinalSize += sizeGlobalAddress(false);
2887      } else if (MO.isSymbol()) {
2888        FinalSize += sizeExternalSymbolAddress(false);
2889      } else if (MO.isImm()) {
2890        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2891      } else {
2892        assert(0 && "Unknown RawFrm operand!");
2893      }
2894    }
2895    break;
2896
2897  case X86II::AddRegFrm:
2898    ++FinalSize;
2899    ++CurOp;
2900
2901    if (CurOp != NumOps) {
2902      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2903      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2904      if (MO1.isImm())
2905        FinalSize += sizeConstant(Size);
2906      else {
2907        bool dword = false;
2908        if (Opcode == X86::MOV64ri)
2909          dword = true;
2910        if (MO1.isGlobal()) {
2911          FinalSize += sizeGlobalAddress(dword);
2912        } else if (MO1.isSymbol())
2913          FinalSize += sizeExternalSymbolAddress(dword);
2914        else if (MO1.isCPI())
2915          FinalSize += sizeConstPoolAddress(dword);
2916        else if (MO1.isJTI())
2917          FinalSize += sizeJumpTableAddress(dword);
2918      }
2919    }
2920    break;
2921
2922  case X86II::MRMDestReg: {
2923    ++FinalSize;
2924    FinalSize += sizeRegModRMByte();
2925    CurOp += 2;
2926    if (CurOp != NumOps) {
2927      ++CurOp;
2928      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2929    }
2930    break;
2931  }
2932  case X86II::MRMDestMem: {
2933    ++FinalSize;
2934    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2935    CurOp += 5;
2936    if (CurOp != NumOps) {
2937      ++CurOp;
2938      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2939    }
2940    break;
2941  }
2942
2943  case X86II::MRMSrcReg:
2944    ++FinalSize;
2945    FinalSize += sizeRegModRMByte();
2946    CurOp += 2;
2947    if (CurOp != NumOps) {
2948      ++CurOp;
2949      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2950    }
2951    break;
2952
2953  case X86II::MRMSrcMem: {
2954
2955    ++FinalSize;
2956    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2957    CurOp += 5;
2958    if (CurOp != NumOps) {
2959      ++CurOp;
2960      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2961    }
2962    break;
2963  }
2964
2965  case X86II::MRM0r: case X86II::MRM1r:
2966  case X86II::MRM2r: case X86II::MRM3r:
2967  case X86II::MRM4r: case X86II::MRM5r:
2968  case X86II::MRM6r: case X86II::MRM7r:
2969    ++FinalSize;
2970    ++CurOp;
2971    FinalSize += sizeRegModRMByte();
2972
2973    if (CurOp != NumOps) {
2974      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2975      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2976      if (MO1.isImm())
2977        FinalSize += sizeConstant(Size);
2978      else {
2979        bool dword = false;
2980        if (Opcode == X86::MOV64ri32)
2981          dword = true;
2982        if (MO1.isGlobal()) {
2983          FinalSize += sizeGlobalAddress(dword);
2984        } else if (MO1.isSymbol())
2985          FinalSize += sizeExternalSymbolAddress(dword);
2986        else if (MO1.isCPI())
2987          FinalSize += sizeConstPoolAddress(dword);
2988        else if (MO1.isJTI())
2989          FinalSize += sizeJumpTableAddress(dword);
2990      }
2991    }
2992    break;
2993
2994  case X86II::MRM0m: case X86II::MRM1m:
2995  case X86II::MRM2m: case X86II::MRM3m:
2996  case X86II::MRM4m: case X86II::MRM5m:
2997  case X86II::MRM6m: case X86II::MRM7m: {
2998
2999    ++FinalSize;
3000    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3001    CurOp += 4;
3002
3003    if (CurOp != NumOps) {
3004      const MachineOperand &MO = MI.getOperand(CurOp++);
3005      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
3006      if (MO.isImm())
3007        FinalSize += sizeConstant(Size);
3008      else {
3009        bool dword = false;
3010        if (Opcode == X86::MOV64mi32)
3011          dword = true;
3012        if (MO.isGlobal()) {
3013          FinalSize += sizeGlobalAddress(dword);
3014        } else if (MO.isSymbol())
3015          FinalSize += sizeExternalSymbolAddress(dword);
3016        else if (MO.isCPI())
3017          FinalSize += sizeConstPoolAddress(dword);
3018        else if (MO.isJTI())
3019          FinalSize += sizeJumpTableAddress(dword);
3020      }
3021    }
3022    break;
3023  }
3024
3025  case X86II::MRMInitReg:
3026    ++FinalSize;
3027    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3028    FinalSize += sizeRegModRMByte();
3029    ++CurOp;
3030    break;
3031  }
3032
3033  if (!Desc->isVariadic() && CurOp != NumOps) {
3034    cerr << "Cannot determine size: ";
3035    MI.dump();
3036    cerr << '\n';
3037    abort();
3038  }
3039
3040
3041  return FinalSize;
3042}
3043
3044
3045unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3046  const TargetInstrDesc &Desc = MI->getDesc();
3047  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
3048  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3049  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3050  if (Desc.getOpcode() == X86::MOVPC32r) {
3051    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3052  }
3053  return Size;
3054}
3055
3056/// getGlobalBaseReg - Return a virtual register initialized with the
3057/// the global base register value. Output instructions required to
3058/// initialize the register in the function entry block, if necessary.
3059///
3060unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3061  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3062         "X86-64 PIC uses RIP relative addressing");
3063
3064  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3065  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3066  if (GlobalBaseReg != 0)
3067    return GlobalBaseReg;
3068
3069  // Insert the set of GlobalBaseReg into the first MBB of the function
3070  MachineBasicBlock &FirstMBB = MF->front();
3071  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3072  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3073  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3074
3075  const TargetInstrInfo *TII = TM.getInstrInfo();
3076  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3077  // only used in JIT code emission as displacement to pc.
3078  BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3079
3080  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3081  // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3082  if (TM.getRelocationModel() == Reloc::PIC_ &&
3083      TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3084    GlobalBaseReg =
3085      RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3086    BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3087      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3088  } else {
3089    GlobalBaseReg = PC;
3090  }
3091
3092  X86FI->setGlobalBaseReg(GlobalBaseReg);
3093  return GlobalBaseReg;
3094}
3095