X86InstrInfo.cpp revision 546e36a2c17f9eb7b2b1f2f19e522673153948aa
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/LiveVariables.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Target/TargetOptions.h"
28#include "llvm/Target/TargetAsmInfo.h"
29
30using namespace llvm;
31
32namespace {
33  cl::opt<bool>
34  NoFusing("disable-spill-fusing",
35           cl::desc("Disable fusing of spill code into instructions"));
36  cl::opt<bool>
37  PrintFailedFusing("print-failed-fuse-candidates",
38                    cl::desc("Print instructions that the allocator wants to"
39                             " fuse, but the X86 backend currently can't"),
40                    cl::Hidden);
41  cl::opt<bool>
42  ReMatPICStubLoad("remat-pic-stub-load",
43                   cl::desc("Re-materialize load from stub in PIC mode"),
44                   cl::init(false), cl::Hidden);
45}
46
47X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
48  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
49    TM(tm), RI(tm, *this) {
50  SmallVector<unsigned,16> AmbEntries;
51  static const unsigned OpTbl2Addr[][2] = {
52    { X86::ADC32ri,     X86::ADC32mi },
53    { X86::ADC32ri8,    X86::ADC32mi8 },
54    { X86::ADC32rr,     X86::ADC32mr },
55    { X86::ADC64ri32,   X86::ADC64mi32 },
56    { X86::ADC64ri8,    X86::ADC64mi8 },
57    { X86::ADC64rr,     X86::ADC64mr },
58    { X86::ADD16ri,     X86::ADD16mi },
59    { X86::ADD16ri8,    X86::ADD16mi8 },
60    { X86::ADD16rr,     X86::ADD16mr },
61    { X86::ADD32ri,     X86::ADD32mi },
62    { X86::ADD32ri8,    X86::ADD32mi8 },
63    { X86::ADD32rr,     X86::ADD32mr },
64    { X86::ADD64ri32,   X86::ADD64mi32 },
65    { X86::ADD64ri8,    X86::ADD64mi8 },
66    { X86::ADD64rr,     X86::ADD64mr },
67    { X86::ADD8ri,      X86::ADD8mi },
68    { X86::ADD8rr,      X86::ADD8mr },
69    { X86::AND16ri,     X86::AND16mi },
70    { X86::AND16ri8,    X86::AND16mi8 },
71    { X86::AND16rr,     X86::AND16mr },
72    { X86::AND32ri,     X86::AND32mi },
73    { X86::AND32ri8,    X86::AND32mi8 },
74    { X86::AND32rr,     X86::AND32mr },
75    { X86::AND64ri32,   X86::AND64mi32 },
76    { X86::AND64ri8,    X86::AND64mi8 },
77    { X86::AND64rr,     X86::AND64mr },
78    { X86::AND8ri,      X86::AND8mi },
79    { X86::AND8rr,      X86::AND8mr },
80    { X86::DEC16r,      X86::DEC16m },
81    { X86::DEC32r,      X86::DEC32m },
82    { X86::DEC64_16r,   X86::DEC64_16m },
83    { X86::DEC64_32r,   X86::DEC64_32m },
84    { X86::DEC64r,      X86::DEC64m },
85    { X86::DEC8r,       X86::DEC8m },
86    { X86::INC16r,      X86::INC16m },
87    { X86::INC32r,      X86::INC32m },
88    { X86::INC64_16r,   X86::INC64_16m },
89    { X86::INC64_32r,   X86::INC64_32m },
90    { X86::INC64r,      X86::INC64m },
91    { X86::INC8r,       X86::INC8m },
92    { X86::NEG16r,      X86::NEG16m },
93    { X86::NEG32r,      X86::NEG32m },
94    { X86::NEG64r,      X86::NEG64m },
95    { X86::NEG8r,       X86::NEG8m },
96    { X86::NOT16r,      X86::NOT16m },
97    { X86::NOT32r,      X86::NOT32m },
98    { X86::NOT64r,      X86::NOT64m },
99    { X86::NOT8r,       X86::NOT8m },
100    { X86::OR16ri,      X86::OR16mi },
101    { X86::OR16ri8,     X86::OR16mi8 },
102    { X86::OR16rr,      X86::OR16mr },
103    { X86::OR32ri,      X86::OR32mi },
104    { X86::OR32ri8,     X86::OR32mi8 },
105    { X86::OR32rr,      X86::OR32mr },
106    { X86::OR64ri32,    X86::OR64mi32 },
107    { X86::OR64ri8,     X86::OR64mi8 },
108    { X86::OR64rr,      X86::OR64mr },
109    { X86::OR8ri,       X86::OR8mi },
110    { X86::OR8rr,       X86::OR8mr },
111    { X86::ROL16r1,     X86::ROL16m1 },
112    { X86::ROL16rCL,    X86::ROL16mCL },
113    { X86::ROL16ri,     X86::ROL16mi },
114    { X86::ROL32r1,     X86::ROL32m1 },
115    { X86::ROL32rCL,    X86::ROL32mCL },
116    { X86::ROL32ri,     X86::ROL32mi },
117    { X86::ROL64r1,     X86::ROL64m1 },
118    { X86::ROL64rCL,    X86::ROL64mCL },
119    { X86::ROL64ri,     X86::ROL64mi },
120    { X86::ROL8r1,      X86::ROL8m1 },
121    { X86::ROL8rCL,     X86::ROL8mCL },
122    { X86::ROL8ri,      X86::ROL8mi },
123    { X86::ROR16r1,     X86::ROR16m1 },
124    { X86::ROR16rCL,    X86::ROR16mCL },
125    { X86::ROR16ri,     X86::ROR16mi },
126    { X86::ROR32r1,     X86::ROR32m1 },
127    { X86::ROR32rCL,    X86::ROR32mCL },
128    { X86::ROR32ri,     X86::ROR32mi },
129    { X86::ROR64r1,     X86::ROR64m1 },
130    { X86::ROR64rCL,    X86::ROR64mCL },
131    { X86::ROR64ri,     X86::ROR64mi },
132    { X86::ROR8r1,      X86::ROR8m1 },
133    { X86::ROR8rCL,     X86::ROR8mCL },
134    { X86::ROR8ri,      X86::ROR8mi },
135    { X86::SAR16r1,     X86::SAR16m1 },
136    { X86::SAR16rCL,    X86::SAR16mCL },
137    { X86::SAR16ri,     X86::SAR16mi },
138    { X86::SAR32r1,     X86::SAR32m1 },
139    { X86::SAR32rCL,    X86::SAR32mCL },
140    { X86::SAR32ri,     X86::SAR32mi },
141    { X86::SAR64r1,     X86::SAR64m1 },
142    { X86::SAR64rCL,    X86::SAR64mCL },
143    { X86::SAR64ri,     X86::SAR64mi },
144    { X86::SAR8r1,      X86::SAR8m1 },
145    { X86::SAR8rCL,     X86::SAR8mCL },
146    { X86::SAR8ri,      X86::SAR8mi },
147    { X86::SBB32ri,     X86::SBB32mi },
148    { X86::SBB32ri8,    X86::SBB32mi8 },
149    { X86::SBB32rr,     X86::SBB32mr },
150    { X86::SBB64ri32,   X86::SBB64mi32 },
151    { X86::SBB64ri8,    X86::SBB64mi8 },
152    { X86::SBB64rr,     X86::SBB64mr },
153    { X86::SHL16rCL,    X86::SHL16mCL },
154    { X86::SHL16ri,     X86::SHL16mi },
155    { X86::SHL32rCL,    X86::SHL32mCL },
156    { X86::SHL32ri,     X86::SHL32mi },
157    { X86::SHL64rCL,    X86::SHL64mCL },
158    { X86::SHL64ri,     X86::SHL64mi },
159    { X86::SHL8rCL,     X86::SHL8mCL },
160    { X86::SHL8ri,      X86::SHL8mi },
161    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
162    { X86::SHLD16rri8,  X86::SHLD16mri8 },
163    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
164    { X86::SHLD32rri8,  X86::SHLD32mri8 },
165    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
166    { X86::SHLD64rri8,  X86::SHLD64mri8 },
167    { X86::SHR16r1,     X86::SHR16m1 },
168    { X86::SHR16rCL,    X86::SHR16mCL },
169    { X86::SHR16ri,     X86::SHR16mi },
170    { X86::SHR32r1,     X86::SHR32m1 },
171    { X86::SHR32rCL,    X86::SHR32mCL },
172    { X86::SHR32ri,     X86::SHR32mi },
173    { X86::SHR64r1,     X86::SHR64m1 },
174    { X86::SHR64rCL,    X86::SHR64mCL },
175    { X86::SHR64ri,     X86::SHR64mi },
176    { X86::SHR8r1,      X86::SHR8m1 },
177    { X86::SHR8rCL,     X86::SHR8mCL },
178    { X86::SHR8ri,      X86::SHR8mi },
179    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
180    { X86::SHRD16rri8,  X86::SHRD16mri8 },
181    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
182    { X86::SHRD32rri8,  X86::SHRD32mri8 },
183    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
184    { X86::SHRD64rri8,  X86::SHRD64mri8 },
185    { X86::SUB16ri,     X86::SUB16mi },
186    { X86::SUB16ri8,    X86::SUB16mi8 },
187    { X86::SUB16rr,     X86::SUB16mr },
188    { X86::SUB32ri,     X86::SUB32mi },
189    { X86::SUB32ri8,    X86::SUB32mi8 },
190    { X86::SUB32rr,     X86::SUB32mr },
191    { X86::SUB64ri32,   X86::SUB64mi32 },
192    { X86::SUB64ri8,    X86::SUB64mi8 },
193    { X86::SUB64rr,     X86::SUB64mr },
194    { X86::SUB8ri,      X86::SUB8mi },
195    { X86::SUB8rr,      X86::SUB8mr },
196    { X86::XOR16ri,     X86::XOR16mi },
197    { X86::XOR16ri8,    X86::XOR16mi8 },
198    { X86::XOR16rr,     X86::XOR16mr },
199    { X86::XOR32ri,     X86::XOR32mi },
200    { X86::XOR32ri8,    X86::XOR32mi8 },
201    { X86::XOR32rr,     X86::XOR32mr },
202    { X86::XOR64ri32,   X86::XOR64mi32 },
203    { X86::XOR64ri8,    X86::XOR64mi8 },
204    { X86::XOR64rr,     X86::XOR64mr },
205    { X86::XOR8ri,      X86::XOR8mi },
206    { X86::XOR8rr,      X86::XOR8mr }
207  };
208
209  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210    unsigned RegOp = OpTbl2Addr[i][0];
211    unsigned MemOp = OpTbl2Addr[i][1];
212    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
213      assert(false && "Duplicated entries?");
214    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
215    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
216                                                std::make_pair(RegOp, AuxInfo))))
217      AmbEntries.push_back(MemOp);
218  }
219
220  // If the third value is 1, then it's folding either a load or a store.
221  static const unsigned OpTbl0[][3] = {
222    { X86::CALL32r,     X86::CALL32m, 1 },
223    { X86::CALL64r,     X86::CALL64m, 1 },
224    { X86::CMP16ri,     X86::CMP16mi, 1 },
225    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
226    { X86::CMP16rr,     X86::CMP16mr, 1 },
227    { X86::CMP32ri,     X86::CMP32mi, 1 },
228    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
229    { X86::CMP32rr,     X86::CMP32mr, 1 },
230    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
231    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
232    { X86::CMP64rr,     X86::CMP64mr, 1 },
233    { X86::CMP8ri,      X86::CMP8mi, 1 },
234    { X86::CMP8rr,      X86::CMP8mr, 1 },
235    { X86::DIV16r,      X86::DIV16m, 1 },
236    { X86::DIV32r,      X86::DIV32m, 1 },
237    { X86::DIV64r,      X86::DIV64m, 1 },
238    { X86::DIV8r,       X86::DIV8m, 1 },
239    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
240    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
241    { X86::IDIV16r,     X86::IDIV16m, 1 },
242    { X86::IDIV32r,     X86::IDIV32m, 1 },
243    { X86::IDIV64r,     X86::IDIV64m, 1 },
244    { X86::IDIV8r,      X86::IDIV8m, 1 },
245    { X86::IMUL16r,     X86::IMUL16m, 1 },
246    { X86::IMUL32r,     X86::IMUL32m, 1 },
247    { X86::IMUL64r,     X86::IMUL64m, 1 },
248    { X86::IMUL8r,      X86::IMUL8m, 1 },
249    { X86::JMP32r,      X86::JMP32m, 1 },
250    { X86::JMP64r,      X86::JMP64m, 1 },
251    { X86::MOV16ri,     X86::MOV16mi, 0 },
252    { X86::MOV16rr,     X86::MOV16mr, 0 },
253    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
254    { X86::MOV32ri,     X86::MOV32mi, 0 },
255    { X86::MOV32rr,     X86::MOV32mr, 0 },
256    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
257    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
258    { X86::MOV64rr,     X86::MOV64mr, 0 },
259    { X86::MOV8ri,      X86::MOV8mi, 0 },
260    { X86::MOV8rr,      X86::MOV8mr, 0 },
261    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
262    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
263    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
264    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
265    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
266    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
267    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
268    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
269    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
270    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
271    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
272    { X86::MUL16r,      X86::MUL16m, 1 },
273    { X86::MUL32r,      X86::MUL32m, 1 },
274    { X86::MUL64r,      X86::MUL64m, 1 },
275    { X86::MUL8r,       X86::MUL8m, 1 },
276    { X86::SETAEr,      X86::SETAEm, 0 },
277    { X86::SETAr,       X86::SETAm, 0 },
278    { X86::SETBEr,      X86::SETBEm, 0 },
279    { X86::SETBr,       X86::SETBm, 0 },
280    { X86::SETEr,       X86::SETEm, 0 },
281    { X86::SETGEr,      X86::SETGEm, 0 },
282    { X86::SETGr,       X86::SETGm, 0 },
283    { X86::SETLEr,      X86::SETLEm, 0 },
284    { X86::SETLr,       X86::SETLm, 0 },
285    { X86::SETNEr,      X86::SETNEm, 0 },
286    { X86::SETNPr,      X86::SETNPm, 0 },
287    { X86::SETNSr,      X86::SETNSm, 0 },
288    { X86::SETPr,       X86::SETPm, 0 },
289    { X86::SETSr,       X86::SETSm, 0 },
290    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
291    { X86::TEST16ri,    X86::TEST16mi, 1 },
292    { X86::TEST32ri,    X86::TEST32mi, 1 },
293    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
294    { X86::TEST8ri,     X86::TEST8mi, 1 }
295  };
296
297  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
298    unsigned RegOp = OpTbl0[i][0];
299    unsigned MemOp = OpTbl0[i][1];
300    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
301      assert(false && "Duplicated entries?");
302    unsigned FoldedLoad = OpTbl0[i][2];
303    // Index 0, folded load or store.
304    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
305    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
306      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
307                                               std::make_pair(RegOp, AuxInfo))))
308        AmbEntries.push_back(MemOp);
309  }
310
311  static const unsigned OpTbl1[][2] = {
312    { X86::CMP16rr,         X86::CMP16rm },
313    { X86::CMP32rr,         X86::CMP32rm },
314    { X86::CMP64rr,         X86::CMP64rm },
315    { X86::CMP8rr,          X86::CMP8rm },
316    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
317    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
318    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
319    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
320    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
321    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
322    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
323    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
324    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
325    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
326    { X86::FsMOVAPDrr,      X86::MOVSDrm },
327    { X86::FsMOVAPSrr,      X86::MOVSSrm },
328    { X86::IMUL16rri,       X86::IMUL16rmi },
329    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
330    { X86::IMUL32rri,       X86::IMUL32rmi },
331    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
332    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
333    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
334    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
335    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
336    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
337    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
338    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
339    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
340    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
341    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
342    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
343    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
344    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
345    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
346    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
347    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
348    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
349    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
350    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
351    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
352    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
353    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
354    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
355    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
356    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
357    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
358    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
359    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
360    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
361    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
362    { X86::MOV16rr,         X86::MOV16rm },
363    { X86::MOV16to16_,      X86::MOV16_rm },
364    { X86::MOV32rr,         X86::MOV32rm },
365    { X86::MOV32to32_,      X86::MOV32_rm },
366    { X86::MOV64rr,         X86::MOV64rm },
367    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
368    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
369    { X86::MOV8rr,          X86::MOV8rm },
370    { X86::MOVAPDrr,        X86::MOVAPDrm },
371    { X86::MOVAPSrr,        X86::MOVAPSrm },
372    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
373    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
374    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
375    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
376    { X86::MOVSDrr,         X86::MOVSDrm },
377    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
378    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
379    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
380    { X86::MOVSSrr,         X86::MOVSSrm },
381    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
382    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
383    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
384    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
385    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
386    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
387    { X86::MOVUPDrr,        X86::MOVUPDrm },
388    { X86::MOVUPSrr,        X86::MOVUPSrm },
389    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
390    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
391    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
392    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
393    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
394    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
395    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
396    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
397    { X86::PSHUFDri,        X86::PSHUFDmi },
398    { X86::PSHUFHWri,       X86::PSHUFHWmi },
399    { X86::PSHUFLWri,       X86::PSHUFLWmi },
400    { X86::RCPPSr,          X86::RCPPSm },
401    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
402    { X86::RSQRTPSr,        X86::RSQRTPSm },
403    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
404    { X86::RSQRTSSr,        X86::RSQRTSSm },
405    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
406    { X86::SQRTPDr,         X86::SQRTPDm },
407    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
408    { X86::SQRTPSr,         X86::SQRTPSm },
409    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
410    { X86::SQRTSDr,         X86::SQRTSDm },
411    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
412    { X86::SQRTSSr,         X86::SQRTSSm },
413    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
414    { X86::TEST16rr,        X86::TEST16rm },
415    { X86::TEST32rr,        X86::TEST32rm },
416    { X86::TEST64rr,        X86::TEST64rm },
417    { X86::TEST8rr,         X86::TEST8rm },
418    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
419    { X86::UCOMISDrr,       X86::UCOMISDrm },
420    { X86::UCOMISSrr,       X86::UCOMISSrm }
421  };
422
423  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
424    unsigned RegOp = OpTbl1[i][0];
425    unsigned MemOp = OpTbl1[i][1];
426    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
427      assert(false && "Duplicated entries?");
428    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
429    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
430      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
431                                               std::make_pair(RegOp, AuxInfo))))
432        AmbEntries.push_back(MemOp);
433  }
434
435  static const unsigned OpTbl2[][2] = {
436    { X86::ADC32rr,         X86::ADC32rm },
437    { X86::ADC64rr,         X86::ADC64rm },
438    { X86::ADD16rr,         X86::ADD16rm },
439    { X86::ADD32rr,         X86::ADD32rm },
440    { X86::ADD64rr,         X86::ADD64rm },
441    { X86::ADD8rr,          X86::ADD8rm },
442    { X86::ADDPDrr,         X86::ADDPDrm },
443    { X86::ADDPSrr,         X86::ADDPSrm },
444    { X86::ADDSDrr,         X86::ADDSDrm },
445    { X86::ADDSSrr,         X86::ADDSSrm },
446    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
447    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
448    { X86::AND16rr,         X86::AND16rm },
449    { X86::AND32rr,         X86::AND32rm },
450    { X86::AND64rr,         X86::AND64rm },
451    { X86::AND8rr,          X86::AND8rm },
452    { X86::ANDNPDrr,        X86::ANDNPDrm },
453    { X86::ANDNPSrr,        X86::ANDNPSrm },
454    { X86::ANDPDrr,         X86::ANDPDrm },
455    { X86::ANDPSrr,         X86::ANDPSrm },
456    { X86::CMOVA16rr,       X86::CMOVA16rm },
457    { X86::CMOVA32rr,       X86::CMOVA32rm },
458    { X86::CMOVA64rr,       X86::CMOVA64rm },
459    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
460    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
461    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
462    { X86::CMOVB16rr,       X86::CMOVB16rm },
463    { X86::CMOVB32rr,       X86::CMOVB32rm },
464    { X86::CMOVB64rr,       X86::CMOVB64rm },
465    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
466    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
467    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
468    { X86::CMOVE16rr,       X86::CMOVE16rm },
469    { X86::CMOVE32rr,       X86::CMOVE32rm },
470    { X86::CMOVE64rr,       X86::CMOVE64rm },
471    { X86::CMOVG16rr,       X86::CMOVG16rm },
472    { X86::CMOVG32rr,       X86::CMOVG32rm },
473    { X86::CMOVG64rr,       X86::CMOVG64rm },
474    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
475    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
476    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
477    { X86::CMOVL16rr,       X86::CMOVL16rm },
478    { X86::CMOVL32rr,       X86::CMOVL32rm },
479    { X86::CMOVL64rr,       X86::CMOVL64rm },
480    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
481    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
482    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
483    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
484    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
485    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
486    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
487    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
488    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
489    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
490    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
491    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
492    { X86::CMOVP16rr,       X86::CMOVP16rm },
493    { X86::CMOVP32rr,       X86::CMOVP32rm },
494    { X86::CMOVP64rr,       X86::CMOVP64rm },
495    { X86::CMOVS16rr,       X86::CMOVS16rm },
496    { X86::CMOVS32rr,       X86::CMOVS32rm },
497    { X86::CMOVS64rr,       X86::CMOVS64rm },
498    { X86::CMPPDrri,        X86::CMPPDrmi },
499    { X86::CMPPSrri,        X86::CMPPSrmi },
500    { X86::CMPSDrr,         X86::CMPSDrm },
501    { X86::CMPSSrr,         X86::CMPSSrm },
502    { X86::DIVPDrr,         X86::DIVPDrm },
503    { X86::DIVPSrr,         X86::DIVPSrm },
504    { X86::DIVSDrr,         X86::DIVSDrm },
505    { X86::DIVSSrr,         X86::DIVSSrm },
506    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
507    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
508    { X86::FsANDPDrr,       X86::FsANDPDrm },
509    { X86::FsANDPSrr,       X86::FsANDPSrm },
510    { X86::FsORPDrr,        X86::FsORPDrm },
511    { X86::FsORPSrr,        X86::FsORPSrm },
512    { X86::FsXORPDrr,       X86::FsXORPDrm },
513    { X86::FsXORPSrr,       X86::FsXORPSrm },
514    { X86::HADDPDrr,        X86::HADDPDrm },
515    { X86::HADDPSrr,        X86::HADDPSrm },
516    { X86::HSUBPDrr,        X86::HSUBPDrm },
517    { X86::HSUBPSrr,        X86::HSUBPSrm },
518    { X86::IMUL16rr,        X86::IMUL16rm },
519    { X86::IMUL32rr,        X86::IMUL32rm },
520    { X86::IMUL64rr,        X86::IMUL64rm },
521    { X86::MAXPDrr,         X86::MAXPDrm },
522    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
523    { X86::MAXPSrr,         X86::MAXPSrm },
524    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
525    { X86::MAXSDrr,         X86::MAXSDrm },
526    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
527    { X86::MAXSSrr,         X86::MAXSSrm },
528    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
529    { X86::MINPDrr,         X86::MINPDrm },
530    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
531    { X86::MINPSrr,         X86::MINPSrm },
532    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
533    { X86::MINSDrr,         X86::MINSDrm },
534    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
535    { X86::MINSSrr,         X86::MINSSrm },
536    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
537    { X86::MULPDrr,         X86::MULPDrm },
538    { X86::MULPSrr,         X86::MULPSrm },
539    { X86::MULSDrr,         X86::MULSDrm },
540    { X86::MULSSrr,         X86::MULSSrm },
541    { X86::OR16rr,          X86::OR16rm },
542    { X86::OR32rr,          X86::OR32rm },
543    { X86::OR64rr,          X86::OR64rm },
544    { X86::OR8rr,           X86::OR8rm },
545    { X86::ORPDrr,          X86::ORPDrm },
546    { X86::ORPSrr,          X86::ORPSrm },
547    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
548    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
549    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
550    { X86::PADDBrr,         X86::PADDBrm },
551    { X86::PADDDrr,         X86::PADDDrm },
552    { X86::PADDQrr,         X86::PADDQrm },
553    { X86::PADDSBrr,        X86::PADDSBrm },
554    { X86::PADDSWrr,        X86::PADDSWrm },
555    { X86::PADDWrr,         X86::PADDWrm },
556    { X86::PANDNrr,         X86::PANDNrm },
557    { X86::PANDrr,          X86::PANDrm },
558    { X86::PAVGBrr,         X86::PAVGBrm },
559    { X86::PAVGWrr,         X86::PAVGWrm },
560    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
561    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
562    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
563    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
564    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
565    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
566    { X86::PINSRWrri,       X86::PINSRWrmi },
567    { X86::PMADDWDrr,       X86::PMADDWDrm },
568    { X86::PMAXSWrr,        X86::PMAXSWrm },
569    { X86::PMAXUBrr,        X86::PMAXUBrm },
570    { X86::PMINSWrr,        X86::PMINSWrm },
571    { X86::PMINUBrr,        X86::PMINUBrm },
572    { X86::PMULHUWrr,       X86::PMULHUWrm },
573    { X86::PMULHWrr,        X86::PMULHWrm },
574    { X86::PMULLWrr,        X86::PMULLWrm },
575    { X86::PMULUDQrr,       X86::PMULUDQrm },
576    { X86::PORrr,           X86::PORrm },
577    { X86::PSADBWrr,        X86::PSADBWrm },
578    { X86::PSLLDrr,         X86::PSLLDrm },
579    { X86::PSLLQrr,         X86::PSLLQrm },
580    { X86::PSLLWrr,         X86::PSLLWrm },
581    { X86::PSRADrr,         X86::PSRADrm },
582    { X86::PSRAWrr,         X86::PSRAWrm },
583    { X86::PSRLDrr,         X86::PSRLDrm },
584    { X86::PSRLQrr,         X86::PSRLQrm },
585    { X86::PSRLWrr,         X86::PSRLWrm },
586    { X86::PSUBBrr,         X86::PSUBBrm },
587    { X86::PSUBDrr,         X86::PSUBDrm },
588    { X86::PSUBSBrr,        X86::PSUBSBrm },
589    { X86::PSUBSWrr,        X86::PSUBSWrm },
590    { X86::PSUBWrr,         X86::PSUBWrm },
591    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
592    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
593    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
594    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
595    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
596    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
597    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
598    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
599    { X86::PXORrr,          X86::PXORrm },
600    { X86::SBB32rr,         X86::SBB32rm },
601    { X86::SBB64rr,         X86::SBB64rm },
602    { X86::SHUFPDrri,       X86::SHUFPDrmi },
603    { X86::SHUFPSrri,       X86::SHUFPSrmi },
604    { X86::SUB16rr,         X86::SUB16rm },
605    { X86::SUB32rr,         X86::SUB32rm },
606    { X86::SUB64rr,         X86::SUB64rm },
607    { X86::SUB8rr,          X86::SUB8rm },
608    { X86::SUBPDrr,         X86::SUBPDrm },
609    { X86::SUBPSrr,         X86::SUBPSrm },
610    { X86::SUBSDrr,         X86::SUBSDrm },
611    { X86::SUBSSrr,         X86::SUBSSrm },
612    // FIXME: TEST*rr -> swapped operand of TEST*mr.
613    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
614    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
615    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
616    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
617    { X86::XOR16rr,         X86::XOR16rm },
618    { X86::XOR32rr,         X86::XOR32rm },
619    { X86::XOR64rr,         X86::XOR64rm },
620    { X86::XOR8rr,          X86::XOR8rm },
621    { X86::XORPDrr,         X86::XORPDrm },
622    { X86::XORPSrr,         X86::XORPSrm }
623  };
624
625  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
626    unsigned RegOp = OpTbl2[i][0];
627    unsigned MemOp = OpTbl2[i][1];
628    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
629      assert(false && "Duplicated entries?");
630    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
631    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
632                                               std::make_pair(RegOp, AuxInfo))))
633      AmbEntries.push_back(MemOp);
634  }
635
636  // Remove ambiguous entries.
637  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
638}
639
640bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
641                               unsigned& sourceReg,
642                               unsigned& destReg) const {
643  switch (MI.getOpcode()) {
644  default:
645    return false;
646  case X86::MOV8rr:
647  case X86::MOV16rr:
648  case X86::MOV32rr:
649  case X86::MOV64rr:
650  case X86::MOV16to16_:
651  case X86::MOV32to32_:
652  case X86::MOVSSrr:
653  case X86::MOVSDrr:
654
655  // FP Stack register class copies
656  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
657  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
658  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
659
660  case X86::FsMOVAPSrr:
661  case X86::FsMOVAPDrr:
662  case X86::MOVAPSrr:
663  case X86::MOVAPDrr:
664  case X86::MOVSS2PSrr:
665  case X86::MOVSD2PDrr:
666  case X86::MOVPS2SSrr:
667  case X86::MOVPD2SDrr:
668  case X86::MMX_MOVD64rr:
669  case X86::MMX_MOVQ64rr:
670    assert(MI.getNumOperands() >= 2 &&
671           MI.getOperand(0).isRegister() &&
672           MI.getOperand(1).isRegister() &&
673           "invalid register-register move instruction");
674    sourceReg = MI.getOperand(1).getReg();
675    destReg = MI.getOperand(0).getReg();
676    return true;
677  }
678}
679
680unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
681                                           int &FrameIndex) const {
682  switch (MI->getOpcode()) {
683  default: break;
684  case X86::MOV8rm:
685  case X86::MOV16rm:
686  case X86::MOV16_rm:
687  case X86::MOV32rm:
688  case X86::MOV32_rm:
689  case X86::MOV64rm:
690  case X86::LD_Fp64m:
691  case X86::MOVSSrm:
692  case X86::MOVSDrm:
693  case X86::MOVAPSrm:
694  case X86::MOVAPDrm:
695  case X86::MMX_MOVD64rm:
696  case X86::MMX_MOVQ64rm:
697    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
698        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
699        MI->getOperand(2).getImm() == 1 &&
700        MI->getOperand(3).getReg() == 0 &&
701        MI->getOperand(4).getImm() == 0) {
702      FrameIndex = MI->getOperand(1).getIndex();
703      return MI->getOperand(0).getReg();
704    }
705    break;
706  }
707  return 0;
708}
709
710unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
711                                          int &FrameIndex) const {
712  switch (MI->getOpcode()) {
713  default: break;
714  case X86::MOV8mr:
715  case X86::MOV16mr:
716  case X86::MOV16_mr:
717  case X86::MOV32mr:
718  case X86::MOV32_mr:
719  case X86::MOV64mr:
720  case X86::ST_FpP64m:
721  case X86::MOVSSmr:
722  case X86::MOVSDmr:
723  case X86::MOVAPSmr:
724  case X86::MOVAPDmr:
725  case X86::MMX_MOVD64mr:
726  case X86::MMX_MOVQ64mr:
727  case X86::MMX_MOVNTQmr:
728    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
729        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
730        MI->getOperand(1).getImm() == 1 &&
731        MI->getOperand(2).getReg() == 0 &&
732        MI->getOperand(3).getImm() == 0) {
733      FrameIndex = MI->getOperand(0).getIndex();
734      return MI->getOperand(4).getReg();
735    }
736    break;
737  }
738  return 0;
739}
740
741
742/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
743/// X86::MOVPC32r.
744static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
745  bool isPICBase = false;
746  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
747         E = MRI.def_end(); I != E; ++I) {
748    MachineInstr *DefMI = I.getOperand().getParent();
749    if (DefMI->getOpcode() != X86::MOVPC32r)
750      return false;
751    assert(!isPICBase && "More than one PIC base?");
752    isPICBase = true;
753  }
754  return isPICBase;
755}
756
757/// isGVStub - Return true if the GV requires an extra load to get the
758/// real address.
759static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
760  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
761}
762
763bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
764  switch (MI->getOpcode()) {
765  default: break;
766    case X86::MOV8rm:
767    case X86::MOV16rm:
768    case X86::MOV16_rm:
769    case X86::MOV32rm:
770    case X86::MOV32_rm:
771    case X86::MOV64rm:
772    case X86::LD_Fp64m:
773    case X86::MOVSSrm:
774    case X86::MOVSDrm:
775    case X86::MOVAPSrm:
776    case X86::MOVAPDrm:
777    case X86::MMX_MOVD64rm:
778    case X86::MMX_MOVQ64rm: {
779      // Loads from constant pools are trivially rematerializable.
780      if (MI->getOperand(1).isReg() &&
781          MI->getOperand(2).isImm() &&
782          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
783          (MI->getOperand(4).isCPI() ||
784           (MI->getOperand(4).isGlobal() &&
785            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
786        unsigned BaseReg = MI->getOperand(1).getReg();
787        if (BaseReg == 0)
788          return true;
789        // Allow re-materialization of PIC load.
790        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
791          return false;
792        MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
793        bool isPICBase = false;
794        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
795               E = MRI.def_end(); I != E; ++I) {
796          MachineInstr *DefMI = I.getOperand().getParent();
797          if (DefMI->getOpcode() != X86::MOVPC32r)
798            return false;
799          assert(!isPICBase && "More than one PIC base?");
800          isPICBase = true;
801        }
802        return isPICBase;
803      }
804      return false;
805    }
806
807     case X86::LEA32r:
808     case X86::LEA64r: {
809       if (MI->getOperand(1).isReg() &&
810           MI->getOperand(2).isImm() &&
811           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
812           !MI->getOperand(4).isReg()) {
813         // lea fi#, lea GV, etc. are all rematerializable.
814         unsigned BaseReg = MI->getOperand(1).getReg();
815         if (BaseReg == 0)
816           return true;
817         // Allow re-materialization of lea PICBase + x.
818         MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
819         return regIsPICBase(BaseReg, MRI);
820       }
821       return false;
822     }
823  }
824
825  // All other instructions marked M_REMATERIALIZABLE are always trivially
826  // rematerializable.
827  return true;
828}
829
830void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
831                                 MachineBasicBlock::iterator I,
832                                 unsigned DestReg,
833                                 const MachineInstr *Orig) const {
834  unsigned SubIdx = Orig->getOperand(0).isReg()
835    ? Orig->getOperand(0).getSubReg() : 0;
836  bool ChangeSubIdx = SubIdx != 0;
837  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
838    DestReg = RI.getSubReg(DestReg, SubIdx);
839    SubIdx = 0;
840  }
841
842  // MOV32r0 etc. are implemented with xor which clobbers condition code.
843  // Re-materialize them as movri instructions to avoid side effects.
844  switch (Orig->getOpcode()) {
845  case X86::MOV8r0:
846    BuildMI(MBB, I, get(X86::MOV8ri), DestReg).addImm(0);
847    break;
848  case X86::MOV16r0:
849    BuildMI(MBB, I, get(X86::MOV16ri), DestReg).addImm(0);
850    break;
851  case X86::MOV32r0:
852    BuildMI(MBB, I, get(X86::MOV32ri), DestReg).addImm(0);
853    break;
854  case X86::MOV64r0:
855    BuildMI(MBB, I, get(X86::MOV64ri32), DestReg).addImm(0);
856    break;
857  default: {
858    MachineInstr *MI = Orig->clone();
859    MI->getOperand(0).setReg(DestReg);
860    MBB.insert(I, MI);
861    break;
862  }
863  }
864
865  if (ChangeSubIdx) {
866    MachineInstr *NewMI = prior(I);
867    NewMI->getOperand(0).setSubReg(SubIdx);
868  }
869}
870
871/// isInvariantLoad - Return true if the specified instruction (which is marked
872/// mayLoad) is loading from a location whose value is invariant across the
873/// function.  For example, loading a value from the constant pool or from
874/// from the argument area of a function if it does not change.  This should
875/// only return true of *all* loads the instruction does are invariant (if it
876/// does multiple loads).
877bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
878  // This code cares about loads from three cases: constant pool entries,
879  // invariant argument slots, and global stubs.  In order to handle these cases
880  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
881  // operand and base our analysis on it.  This is safe because the address of
882  // none of these three cases is ever used as anything other than a load base
883  // and X86 doesn't have any instructions that load from multiple places.
884
885  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
886    const MachineOperand &MO = MI->getOperand(i);
887    // Loads from constant pools are trivially invariant.
888    if (MO.isCPI())
889      return true;
890
891    if (MO.isGlobal())
892      return isGVStub(MO.getGlobal(), TM);
893
894    // If this is a load from an invariant stack slot, the load is a constant.
895    if (MO.isFI()) {
896      const MachineFrameInfo &MFI =
897        *MI->getParent()->getParent()->getFrameInfo();
898      int Idx = MO.getIndex();
899      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
900    }
901  }
902
903  // All other instances of these instructions are presumed to have other
904  // issues.
905  return false;
906}
907
908/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
909/// is not marked dead.
910static bool hasLiveCondCodeDef(MachineInstr *MI) {
911  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
912    MachineOperand &MO = MI->getOperand(i);
913    if (MO.isRegister() && MO.isDef() &&
914        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
915      return true;
916    }
917  }
918  return false;
919}
920
921/// convertToThreeAddress - This method must be implemented by targets that
922/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
923/// may be able to convert a two-address instruction into a true
924/// three-address instruction on demand.  This allows the X86 target (for
925/// example) to convert ADD and SHL instructions into LEA instructions if they
926/// would require register copies due to two-addressness.
927///
928/// This method returns a null pointer if the transformation cannot be
929/// performed, otherwise it returns the new instruction.
930///
931MachineInstr *
932X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
933                                    MachineBasicBlock::iterator &MBBI,
934                                    LiveVariables &LV) const {
935  MachineInstr *MI = MBBI;
936  // All instructions input are two-addr instructions.  Get the known operands.
937  unsigned Dest = MI->getOperand(0).getReg();
938  unsigned Src = MI->getOperand(1).getReg();
939
940  MachineInstr *NewMI = NULL;
941  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
942  // we have better subtarget support, enable the 16-bit LEA generation here.
943  bool DisableLEA16 = true;
944
945  unsigned MIOpc = MI->getOpcode();
946  switch (MIOpc) {
947  case X86::SHUFPSrri: {
948    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
949    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
950
951    unsigned A = MI->getOperand(0).getReg();
952    unsigned B = MI->getOperand(1).getReg();
953    unsigned C = MI->getOperand(2).getReg();
954    unsigned M = MI->getOperand(3).getImm();
955    if (B != C) return 0;
956    NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
957    break;
958  }
959  case X86::SHL64ri: {
960    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
961    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
962    // the flags produced by a shift yet, so this is safe.
963    unsigned Dest = MI->getOperand(0).getReg();
964    unsigned Src = MI->getOperand(1).getReg();
965    unsigned ShAmt = MI->getOperand(2).getImm();
966    if (ShAmt == 0 || ShAmt >= 4) return 0;
967
968    NewMI = BuildMI(get(X86::LEA64r), Dest)
969      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
970    break;
971  }
972  case X86::SHL32ri: {
973    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
974    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
975    // the flags produced by a shift yet, so this is safe.
976    unsigned Dest = MI->getOperand(0).getReg();
977    unsigned Src = MI->getOperand(1).getReg();
978    unsigned ShAmt = MI->getOperand(2).getImm();
979    if (ShAmt == 0 || ShAmt >= 4) return 0;
980
981    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
982      X86::LEA64_32r : X86::LEA32r;
983    NewMI = BuildMI(get(Opc), Dest)
984      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
985    break;
986  }
987  case X86::SHL16ri: {
988    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
989    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
990    // the flags produced by a shift yet, so this is safe.
991    unsigned Dest = MI->getOperand(0).getReg();
992    unsigned Src = MI->getOperand(1).getReg();
993    unsigned ShAmt = MI->getOperand(2).getImm();
994    if (ShAmt == 0 || ShAmt >= 4) return 0;
995
996    if (DisableLEA16) {
997      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
998      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
999      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1000        ? X86::LEA64_32r : X86::LEA32r;
1001      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1002      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1003
1004      // Build and insert into an implicit UNDEF value. This is OK because
1005      // well be shifting and then extracting the lower 16-bits.
1006      MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
1007
1008      MachineInstr *Ins =
1009       BuildMI(get(X86::INSERT_SUBREG),leaInReg)
1010                    .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
1011
1012      NewMI = BuildMI(get(Opc), leaOutReg)
1013        .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
1014
1015      MachineInstr *Ext =
1016        BuildMI(get(X86::EXTRACT_SUBREG), Dest)
1017         .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
1018      Ext->copyKillDeadInfo(MI);
1019
1020      MFI->insert(MBBI, Undef);
1021      MFI->insert(MBBI, Ins);            // Insert the insert_subreg
1022      LV.instructionChanged(MI, NewMI);  // Update live variables
1023      LV.addVirtualRegisterKilled(leaInReg, NewMI);
1024      MFI->insert(MBBI, NewMI);          // Insert the new inst
1025      LV.addVirtualRegisterKilled(leaOutReg, Ext);
1026      MFI->insert(MBBI, Ext);            // Insert the extract_subreg
1027      return Ext;
1028    } else {
1029      NewMI = BuildMI(get(X86::LEA16r), Dest)
1030        .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1031    }
1032    break;
1033  }
1034  default: {
1035    // The following opcodes also sets the condition code register(s). Only
1036    // convert them to equivalent lea if the condition code register def's
1037    // are dead!
1038    if (hasLiveCondCodeDef(MI))
1039      return 0;
1040
1041    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1042    switch (MIOpc) {
1043    default: return 0;
1044    case X86::INC64r:
1045    case X86::INC32r: {
1046      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1047      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1048        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1049      NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
1050      break;
1051    }
1052    case X86::INC16r:
1053    case X86::INC64_16r:
1054      if (DisableLEA16) return 0;
1055      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1056      NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
1057      break;
1058    case X86::DEC64r:
1059    case X86::DEC32r: {
1060      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1061      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1062        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1063      NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
1064      break;
1065    }
1066    case X86::DEC16r:
1067    case X86::DEC64_16r:
1068      if (DisableLEA16) return 0;
1069      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1070      NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
1071      break;
1072    case X86::ADD64rr:
1073    case X86::ADD32rr: {
1074      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1075      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1076        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1077      NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
1078                        MI->getOperand(2).getReg());
1079      break;
1080    }
1081    case X86::ADD16rr:
1082      if (DisableLEA16) return 0;
1083      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1084      NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1085                        MI->getOperand(2).getReg());
1086      break;
1087    case X86::ADD64ri32:
1088    case X86::ADD64ri8:
1089      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1090      if (MI->getOperand(2).isImmediate())
1091        NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
1092                             MI->getOperand(2).getImm());
1093      break;
1094    case X86::ADD32ri:
1095    case X86::ADD32ri8:
1096      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1097      if (MI->getOperand(2).isImmediate()) {
1098        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1099        NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
1100                             MI->getOperand(2).getImm());
1101      }
1102      break;
1103    case X86::ADD16ri:
1104    case X86::ADD16ri8:
1105      if (DisableLEA16) return 0;
1106      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1107      if (MI->getOperand(2).isImmediate())
1108        NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
1109                             MI->getOperand(2).getImm());
1110      break;
1111    case X86::SHL16ri:
1112      if (DisableLEA16) return 0;
1113    case X86::SHL32ri:
1114    case X86::SHL64ri: {
1115      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1116             "Unknown shl instruction!");
1117      unsigned ShAmt = MI->getOperand(2).getImm();
1118      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1119        X86AddressMode AM;
1120        AM.Scale = 1 << ShAmt;
1121        AM.IndexReg = Src;
1122        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1123          : (MIOpc == X86::SHL32ri
1124             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1125        NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1126      }
1127      break;
1128    }
1129    }
1130  }
1131  }
1132
1133  if (!NewMI) return 0;
1134
1135  NewMI->copyKillDeadInfo(MI);
1136  LV.instructionChanged(MI, NewMI);  // Update live variables
1137  MFI->insert(MBBI, NewMI);          // Insert the new inst
1138  return NewMI;
1139}
1140
1141/// commuteInstruction - We have a few instructions that must be hacked on to
1142/// commute them.
1143///
1144MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1145  switch (MI->getOpcode()) {
1146  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1147  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1148  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1149  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1150  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1151  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1152    unsigned Opc;
1153    unsigned Size;
1154    switch (MI->getOpcode()) {
1155    default: assert(0 && "Unreachable!");
1156    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1157    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1158    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1159    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1160    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1161    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1162    }
1163    unsigned Amt = MI->getOperand(3).getImm();
1164    unsigned A = MI->getOperand(0).getReg();
1165    unsigned B = MI->getOperand(1).getReg();
1166    unsigned C = MI->getOperand(2).getReg();
1167    bool BisKill = MI->getOperand(1).isKill();
1168    bool CisKill = MI->getOperand(2).isKill();
1169    // If machine instrs are no longer in two-address forms, update
1170    // destination register as well.
1171    if (A == B) {
1172      // Must be two address instruction!
1173      assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1174             "Expecting a two-address instruction!");
1175      A = C;
1176      CisKill = false;
1177    }
1178    return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
1179      .addReg(B, false, false, BisKill).addImm(Size-Amt);
1180  }
1181  case X86::CMOVB16rr:
1182  case X86::CMOVB32rr:
1183  case X86::CMOVB64rr:
1184  case X86::CMOVAE16rr:
1185  case X86::CMOVAE32rr:
1186  case X86::CMOVAE64rr:
1187  case X86::CMOVE16rr:
1188  case X86::CMOVE32rr:
1189  case X86::CMOVE64rr:
1190  case X86::CMOVNE16rr:
1191  case X86::CMOVNE32rr:
1192  case X86::CMOVNE64rr:
1193  case X86::CMOVBE16rr:
1194  case X86::CMOVBE32rr:
1195  case X86::CMOVBE64rr:
1196  case X86::CMOVA16rr:
1197  case X86::CMOVA32rr:
1198  case X86::CMOVA64rr:
1199  case X86::CMOVL16rr:
1200  case X86::CMOVL32rr:
1201  case X86::CMOVL64rr:
1202  case X86::CMOVGE16rr:
1203  case X86::CMOVGE32rr:
1204  case X86::CMOVGE64rr:
1205  case X86::CMOVLE16rr:
1206  case X86::CMOVLE32rr:
1207  case X86::CMOVLE64rr:
1208  case X86::CMOVG16rr:
1209  case X86::CMOVG32rr:
1210  case X86::CMOVG64rr:
1211  case X86::CMOVS16rr:
1212  case X86::CMOVS32rr:
1213  case X86::CMOVS64rr:
1214  case X86::CMOVNS16rr:
1215  case X86::CMOVNS32rr:
1216  case X86::CMOVNS64rr:
1217  case X86::CMOVP16rr:
1218  case X86::CMOVP32rr:
1219  case X86::CMOVP64rr:
1220  case X86::CMOVNP16rr:
1221  case X86::CMOVNP32rr:
1222  case X86::CMOVNP64rr: {
1223    unsigned Opc = 0;
1224    switch (MI->getOpcode()) {
1225    default: break;
1226    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1227    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1228    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1229    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1230    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1231    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1232    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1233    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1234    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1235    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1236    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1237    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1238    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1239    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1240    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1241    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1242    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1243    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1244    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1245    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1246    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1247    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1248    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1249    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1250    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1251    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1252    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1253    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1254    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1255    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1256    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1257    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1258    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
1259    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1260    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1261    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1262    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1263    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1264    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
1265    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1266    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1267    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1268    }
1269
1270    MI->setDesc(get(Opc));
1271    // Fallthrough intended.
1272  }
1273  default:
1274    return TargetInstrInfoImpl::commuteInstruction(MI);
1275  }
1276}
1277
1278static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1279  switch (BrOpc) {
1280  default: return X86::COND_INVALID;
1281  case X86::JE:  return X86::COND_E;
1282  case X86::JNE: return X86::COND_NE;
1283  case X86::JL:  return X86::COND_L;
1284  case X86::JLE: return X86::COND_LE;
1285  case X86::JG:  return X86::COND_G;
1286  case X86::JGE: return X86::COND_GE;
1287  case X86::JB:  return X86::COND_B;
1288  case X86::JBE: return X86::COND_BE;
1289  case X86::JA:  return X86::COND_A;
1290  case X86::JAE: return X86::COND_AE;
1291  case X86::JS:  return X86::COND_S;
1292  case X86::JNS: return X86::COND_NS;
1293  case X86::JP:  return X86::COND_P;
1294  case X86::JNP: return X86::COND_NP;
1295  case X86::JO:  return X86::COND_O;
1296  case X86::JNO: return X86::COND_NO;
1297  }
1298}
1299
1300unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1301  switch (CC) {
1302  default: assert(0 && "Illegal condition code!");
1303  case X86::COND_E:  return X86::JE;
1304  case X86::COND_NE: return X86::JNE;
1305  case X86::COND_L:  return X86::JL;
1306  case X86::COND_LE: return X86::JLE;
1307  case X86::COND_G:  return X86::JG;
1308  case X86::COND_GE: return X86::JGE;
1309  case X86::COND_B:  return X86::JB;
1310  case X86::COND_BE: return X86::JBE;
1311  case X86::COND_A:  return X86::JA;
1312  case X86::COND_AE: return X86::JAE;
1313  case X86::COND_S:  return X86::JS;
1314  case X86::COND_NS: return X86::JNS;
1315  case X86::COND_P:  return X86::JP;
1316  case X86::COND_NP: return X86::JNP;
1317  case X86::COND_O:  return X86::JO;
1318  case X86::COND_NO: return X86::JNO;
1319  }
1320}
1321
1322/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1323/// e.g. turning COND_E to COND_NE.
1324X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1325  switch (CC) {
1326  default: assert(0 && "Illegal condition code!");
1327  case X86::COND_E:  return X86::COND_NE;
1328  case X86::COND_NE: return X86::COND_E;
1329  case X86::COND_L:  return X86::COND_GE;
1330  case X86::COND_LE: return X86::COND_G;
1331  case X86::COND_G:  return X86::COND_LE;
1332  case X86::COND_GE: return X86::COND_L;
1333  case X86::COND_B:  return X86::COND_AE;
1334  case X86::COND_BE: return X86::COND_A;
1335  case X86::COND_A:  return X86::COND_BE;
1336  case X86::COND_AE: return X86::COND_B;
1337  case X86::COND_S:  return X86::COND_NS;
1338  case X86::COND_NS: return X86::COND_S;
1339  case X86::COND_P:  return X86::COND_NP;
1340  case X86::COND_NP: return X86::COND_P;
1341  case X86::COND_O:  return X86::COND_NO;
1342  case X86::COND_NO: return X86::COND_O;
1343  }
1344}
1345
1346bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1347  const TargetInstrDesc &TID = MI->getDesc();
1348  if (!TID.isTerminator()) return false;
1349
1350  // Conditional branch is a special case.
1351  if (TID.isBranch() && !TID.isBarrier())
1352    return true;
1353  if (!TID.isPredicable())
1354    return true;
1355  return !isPredicated(MI);
1356}
1357
1358// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1359static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1360                                               const X86InstrInfo &TII) {
1361  if (MI->getOpcode() == X86::FP_REG_KILL)
1362    return false;
1363  return TII.isUnpredicatedTerminator(MI);
1364}
1365
1366bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1367                                 MachineBasicBlock *&TBB,
1368                                 MachineBasicBlock *&FBB,
1369                                 std::vector<MachineOperand> &Cond) const {
1370  // If the block has no terminators, it just falls into the block after it.
1371  MachineBasicBlock::iterator I = MBB.end();
1372  if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
1373    return false;
1374
1375  // Get the last instruction in the block.
1376  MachineInstr *LastInst = I;
1377
1378  // If there is only one terminator instruction, process it.
1379  if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
1380    if (!LastInst->getDesc().isBranch())
1381      return true;
1382
1383    // If the block ends with a branch there are 3 possibilities:
1384    // it's an unconditional, conditional, or indirect branch.
1385
1386    if (LastInst->getOpcode() == X86::JMP) {
1387      TBB = LastInst->getOperand(0).getMBB();
1388      return false;
1389    }
1390    X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1391    if (BranchCode == X86::COND_INVALID)
1392      return true;  // Can't handle indirect branch.
1393
1394    // Otherwise, block ends with fall-through condbranch.
1395    TBB = LastInst->getOperand(0).getMBB();
1396    Cond.push_back(MachineOperand::CreateImm(BranchCode));
1397    return false;
1398  }
1399
1400  // Get the instruction before it if it's a terminator.
1401  MachineInstr *SecondLastInst = I;
1402
1403  // If there are three terminators, we don't know what sort of block this is.
1404  if (SecondLastInst && I != MBB.begin() &&
1405      isBrAnalysisUnpredicatedTerminator(--I, *this))
1406    return true;
1407
1408  // If the block ends with X86::JMP and a conditional branch, handle it.
1409  X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1410  if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
1411    TBB = SecondLastInst->getOperand(0).getMBB();
1412    Cond.push_back(MachineOperand::CreateImm(BranchCode));
1413    FBB = LastInst->getOperand(0).getMBB();
1414    return false;
1415  }
1416
1417  // If the block ends with two X86::JMPs, handle it.  The second one is not
1418  // executed, so remove it.
1419  if (SecondLastInst->getOpcode() == X86::JMP &&
1420      LastInst->getOpcode() == X86::JMP) {
1421    TBB = SecondLastInst->getOperand(0).getMBB();
1422    I = LastInst;
1423    I->eraseFromParent();
1424    return false;
1425  }
1426
1427  // Otherwise, can't handle this.
1428  return true;
1429}
1430
1431unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1432  MachineBasicBlock::iterator I = MBB.end();
1433  if (I == MBB.begin()) return 0;
1434  --I;
1435  if (I->getOpcode() != X86::JMP &&
1436      GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1437    return 0;
1438
1439  // Remove the branch.
1440  I->eraseFromParent();
1441
1442  I = MBB.end();
1443
1444  if (I == MBB.begin()) return 1;
1445  --I;
1446  if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1447    return 1;
1448
1449  // Remove the branch.
1450  I->eraseFromParent();
1451  return 2;
1452}
1453
1454static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1455                                                     MachineOperand &MO) {
1456  if (MO.isRegister())
1457    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1458                     false, false, MO.getSubReg());
1459  else if (MO.isImmediate())
1460    MIB = MIB.addImm(MO.getImm());
1461  else if (MO.isFrameIndex())
1462    MIB = MIB.addFrameIndex(MO.getIndex());
1463  else if (MO.isGlobalAddress())
1464    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1465  else if (MO.isConstantPoolIndex())
1466    MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1467  else if (MO.isJumpTableIndex())
1468    MIB = MIB.addJumpTableIndex(MO.getIndex());
1469  else if (MO.isExternalSymbol())
1470    MIB = MIB.addExternalSymbol(MO.getSymbolName());
1471  else
1472    assert(0 && "Unknown operand for X86InstrAddOperand!");
1473
1474  return MIB;
1475}
1476
1477unsigned
1478X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1479                           MachineBasicBlock *FBB,
1480                           const std::vector<MachineOperand> &Cond) const {
1481  // Shouldn't be a fall through.
1482  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1483  assert((Cond.size() == 1 || Cond.size() == 0) &&
1484         "X86 branch conditions have one component!");
1485
1486  if (FBB == 0) { // One way branch.
1487    if (Cond.empty()) {
1488      // Unconditional branch?
1489      BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1490    } else {
1491      // Conditional branch.
1492      unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1493      BuildMI(&MBB, get(Opc)).addMBB(TBB);
1494    }
1495    return 1;
1496  }
1497
1498  // Two-way Conditional branch.
1499  unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1500  BuildMI(&MBB, get(Opc)).addMBB(TBB);
1501  BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1502  return 2;
1503}
1504
1505void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1506                                MachineBasicBlock::iterator MI,
1507                                unsigned DestReg, unsigned SrcReg,
1508                                const TargetRegisterClass *DestRC,
1509                                const TargetRegisterClass *SrcRC) const {
1510  if (DestRC == SrcRC) {
1511    unsigned Opc;
1512    if (DestRC == &X86::GR64RegClass) {
1513      Opc = X86::MOV64rr;
1514    } else if (DestRC == &X86::GR32RegClass) {
1515      Opc = X86::MOV32rr;
1516    } else if (DestRC == &X86::GR16RegClass) {
1517      Opc = X86::MOV16rr;
1518    } else if (DestRC == &X86::GR8RegClass) {
1519      Opc = X86::MOV8rr;
1520    } else if (DestRC == &X86::GR32_RegClass) {
1521      Opc = X86::MOV32_rr;
1522    } else if (DestRC == &X86::GR16_RegClass) {
1523      Opc = X86::MOV16_rr;
1524    } else if (DestRC == &X86::RFP32RegClass) {
1525      Opc = X86::MOV_Fp3232;
1526    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1527      Opc = X86::MOV_Fp6464;
1528    } else if (DestRC == &X86::RFP80RegClass) {
1529      Opc = X86::MOV_Fp8080;
1530    } else if (DestRC == &X86::FR32RegClass) {
1531      Opc = X86::FsMOVAPSrr;
1532    } else if (DestRC == &X86::FR64RegClass) {
1533      Opc = X86::FsMOVAPDrr;
1534    } else if (DestRC == &X86::VR128RegClass) {
1535      Opc = X86::MOVAPSrr;
1536    } else if (DestRC == &X86::VR64RegClass) {
1537      Opc = X86::MMX_MOVQ64rr;
1538    } else {
1539      assert(0 && "Unknown regclass");
1540      abort();
1541    }
1542    BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1543    return;
1544  }
1545
1546  // Moving EFLAGS to / from another register requires a push and a pop.
1547  if (SrcRC == &X86::CCRRegClass) {
1548    assert(SrcReg == X86::EFLAGS);
1549    if (DestRC == &X86::GR64RegClass) {
1550      BuildMI(MBB, MI, get(X86::PUSHFQ));
1551      BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1552      return;
1553    } else if (DestRC == &X86::GR32RegClass) {
1554      BuildMI(MBB, MI, get(X86::PUSHFD));
1555      BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1556      return;
1557    }
1558  } else if (DestRC == &X86::CCRRegClass) {
1559    assert(DestReg == X86::EFLAGS);
1560    if (SrcRC == &X86::GR64RegClass) {
1561      BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1562      BuildMI(MBB, MI, get(X86::POPFQ));
1563      return;
1564    } else if (SrcRC == &X86::GR32RegClass) {
1565      BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1566      BuildMI(MBB, MI, get(X86::POPFD));
1567      return;
1568    }
1569  }
1570
1571  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1572  if (SrcRC == &X86::RSTRegClass) {
1573    // Copying from ST(0)/ST(1).
1574    assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1575           "Can only copy from ST(0)/ST(1) right now");
1576    bool isST0 = SrcReg == X86::ST0;
1577    unsigned Opc;
1578    if (DestRC == &X86::RFP32RegClass)
1579      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1580    else if (DestRC == &X86::RFP64RegClass)
1581      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1582    else {
1583      assert(DestRC == &X86::RFP80RegClass);
1584      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1585    }
1586    BuildMI(MBB, MI, get(Opc), DestReg);
1587    return;
1588  }
1589
1590  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1591  if (DestRC == &X86::RSTRegClass) {
1592    // Copying to ST(0).  FIXME: handle ST(1) also
1593    assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1594    unsigned Opc;
1595    if (SrcRC == &X86::RFP32RegClass)
1596      Opc = X86::FpSET_ST0_32;
1597    else if (SrcRC == &X86::RFP64RegClass)
1598      Opc = X86::FpSET_ST0_64;
1599    else {
1600      assert(SrcRC == &X86::RFP80RegClass);
1601      Opc = X86::FpSET_ST0_80;
1602    }
1603    BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1604    return;
1605  }
1606
1607  assert(0 && "Not yet supported!");
1608  abort();
1609}
1610
1611static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1612                                  unsigned StackAlign) {
1613  unsigned Opc = 0;
1614  if (RC == &X86::GR64RegClass) {
1615    Opc = X86::MOV64mr;
1616  } else if (RC == &X86::GR32RegClass) {
1617    Opc = X86::MOV32mr;
1618  } else if (RC == &X86::GR16RegClass) {
1619    Opc = X86::MOV16mr;
1620  } else if (RC == &X86::GR8RegClass) {
1621    Opc = X86::MOV8mr;
1622  } else if (RC == &X86::GR32_RegClass) {
1623    Opc = X86::MOV32_mr;
1624  } else if (RC == &X86::GR16_RegClass) {
1625    Opc = X86::MOV16_mr;
1626  } else if (RC == &X86::RFP80RegClass) {
1627    Opc = X86::ST_FpP80m;   // pops
1628  } else if (RC == &X86::RFP64RegClass) {
1629    Opc = X86::ST_Fp64m;
1630  } else if (RC == &X86::RFP32RegClass) {
1631    Opc = X86::ST_Fp32m;
1632  } else if (RC == &X86::FR32RegClass) {
1633    Opc = X86::MOVSSmr;
1634  } else if (RC == &X86::FR64RegClass) {
1635    Opc = X86::MOVSDmr;
1636  } else if (RC == &X86::VR128RegClass) {
1637    // FIXME: Use movaps once we are capable of selectively
1638    // aligning functions that spill SSE registers on 16-byte boundaries.
1639    Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1640  } else if (RC == &X86::VR64RegClass) {
1641    Opc = X86::MMX_MOVQ64mr;
1642  } else {
1643    assert(0 && "Unknown regclass");
1644    abort();
1645  }
1646
1647  return Opc;
1648}
1649
1650void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1651                                       MachineBasicBlock::iterator MI,
1652                                       unsigned SrcReg, bool isKill, int FrameIdx,
1653                                       const TargetRegisterClass *RC) const {
1654  unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1655  addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1656    .addReg(SrcReg, false, false, isKill);
1657}
1658
1659void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1660                                  bool isKill,
1661                                  SmallVectorImpl<MachineOperand> &Addr,
1662                                  const TargetRegisterClass *RC,
1663                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1664  unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1665  MachineInstrBuilder MIB = BuildMI(get(Opc));
1666  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1667    MIB = X86InstrAddOperand(MIB, Addr[i]);
1668  MIB.addReg(SrcReg, false, false, isKill);
1669  NewMIs.push_back(MIB);
1670}
1671
1672static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1673                                 unsigned StackAlign) {
1674  unsigned Opc = 0;
1675  if (RC == &X86::GR64RegClass) {
1676    Opc = X86::MOV64rm;
1677  } else if (RC == &X86::GR32RegClass) {
1678    Opc = X86::MOV32rm;
1679  } else if (RC == &X86::GR16RegClass) {
1680    Opc = X86::MOV16rm;
1681  } else if (RC == &X86::GR8RegClass) {
1682    Opc = X86::MOV8rm;
1683  } else if (RC == &X86::GR32_RegClass) {
1684    Opc = X86::MOV32_rm;
1685  } else if (RC == &X86::GR16_RegClass) {
1686    Opc = X86::MOV16_rm;
1687  } else if (RC == &X86::RFP80RegClass) {
1688    Opc = X86::LD_Fp80m;
1689  } else if (RC == &X86::RFP64RegClass) {
1690    Opc = X86::LD_Fp64m;
1691  } else if (RC == &X86::RFP32RegClass) {
1692    Opc = X86::LD_Fp32m;
1693  } else if (RC == &X86::FR32RegClass) {
1694    Opc = X86::MOVSSrm;
1695  } else if (RC == &X86::FR64RegClass) {
1696    Opc = X86::MOVSDrm;
1697  } else if (RC == &X86::VR128RegClass) {
1698    // FIXME: Use movaps once we are capable of selectively
1699    // aligning functions that spill SSE registers on 16-byte boundaries.
1700    Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1701  } else if (RC == &X86::VR64RegClass) {
1702    Opc = X86::MMX_MOVQ64rm;
1703  } else {
1704    assert(0 && "Unknown regclass");
1705    abort();
1706  }
1707
1708  return Opc;
1709}
1710
1711void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1712                                           MachineBasicBlock::iterator MI,
1713                                           unsigned DestReg, int FrameIdx,
1714                                           const TargetRegisterClass *RC) const{
1715  unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1716  addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1717}
1718
1719void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1720                                      SmallVectorImpl<MachineOperand> &Addr,
1721                                      const TargetRegisterClass *RC,
1722                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1723  unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1724  MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1725  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1726    MIB = X86InstrAddOperand(MIB, Addr[i]);
1727  NewMIs.push_back(MIB);
1728}
1729
1730bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1731                                                MachineBasicBlock::iterator MI,
1732                                const std::vector<CalleeSavedInfo> &CSI) const {
1733  if (CSI.empty())
1734    return false;
1735
1736  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1737  unsigned SlotSize = is64Bit ? 8 : 4;
1738
1739  MachineFunction &MF = *MBB.getParent();
1740  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1741  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1742
1743  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1744  for (unsigned i = CSI.size(); i != 0; --i) {
1745    unsigned Reg = CSI[i-1].getReg();
1746    // Add the callee-saved register as live-in. It's killed at the spill.
1747    MBB.addLiveIn(Reg);
1748    BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1749  }
1750  return true;
1751}
1752
1753bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1754                                                 MachineBasicBlock::iterator MI,
1755                                const std::vector<CalleeSavedInfo> &CSI) const {
1756  if (CSI.empty())
1757    return false;
1758
1759  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1760
1761  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1762  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1763    unsigned Reg = CSI[i].getReg();
1764    BuildMI(MBB, MI, get(Opc), Reg);
1765  }
1766  return true;
1767}
1768
1769static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1770                                     SmallVector<MachineOperand,4> &MOs,
1771                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1772  // Create the base instruction with the memory operand as the first part.
1773  MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1774  MachineInstrBuilder MIB(NewMI);
1775  unsigned NumAddrOps = MOs.size();
1776  for (unsigned i = 0; i != NumAddrOps; ++i)
1777    MIB = X86InstrAddOperand(MIB, MOs[i]);
1778  if (NumAddrOps < 4)  // FrameIndex only
1779    MIB.addImm(1).addReg(0).addImm(0);
1780
1781  // Loop over the rest of the ri operands, converting them over.
1782  unsigned NumOps = MI->getDesc().getNumOperands()-2;
1783  for (unsigned i = 0; i != NumOps; ++i) {
1784    MachineOperand &MO = MI->getOperand(i+2);
1785    MIB = X86InstrAddOperand(MIB, MO);
1786  }
1787  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1788    MachineOperand &MO = MI->getOperand(i);
1789    MIB = X86InstrAddOperand(MIB, MO);
1790  }
1791  return MIB;
1792}
1793
1794static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1795                              SmallVector<MachineOperand,4> &MOs,
1796                              MachineInstr *MI, const TargetInstrInfo &TII) {
1797  MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1798  MachineInstrBuilder MIB(NewMI);
1799
1800  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1801    MachineOperand &MO = MI->getOperand(i);
1802    if (i == OpNo) {
1803      assert(MO.isRegister() && "Expected to fold into reg operand!");
1804      unsigned NumAddrOps = MOs.size();
1805      for (unsigned i = 0; i != NumAddrOps; ++i)
1806        MIB = X86InstrAddOperand(MIB, MOs[i]);
1807      if (NumAddrOps < 4)  // FrameIndex only
1808        MIB.addImm(1).addReg(0).addImm(0);
1809    } else {
1810      MIB = X86InstrAddOperand(MIB, MO);
1811    }
1812  }
1813  return MIB;
1814}
1815
1816static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1817                                SmallVector<MachineOperand,4> &MOs,
1818                                MachineInstr *MI) {
1819  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1820
1821  unsigned NumAddrOps = MOs.size();
1822  for (unsigned i = 0; i != NumAddrOps; ++i)
1823    MIB = X86InstrAddOperand(MIB, MOs[i]);
1824  if (NumAddrOps < 4)  // FrameIndex only
1825    MIB.addImm(1).addReg(0).addImm(0);
1826  return MIB.addImm(0);
1827}
1828
1829MachineInstr*
1830X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
1831                                SmallVector<MachineOperand,4> &MOs) const {
1832  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1833  bool isTwoAddrFold = false;
1834  unsigned NumOps = MI->getDesc().getNumOperands();
1835  bool isTwoAddr = NumOps > 1 &&
1836    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
1837
1838  MachineInstr *NewMI = NULL;
1839  // Folding a memory location into the two-address part of a two-address
1840  // instruction is different than folding it other places.  It requires
1841  // replacing the *two* registers with the memory location.
1842  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1843      MI->getOperand(0).isRegister() &&
1844      MI->getOperand(1).isRegister() &&
1845      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1846    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1847    isTwoAddrFold = true;
1848  } else if (i == 0) { // If operand 0
1849    if (MI->getOpcode() == X86::MOV16r0)
1850      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1851    else if (MI->getOpcode() == X86::MOV32r0)
1852      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1853    else if (MI->getOpcode() == X86::MOV64r0)
1854      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1855    else if (MI->getOpcode() == X86::MOV8r0)
1856      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1857    if (NewMI) {
1858      NewMI->copyKillDeadInfo(MI);
1859      return NewMI;
1860    }
1861
1862    OpcodeTablePtr = &RegOp2MemOpTable0;
1863  } else if (i == 1) {
1864    OpcodeTablePtr = &RegOp2MemOpTable1;
1865  } else if (i == 2) {
1866    OpcodeTablePtr = &RegOp2MemOpTable2;
1867  }
1868
1869  // If table selected...
1870  if (OpcodeTablePtr) {
1871    // Find the Opcode to fuse
1872    DenseMap<unsigned*, unsigned>::iterator I =
1873      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1874    if (I != OpcodeTablePtr->end()) {
1875      if (isTwoAddrFold)
1876        NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1877      else
1878        NewMI = FuseInst(I->second, i, MOs, MI, *this);
1879      NewMI->copyKillDeadInfo(MI);
1880      return NewMI;
1881    }
1882  }
1883
1884  // No fusion
1885  if (PrintFailedFusing)
1886    cerr << "We failed to fuse operand " << i << *MI;
1887  return NULL;
1888}
1889
1890
1891MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1892                                              MachineInstr *MI,
1893                                              SmallVectorImpl<unsigned> &Ops,
1894                                              int FrameIndex) const {
1895  // Check switch flag
1896  if (NoFusing) return NULL;
1897
1898  const MachineFrameInfo *MFI = MF.getFrameInfo();
1899  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1900  // FIXME: Move alignment requirement into tables?
1901  if (Alignment < 16) {
1902    switch (MI->getOpcode()) {
1903    default: break;
1904    // Not always safe to fold movsd into these instructions since their load
1905    // folding variants expects the address to be 16 byte aligned.
1906    case X86::FsANDNPDrr:
1907    case X86::FsANDNPSrr:
1908    case X86::FsANDPDrr:
1909    case X86::FsANDPSrr:
1910    case X86::FsORPDrr:
1911    case X86::FsORPSrr:
1912    case X86::FsXORPDrr:
1913    case X86::FsXORPSrr:
1914      return NULL;
1915    }
1916  }
1917
1918  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1919    unsigned NewOpc = 0;
1920    switch (MI->getOpcode()) {
1921    default: return NULL;
1922    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
1923    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1924    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1925    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1926    }
1927    // Change to CMPXXri r, 0 first.
1928    MI->setDesc(get(NewOpc));
1929    MI->getOperand(1).ChangeToImmediate(0);
1930  } else if (Ops.size() != 1)
1931    return NULL;
1932
1933  SmallVector<MachineOperand,4> MOs;
1934  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1935  return foldMemoryOperand(MI, Ops[0], MOs);
1936}
1937
1938MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1939                                              MachineInstr *MI,
1940                                              SmallVectorImpl<unsigned> &Ops,
1941                                              MachineInstr *LoadMI) const {
1942  // Check switch flag
1943  if (NoFusing) return NULL;
1944
1945  unsigned Alignment = 0;
1946  for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
1947    const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
1948    unsigned Align = MRO.getAlignment();
1949    if (Align > Alignment)
1950      Alignment = Align;
1951  }
1952
1953  // FIXME: Move alignment requirement into tables?
1954  if (Alignment < 16) {
1955    switch (MI->getOpcode()) {
1956    default: break;
1957    // Not always safe to fold movsd into these instructions since their load
1958    // folding variants expects the address to be 16 byte aligned.
1959    case X86::FsANDNPDrr:
1960    case X86::FsANDNPSrr:
1961    case X86::FsANDPDrr:
1962    case X86::FsANDPSrr:
1963    case X86::FsORPDrr:
1964    case X86::FsORPSrr:
1965    case X86::FsXORPDrr:
1966    case X86::FsXORPSrr:
1967      return NULL;
1968    }
1969  }
1970
1971  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1972    unsigned NewOpc = 0;
1973    switch (MI->getOpcode()) {
1974    default: return NULL;
1975    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
1976    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1977    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1978    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1979    }
1980    // Change to CMPXXri r, 0 first.
1981    MI->setDesc(get(NewOpc));
1982    MI->getOperand(1).ChangeToImmediate(0);
1983  } else if (Ops.size() != 1)
1984    return NULL;
1985
1986  SmallVector<MachineOperand,4> MOs;
1987  unsigned NumOps = LoadMI->getDesc().getNumOperands();
1988  for (unsigned i = NumOps - 4; i != NumOps; ++i)
1989    MOs.push_back(LoadMI->getOperand(i));
1990  return foldMemoryOperand(MI, Ops[0], MOs);
1991}
1992
1993
1994bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
1995                                        SmallVectorImpl<unsigned> &Ops) const {
1996  // Check switch flag
1997  if (NoFusing) return 0;
1998
1999  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2000    switch (MI->getOpcode()) {
2001    default: return false;
2002    case X86::TEST8rr:
2003    case X86::TEST16rr:
2004    case X86::TEST32rr:
2005    case X86::TEST64rr:
2006      return true;
2007    }
2008  }
2009
2010  if (Ops.size() != 1)
2011    return false;
2012
2013  unsigned OpNum = Ops[0];
2014  unsigned Opc = MI->getOpcode();
2015  unsigned NumOps = MI->getDesc().getNumOperands();
2016  bool isTwoAddr = NumOps > 1 &&
2017    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2018
2019  // Folding a memory location into the two-address part of a two-address
2020  // instruction is different than folding it other places.  It requires
2021  // replacing the *two* registers with the memory location.
2022  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2023  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2024    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2025  } else if (OpNum == 0) { // If operand 0
2026    switch (Opc) {
2027    case X86::MOV16r0:
2028    case X86::MOV32r0:
2029    case X86::MOV64r0:
2030    case X86::MOV8r0:
2031      return true;
2032    default: break;
2033    }
2034    OpcodeTablePtr = &RegOp2MemOpTable0;
2035  } else if (OpNum == 1) {
2036    OpcodeTablePtr = &RegOp2MemOpTable1;
2037  } else if (OpNum == 2) {
2038    OpcodeTablePtr = &RegOp2MemOpTable2;
2039  }
2040
2041  if (OpcodeTablePtr) {
2042    // Find the Opcode to fuse
2043    DenseMap<unsigned*, unsigned>::iterator I =
2044      OpcodeTablePtr->find((unsigned*)Opc);
2045    if (I != OpcodeTablePtr->end())
2046      return true;
2047  }
2048  return false;
2049}
2050
2051bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2052                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2053                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2054  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2055    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2056  if (I == MemOp2RegOpTable.end())
2057    return false;
2058  unsigned Opc = I->second.first;
2059  unsigned Index = I->second.second & 0xf;
2060  bool FoldedLoad = I->second.second & (1 << 4);
2061  bool FoldedStore = I->second.second & (1 << 5);
2062  if (UnfoldLoad && !FoldedLoad)
2063    return false;
2064  UnfoldLoad &= FoldedLoad;
2065  if (UnfoldStore && !FoldedStore)
2066    return false;
2067  UnfoldStore &= FoldedStore;
2068
2069  const TargetInstrDesc &TID = get(Opc);
2070  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2071  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2072    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2073  SmallVector<MachineOperand,4> AddrOps;
2074  SmallVector<MachineOperand,2> BeforeOps;
2075  SmallVector<MachineOperand,2> AfterOps;
2076  SmallVector<MachineOperand,4> ImpOps;
2077  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2078    MachineOperand &Op = MI->getOperand(i);
2079    if (i >= Index && i < Index+4)
2080      AddrOps.push_back(Op);
2081    else if (Op.isRegister() && Op.isImplicit())
2082      ImpOps.push_back(Op);
2083    else if (i < Index)
2084      BeforeOps.push_back(Op);
2085    else if (i > Index)
2086      AfterOps.push_back(Op);
2087  }
2088
2089  // Emit the load instruction.
2090  if (UnfoldLoad) {
2091    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2092    if (UnfoldStore) {
2093      // Address operands cannot be marked isKill.
2094      for (unsigned i = 1; i != 5; ++i) {
2095        MachineOperand &MO = NewMIs[0]->getOperand(i);
2096        if (MO.isRegister())
2097          MO.setIsKill(false);
2098      }
2099    }
2100  }
2101
2102  // Emit the data processing instruction.
2103  MachineInstr *DataMI = new MachineInstr(TID, true);
2104  MachineInstrBuilder MIB(DataMI);
2105
2106  if (FoldedStore)
2107    MIB.addReg(Reg, true);
2108  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2109    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2110  if (FoldedLoad)
2111    MIB.addReg(Reg);
2112  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2113    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2114  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2115    MachineOperand &MO = ImpOps[i];
2116    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2117  }
2118  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2119  unsigned NewOpc = 0;
2120  switch (DataMI->getOpcode()) {
2121  default: break;
2122  case X86::CMP64ri32:
2123  case X86::CMP32ri:
2124  case X86::CMP16ri:
2125  case X86::CMP8ri: {
2126    MachineOperand &MO0 = DataMI->getOperand(0);
2127    MachineOperand &MO1 = DataMI->getOperand(1);
2128    if (MO1.getImm() == 0) {
2129      switch (DataMI->getOpcode()) {
2130      default: break;
2131      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2132      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2133      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2134      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2135      }
2136      DataMI->setDesc(get(NewOpc));
2137      MO1.ChangeToRegister(MO0.getReg(), false);
2138    }
2139  }
2140  }
2141  NewMIs.push_back(DataMI);
2142
2143  // Emit the store instruction.
2144  if (UnfoldStore) {
2145    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2146    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2147      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2148    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2149  }
2150
2151  return true;
2152}
2153
2154bool
2155X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2156                                     SmallVectorImpl<SDNode*> &NewNodes) const {
2157  if (!N->isTargetOpcode())
2158    return false;
2159
2160  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2161    MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2162  if (I == MemOp2RegOpTable.end())
2163    return false;
2164  unsigned Opc = I->second.first;
2165  unsigned Index = I->second.second & 0xf;
2166  bool FoldedLoad = I->second.second & (1 << 4);
2167  bool FoldedStore = I->second.second & (1 << 5);
2168  const TargetInstrDesc &TID = get(Opc);
2169  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2170  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2171    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2172  std::vector<SDOperand> AddrOps;
2173  std::vector<SDOperand> BeforeOps;
2174  std::vector<SDOperand> AfterOps;
2175  unsigned NumOps = N->getNumOperands();
2176  for (unsigned i = 0; i != NumOps-1; ++i) {
2177    SDOperand Op = N->getOperand(i);
2178    if (i >= Index && i < Index+4)
2179      AddrOps.push_back(Op);
2180    else if (i < Index)
2181      BeforeOps.push_back(Op);
2182    else if (i > Index)
2183      AfterOps.push_back(Op);
2184  }
2185  SDOperand Chain = N->getOperand(NumOps-1);
2186  AddrOps.push_back(Chain);
2187
2188  // Emit the load instruction.
2189  SDNode *Load = 0;
2190  if (FoldedLoad) {
2191    MVT::ValueType VT = *RC->vt_begin();
2192    Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2193                             MVT::Other, &AddrOps[0], AddrOps.size());
2194    NewNodes.push_back(Load);
2195  }
2196
2197  // Emit the data processing instruction.
2198  std::vector<MVT::ValueType> VTs;
2199  const TargetRegisterClass *DstRC = 0;
2200  if (TID.getNumDefs() > 0) {
2201    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2202    DstRC = DstTOI.isLookupPtrRegClass()
2203      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2204    VTs.push_back(*DstRC->vt_begin());
2205  }
2206  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2207    MVT::ValueType VT = N->getValueType(i);
2208    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2209      VTs.push_back(VT);
2210  }
2211  if (Load)
2212    BeforeOps.push_back(SDOperand(Load, 0));
2213  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2214  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2215  NewNodes.push_back(NewNode);
2216
2217  // Emit the store instruction.
2218  if (FoldedStore) {
2219    AddrOps.pop_back();
2220    AddrOps.push_back(SDOperand(NewNode, 0));
2221    AddrOps.push_back(Chain);
2222    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2223                                      MVT::Other, &AddrOps[0], AddrOps.size());
2224    NewNodes.push_back(Store);
2225  }
2226
2227  return true;
2228}
2229
2230unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2231                                      bool UnfoldLoad, bool UnfoldStore) const {
2232  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2233    MemOp2RegOpTable.find((unsigned*)Opc);
2234  if (I == MemOp2RegOpTable.end())
2235    return 0;
2236  bool FoldedLoad = I->second.second & (1 << 4);
2237  bool FoldedStore = I->second.second & (1 << 5);
2238  if (UnfoldLoad && !FoldedLoad)
2239    return 0;
2240  if (UnfoldStore && !FoldedStore)
2241    return 0;
2242  return I->second.first;
2243}
2244
2245bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2246  if (MBB.empty()) return false;
2247
2248  switch (MBB.back().getOpcode()) {
2249  case X86::TCRETURNri:
2250  case X86::TCRETURNdi:
2251  case X86::RET:     // Return.
2252  case X86::RETI:
2253  case X86::TAILJMPd:
2254  case X86::TAILJMPr:
2255  case X86::TAILJMPm:
2256  case X86::JMP:     // Uncond branch.
2257  case X86::JMP32r:  // Indirect branch.
2258  case X86::JMP64r:  // Indirect branch (64-bit).
2259  case X86::JMP32m:  // Indirect branch through mem.
2260  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2261    return true;
2262  default: return false;
2263  }
2264}
2265
2266bool X86InstrInfo::
2267ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2268  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2269  Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2270  return false;
2271}
2272
2273const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2274  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2275  if (Subtarget->is64Bit())
2276    return &X86::GR64RegClass;
2277  else
2278    return &X86::GR32RegClass;
2279}
2280
2281unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2282  switch (Desc->TSFlags & X86II::ImmMask) {
2283  case X86II::Imm8:   return 1;
2284  case X86II::Imm16:  return 2;
2285  case X86II::Imm32:  return 4;
2286  case X86II::Imm64:  return 8;
2287  default: assert(0 && "Immediate size not set!");
2288    return 0;
2289  }
2290}
2291
2292/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2293/// e.g. r8, xmm8, etc.
2294bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2295  if (!MO.isRegister()) return false;
2296  switch (MO.getReg()) {
2297  default: break;
2298  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2299  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2300  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2301  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2302  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2303  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2304  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2305  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2306  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2307  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2308    return true;
2309  }
2310  return false;
2311}
2312
2313
2314/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2315/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2316/// size, and 3) use of X86-64 extended registers.
2317unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2318  unsigned REX = 0;
2319  const TargetInstrDesc &Desc = MI.getDesc();
2320
2321  // Pseudo instructions do not need REX prefix byte.
2322  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2323    return 0;
2324  if (Desc.TSFlags & X86II::REX_W)
2325    REX |= 1 << 3;
2326
2327  unsigned NumOps = Desc.getNumOperands();
2328  if (NumOps) {
2329    bool isTwoAddr = NumOps > 1 &&
2330      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2331
2332    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2333    unsigned i = isTwoAddr ? 1 : 0;
2334    for (unsigned e = NumOps; i != e; ++i) {
2335      const MachineOperand& MO = MI.getOperand(i);
2336      if (MO.isRegister()) {
2337        unsigned Reg = MO.getReg();
2338        if (isX86_64NonExtLowByteReg(Reg))
2339          REX |= 0x40;
2340      }
2341    }
2342
2343    switch (Desc.TSFlags & X86II::FormMask) {
2344    case X86II::MRMInitReg:
2345      if (isX86_64ExtendedReg(MI.getOperand(0)))
2346        REX |= (1 << 0) | (1 << 2);
2347      break;
2348    case X86II::MRMSrcReg: {
2349      if (isX86_64ExtendedReg(MI.getOperand(0)))
2350        REX |= 1 << 2;
2351      i = isTwoAddr ? 2 : 1;
2352      for (unsigned e = NumOps; i != e; ++i) {
2353        const MachineOperand& MO = MI.getOperand(i);
2354        if (isX86_64ExtendedReg(MO))
2355          REX |= 1 << 0;
2356      }
2357      break;
2358    }
2359    case X86II::MRMSrcMem: {
2360      if (isX86_64ExtendedReg(MI.getOperand(0)))
2361        REX |= 1 << 2;
2362      unsigned Bit = 0;
2363      i = isTwoAddr ? 2 : 1;
2364      for (; i != NumOps; ++i) {
2365        const MachineOperand& MO = MI.getOperand(i);
2366        if (MO.isRegister()) {
2367          if (isX86_64ExtendedReg(MO))
2368            REX |= 1 << Bit;
2369          Bit++;
2370        }
2371      }
2372      break;
2373    }
2374    case X86II::MRM0m: case X86II::MRM1m:
2375    case X86II::MRM2m: case X86II::MRM3m:
2376    case X86II::MRM4m: case X86II::MRM5m:
2377    case X86II::MRM6m: case X86II::MRM7m:
2378    case X86II::MRMDestMem: {
2379      unsigned e = isTwoAddr ? 5 : 4;
2380      i = isTwoAddr ? 1 : 0;
2381      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2382        REX |= 1 << 2;
2383      unsigned Bit = 0;
2384      for (; i != e; ++i) {
2385        const MachineOperand& MO = MI.getOperand(i);
2386        if (MO.isRegister()) {
2387          if (isX86_64ExtendedReg(MO))
2388            REX |= 1 << Bit;
2389          Bit++;
2390        }
2391      }
2392      break;
2393    }
2394    default: {
2395      if (isX86_64ExtendedReg(MI.getOperand(0)))
2396        REX |= 1 << 0;
2397      i = isTwoAddr ? 2 : 1;
2398      for (unsigned e = NumOps; i != e; ++i) {
2399        const MachineOperand& MO = MI.getOperand(i);
2400        if (isX86_64ExtendedReg(MO))
2401          REX |= 1 << 2;
2402      }
2403      break;
2404    }
2405    }
2406  }
2407  return REX;
2408}
2409
2410/// sizePCRelativeBlockAddress - This method returns the size of a PC
2411/// relative block address instruction
2412///
2413static unsigned sizePCRelativeBlockAddress() {
2414  return 4;
2415}
2416
2417/// sizeGlobalAddress - Give the size of the emission of this global address
2418///
2419static unsigned sizeGlobalAddress(bool dword) {
2420  return dword ? 8 : 4;
2421}
2422
2423/// sizeConstPoolAddress - Give the size of the emission of this constant
2424/// pool address
2425///
2426static unsigned sizeConstPoolAddress(bool dword) {
2427  return dword ? 8 : 4;
2428}
2429
2430/// sizeExternalSymbolAddress - Give the size of the emission of this external
2431/// symbol
2432///
2433static unsigned sizeExternalSymbolAddress(bool dword) {
2434  return dword ? 8 : 4;
2435}
2436
2437/// sizeJumpTableAddress - Give the size of the emission of this jump
2438/// table address
2439///
2440static unsigned sizeJumpTableAddress(bool dword) {
2441  return dword ? 8 : 4;
2442}
2443
2444static unsigned sizeConstant(unsigned Size) {
2445  return Size;
2446}
2447
2448static unsigned sizeRegModRMByte(){
2449  return 1;
2450}
2451
2452static unsigned sizeSIBByte(){
2453  return 1;
2454}
2455
2456static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2457  unsigned FinalSize = 0;
2458  // If this is a simple integer displacement that doesn't require a relocation.
2459  if (!RelocOp) {
2460    FinalSize += sizeConstant(4);
2461    return FinalSize;
2462  }
2463
2464  // Otherwise, this is something that requires a relocation.
2465  if (RelocOp->isGlobalAddress()) {
2466    FinalSize += sizeGlobalAddress(false);
2467  } else if (RelocOp->isConstantPoolIndex()) {
2468    FinalSize += sizeConstPoolAddress(false);
2469  } else if (RelocOp->isJumpTableIndex()) {
2470    FinalSize += sizeJumpTableAddress(false);
2471  } else {
2472    assert(0 && "Unknown value to relocate!");
2473  }
2474  return FinalSize;
2475}
2476
2477static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2478                                    bool IsPIC, bool Is64BitMode) {
2479  const MachineOperand &Op3 = MI.getOperand(Op+3);
2480  int DispVal = 0;
2481  const MachineOperand *DispForReloc = 0;
2482  unsigned FinalSize = 0;
2483
2484  // Figure out what sort of displacement we have to handle here.
2485  if (Op3.isGlobalAddress()) {
2486    DispForReloc = &Op3;
2487  } else if (Op3.isConstantPoolIndex()) {
2488    if (Is64BitMode || IsPIC) {
2489      DispForReloc = &Op3;
2490    } else {
2491      DispVal = 1;
2492    }
2493  } else if (Op3.isJumpTableIndex()) {
2494    if (Is64BitMode || IsPIC) {
2495      DispForReloc = &Op3;
2496    } else {
2497      DispVal = 1;
2498    }
2499  } else {
2500    DispVal = 1;
2501  }
2502
2503  const MachineOperand &Base     = MI.getOperand(Op);
2504  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2505
2506  unsigned BaseReg = Base.getReg();
2507
2508  // Is a SIB byte needed?
2509  if (IndexReg.getReg() == 0 &&
2510      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2511    if (BaseReg == 0) {  // Just a displacement?
2512      // Emit special case [disp32] encoding
2513      ++FinalSize;
2514      FinalSize += getDisplacementFieldSize(DispForReloc);
2515    } else {
2516      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2517      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2518        // Emit simple indirect register encoding... [EAX] f.e.
2519        ++FinalSize;
2520      // Be pessimistic and assume it's a disp32, not a disp8
2521      } else {
2522        // Emit the most general non-SIB encoding: [REG+disp32]
2523        ++FinalSize;
2524        FinalSize += getDisplacementFieldSize(DispForReloc);
2525      }
2526    }
2527
2528  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2529    assert(IndexReg.getReg() != X86::ESP &&
2530           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2531
2532    bool ForceDisp32 = false;
2533    if (BaseReg == 0 || DispForReloc) {
2534      // Emit the normal disp32 encoding.
2535      ++FinalSize;
2536      ForceDisp32 = true;
2537    } else {
2538      ++FinalSize;
2539    }
2540
2541    FinalSize += sizeSIBByte();
2542
2543    // Do we need to output a displacement?
2544    if (DispVal != 0 || ForceDisp32) {
2545      FinalSize += getDisplacementFieldSize(DispForReloc);
2546    }
2547  }
2548  return FinalSize;
2549}
2550
2551
2552static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2553                                    const TargetInstrDesc *Desc,
2554                                    bool IsPIC, bool Is64BitMode) {
2555
2556  unsigned Opcode = Desc->Opcode;
2557  unsigned FinalSize = 0;
2558
2559  // Emit the lock opcode prefix as needed.
2560  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2561
2562  // Emit the repeat opcode prefix as needed.
2563  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2564
2565  // Emit the operand size opcode prefix as needed.
2566  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2567
2568  // Emit the address size opcode prefix as needed.
2569  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2570
2571  bool Need0FPrefix = false;
2572  switch (Desc->TSFlags & X86II::Op0Mask) {
2573  case X86II::TB:  // Two-byte opcode prefix
2574  case X86II::T8:  // 0F 38
2575  case X86II::TA:  // 0F 3A
2576    Need0FPrefix = true;
2577    break;
2578  case X86II::REP: break; // already handled.
2579  case X86II::XS:   // F3 0F
2580    ++FinalSize;
2581    Need0FPrefix = true;
2582    break;
2583  case X86II::XD:   // F2 0F
2584    ++FinalSize;
2585    Need0FPrefix = true;
2586    break;
2587  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2588  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2589    ++FinalSize;
2590    break; // Two-byte opcode prefix
2591  default: assert(0 && "Invalid prefix!");
2592  case 0: break;  // No prefix!
2593  }
2594
2595  if (Is64BitMode) {
2596    // REX prefix
2597    unsigned REX = X86InstrInfo::determineREX(MI);
2598    if (REX)
2599      ++FinalSize;
2600  }
2601
2602  // 0x0F escape code must be emitted just before the opcode.
2603  if (Need0FPrefix)
2604    ++FinalSize;
2605
2606  switch (Desc->TSFlags & X86II::Op0Mask) {
2607  case X86II::T8:  // 0F 38
2608    ++FinalSize;
2609    break;
2610  case X86II::TA:    // 0F 3A
2611    ++FinalSize;
2612    break;
2613  }
2614
2615  // If this is a two-address instruction, skip one of the register operands.
2616  unsigned NumOps = Desc->getNumOperands();
2617  unsigned CurOp = 0;
2618  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2619    CurOp++;
2620
2621  switch (Desc->TSFlags & X86II::FormMask) {
2622  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2623  case X86II::Pseudo:
2624    // Remember the current PC offset, this is the PIC relocation
2625    // base address.
2626    switch (Opcode) {
2627    default:
2628      break;
2629    case TargetInstrInfo::INLINEASM: {
2630      const MachineFunction *MF = MI.getParent()->getParent();
2631      const char *AsmStr = MI.getOperand(0).getSymbolName();
2632      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2633      FinalSize += AI->getInlineAsmLength(AsmStr);
2634      break;
2635    }
2636    case TargetInstrInfo::LABEL:
2637      break;
2638    case TargetInstrInfo::IMPLICIT_DEF:
2639    case TargetInstrInfo::DECLARE:
2640    case X86::DWARF_LOC:
2641    case X86::FP_REG_KILL:
2642      break;
2643    case X86::MOVPC32r: {
2644      // This emits the "call" portion of this pseudo instruction.
2645      ++FinalSize;
2646      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2647      break;
2648    }
2649    }
2650    CurOp = NumOps;
2651    break;
2652  case X86II::RawFrm:
2653    ++FinalSize;
2654
2655    if (CurOp != NumOps) {
2656      const MachineOperand &MO = MI.getOperand(CurOp++);
2657      if (MO.isMachineBasicBlock()) {
2658        FinalSize += sizePCRelativeBlockAddress();
2659      } else if (MO.isGlobalAddress()) {
2660        FinalSize += sizeGlobalAddress(false);
2661      } else if (MO.isExternalSymbol()) {
2662        FinalSize += sizeExternalSymbolAddress(false);
2663      } else if (MO.isImmediate()) {
2664        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2665      } else {
2666        assert(0 && "Unknown RawFrm operand!");
2667      }
2668    }
2669    break;
2670
2671  case X86II::AddRegFrm:
2672    ++FinalSize;
2673    ++CurOp;
2674
2675    if (CurOp != NumOps) {
2676      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2677      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2678      if (MO1.isImmediate())
2679        FinalSize += sizeConstant(Size);
2680      else {
2681        bool dword = false;
2682        if (Opcode == X86::MOV64ri)
2683          dword = true;
2684        if (MO1.isGlobalAddress()) {
2685          FinalSize += sizeGlobalAddress(dword);
2686        } else if (MO1.isExternalSymbol())
2687          FinalSize += sizeExternalSymbolAddress(dword);
2688        else if (MO1.isConstantPoolIndex())
2689          FinalSize += sizeConstPoolAddress(dword);
2690        else if (MO1.isJumpTableIndex())
2691          FinalSize += sizeJumpTableAddress(dword);
2692      }
2693    }
2694    break;
2695
2696  case X86II::MRMDestReg: {
2697    ++FinalSize;
2698    FinalSize += sizeRegModRMByte();
2699    CurOp += 2;
2700    if (CurOp != NumOps) {
2701      ++CurOp;
2702      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2703    }
2704    break;
2705  }
2706  case X86II::MRMDestMem: {
2707    ++FinalSize;
2708    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2709    CurOp += 5;
2710    if (CurOp != NumOps) {
2711      ++CurOp;
2712      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2713    }
2714    break;
2715  }
2716
2717  case X86II::MRMSrcReg:
2718    ++FinalSize;
2719    FinalSize += sizeRegModRMByte();
2720    CurOp += 2;
2721    if (CurOp != NumOps) {
2722      ++CurOp;
2723      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2724    }
2725    break;
2726
2727  case X86II::MRMSrcMem: {
2728
2729    ++FinalSize;
2730    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2731    CurOp += 5;
2732    if (CurOp != NumOps) {
2733      ++CurOp;
2734      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2735    }
2736    break;
2737  }
2738
2739  case X86II::MRM0r: case X86II::MRM1r:
2740  case X86II::MRM2r: case X86II::MRM3r:
2741  case X86II::MRM4r: case X86II::MRM5r:
2742  case X86II::MRM6r: case X86II::MRM7r:
2743    ++FinalSize;
2744    ++CurOp;
2745    FinalSize += sizeRegModRMByte();
2746
2747    if (CurOp != NumOps) {
2748      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2749      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2750      if (MO1.isImmediate())
2751        FinalSize += sizeConstant(Size);
2752      else {
2753        bool dword = false;
2754        if (Opcode == X86::MOV64ri32)
2755          dword = true;
2756        if (MO1.isGlobalAddress()) {
2757          FinalSize += sizeGlobalAddress(dword);
2758        } else if (MO1.isExternalSymbol())
2759          FinalSize += sizeExternalSymbolAddress(dword);
2760        else if (MO1.isConstantPoolIndex())
2761          FinalSize += sizeConstPoolAddress(dword);
2762        else if (MO1.isJumpTableIndex())
2763          FinalSize += sizeJumpTableAddress(dword);
2764      }
2765    }
2766    break;
2767
2768  case X86II::MRM0m: case X86II::MRM1m:
2769  case X86II::MRM2m: case X86II::MRM3m:
2770  case X86II::MRM4m: case X86II::MRM5m:
2771  case X86II::MRM6m: case X86II::MRM7m: {
2772
2773    ++FinalSize;
2774    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2775    CurOp += 4;
2776
2777    if (CurOp != NumOps) {
2778      const MachineOperand &MO = MI.getOperand(CurOp++);
2779      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2780      if (MO.isImmediate())
2781        FinalSize += sizeConstant(Size);
2782      else {
2783        bool dword = false;
2784        if (Opcode == X86::MOV64mi32)
2785          dword = true;
2786        if (MO.isGlobalAddress()) {
2787          FinalSize += sizeGlobalAddress(dword);
2788        } else if (MO.isExternalSymbol())
2789          FinalSize += sizeExternalSymbolAddress(dword);
2790        else if (MO.isConstantPoolIndex())
2791          FinalSize += sizeConstPoolAddress(dword);
2792        else if (MO.isJumpTableIndex())
2793          FinalSize += sizeJumpTableAddress(dword);
2794      }
2795    }
2796    break;
2797  }
2798
2799  case X86II::MRMInitReg:
2800    ++FinalSize;
2801    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2802    FinalSize += sizeRegModRMByte();
2803    ++CurOp;
2804    break;
2805  }
2806
2807  if (!Desc->isVariadic() && CurOp != NumOps) {
2808    cerr << "Cannot determine size: ";
2809    MI.dump();
2810    cerr << '\n';
2811    abort();
2812  }
2813
2814
2815  return FinalSize;
2816}
2817
2818
2819unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2820  const TargetInstrDesc &Desc = MI->getDesc();
2821  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
2822  bool Is64BitMode = ((X86Subtarget*)TM.getSubtargetImpl())->is64Bit();
2823  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2824  if (Desc.getOpcode() == X86::MOVPC32r) {
2825    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2826  }
2827  return Size;
2828}
2829