X86InstrInfo.cpp revision 62c939d7d5572e57963a5f26fb6fe802e13dc0bf
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/LiveVariables.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Target/TargetOptions.h"
29#include "llvm/Target/TargetAsmInfo.h"
30
31using namespace llvm;
32
33namespace {
34  cl::opt<bool>
35  NoFusing("disable-spill-fusing",
36           cl::desc("Disable fusing of spill code into instructions"));
37  cl::opt<bool>
38  PrintFailedFusing("print-failed-fuse-candidates",
39                    cl::desc("Print instructions that the allocator wants to"
40                             " fuse, but the X86 backend currently can't"),
41                    cl::Hidden);
42  cl::opt<bool>
43  ReMatPICStubLoad("remat-pic-stub-load",
44                   cl::desc("Re-materialize load from stub in PIC mode"),
45                   cl::init(false), cl::Hidden);
46}
47
48X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
49  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
50    TM(tm), RI(tm, *this) {
51  SmallVector<unsigned,16> AmbEntries;
52  static const unsigned OpTbl2Addr[][2] = {
53    { X86::ADC32ri,     X86::ADC32mi },
54    { X86::ADC32ri8,    X86::ADC32mi8 },
55    { X86::ADC32rr,     X86::ADC32mr },
56    { X86::ADC64ri32,   X86::ADC64mi32 },
57    { X86::ADC64ri8,    X86::ADC64mi8 },
58    { X86::ADC64rr,     X86::ADC64mr },
59    { X86::ADD16ri,     X86::ADD16mi },
60    { X86::ADD16ri8,    X86::ADD16mi8 },
61    { X86::ADD16rr,     X86::ADD16mr },
62    { X86::ADD32ri,     X86::ADD32mi },
63    { X86::ADD32ri8,    X86::ADD32mi8 },
64    { X86::ADD32rr,     X86::ADD32mr },
65    { X86::ADD64ri32,   X86::ADD64mi32 },
66    { X86::ADD64ri8,    X86::ADD64mi8 },
67    { X86::ADD64rr,     X86::ADD64mr },
68    { X86::ADD8ri,      X86::ADD8mi },
69    { X86::ADD8rr,      X86::ADD8mr },
70    { X86::AND16ri,     X86::AND16mi },
71    { X86::AND16ri8,    X86::AND16mi8 },
72    { X86::AND16rr,     X86::AND16mr },
73    { X86::AND32ri,     X86::AND32mi },
74    { X86::AND32ri8,    X86::AND32mi8 },
75    { X86::AND32rr,     X86::AND32mr },
76    { X86::AND64ri32,   X86::AND64mi32 },
77    { X86::AND64ri8,    X86::AND64mi8 },
78    { X86::AND64rr,     X86::AND64mr },
79    { X86::AND8ri,      X86::AND8mi },
80    { X86::AND8rr,      X86::AND8mr },
81    { X86::DEC16r,      X86::DEC16m },
82    { X86::DEC32r,      X86::DEC32m },
83    { X86::DEC64_16r,   X86::DEC64_16m },
84    { X86::DEC64_32r,   X86::DEC64_32m },
85    { X86::DEC64r,      X86::DEC64m },
86    { X86::DEC8r,       X86::DEC8m },
87    { X86::INC16r,      X86::INC16m },
88    { X86::INC32r,      X86::INC32m },
89    { X86::INC64_16r,   X86::INC64_16m },
90    { X86::INC64_32r,   X86::INC64_32m },
91    { X86::INC64r,      X86::INC64m },
92    { X86::INC8r,       X86::INC8m },
93    { X86::NEG16r,      X86::NEG16m },
94    { X86::NEG32r,      X86::NEG32m },
95    { X86::NEG64r,      X86::NEG64m },
96    { X86::NEG8r,       X86::NEG8m },
97    { X86::NOT16r,      X86::NOT16m },
98    { X86::NOT32r,      X86::NOT32m },
99    { X86::NOT64r,      X86::NOT64m },
100    { X86::NOT8r,       X86::NOT8m },
101    { X86::OR16ri,      X86::OR16mi },
102    { X86::OR16ri8,     X86::OR16mi8 },
103    { X86::OR16rr,      X86::OR16mr },
104    { X86::OR32ri,      X86::OR32mi },
105    { X86::OR32ri8,     X86::OR32mi8 },
106    { X86::OR32rr,      X86::OR32mr },
107    { X86::OR64ri32,    X86::OR64mi32 },
108    { X86::OR64ri8,     X86::OR64mi8 },
109    { X86::OR64rr,      X86::OR64mr },
110    { X86::OR8ri,       X86::OR8mi },
111    { X86::OR8rr,       X86::OR8mr },
112    { X86::ROL16r1,     X86::ROL16m1 },
113    { X86::ROL16rCL,    X86::ROL16mCL },
114    { X86::ROL16ri,     X86::ROL16mi },
115    { X86::ROL32r1,     X86::ROL32m1 },
116    { X86::ROL32rCL,    X86::ROL32mCL },
117    { X86::ROL32ri,     X86::ROL32mi },
118    { X86::ROL64r1,     X86::ROL64m1 },
119    { X86::ROL64rCL,    X86::ROL64mCL },
120    { X86::ROL64ri,     X86::ROL64mi },
121    { X86::ROL8r1,      X86::ROL8m1 },
122    { X86::ROL8rCL,     X86::ROL8mCL },
123    { X86::ROL8ri,      X86::ROL8mi },
124    { X86::ROR16r1,     X86::ROR16m1 },
125    { X86::ROR16rCL,    X86::ROR16mCL },
126    { X86::ROR16ri,     X86::ROR16mi },
127    { X86::ROR32r1,     X86::ROR32m1 },
128    { X86::ROR32rCL,    X86::ROR32mCL },
129    { X86::ROR32ri,     X86::ROR32mi },
130    { X86::ROR64r1,     X86::ROR64m1 },
131    { X86::ROR64rCL,    X86::ROR64mCL },
132    { X86::ROR64ri,     X86::ROR64mi },
133    { X86::ROR8r1,      X86::ROR8m1 },
134    { X86::ROR8rCL,     X86::ROR8mCL },
135    { X86::ROR8ri,      X86::ROR8mi },
136    { X86::SAR16r1,     X86::SAR16m1 },
137    { X86::SAR16rCL,    X86::SAR16mCL },
138    { X86::SAR16ri,     X86::SAR16mi },
139    { X86::SAR32r1,     X86::SAR32m1 },
140    { X86::SAR32rCL,    X86::SAR32mCL },
141    { X86::SAR32ri,     X86::SAR32mi },
142    { X86::SAR64r1,     X86::SAR64m1 },
143    { X86::SAR64rCL,    X86::SAR64mCL },
144    { X86::SAR64ri,     X86::SAR64mi },
145    { X86::SAR8r1,      X86::SAR8m1 },
146    { X86::SAR8rCL,     X86::SAR8mCL },
147    { X86::SAR8ri,      X86::SAR8mi },
148    { X86::SBB32ri,     X86::SBB32mi },
149    { X86::SBB32ri8,    X86::SBB32mi8 },
150    { X86::SBB32rr,     X86::SBB32mr },
151    { X86::SBB64ri32,   X86::SBB64mi32 },
152    { X86::SBB64ri8,    X86::SBB64mi8 },
153    { X86::SBB64rr,     X86::SBB64mr },
154    { X86::SHL16rCL,    X86::SHL16mCL },
155    { X86::SHL16ri,     X86::SHL16mi },
156    { X86::SHL32rCL,    X86::SHL32mCL },
157    { X86::SHL32ri,     X86::SHL32mi },
158    { X86::SHL64rCL,    X86::SHL64mCL },
159    { X86::SHL64ri,     X86::SHL64mi },
160    { X86::SHL8rCL,     X86::SHL8mCL },
161    { X86::SHL8ri,      X86::SHL8mi },
162    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
163    { X86::SHLD16rri8,  X86::SHLD16mri8 },
164    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
165    { X86::SHLD32rri8,  X86::SHLD32mri8 },
166    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
167    { X86::SHLD64rri8,  X86::SHLD64mri8 },
168    { X86::SHR16r1,     X86::SHR16m1 },
169    { X86::SHR16rCL,    X86::SHR16mCL },
170    { X86::SHR16ri,     X86::SHR16mi },
171    { X86::SHR32r1,     X86::SHR32m1 },
172    { X86::SHR32rCL,    X86::SHR32mCL },
173    { X86::SHR32ri,     X86::SHR32mi },
174    { X86::SHR64r1,     X86::SHR64m1 },
175    { X86::SHR64rCL,    X86::SHR64mCL },
176    { X86::SHR64ri,     X86::SHR64mi },
177    { X86::SHR8r1,      X86::SHR8m1 },
178    { X86::SHR8rCL,     X86::SHR8mCL },
179    { X86::SHR8ri,      X86::SHR8mi },
180    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
181    { X86::SHRD16rri8,  X86::SHRD16mri8 },
182    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
183    { X86::SHRD32rri8,  X86::SHRD32mri8 },
184    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
185    { X86::SHRD64rri8,  X86::SHRD64mri8 },
186    { X86::SUB16ri,     X86::SUB16mi },
187    { X86::SUB16ri8,    X86::SUB16mi8 },
188    { X86::SUB16rr,     X86::SUB16mr },
189    { X86::SUB32ri,     X86::SUB32mi },
190    { X86::SUB32ri8,    X86::SUB32mi8 },
191    { X86::SUB32rr,     X86::SUB32mr },
192    { X86::SUB64ri32,   X86::SUB64mi32 },
193    { X86::SUB64ri8,    X86::SUB64mi8 },
194    { X86::SUB64rr,     X86::SUB64mr },
195    { X86::SUB8ri,      X86::SUB8mi },
196    { X86::SUB8rr,      X86::SUB8mr },
197    { X86::XOR16ri,     X86::XOR16mi },
198    { X86::XOR16ri8,    X86::XOR16mi8 },
199    { X86::XOR16rr,     X86::XOR16mr },
200    { X86::XOR32ri,     X86::XOR32mi },
201    { X86::XOR32ri8,    X86::XOR32mi8 },
202    { X86::XOR32rr,     X86::XOR32mr },
203    { X86::XOR64ri32,   X86::XOR64mi32 },
204    { X86::XOR64ri8,    X86::XOR64mi8 },
205    { X86::XOR64rr,     X86::XOR64mr },
206    { X86::XOR8ri,      X86::XOR8mi },
207    { X86::XOR8rr,      X86::XOR8mr }
208  };
209
210  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
211    unsigned RegOp = OpTbl2Addr[i][0];
212    unsigned MemOp = OpTbl2Addr[i][1];
213    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
214                                                     MemOp)).second)
215      assert(false && "Duplicated entries?");
216    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
217    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
218                                                std::make_pair(RegOp,
219                                                              AuxInfo))).second)
220      AmbEntries.push_back(MemOp);
221  }
222
223  // If the third value is 1, then it's folding either a load or a store.
224  static const unsigned OpTbl0[][3] = {
225    { X86::CALL32r,     X86::CALL32m, 1 },
226    { X86::CALL64r,     X86::CALL64m, 1 },
227    { X86::CMP16ri,     X86::CMP16mi, 1 },
228    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
229    { X86::CMP16rr,     X86::CMP16mr, 1 },
230    { X86::CMP32ri,     X86::CMP32mi, 1 },
231    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
232    { X86::CMP32rr,     X86::CMP32mr, 1 },
233    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
234    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
235    { X86::CMP64rr,     X86::CMP64mr, 1 },
236    { X86::CMP8ri,      X86::CMP8mi, 1 },
237    { X86::CMP8rr,      X86::CMP8mr, 1 },
238    { X86::DIV16r,      X86::DIV16m, 1 },
239    { X86::DIV32r,      X86::DIV32m, 1 },
240    { X86::DIV64r,      X86::DIV64m, 1 },
241    { X86::DIV8r,       X86::DIV8m, 1 },
242    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
243    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
244    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
245    { X86::IDIV16r,     X86::IDIV16m, 1 },
246    { X86::IDIV32r,     X86::IDIV32m, 1 },
247    { X86::IDIV64r,     X86::IDIV64m, 1 },
248    { X86::IDIV8r,      X86::IDIV8m, 1 },
249    { X86::IMUL16r,     X86::IMUL16m, 1 },
250    { X86::IMUL32r,     X86::IMUL32m, 1 },
251    { X86::IMUL64r,     X86::IMUL64m, 1 },
252    { X86::IMUL8r,      X86::IMUL8m, 1 },
253    { X86::JMP32r,      X86::JMP32m, 1 },
254    { X86::JMP64r,      X86::JMP64m, 1 },
255    { X86::MOV16ri,     X86::MOV16mi, 0 },
256    { X86::MOV16rr,     X86::MOV16mr, 0 },
257    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
258    { X86::MOV32ri,     X86::MOV32mi, 0 },
259    { X86::MOV32rr,     X86::MOV32mr, 0 },
260    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
261    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
262    { X86::MOV64rr,     X86::MOV64mr, 0 },
263    { X86::MOV8ri,      X86::MOV8mi, 0 },
264    { X86::MOV8rr,      X86::MOV8mr, 0 },
265    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
266    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
267    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
268    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
269    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
270    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
271    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
272    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
273    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
274    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
275    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
276    { X86::MUL16r,      X86::MUL16m, 1 },
277    { X86::MUL32r,      X86::MUL32m, 1 },
278    { X86::MUL64r,      X86::MUL64m, 1 },
279    { X86::MUL8r,       X86::MUL8m, 1 },
280    { X86::SETAEr,      X86::SETAEm, 0 },
281    { X86::SETAr,       X86::SETAm, 0 },
282    { X86::SETBEr,      X86::SETBEm, 0 },
283    { X86::SETBr,       X86::SETBm, 0 },
284    { X86::SETCr,       X86::SETCm, 0 },
285    { X86::SETEr,       X86::SETEm, 0 },
286    { X86::SETGEr,      X86::SETGEm, 0 },
287    { X86::SETGr,       X86::SETGm, 0 },
288    { X86::SETLEr,      X86::SETLEm, 0 },
289    { X86::SETLr,       X86::SETLm, 0 },
290    { X86::SETNCr,      X86::SETNCm, 0 },
291    { X86::SETNEr,      X86::SETNEm, 0 },
292    { X86::SETNOr,      X86::SETNOm, 0 },
293    { X86::SETNPr,      X86::SETNPm, 0 },
294    { X86::SETNSr,      X86::SETNSm, 0 },
295    { X86::SETOr,       X86::SETOm, 0 },
296    { X86::SETPr,       X86::SETPm, 0 },
297    { X86::SETSr,       X86::SETSm, 0 },
298    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
299    { X86::TEST16ri,    X86::TEST16mi, 1 },
300    { X86::TEST32ri,    X86::TEST32mi, 1 },
301    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
302    { X86::TEST8ri,     X86::TEST8mi, 1 }
303  };
304
305  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
306    unsigned RegOp = OpTbl0[i][0];
307    unsigned MemOp = OpTbl0[i][1];
308    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
309                                                 MemOp)).second)
310      assert(false && "Duplicated entries?");
311    unsigned FoldedLoad = OpTbl0[i][2];
312    // Index 0, folded load or store.
313    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
314    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
315      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
316                                     std::make_pair(RegOp, AuxInfo))).second)
317        AmbEntries.push_back(MemOp);
318  }
319
320  static const unsigned OpTbl1[][2] = {
321    { X86::CMP16rr,         X86::CMP16rm },
322    { X86::CMP32rr,         X86::CMP32rm },
323    { X86::CMP64rr,         X86::CMP64rm },
324    { X86::CMP8rr,          X86::CMP8rm },
325    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
326    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
327    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
328    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
329    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
330    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
331    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
332    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
333    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
334    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
335    { X86::FsMOVAPDrr,      X86::MOVSDrm },
336    { X86::FsMOVAPSrr,      X86::MOVSSrm },
337    { X86::IMUL16rri,       X86::IMUL16rmi },
338    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
339    { X86::IMUL32rri,       X86::IMUL32rmi },
340    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
341    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
342    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
343    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
344    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
345    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
346    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
347    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
348    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
349    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
350    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
351    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
352    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
353    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
354    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
355    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
356    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
357    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
358    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
359    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
360    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
361    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
362    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
363    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
364    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
365    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
366    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
367    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
368    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
369    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
370    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
371    { X86::MOV16rr,         X86::MOV16rm },
372    { X86::MOV16to16_,      X86::MOV16_rm },
373    { X86::MOV32rr,         X86::MOV32rm },
374    { X86::MOV32to32_,      X86::MOV32_rm },
375    { X86::MOV64rr,         X86::MOV64rm },
376    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
377    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
378    { X86::MOV8rr,          X86::MOV8rm },
379    { X86::MOVAPDrr,        X86::MOVAPDrm },
380    { X86::MOVAPSrr,        X86::MOVAPSrm },
381    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
382    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
383    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
384    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
385    { X86::MOVSDrr,         X86::MOVSDrm },
386    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
387    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
388    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
389    { X86::MOVSSrr,         X86::MOVSSrm },
390    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
391    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
392    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
393    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
394    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
395    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
396    { X86::MOVUPDrr,        X86::MOVUPDrm },
397    { X86::MOVUPSrr,        X86::MOVUPSrm },
398    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
399    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
400    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
401    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
402    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
403    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
404    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
405    { X86::MOVZX64rr32,     X86::MOVZX64rm32 },
406    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
407    { X86::PSHUFDri,        X86::PSHUFDmi },
408    { X86::PSHUFHWri,       X86::PSHUFHWmi },
409    { X86::PSHUFLWri,       X86::PSHUFLWmi },
410    { X86::RCPPSr,          X86::RCPPSm },
411    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
412    { X86::RSQRTPSr,        X86::RSQRTPSm },
413    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
414    { X86::RSQRTSSr,        X86::RSQRTSSm },
415    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
416    { X86::SQRTPDr,         X86::SQRTPDm },
417    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
418    { X86::SQRTPSr,         X86::SQRTPSm },
419    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
420    { X86::SQRTSDr,         X86::SQRTSDm },
421    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
422    { X86::SQRTSSr,         X86::SQRTSSm },
423    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
424    { X86::TEST16rr,        X86::TEST16rm },
425    { X86::TEST32rr,        X86::TEST32rm },
426    { X86::TEST64rr,        X86::TEST64rm },
427    { X86::TEST8rr,         X86::TEST8rm },
428    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
429    { X86::UCOMISDrr,       X86::UCOMISDrm },
430    { X86::UCOMISSrr,       X86::UCOMISSrm }
431  };
432
433  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
434    unsigned RegOp = OpTbl1[i][0];
435    unsigned MemOp = OpTbl1[i][1];
436    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
437                                                 MemOp)).second)
438      assert(false && "Duplicated entries?");
439    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
440    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
441      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
442                                     std::make_pair(RegOp, AuxInfo))).second)
443        AmbEntries.push_back(MemOp);
444  }
445
446  static const unsigned OpTbl2[][2] = {
447    { X86::ADC32rr,         X86::ADC32rm },
448    { X86::ADC64rr,         X86::ADC64rm },
449    { X86::ADD16rr,         X86::ADD16rm },
450    { X86::ADD32rr,         X86::ADD32rm },
451    { X86::ADD64rr,         X86::ADD64rm },
452    { X86::ADD8rr,          X86::ADD8rm },
453    { X86::ADDPDrr,         X86::ADDPDrm },
454    { X86::ADDPSrr,         X86::ADDPSrm },
455    { X86::ADDSDrr,         X86::ADDSDrm },
456    { X86::ADDSSrr,         X86::ADDSSrm },
457    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
458    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
459    { X86::AND16rr,         X86::AND16rm },
460    { X86::AND32rr,         X86::AND32rm },
461    { X86::AND64rr,         X86::AND64rm },
462    { X86::AND8rr,          X86::AND8rm },
463    { X86::ANDNPDrr,        X86::ANDNPDrm },
464    { X86::ANDNPSrr,        X86::ANDNPSrm },
465    { X86::ANDPDrr,         X86::ANDPDrm },
466    { X86::ANDPSrr,         X86::ANDPSrm },
467    { X86::CMOVA16rr,       X86::CMOVA16rm },
468    { X86::CMOVA32rr,       X86::CMOVA32rm },
469    { X86::CMOVA64rr,       X86::CMOVA64rm },
470    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
471    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
472    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
473    { X86::CMOVB16rr,       X86::CMOVB16rm },
474    { X86::CMOVB32rr,       X86::CMOVB32rm },
475    { X86::CMOVB64rr,       X86::CMOVB64rm },
476    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
477    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
478    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
479    { X86::CMOVE16rr,       X86::CMOVE16rm },
480    { X86::CMOVE32rr,       X86::CMOVE32rm },
481    { X86::CMOVE64rr,       X86::CMOVE64rm },
482    { X86::CMOVG16rr,       X86::CMOVG16rm },
483    { X86::CMOVG32rr,       X86::CMOVG32rm },
484    { X86::CMOVG64rr,       X86::CMOVG64rm },
485    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
486    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
487    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
488    { X86::CMOVL16rr,       X86::CMOVL16rm },
489    { X86::CMOVL32rr,       X86::CMOVL32rm },
490    { X86::CMOVL64rr,       X86::CMOVL64rm },
491    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
492    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
493    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
494    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
495    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
496    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
497    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
498    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
499    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
500    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
501    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
502    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
503    { X86::CMOVP16rr,       X86::CMOVP16rm },
504    { X86::CMOVP32rr,       X86::CMOVP32rm },
505    { X86::CMOVP64rr,       X86::CMOVP64rm },
506    { X86::CMOVS16rr,       X86::CMOVS16rm },
507    { X86::CMOVS32rr,       X86::CMOVS32rm },
508    { X86::CMOVS64rr,       X86::CMOVS64rm },
509    { X86::CMPPDrri,        X86::CMPPDrmi },
510    { X86::CMPPSrri,        X86::CMPPSrmi },
511    { X86::CMPSDrr,         X86::CMPSDrm },
512    { X86::CMPSSrr,         X86::CMPSSrm },
513    { X86::DIVPDrr,         X86::DIVPDrm },
514    { X86::DIVPSrr,         X86::DIVPSrm },
515    { X86::DIVSDrr,         X86::DIVSDrm },
516    { X86::DIVSSrr,         X86::DIVSSrm },
517    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
518    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
519    { X86::FsANDPDrr,       X86::FsANDPDrm },
520    { X86::FsANDPSrr,       X86::FsANDPSrm },
521    { X86::FsORPDrr,        X86::FsORPDrm },
522    { X86::FsORPSrr,        X86::FsORPSrm },
523    { X86::FsXORPDrr,       X86::FsXORPDrm },
524    { X86::FsXORPSrr,       X86::FsXORPSrm },
525    { X86::HADDPDrr,        X86::HADDPDrm },
526    { X86::HADDPSrr,        X86::HADDPSrm },
527    { X86::HSUBPDrr,        X86::HSUBPDrm },
528    { X86::HSUBPSrr,        X86::HSUBPSrm },
529    { X86::IMUL16rr,        X86::IMUL16rm },
530    { X86::IMUL32rr,        X86::IMUL32rm },
531    { X86::IMUL64rr,        X86::IMUL64rm },
532    { X86::MAXPDrr,         X86::MAXPDrm },
533    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
534    { X86::MAXPSrr,         X86::MAXPSrm },
535    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
536    { X86::MAXSDrr,         X86::MAXSDrm },
537    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
538    { X86::MAXSSrr,         X86::MAXSSrm },
539    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
540    { X86::MINPDrr,         X86::MINPDrm },
541    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
542    { X86::MINPSrr,         X86::MINPSrm },
543    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
544    { X86::MINSDrr,         X86::MINSDrm },
545    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
546    { X86::MINSSrr,         X86::MINSSrm },
547    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
548    { X86::MULPDrr,         X86::MULPDrm },
549    { X86::MULPSrr,         X86::MULPSrm },
550    { X86::MULSDrr,         X86::MULSDrm },
551    { X86::MULSSrr,         X86::MULSSrm },
552    { X86::OR16rr,          X86::OR16rm },
553    { X86::OR32rr,          X86::OR32rm },
554    { X86::OR64rr,          X86::OR64rm },
555    { X86::OR8rr,           X86::OR8rm },
556    { X86::ORPDrr,          X86::ORPDrm },
557    { X86::ORPSrr,          X86::ORPSrm },
558    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
559    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
560    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
561    { X86::PADDBrr,         X86::PADDBrm },
562    { X86::PADDDrr,         X86::PADDDrm },
563    { X86::PADDQrr,         X86::PADDQrm },
564    { X86::PADDSBrr,        X86::PADDSBrm },
565    { X86::PADDSWrr,        X86::PADDSWrm },
566    { X86::PADDWrr,         X86::PADDWrm },
567    { X86::PANDNrr,         X86::PANDNrm },
568    { X86::PANDrr,          X86::PANDrm },
569    { X86::PAVGBrr,         X86::PAVGBrm },
570    { X86::PAVGWrr,         X86::PAVGWrm },
571    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
572    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
573    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
574    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
575    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
576    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
577    { X86::PINSRWrri,       X86::PINSRWrmi },
578    { X86::PMADDWDrr,       X86::PMADDWDrm },
579    { X86::PMAXSWrr,        X86::PMAXSWrm },
580    { X86::PMAXUBrr,        X86::PMAXUBrm },
581    { X86::PMINSWrr,        X86::PMINSWrm },
582    { X86::PMINUBrr,        X86::PMINUBrm },
583    { X86::PMULDQrr,        X86::PMULDQrm },
584    { X86::PMULDQrr_int,    X86::PMULDQrm_int },
585    { X86::PMULHUWrr,       X86::PMULHUWrm },
586    { X86::PMULHWrr,        X86::PMULHWrm },
587    { X86::PMULLDrr,        X86::PMULLDrm },
588    { X86::PMULLDrr_int,    X86::PMULLDrm_int },
589    { X86::PMULLWrr,        X86::PMULLWrm },
590    { X86::PMULUDQrr,       X86::PMULUDQrm },
591    { X86::PORrr,           X86::PORrm },
592    { X86::PSADBWrr,        X86::PSADBWrm },
593    { X86::PSLLDrr,         X86::PSLLDrm },
594    { X86::PSLLQrr,         X86::PSLLQrm },
595    { X86::PSLLWrr,         X86::PSLLWrm },
596    { X86::PSRADrr,         X86::PSRADrm },
597    { X86::PSRAWrr,         X86::PSRAWrm },
598    { X86::PSRLDrr,         X86::PSRLDrm },
599    { X86::PSRLQrr,         X86::PSRLQrm },
600    { X86::PSRLWrr,         X86::PSRLWrm },
601    { X86::PSUBBrr,         X86::PSUBBrm },
602    { X86::PSUBDrr,         X86::PSUBDrm },
603    { X86::PSUBSBrr,        X86::PSUBSBrm },
604    { X86::PSUBSWrr,        X86::PSUBSWrm },
605    { X86::PSUBWrr,         X86::PSUBWrm },
606    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
607    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
608    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
609    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
610    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
611    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
612    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
613    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
614    { X86::PXORrr,          X86::PXORrm },
615    { X86::SBB32rr,         X86::SBB32rm },
616    { X86::SBB64rr,         X86::SBB64rm },
617    { X86::SHUFPDrri,       X86::SHUFPDrmi },
618    { X86::SHUFPSrri,       X86::SHUFPSrmi },
619    { X86::SUB16rr,         X86::SUB16rm },
620    { X86::SUB32rr,         X86::SUB32rm },
621    { X86::SUB64rr,         X86::SUB64rm },
622    { X86::SUB8rr,          X86::SUB8rm },
623    { X86::SUBPDrr,         X86::SUBPDrm },
624    { X86::SUBPSrr,         X86::SUBPSrm },
625    { X86::SUBSDrr,         X86::SUBSDrm },
626    { X86::SUBSSrr,         X86::SUBSSrm },
627    // FIXME: TEST*rr -> swapped operand of TEST*mr.
628    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
629    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
630    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
631    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
632    { X86::XOR16rr,         X86::XOR16rm },
633    { X86::XOR32rr,         X86::XOR32rm },
634    { X86::XOR64rr,         X86::XOR64rm },
635    { X86::XOR8rr,          X86::XOR8rm },
636    { X86::XORPDrr,         X86::XORPDrm },
637    { X86::XORPSrr,         X86::XORPSrm }
638  };
639
640  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
641    unsigned RegOp = OpTbl2[i][0];
642    unsigned MemOp = OpTbl2[i][1];
643    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
644                                                 MemOp)).second)
645      assert(false && "Duplicated entries?");
646    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
647    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
648                                   std::make_pair(RegOp, AuxInfo))).second)
649      AmbEntries.push_back(MemOp);
650  }
651
652  // Remove ambiguous entries.
653  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
654}
655
656bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
657                               unsigned& sourceReg,
658                               unsigned& destReg) const {
659  switch (MI.getOpcode()) {
660  default:
661    return false;
662  case X86::MOV8rr:
663  case X86::MOV16rr:
664  case X86::MOV32rr:
665  case X86::MOV64rr:
666  case X86::MOV16to16_:
667  case X86::MOV32to32_:
668  case X86::MOVSSrr:
669  case X86::MOVSDrr:
670
671  // FP Stack register class copies
672  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
673  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
674  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
675
676  case X86::FsMOVAPSrr:
677  case X86::FsMOVAPDrr:
678  case X86::MOVAPSrr:
679  case X86::MOVAPDrr:
680  case X86::MOVSS2PSrr:
681  case X86::MOVSD2PDrr:
682  case X86::MOVPS2SSrr:
683  case X86::MOVPD2SDrr:
684  case X86::MMX_MOVD64rr:
685  case X86::MMX_MOVQ64rr:
686    assert(MI.getNumOperands() >= 2 &&
687           MI.getOperand(0).isReg() &&
688           MI.getOperand(1).isReg() &&
689           "invalid register-register move instruction");
690    sourceReg = MI.getOperand(1).getReg();
691    destReg = MI.getOperand(0).getReg();
692    return true;
693  }
694}
695
696unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
697                                           int &FrameIndex) const {
698  switch (MI->getOpcode()) {
699  default: break;
700  case X86::MOV8rm:
701  case X86::MOV16rm:
702  case X86::MOV16_rm:
703  case X86::MOV32rm:
704  case X86::MOV32_rm:
705  case X86::MOV64rm:
706  case X86::LD_Fp64m:
707  case X86::MOVSSrm:
708  case X86::MOVSDrm:
709  case X86::MOVAPSrm:
710  case X86::MOVAPDrm:
711  case X86::MMX_MOVD64rm:
712  case X86::MMX_MOVQ64rm:
713    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
714        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
715        MI->getOperand(2).getImm() == 1 &&
716        MI->getOperand(3).getReg() == 0 &&
717        MI->getOperand(4).getImm() == 0) {
718      FrameIndex = MI->getOperand(1).getIndex();
719      return MI->getOperand(0).getReg();
720    }
721    break;
722  }
723  return 0;
724}
725
726unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
727                                          int &FrameIndex) const {
728  switch (MI->getOpcode()) {
729  default: break;
730  case X86::MOV8mr:
731  case X86::MOV16mr:
732  case X86::MOV16_mr:
733  case X86::MOV32mr:
734  case X86::MOV32_mr:
735  case X86::MOV64mr:
736  case X86::ST_FpP64m:
737  case X86::MOVSSmr:
738  case X86::MOVSDmr:
739  case X86::MOVAPSmr:
740  case X86::MOVAPDmr:
741  case X86::MMX_MOVD64mr:
742  case X86::MMX_MOVQ64mr:
743  case X86::MMX_MOVNTQmr:
744    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
745        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
746        MI->getOperand(1).getImm() == 1 &&
747        MI->getOperand(2).getReg() == 0 &&
748        MI->getOperand(3).getImm() == 0) {
749      FrameIndex = MI->getOperand(0).getIndex();
750      return MI->getOperand(4).getReg();
751    }
752    break;
753  }
754  return 0;
755}
756
757
758/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
759/// X86::MOVPC32r.
760static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
761  bool isPICBase = false;
762  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
763         E = MRI.def_end(); I != E; ++I) {
764    MachineInstr *DefMI = I.getOperand().getParent();
765    if (DefMI->getOpcode() != X86::MOVPC32r)
766      return false;
767    assert(!isPICBase && "More than one PIC base?");
768    isPICBase = true;
769  }
770  return isPICBase;
771}
772
773/// isGVStub - Return true if the GV requires an extra load to get the
774/// real address.
775static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
776  return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
777}
778
779bool
780X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
781  switch (MI->getOpcode()) {
782  default: break;
783    case X86::MOV8rm:
784    case X86::MOV16rm:
785    case X86::MOV16_rm:
786    case X86::MOV32rm:
787    case X86::MOV32_rm:
788    case X86::MOV64rm:
789    case X86::LD_Fp64m:
790    case X86::MOVSSrm:
791    case X86::MOVSDrm:
792    case X86::MOVAPSrm:
793    case X86::MOVAPDrm:
794    case X86::MMX_MOVD64rm:
795    case X86::MMX_MOVQ64rm: {
796      // Loads from constant pools are trivially rematerializable.
797      if (MI->getOperand(1).isReg() &&
798          MI->getOperand(2).isImm() &&
799          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
800          (MI->getOperand(4).isCPI() ||
801           (MI->getOperand(4).isGlobal() &&
802            isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
803        unsigned BaseReg = MI->getOperand(1).getReg();
804        if (BaseReg == 0)
805          return true;
806        // Allow re-materialization of PIC load.
807        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
808          return false;
809        const MachineFunction &MF = *MI->getParent()->getParent();
810        const MachineRegisterInfo &MRI = MF.getRegInfo();
811        bool isPICBase = false;
812        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
813               E = MRI.def_end(); I != E; ++I) {
814          MachineInstr *DefMI = I.getOperand().getParent();
815          if (DefMI->getOpcode() != X86::MOVPC32r)
816            return false;
817          assert(!isPICBase && "More than one PIC base?");
818          isPICBase = true;
819        }
820        return isPICBase;
821      }
822      return false;
823    }
824
825     case X86::LEA32r:
826     case X86::LEA64r: {
827       if (MI->getOperand(2).isImm() &&
828           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
829           !MI->getOperand(4).isReg()) {
830         // lea fi#, lea GV, etc. are all rematerializable.
831         if (!MI->getOperand(1).isReg())
832           return true;
833         unsigned BaseReg = MI->getOperand(1).getReg();
834         if (BaseReg == 0)
835           return true;
836         // Allow re-materialization of lea PICBase + x.
837         const MachineFunction &MF = *MI->getParent()->getParent();
838         const MachineRegisterInfo &MRI = MF.getRegInfo();
839         return regIsPICBase(BaseReg, MRI);
840       }
841       return false;
842     }
843  }
844
845  // All other instructions marked M_REMATERIALIZABLE are always trivially
846  // rematerializable.
847  return true;
848}
849
850/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
851/// would clobber the EFLAGS condition register. Note the result may be
852/// conservative. If it cannot definitely determine the safety after visiting
853/// two instructions it assumes it's not safe.
854static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
855                                  MachineBasicBlock::iterator I) {
856  // It's always safe to clobber EFLAGS at the end of a block.
857  if (I == MBB.end())
858    return true;
859
860  // For compile time consideration, if we are not able to determine the
861  // safety after visiting 2 instructions, we will assume it's not safe.
862  for (unsigned i = 0; i < 2; ++i) {
863    bool SeenDef = false;
864    for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
865      MachineOperand &MO = I->getOperand(j);
866      if (!MO.isReg())
867        continue;
868      if (MO.getReg() == X86::EFLAGS) {
869        if (MO.isUse())
870          return false;
871        SeenDef = true;
872      }
873    }
874
875    if (SeenDef)
876      // This instruction defines EFLAGS, no need to look any further.
877      return true;
878    ++I;
879
880    // If we make it to the end of the block, it's safe to clobber EFLAGS.
881    if (I == MBB.end())
882      return true;
883  }
884
885  // Conservative answer.
886  return false;
887}
888
889void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
890                                 MachineBasicBlock::iterator I,
891                                 unsigned DestReg,
892                                 const MachineInstr *Orig) const {
893  unsigned SubIdx = Orig->getOperand(0).isReg()
894    ? Orig->getOperand(0).getSubReg() : 0;
895  bool ChangeSubIdx = SubIdx != 0;
896  if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
897    DestReg = RI.getSubReg(DestReg, SubIdx);
898    SubIdx = 0;
899  }
900
901  // MOV32r0 etc. are implemented with xor which clobbers condition code.
902  // Re-materialize them as movri instructions to avoid side effects.
903  bool Emitted = false;
904  switch (Orig->getOpcode()) {
905  default: break;
906  case X86::MOV8r0:
907  case X86::MOV16r0:
908  case X86::MOV32r0:
909  case X86::MOV64r0: {
910    if (!isSafeToClobberEFLAGS(MBB, I)) {
911      unsigned Opc = 0;
912      switch (Orig->getOpcode()) {
913      default: break;
914      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
915      case X86::MOV16r0: Opc = X86::MOV16ri; break;
916      case X86::MOV32r0: Opc = X86::MOV32ri; break;
917      case X86::MOV64r0: Opc = X86::MOV64ri32; break;
918      }
919      BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
920      Emitted = true;
921    }
922    break;
923  }
924  }
925
926  if (!Emitted) {
927    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
928    MI->getOperand(0).setReg(DestReg);
929    MBB.insert(I, MI);
930  }
931
932  if (ChangeSubIdx) {
933    MachineInstr *NewMI = prior(I);
934    NewMI->getOperand(0).setSubReg(SubIdx);
935  }
936}
937
938/// isInvariantLoad - Return true if the specified instruction (which is marked
939/// mayLoad) is loading from a location whose value is invariant across the
940/// function.  For example, loading a value from the constant pool or from
941/// from the argument area of a function if it does not change.  This should
942/// only return true of *all* loads the instruction does are invariant (if it
943/// does multiple loads).
944bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
945  // This code cares about loads from three cases: constant pool entries,
946  // invariant argument slots, and global stubs.  In order to handle these cases
947  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
948  // operand and base our analysis on it.  This is safe because the address of
949  // none of these three cases is ever used as anything other than a load base
950  // and X86 doesn't have any instructions that load from multiple places.
951
952  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
953    const MachineOperand &MO = MI->getOperand(i);
954    // Loads from constant pools are trivially invariant.
955    if (MO.isCPI())
956      return true;
957
958    if (MO.isGlobal())
959      return isGVStub(MO.getGlobal(), TM);
960
961    // If this is a load from an invariant stack slot, the load is a constant.
962    if (MO.isFI()) {
963      const MachineFrameInfo &MFI =
964        *MI->getParent()->getParent()->getFrameInfo();
965      int Idx = MO.getIndex();
966      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
967    }
968  }
969
970  // All other instances of these instructions are presumed to have other
971  // issues.
972  return false;
973}
974
975/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
976/// is not marked dead.
977static bool hasLiveCondCodeDef(MachineInstr *MI) {
978  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
979    MachineOperand &MO = MI->getOperand(i);
980    if (MO.isReg() && MO.isDef() &&
981        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
982      return true;
983    }
984  }
985  return false;
986}
987
988/// convertToThreeAddress - This method must be implemented by targets that
989/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
990/// may be able to convert a two-address instruction into a true
991/// three-address instruction on demand.  This allows the X86 target (for
992/// example) to convert ADD and SHL instructions into LEA instructions if they
993/// would require register copies due to two-addressness.
994///
995/// This method returns a null pointer if the transformation cannot be
996/// performed, otherwise it returns the new instruction.
997///
998MachineInstr *
999X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1000                                    MachineBasicBlock::iterator &MBBI,
1001                                    LiveVariables *LV) const {
1002  MachineInstr *MI = MBBI;
1003  MachineFunction &MF = *MI->getParent()->getParent();
1004  // All instructions input are two-addr instructions.  Get the known operands.
1005  unsigned Dest = MI->getOperand(0).getReg();
1006  unsigned Src = MI->getOperand(1).getReg();
1007  bool isDead = MI->getOperand(0).isDead();
1008  bool isKill = MI->getOperand(1).isKill();
1009
1010  MachineInstr *NewMI = NULL;
1011  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1012  // we have better subtarget support, enable the 16-bit LEA generation here.
1013  bool DisableLEA16 = true;
1014
1015  unsigned MIOpc = MI->getOpcode();
1016  switch (MIOpc) {
1017  case X86::SHUFPSrri: {
1018    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1019    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1020
1021    unsigned B = MI->getOperand(1).getReg();
1022    unsigned C = MI->getOperand(2).getReg();
1023    if (B != C) return 0;
1024    unsigned A = MI->getOperand(0).getReg();
1025    unsigned M = MI->getOperand(3).getImm();
1026    NewMI = BuildMI(MF, get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
1027      .addReg(B, false, false, isKill).addImm(M);
1028    break;
1029  }
1030  case X86::SHL64ri: {
1031    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1032    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1033    // the flags produced by a shift yet, so this is safe.
1034    unsigned ShAmt = MI->getOperand(2).getImm();
1035    if (ShAmt == 0 || ShAmt >= 4) return 0;
1036
1037    NewMI = BuildMI(MF, get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
1038      .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
1039    break;
1040  }
1041  case X86::SHL32ri: {
1042    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1043    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1044    // the flags produced by a shift yet, so this is safe.
1045    unsigned ShAmt = MI->getOperand(2).getImm();
1046    if (ShAmt == 0 || ShAmt >= 4) return 0;
1047
1048    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1049      X86::LEA64_32r : X86::LEA32r;
1050    NewMI = BuildMI(MF, get(Opc)).addReg(Dest, true, false, false, isDead)
1051      .addReg(0).addImm(1 << ShAmt)
1052      .addReg(Src, false, false, isKill).addImm(0);
1053    break;
1054  }
1055  case X86::SHL16ri: {
1056    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1057    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1058    // the flags produced by a shift yet, so this is safe.
1059    unsigned ShAmt = MI->getOperand(2).getImm();
1060    if (ShAmt == 0 || ShAmt >= 4) return 0;
1061
1062    if (DisableLEA16) {
1063      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
1064      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1065      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1066        ? X86::LEA64_32r : X86::LEA32r;
1067      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1068      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1069
1070      // Build and insert into an implicit UNDEF value. This is OK because
1071      // well be shifting and then extracting the lower 16-bits.
1072      BuildMI(*MFI, MBBI, get(X86::IMPLICIT_DEF), leaInReg);
1073      MachineInstr *InsMI =  BuildMI(*MFI, MBBI, get(X86::INSERT_SUBREG),leaInReg)
1074        .addReg(leaInReg).addReg(Src, false, false, isKill)
1075        .addImm(X86::SUBREG_16BIT);
1076
1077      NewMI = BuildMI(*MFI, MBBI, get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
1078        .addReg(leaInReg, false, false, true).addImm(0);
1079
1080      MachineInstr *ExtMI = BuildMI(*MFI, MBBI, get(X86::EXTRACT_SUBREG))
1081        .addReg(Dest, true, false, false, isDead)
1082        .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
1083      if (LV) {
1084        // Update live variables
1085        LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1086        LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1087        if (isKill)
1088          LV->replaceKillInstruction(Src, MI, InsMI);
1089        if (isDead)
1090          LV->replaceKillInstruction(Dest, MI, ExtMI);
1091      }
1092      return ExtMI;
1093    } else {
1094      NewMI = BuildMI(MF, get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
1095        .addReg(0).addImm(1 << ShAmt)
1096        .addReg(Src, false, false, isKill).addImm(0);
1097    }
1098    break;
1099  }
1100  default: {
1101    // The following opcodes also sets the condition code register(s). Only
1102    // convert them to equivalent lea if the condition code register def's
1103    // are dead!
1104    if (hasLiveCondCodeDef(MI))
1105      return 0;
1106
1107    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1108    switch (MIOpc) {
1109    default: return 0;
1110    case X86::INC64r:
1111    case X86::INC32r: {
1112      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1113      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1114        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1115      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1116                           .addReg(Dest, true, false, false, isDead),
1117                           Src, isKill, 1);
1118      break;
1119    }
1120    case X86::INC16r:
1121    case X86::INC64_16r:
1122      if (DisableLEA16) return 0;
1123      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1124      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1125                           .addReg(Dest, true, false, false, isDead),
1126                           Src, isKill, 1);
1127      break;
1128    case X86::DEC64r:
1129    case X86::DEC32r: {
1130      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1131      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1132        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1133      NewMI = addRegOffset(BuildMI(MF, get(Opc))
1134                           .addReg(Dest, true, false, false, isDead),
1135                           Src, isKill, -1);
1136      break;
1137    }
1138    case X86::DEC16r:
1139    case X86::DEC64_16r:
1140      if (DisableLEA16) return 0;
1141      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1142      NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1143                           .addReg(Dest, true, false, false, isDead),
1144                           Src, isKill, -1);
1145      break;
1146    case X86::ADD64rr:
1147    case X86::ADD32rr: {
1148      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1149      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1150        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1151      unsigned Src2 = MI->getOperand(2).getReg();
1152      bool isKill2 = MI->getOperand(2).isKill();
1153      NewMI = addRegReg(BuildMI(MF, get(Opc))
1154                        .addReg(Dest, true, false, false, isDead),
1155                        Src, isKill, Src2, isKill2);
1156      if (LV && isKill2)
1157        LV->replaceKillInstruction(Src2, MI, NewMI);
1158      break;
1159    }
1160    case X86::ADD16rr: {
1161      if (DisableLEA16) return 0;
1162      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1163      unsigned Src2 = MI->getOperand(2).getReg();
1164      bool isKill2 = MI->getOperand(2).isKill();
1165      NewMI = addRegReg(BuildMI(MF, get(X86::LEA16r))
1166                        .addReg(Dest, true, false, false, isDead),
1167                        Src, isKill, Src2, isKill2);
1168      if (LV && isKill2)
1169        LV->replaceKillInstruction(Src2, MI, NewMI);
1170      break;
1171    }
1172    case X86::ADD64ri32:
1173    case X86::ADD64ri8:
1174      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1175      if (MI->getOperand(2).isImm())
1176        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA64r))
1177                             .addReg(Dest, true, false, false, isDead),
1178                             Src, isKill, MI->getOperand(2).getImm());
1179      break;
1180    case X86::ADD32ri:
1181    case X86::ADD32ri8:
1182      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1183      if (MI->getOperand(2).isImm()) {
1184        unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1185        NewMI = addRegOffset(BuildMI(MF, get(Opc))
1186                             .addReg(Dest, true, false, false, isDead),
1187                             Src, isKill, MI->getOperand(2).getImm());
1188      }
1189      break;
1190    case X86::ADD16ri:
1191    case X86::ADD16ri8:
1192      if (DisableLEA16) return 0;
1193      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1194      if (MI->getOperand(2).isImm())
1195        NewMI = addRegOffset(BuildMI(MF, get(X86::LEA16r))
1196                             .addReg(Dest, true, false, false, isDead),
1197                             Src, isKill, MI->getOperand(2).getImm());
1198      break;
1199    case X86::SHL16ri:
1200      if (DisableLEA16) return 0;
1201    case X86::SHL32ri:
1202    case X86::SHL64ri: {
1203      assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
1204             "Unknown shl instruction!");
1205      unsigned ShAmt = MI->getOperand(2).getImm();
1206      if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1207        X86AddressMode AM;
1208        AM.Scale = 1 << ShAmt;
1209        AM.IndexReg = Src;
1210        unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
1211          : (MIOpc == X86::SHL32ri
1212             ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
1213        NewMI = addFullAddress(BuildMI(MF, get(Opc))
1214                               .addReg(Dest, true, false, false, isDead), AM);
1215        if (isKill)
1216          NewMI->getOperand(3).setIsKill(true);
1217      }
1218      break;
1219    }
1220    }
1221  }
1222  }
1223
1224  if (!NewMI) return 0;
1225
1226  if (LV) {  // Update live variables
1227    if (isKill)
1228      LV->replaceKillInstruction(Src, MI, NewMI);
1229    if (isDead)
1230      LV->replaceKillInstruction(Dest, MI, NewMI);
1231  }
1232
1233  MFI->insert(MBBI, NewMI);          // Insert the new inst
1234  return NewMI;
1235}
1236
1237/// commuteInstruction - We have a few instructions that must be hacked on to
1238/// commute them.
1239///
1240MachineInstr *
1241X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1242  switch (MI->getOpcode()) {
1243  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1244  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1245  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1246  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1247  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1248  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1249    unsigned Opc;
1250    unsigned Size;
1251    switch (MI->getOpcode()) {
1252    default: assert(0 && "Unreachable!");
1253    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1254    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1255    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1256    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1257    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1258    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1259    }
1260    unsigned Amt = MI->getOperand(3).getImm();
1261    if (NewMI) {
1262      MachineFunction &MF = *MI->getParent()->getParent();
1263      MI = MF.CloneMachineInstr(MI);
1264      NewMI = false;
1265    }
1266    MI->setDesc(get(Opc));
1267    MI->getOperand(3).setImm(Size-Amt);
1268    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1269  }
1270  case X86::CMOVB16rr:
1271  case X86::CMOVB32rr:
1272  case X86::CMOVB64rr:
1273  case X86::CMOVAE16rr:
1274  case X86::CMOVAE32rr:
1275  case X86::CMOVAE64rr:
1276  case X86::CMOVE16rr:
1277  case X86::CMOVE32rr:
1278  case X86::CMOVE64rr:
1279  case X86::CMOVNE16rr:
1280  case X86::CMOVNE32rr:
1281  case X86::CMOVNE64rr:
1282  case X86::CMOVBE16rr:
1283  case X86::CMOVBE32rr:
1284  case X86::CMOVBE64rr:
1285  case X86::CMOVA16rr:
1286  case X86::CMOVA32rr:
1287  case X86::CMOVA64rr:
1288  case X86::CMOVL16rr:
1289  case X86::CMOVL32rr:
1290  case X86::CMOVL64rr:
1291  case X86::CMOVGE16rr:
1292  case X86::CMOVGE32rr:
1293  case X86::CMOVGE64rr:
1294  case X86::CMOVLE16rr:
1295  case X86::CMOVLE32rr:
1296  case X86::CMOVLE64rr:
1297  case X86::CMOVG16rr:
1298  case X86::CMOVG32rr:
1299  case X86::CMOVG64rr:
1300  case X86::CMOVS16rr:
1301  case X86::CMOVS32rr:
1302  case X86::CMOVS64rr:
1303  case X86::CMOVNS16rr:
1304  case X86::CMOVNS32rr:
1305  case X86::CMOVNS64rr:
1306  case X86::CMOVP16rr:
1307  case X86::CMOVP32rr:
1308  case X86::CMOVP64rr:
1309  case X86::CMOVNP16rr:
1310  case X86::CMOVNP32rr:
1311  case X86::CMOVNP64rr: {
1312    unsigned Opc = 0;
1313    switch (MI->getOpcode()) {
1314    default: break;
1315    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1316    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1317    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1318    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1319    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1320    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1321    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1322    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1323    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1324    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1325    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1326    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1327    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1328    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1329    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1330    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1331    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1332    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1333    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1334    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1335    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1336    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1337    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1338    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1339    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1340    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1341    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1342    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1343    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1344    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1345    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1346    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1347    case X86::CMOVS64rr:  Opc = X86::CMOVNS32rr; break;
1348    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1349    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1350    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1351    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1352    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1353    case X86::CMOVP64rr:  Opc = X86::CMOVNP32rr; break;
1354    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1355    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1356    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1357    }
1358    if (NewMI) {
1359      MachineFunction &MF = *MI->getParent()->getParent();
1360      MI = MF.CloneMachineInstr(MI);
1361      NewMI = false;
1362    }
1363    MI->setDesc(get(Opc));
1364    // Fallthrough intended.
1365  }
1366  default:
1367    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1368  }
1369}
1370
1371static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1372  switch (BrOpc) {
1373  default: return X86::COND_INVALID;
1374  case X86::JE:  return X86::COND_E;
1375  case X86::JNE: return X86::COND_NE;
1376  case X86::JL:  return X86::COND_L;
1377  case X86::JLE: return X86::COND_LE;
1378  case X86::JG:  return X86::COND_G;
1379  case X86::JGE: return X86::COND_GE;
1380  case X86::JB:  return X86::COND_B;
1381  case X86::JBE: return X86::COND_BE;
1382  case X86::JA:  return X86::COND_A;
1383  case X86::JAE: return X86::COND_AE;
1384  case X86::JS:  return X86::COND_S;
1385  case X86::JNS: return X86::COND_NS;
1386  case X86::JP:  return X86::COND_P;
1387  case X86::JNP: return X86::COND_NP;
1388  case X86::JO:  return X86::COND_O;
1389  case X86::JNO: return X86::COND_NO;
1390  case X86::JC:  return X86::COND_C;
1391  case X86::JNC: return X86::COND_NC;
1392  }
1393}
1394
1395unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1396  switch (CC) {
1397  default: assert(0 && "Illegal condition code!");
1398  case X86::COND_E:  return X86::JE;
1399  case X86::COND_NE: return X86::JNE;
1400  case X86::COND_L:  return X86::JL;
1401  case X86::COND_LE: return X86::JLE;
1402  case X86::COND_G:  return X86::JG;
1403  case X86::COND_GE: return X86::JGE;
1404  case X86::COND_B:  return X86::JB;
1405  case X86::COND_BE: return X86::JBE;
1406  case X86::COND_A:  return X86::JA;
1407  case X86::COND_AE: return X86::JAE;
1408  case X86::COND_S:  return X86::JS;
1409  case X86::COND_NS: return X86::JNS;
1410  case X86::COND_P:  return X86::JP;
1411  case X86::COND_NP: return X86::JNP;
1412  case X86::COND_O:  return X86::JO;
1413  case X86::COND_NO: return X86::JNO;
1414  case X86::COND_C:  return X86::JC;
1415  case X86::COND_NC: return X86::JNC;
1416  }
1417}
1418
1419/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1420/// e.g. turning COND_E to COND_NE.
1421X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1422  switch (CC) {
1423  default: assert(0 && "Illegal condition code!");
1424  case X86::COND_E:  return X86::COND_NE;
1425  case X86::COND_NE: return X86::COND_E;
1426  case X86::COND_L:  return X86::COND_GE;
1427  case X86::COND_LE: return X86::COND_G;
1428  case X86::COND_G:  return X86::COND_LE;
1429  case X86::COND_GE: return X86::COND_L;
1430  case X86::COND_B:  return X86::COND_AE;
1431  case X86::COND_BE: return X86::COND_A;
1432  case X86::COND_A:  return X86::COND_BE;
1433  case X86::COND_AE: return X86::COND_B;
1434  case X86::COND_S:  return X86::COND_NS;
1435  case X86::COND_NS: return X86::COND_S;
1436  case X86::COND_P:  return X86::COND_NP;
1437  case X86::COND_NP: return X86::COND_P;
1438  case X86::COND_O:  return X86::COND_NO;
1439  case X86::COND_NO: return X86::COND_O;
1440  case X86::COND_C:  return X86::COND_NC;
1441  case X86::COND_NC: return X86::COND_C;
1442  }
1443}
1444
1445bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1446  const TargetInstrDesc &TID = MI->getDesc();
1447  if (!TID.isTerminator()) return false;
1448
1449  // Conditional branch is a special case.
1450  if (TID.isBranch() && !TID.isBarrier())
1451    return true;
1452  if (!TID.isPredicable())
1453    return true;
1454  return !isPredicated(MI);
1455}
1456
1457// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1458static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1459                                               const X86InstrInfo &TII) {
1460  if (MI->getOpcode() == X86::FP_REG_KILL)
1461    return false;
1462  return TII.isUnpredicatedTerminator(MI);
1463}
1464
1465bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1466                                 MachineBasicBlock *&TBB,
1467                                 MachineBasicBlock *&FBB,
1468                                 SmallVectorImpl<MachineOperand> &Cond) const {
1469  // Start from the bottom of the block and work up, examining the
1470  // terminator instructions.
1471  MachineBasicBlock::iterator I = MBB.end();
1472  while (I != MBB.begin()) {
1473    --I;
1474    // Working from the bottom, when we see a non-terminator
1475    // instruction, we're done.
1476    if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1477      break;
1478    // A terminator that isn't a branch can't easily be handled
1479    // by this analysis.
1480    if (!I->getDesc().isBranch())
1481      return true;
1482    // Handle unconditional branches.
1483    if (I->getOpcode() == X86::JMP) {
1484      // If the block has any instructions after a JMP, delete them.
1485      while (next(I) != MBB.end())
1486        next(I)->eraseFromParent();
1487      Cond.clear();
1488      FBB = 0;
1489      // Delete the JMP if it's equivalent to a fall-through.
1490      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1491        TBB = 0;
1492        I->eraseFromParent();
1493        I = MBB.end();
1494        continue;
1495      }
1496      // TBB is used to indicate the unconditinal destination.
1497      TBB = I->getOperand(0).getMBB();
1498      continue;
1499    }
1500    // Handle conditional branches.
1501    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1502    if (BranchCode == X86::COND_INVALID)
1503      return true;  // Can't handle indirect branch.
1504    // Working from the bottom, handle the first conditional branch.
1505    if (Cond.empty()) {
1506      FBB = TBB;
1507      TBB = I->getOperand(0).getMBB();
1508      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1509      continue;
1510    }
1511    // Handle subsequent conditional branches. Only handle the case
1512    // where all conditional branches branch to the same destination
1513    // and their condition opcodes fit one of the special
1514    // multi-branch idioms.
1515    assert(Cond.size() == 1);
1516    assert(TBB);
1517    // Only handle the case where all conditional branches branch to
1518    // the same destination.
1519    if (TBB != I->getOperand(0).getMBB())
1520      return true;
1521    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1522    // If the conditions are the same, we can leave them alone.
1523    if (OldBranchCode == BranchCode)
1524      continue;
1525    // If they differ, see if they fit one of the known patterns.
1526    // Theoretically we could handle more patterns here, but
1527    // we shouldn't expect to see them if instruction selection
1528    // has done a reasonable job.
1529    if ((OldBranchCode == X86::COND_NP &&
1530         BranchCode == X86::COND_E) ||
1531        (OldBranchCode == X86::COND_E &&
1532         BranchCode == X86::COND_NP))
1533      BranchCode = X86::COND_NP_OR_E;
1534    else if ((OldBranchCode == X86::COND_P &&
1535              BranchCode == X86::COND_NE) ||
1536             (OldBranchCode == X86::COND_NE &&
1537              BranchCode == X86::COND_P))
1538      BranchCode = X86::COND_NE_OR_P;
1539    else
1540      return true;
1541    // Update the MachineOperand.
1542    Cond[0].setImm(BranchCode);
1543  }
1544
1545  return false;
1546}
1547
1548unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1549  MachineBasicBlock::iterator I = MBB.end();
1550  unsigned Count = 0;
1551
1552  while (I != MBB.begin()) {
1553    --I;
1554    if (I->getOpcode() != X86::JMP &&
1555        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1556      break;
1557    // Remove the branch.
1558    I->eraseFromParent();
1559    I = MBB.end();
1560    ++Count;
1561  }
1562
1563  return Count;
1564}
1565
1566static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1567                                                     const MachineOperand &MO) {
1568  if (MO.isReg())
1569    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1570                     MO.isKill(), MO.isDead(), MO.getSubReg());
1571  else if (MO.isImm())
1572    MIB = MIB.addImm(MO.getImm());
1573  else if (MO.isFI())
1574    MIB = MIB.addFrameIndex(MO.getIndex());
1575  else if (MO.isGlobal())
1576    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1577  else if (MO.isCPI())
1578    MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1579  else if (MO.isJTI())
1580    MIB = MIB.addJumpTableIndex(MO.getIndex());
1581  else if (MO.isSymbol())
1582    MIB = MIB.addExternalSymbol(MO.getSymbolName());
1583  else
1584    assert(0 && "Unknown operand for X86InstrAddOperand!");
1585
1586  return MIB;
1587}
1588
1589unsigned
1590X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1591                           MachineBasicBlock *FBB,
1592                           const SmallVectorImpl<MachineOperand> &Cond) const {
1593  // Shouldn't be a fall through.
1594  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1595  assert((Cond.size() == 1 || Cond.size() == 0) &&
1596         "X86 branch conditions have one component!");
1597
1598  if (Cond.empty()) {
1599    // Unconditional branch?
1600    assert(!FBB && "Unconditional branch with multiple successors!");
1601    BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1602    return 1;
1603  }
1604
1605  // Conditional branch.
1606  unsigned Count = 0;
1607  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1608  switch (CC) {
1609  case X86::COND_NP_OR_E:
1610    // Synthesize NP_OR_E with two branches.
1611    BuildMI(&MBB, get(X86::JNP)).addMBB(TBB);
1612    ++Count;
1613    BuildMI(&MBB, get(X86::JE)).addMBB(TBB);
1614    ++Count;
1615    break;
1616  case X86::COND_NE_OR_P:
1617    // Synthesize NE_OR_P with two branches.
1618    BuildMI(&MBB, get(X86::JNE)).addMBB(TBB);
1619    ++Count;
1620    BuildMI(&MBB, get(X86::JP)).addMBB(TBB);
1621    ++Count;
1622    break;
1623  default: {
1624    unsigned Opc = GetCondBranchFromCond(CC);
1625    BuildMI(&MBB, get(Opc)).addMBB(TBB);
1626    ++Count;
1627  }
1628  }
1629  if (FBB) {
1630    // Two-way Conditional branch. Insert the second branch.
1631    BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1632    ++Count;
1633  }
1634  return Count;
1635}
1636
1637bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1638                                MachineBasicBlock::iterator MI,
1639                                unsigned DestReg, unsigned SrcReg,
1640                                const TargetRegisterClass *DestRC,
1641                                const TargetRegisterClass *SrcRC) const {
1642  if (DestRC == SrcRC) {
1643    unsigned Opc;
1644    if (DestRC == &X86::GR64RegClass) {
1645      Opc = X86::MOV64rr;
1646    } else if (DestRC == &X86::GR32RegClass) {
1647      Opc = X86::MOV32rr;
1648    } else if (DestRC == &X86::GR16RegClass) {
1649      Opc = X86::MOV16rr;
1650    } else if (DestRC == &X86::GR8RegClass) {
1651      Opc = X86::MOV8rr;
1652    } else if (DestRC == &X86::GR32_RegClass) {
1653      Opc = X86::MOV32_rr;
1654    } else if (DestRC == &X86::GR16_RegClass) {
1655      Opc = X86::MOV16_rr;
1656    } else if (DestRC == &X86::RFP32RegClass) {
1657      Opc = X86::MOV_Fp3232;
1658    } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1659      Opc = X86::MOV_Fp6464;
1660    } else if (DestRC == &X86::RFP80RegClass) {
1661      Opc = X86::MOV_Fp8080;
1662    } else if (DestRC == &X86::FR32RegClass) {
1663      Opc = X86::FsMOVAPSrr;
1664    } else if (DestRC == &X86::FR64RegClass) {
1665      Opc = X86::FsMOVAPDrr;
1666    } else if (DestRC == &X86::VR128RegClass) {
1667      Opc = X86::MOVAPSrr;
1668    } else if (DestRC == &X86::VR64RegClass) {
1669      Opc = X86::MMX_MOVQ64rr;
1670    } else {
1671      return false;
1672    }
1673    BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1674    return true;
1675  }
1676
1677  // Moving EFLAGS to / from another register requires a push and a pop.
1678  if (SrcRC == &X86::CCRRegClass) {
1679    if (SrcReg != X86::EFLAGS)
1680      return false;
1681    if (DestRC == &X86::GR64RegClass) {
1682      BuildMI(MBB, MI, get(X86::PUSHFQ));
1683      BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1684      return true;
1685    } else if (DestRC == &X86::GR32RegClass) {
1686      BuildMI(MBB, MI, get(X86::PUSHFD));
1687      BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1688      return true;
1689    }
1690  } else if (DestRC == &X86::CCRRegClass) {
1691    if (DestReg != X86::EFLAGS)
1692      return false;
1693    if (SrcRC == &X86::GR64RegClass) {
1694      BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1695      BuildMI(MBB, MI, get(X86::POPFQ));
1696      return true;
1697    } else if (SrcRC == &X86::GR32RegClass) {
1698      BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1699      BuildMI(MBB, MI, get(X86::POPFD));
1700      return true;
1701    }
1702  }
1703
1704  // Moving from ST(0) turns into FpGET_ST0_32 etc.
1705  if (SrcRC == &X86::RSTRegClass) {
1706    // Copying from ST(0)/ST(1).
1707    if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1708      // Can only copy from ST(0)/ST(1) right now
1709      return false;
1710    bool isST0 = SrcReg == X86::ST0;
1711    unsigned Opc;
1712    if (DestRC == &X86::RFP32RegClass)
1713      Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
1714    else if (DestRC == &X86::RFP64RegClass)
1715      Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
1716    else {
1717      if (DestRC != &X86::RFP80RegClass)
1718        return false;
1719      Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
1720    }
1721    BuildMI(MBB, MI, get(Opc), DestReg);
1722    return true;
1723  }
1724
1725  // Moving to ST(0) turns into FpSET_ST0_32 etc.
1726  if (DestRC == &X86::RSTRegClass) {
1727    // Copying to ST(0).  FIXME: handle ST(1) also
1728    if (DestReg != X86::ST0)
1729      // Can only copy to TOS right now
1730      return false;
1731    unsigned Opc;
1732    if (SrcRC == &X86::RFP32RegClass)
1733      Opc = X86::FpSET_ST0_32;
1734    else if (SrcRC == &X86::RFP64RegClass)
1735      Opc = X86::FpSET_ST0_64;
1736    else {
1737      if (SrcRC != &X86::RFP80RegClass)
1738        return false;
1739      Opc = X86::FpSET_ST0_80;
1740    }
1741    BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1742    return true;
1743  }
1744
1745  // Not yet supported!
1746  return false;
1747}
1748
1749static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1750                                  bool isStackAligned) {
1751  unsigned Opc = 0;
1752  if (RC == &X86::GR64RegClass) {
1753    Opc = X86::MOV64mr;
1754  } else if (RC == &X86::GR32RegClass) {
1755    Opc = X86::MOV32mr;
1756  } else if (RC == &X86::GR16RegClass) {
1757    Opc = X86::MOV16mr;
1758  } else if (RC == &X86::GR8RegClass) {
1759    Opc = X86::MOV8mr;
1760  } else if (RC == &X86::GR32_RegClass) {
1761    Opc = X86::MOV32_mr;
1762  } else if (RC == &X86::GR16_RegClass) {
1763    Opc = X86::MOV16_mr;
1764  } else if (RC == &X86::RFP80RegClass) {
1765    Opc = X86::ST_FpP80m;   // pops
1766  } else if (RC == &X86::RFP64RegClass) {
1767    Opc = X86::ST_Fp64m;
1768  } else if (RC == &X86::RFP32RegClass) {
1769    Opc = X86::ST_Fp32m;
1770  } else if (RC == &X86::FR32RegClass) {
1771    Opc = X86::MOVSSmr;
1772  } else if (RC == &X86::FR64RegClass) {
1773    Opc = X86::MOVSDmr;
1774  } else if (RC == &X86::VR128RegClass) {
1775    // If stack is realigned we can use aligned stores.
1776    Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
1777  } else if (RC == &X86::VR64RegClass) {
1778    Opc = X86::MMX_MOVQ64mr;
1779  } else {
1780    assert(0 && "Unknown regclass");
1781    abort();
1782  }
1783
1784  return Opc;
1785}
1786
1787void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1788                                       MachineBasicBlock::iterator MI,
1789                                       unsigned SrcReg, bool isKill, int FrameIdx,
1790                                       const TargetRegisterClass *RC) const {
1791  const MachineFunction &MF = *MBB.getParent();
1792  bool isAligned = (RI.getStackAlignment() >= 16) ||
1793    RI.needsStackRealignment(MF);
1794  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1795  addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1796    .addReg(SrcReg, false, false, isKill);
1797}
1798
1799void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1800                                  bool isKill,
1801                                  SmallVectorImpl<MachineOperand> &Addr,
1802                                  const TargetRegisterClass *RC,
1803                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
1804  bool isAligned = (RI.getStackAlignment() >= 16) ||
1805    RI.needsStackRealignment(MF);
1806  unsigned Opc = getStoreRegOpcode(RC, isAligned);
1807  MachineInstrBuilder MIB = BuildMI(MF, get(Opc));
1808  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1809    MIB = X86InstrAddOperand(MIB, Addr[i]);
1810  MIB.addReg(SrcReg, false, false, isKill);
1811  NewMIs.push_back(MIB);
1812}
1813
1814static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1815                                 bool isStackAligned) {
1816  unsigned Opc = 0;
1817  if (RC == &X86::GR64RegClass) {
1818    Opc = X86::MOV64rm;
1819  } else if (RC == &X86::GR32RegClass) {
1820    Opc = X86::MOV32rm;
1821  } else if (RC == &X86::GR16RegClass) {
1822    Opc = X86::MOV16rm;
1823  } else if (RC == &X86::GR8RegClass) {
1824    Opc = X86::MOV8rm;
1825  } else if (RC == &X86::GR32_RegClass) {
1826    Opc = X86::MOV32_rm;
1827  } else if (RC == &X86::GR16_RegClass) {
1828    Opc = X86::MOV16_rm;
1829  } else if (RC == &X86::RFP80RegClass) {
1830    Opc = X86::LD_Fp80m;
1831  } else if (RC == &X86::RFP64RegClass) {
1832    Opc = X86::LD_Fp64m;
1833  } else if (RC == &X86::RFP32RegClass) {
1834    Opc = X86::LD_Fp32m;
1835  } else if (RC == &X86::FR32RegClass) {
1836    Opc = X86::MOVSSrm;
1837  } else if (RC == &X86::FR64RegClass) {
1838    Opc = X86::MOVSDrm;
1839  } else if (RC == &X86::VR128RegClass) {
1840    // If stack is realigned we can use aligned loads.
1841    Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
1842  } else if (RC == &X86::VR64RegClass) {
1843    Opc = X86::MMX_MOVQ64rm;
1844  } else {
1845    assert(0 && "Unknown regclass");
1846    abort();
1847  }
1848
1849  return Opc;
1850}
1851
1852void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1853                                        MachineBasicBlock::iterator MI,
1854                                        unsigned DestReg, int FrameIdx,
1855                                        const TargetRegisterClass *RC) const{
1856  const MachineFunction &MF = *MBB.getParent();
1857  bool isAligned = (RI.getStackAlignment() >= 16) ||
1858    RI.needsStackRealignment(MF);
1859  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1860  addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1861}
1862
1863void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1864                                 SmallVectorImpl<MachineOperand> &Addr,
1865                                 const TargetRegisterClass *RC,
1866                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1867  bool isAligned = (RI.getStackAlignment() >= 16) ||
1868    RI.needsStackRealignment(MF);
1869  unsigned Opc = getLoadRegOpcode(RC, isAligned);
1870  MachineInstrBuilder MIB = BuildMI(MF, get(Opc), DestReg);
1871  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1872    MIB = X86InstrAddOperand(MIB, Addr[i]);
1873  NewMIs.push_back(MIB);
1874}
1875
1876bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1877                                                MachineBasicBlock::iterator MI,
1878                                const std::vector<CalleeSavedInfo> &CSI) const {
1879  if (CSI.empty())
1880    return false;
1881
1882  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1883  unsigned SlotSize = is64Bit ? 8 : 4;
1884
1885  MachineFunction &MF = *MBB.getParent();
1886  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1887  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1888
1889  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1890  for (unsigned i = CSI.size(); i != 0; --i) {
1891    unsigned Reg = CSI[i-1].getReg();
1892    // Add the callee-saved register as live-in. It's killed at the spill.
1893    MBB.addLiveIn(Reg);
1894    BuildMI(MBB, MI, get(Opc))
1895      .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
1896  }
1897  return true;
1898}
1899
1900bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1901                                                 MachineBasicBlock::iterator MI,
1902                                const std::vector<CalleeSavedInfo> &CSI) const {
1903  if (CSI.empty())
1904    return false;
1905
1906  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1907
1908  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1909  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1910    unsigned Reg = CSI[i].getReg();
1911    BuildMI(MBB, MI, get(Opc), Reg);
1912  }
1913  return true;
1914}
1915
1916static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
1917                                     const SmallVector<MachineOperand,4> &MOs,
1918                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1919  // Create the base instruction with the memory operand as the first part.
1920  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1921  MachineInstrBuilder MIB(NewMI);
1922  unsigned NumAddrOps = MOs.size();
1923  for (unsigned i = 0; i != NumAddrOps; ++i)
1924    MIB = X86InstrAddOperand(MIB, MOs[i]);
1925  if (NumAddrOps < 4)  // FrameIndex only
1926    MIB.addImm(1).addReg(0).addImm(0);
1927
1928  // Loop over the rest of the ri operands, converting them over.
1929  unsigned NumOps = MI->getDesc().getNumOperands()-2;
1930  for (unsigned i = 0; i != NumOps; ++i) {
1931    MachineOperand &MO = MI->getOperand(i+2);
1932    MIB = X86InstrAddOperand(MIB, MO);
1933  }
1934  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1935    MachineOperand &MO = MI->getOperand(i);
1936    MIB = X86InstrAddOperand(MIB, MO);
1937  }
1938  return MIB;
1939}
1940
1941static MachineInstr *FuseInst(MachineFunction &MF,
1942                              unsigned Opcode, unsigned OpNo,
1943                              const SmallVector<MachineOperand,4> &MOs,
1944                              MachineInstr *MI, const TargetInstrInfo &TII) {
1945  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), true);
1946  MachineInstrBuilder MIB(NewMI);
1947
1948  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1949    MachineOperand &MO = MI->getOperand(i);
1950    if (i == OpNo) {
1951      assert(MO.isReg() && "Expected to fold into reg operand!");
1952      unsigned NumAddrOps = MOs.size();
1953      for (unsigned i = 0; i != NumAddrOps; ++i)
1954        MIB = X86InstrAddOperand(MIB, MOs[i]);
1955      if (NumAddrOps < 4)  // FrameIndex only
1956        MIB.addImm(1).addReg(0).addImm(0);
1957    } else {
1958      MIB = X86InstrAddOperand(MIB, MO);
1959    }
1960  }
1961  return MIB;
1962}
1963
1964static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1965                                const SmallVector<MachineOperand,4> &MOs,
1966                                MachineInstr *MI) {
1967  MachineFunction &MF = *MI->getParent()->getParent();
1968  MachineInstrBuilder MIB = BuildMI(MF, TII.get(Opcode));
1969
1970  unsigned NumAddrOps = MOs.size();
1971  for (unsigned i = 0; i != NumAddrOps; ++i)
1972    MIB = X86InstrAddOperand(MIB, MOs[i]);
1973  if (NumAddrOps < 4)  // FrameIndex only
1974    MIB.addImm(1).addReg(0).addImm(0);
1975  return MIB.addImm(0);
1976}
1977
1978MachineInstr*
1979X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1980                                MachineInstr *MI, unsigned i,
1981                                const SmallVector<MachineOperand,4> &MOs) const{
1982  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1983  bool isTwoAddrFold = false;
1984  unsigned NumOps = MI->getDesc().getNumOperands();
1985  bool isTwoAddr = NumOps > 1 &&
1986    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
1987
1988  MachineInstr *NewMI = NULL;
1989  // Folding a memory location into the two-address part of a two-address
1990  // instruction is different than folding it other places.  It requires
1991  // replacing the *two* registers with the memory location.
1992  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1993      MI->getOperand(0).isReg() &&
1994      MI->getOperand(1).isReg() &&
1995      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1996    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1997    isTwoAddrFold = true;
1998  } else if (i == 0) { // If operand 0
1999    if (MI->getOpcode() == X86::MOV16r0)
2000      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2001    else if (MI->getOpcode() == X86::MOV32r0)
2002      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2003    else if (MI->getOpcode() == X86::MOV64r0)
2004      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2005    else if (MI->getOpcode() == X86::MOV8r0)
2006      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2007    if (NewMI)
2008      return NewMI;
2009
2010    OpcodeTablePtr = &RegOp2MemOpTable0;
2011  } else if (i == 1) {
2012    OpcodeTablePtr = &RegOp2MemOpTable1;
2013  } else if (i == 2) {
2014    OpcodeTablePtr = &RegOp2MemOpTable2;
2015  }
2016
2017  // If table selected...
2018  if (OpcodeTablePtr) {
2019    // Find the Opcode to fuse
2020    DenseMap<unsigned*, unsigned>::iterator I =
2021      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2022    if (I != OpcodeTablePtr->end()) {
2023      if (isTwoAddrFold)
2024        NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
2025      else
2026        NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
2027      return NewMI;
2028    }
2029  }
2030
2031  // No fusion
2032  if (PrintFailedFusing)
2033    cerr << "We failed to fuse operand " << i << *MI;
2034  return NULL;
2035}
2036
2037
2038MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2039                                              MachineInstr *MI,
2040                                        const SmallVectorImpl<unsigned> &Ops,
2041                                              int FrameIndex) const {
2042  // Check switch flag
2043  if (NoFusing) return NULL;
2044
2045  const MachineFrameInfo *MFI = MF.getFrameInfo();
2046  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2047  // FIXME: Move alignment requirement into tables?
2048  if (Alignment < 16) {
2049    switch (MI->getOpcode()) {
2050    default: break;
2051    // Not always safe to fold movsd into these instructions since their load
2052    // folding variants expects the address to be 16 byte aligned.
2053    case X86::FsANDNPDrr:
2054    case X86::FsANDNPSrr:
2055    case X86::FsANDPDrr:
2056    case X86::FsANDPSrr:
2057    case X86::FsORPDrr:
2058    case X86::FsORPSrr:
2059    case X86::FsXORPDrr:
2060    case X86::FsXORPSrr:
2061      return NULL;
2062    }
2063  }
2064
2065  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2066    unsigned NewOpc = 0;
2067    switch (MI->getOpcode()) {
2068    default: return NULL;
2069    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2070    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2071    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2072    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2073    }
2074    // Change to CMPXXri r, 0 first.
2075    MI->setDesc(get(NewOpc));
2076    MI->getOperand(1).ChangeToImmediate(0);
2077  } else if (Ops.size() != 1)
2078    return NULL;
2079
2080  SmallVector<MachineOperand,4> MOs;
2081  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2082  return foldMemoryOperand(MF, MI, Ops[0], MOs);
2083}
2084
2085MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2086                                              MachineInstr *MI,
2087                                        const SmallVectorImpl<unsigned> &Ops,
2088                                              MachineInstr *LoadMI) const {
2089  // Check switch flag
2090  if (NoFusing) return NULL;
2091
2092  // Determine the alignment of the load.
2093  unsigned Alignment = 0;
2094  if (LoadMI->hasOneMemOperand())
2095    Alignment = LoadMI->memoperands_begin()->getAlignment();
2096
2097  // FIXME: Move alignment requirement into tables?
2098  if (Alignment < 16) {
2099    switch (MI->getOpcode()) {
2100    default: break;
2101    // Not always safe to fold movsd into these instructions since their load
2102    // folding variants expects the address to be 16 byte aligned.
2103    case X86::FsANDNPDrr:
2104    case X86::FsANDNPSrr:
2105    case X86::FsANDPDrr:
2106    case X86::FsANDPSrr:
2107    case X86::FsORPDrr:
2108    case X86::FsORPSrr:
2109    case X86::FsXORPDrr:
2110    case X86::FsXORPSrr:
2111      return NULL;
2112    }
2113  }
2114
2115  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2116    unsigned NewOpc = 0;
2117    switch (MI->getOpcode()) {
2118    default: return NULL;
2119    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2120    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2121    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2122    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2123    }
2124    // Change to CMPXXri r, 0 first.
2125    MI->setDesc(get(NewOpc));
2126    MI->getOperand(1).ChangeToImmediate(0);
2127  } else if (Ops.size() != 1)
2128    return NULL;
2129
2130  SmallVector<MachineOperand,4> MOs;
2131  if (LoadMI->getOpcode() == X86::V_SET0 ||
2132      LoadMI->getOpcode() == X86::V_SETALLONES) {
2133    // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2134    // Create a constant-pool entry and operands to load from it.
2135
2136    // x86-32 PIC requires a PIC base register for constant pools.
2137    unsigned PICBase = 0;
2138    if (TM.getRelocationModel() == Reloc::PIC_ &&
2139        !TM.getSubtarget<X86Subtarget>().is64Bit())
2140      PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2141
2142    // Create a v4i32 constant-pool entry.
2143    MachineConstantPool &MCP = *MF.getConstantPool();
2144    const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2145    Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2146                    ConstantVector::getNullValue(Ty) :
2147                    ConstantVector::getAllOnesValue(Ty);
2148    unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2149
2150    // Create operands to load from the constant pool entry.
2151    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2152    MOs.push_back(MachineOperand::CreateImm(1));
2153    MOs.push_back(MachineOperand::CreateReg(0, false));
2154    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2155  } else {
2156    // Folding a normal load. Just copy the load's address operands.
2157    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2158    for (unsigned i = NumOps - 4; i != NumOps; ++i)
2159      MOs.push_back(LoadMI->getOperand(i));
2160  }
2161  return foldMemoryOperand(MF, MI, Ops[0], MOs);
2162}
2163
2164
2165bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2166                                  const SmallVectorImpl<unsigned> &Ops) const {
2167  // Check switch flag
2168  if (NoFusing) return 0;
2169
2170  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2171    switch (MI->getOpcode()) {
2172    default: return false;
2173    case X86::TEST8rr:
2174    case X86::TEST16rr:
2175    case X86::TEST32rr:
2176    case X86::TEST64rr:
2177      return true;
2178    }
2179  }
2180
2181  if (Ops.size() != 1)
2182    return false;
2183
2184  unsigned OpNum = Ops[0];
2185  unsigned Opc = MI->getOpcode();
2186  unsigned NumOps = MI->getDesc().getNumOperands();
2187  bool isTwoAddr = NumOps > 1 &&
2188    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2189
2190  // Folding a memory location into the two-address part of a two-address
2191  // instruction is different than folding it other places.  It requires
2192  // replacing the *two* registers with the memory location.
2193  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2194  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2195    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2196  } else if (OpNum == 0) { // If operand 0
2197    switch (Opc) {
2198    case X86::MOV16r0:
2199    case X86::MOV32r0:
2200    case X86::MOV64r0:
2201    case X86::MOV8r0:
2202      return true;
2203    default: break;
2204    }
2205    OpcodeTablePtr = &RegOp2MemOpTable0;
2206  } else if (OpNum == 1) {
2207    OpcodeTablePtr = &RegOp2MemOpTable1;
2208  } else if (OpNum == 2) {
2209    OpcodeTablePtr = &RegOp2MemOpTable2;
2210  }
2211
2212  if (OpcodeTablePtr) {
2213    // Find the Opcode to fuse
2214    DenseMap<unsigned*, unsigned>::iterator I =
2215      OpcodeTablePtr->find((unsigned*)Opc);
2216    if (I != OpcodeTablePtr->end())
2217      return true;
2218  }
2219  return false;
2220}
2221
2222bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2223                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2224                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2225  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2226    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2227  if (I == MemOp2RegOpTable.end())
2228    return false;
2229  unsigned Opc = I->second.first;
2230  unsigned Index = I->second.second & 0xf;
2231  bool FoldedLoad = I->second.second & (1 << 4);
2232  bool FoldedStore = I->second.second & (1 << 5);
2233  if (UnfoldLoad && !FoldedLoad)
2234    return false;
2235  UnfoldLoad &= FoldedLoad;
2236  if (UnfoldStore && !FoldedStore)
2237    return false;
2238  UnfoldStore &= FoldedStore;
2239
2240  const TargetInstrDesc &TID = get(Opc);
2241  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2242  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2243    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2244  SmallVector<MachineOperand,4> AddrOps;
2245  SmallVector<MachineOperand,2> BeforeOps;
2246  SmallVector<MachineOperand,2> AfterOps;
2247  SmallVector<MachineOperand,4> ImpOps;
2248  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2249    MachineOperand &Op = MI->getOperand(i);
2250    if (i >= Index && i < Index+4)
2251      AddrOps.push_back(Op);
2252    else if (Op.isReg() && Op.isImplicit())
2253      ImpOps.push_back(Op);
2254    else if (i < Index)
2255      BeforeOps.push_back(Op);
2256    else if (i > Index)
2257      AfterOps.push_back(Op);
2258  }
2259
2260  // Emit the load instruction.
2261  if (UnfoldLoad) {
2262    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2263    if (UnfoldStore) {
2264      // Address operands cannot be marked isKill.
2265      for (unsigned i = 1; i != 5; ++i) {
2266        MachineOperand &MO = NewMIs[0]->getOperand(i);
2267        if (MO.isReg())
2268          MO.setIsKill(false);
2269      }
2270    }
2271  }
2272
2273  // Emit the data processing instruction.
2274  MachineInstr *DataMI = MF.CreateMachineInstr(TID, true);
2275  MachineInstrBuilder MIB(DataMI);
2276
2277  if (FoldedStore)
2278    MIB.addReg(Reg, true);
2279  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2280    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2281  if (FoldedLoad)
2282    MIB.addReg(Reg);
2283  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2284    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2285  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2286    MachineOperand &MO = ImpOps[i];
2287    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2288  }
2289  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2290  unsigned NewOpc = 0;
2291  switch (DataMI->getOpcode()) {
2292  default: break;
2293  case X86::CMP64ri32:
2294  case X86::CMP32ri:
2295  case X86::CMP16ri:
2296  case X86::CMP8ri: {
2297    MachineOperand &MO0 = DataMI->getOperand(0);
2298    MachineOperand &MO1 = DataMI->getOperand(1);
2299    if (MO1.getImm() == 0) {
2300      switch (DataMI->getOpcode()) {
2301      default: break;
2302      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2303      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2304      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2305      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2306      }
2307      DataMI->setDesc(get(NewOpc));
2308      MO1.ChangeToRegister(MO0.getReg(), false);
2309    }
2310  }
2311  }
2312  NewMIs.push_back(DataMI);
2313
2314  // Emit the store instruction.
2315  if (UnfoldStore) {
2316    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2317    const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
2318      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2319    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2320  }
2321
2322  return true;
2323}
2324
2325bool
2326X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2327                                     SmallVectorImpl<SDNode*> &NewNodes) const {
2328  if (!N->isMachineOpcode())
2329    return false;
2330
2331  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2332    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2333  if (I == MemOp2RegOpTable.end())
2334    return false;
2335  unsigned Opc = I->second.first;
2336  unsigned Index = I->second.second & 0xf;
2337  bool FoldedLoad = I->second.second & (1 << 4);
2338  bool FoldedStore = I->second.second & (1 << 5);
2339  const TargetInstrDesc &TID = get(Opc);
2340  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2341  const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
2342    ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2343  std::vector<SDValue> AddrOps;
2344  std::vector<SDValue> BeforeOps;
2345  std::vector<SDValue> AfterOps;
2346  unsigned NumOps = N->getNumOperands();
2347  for (unsigned i = 0; i != NumOps-1; ++i) {
2348    SDValue Op = N->getOperand(i);
2349    if (i >= Index && i < Index+4)
2350      AddrOps.push_back(Op);
2351    else if (i < Index)
2352      BeforeOps.push_back(Op);
2353    else if (i > Index)
2354      AfterOps.push_back(Op);
2355  }
2356  SDValue Chain = N->getOperand(NumOps-1);
2357  AddrOps.push_back(Chain);
2358
2359  // Emit the load instruction.
2360  SDNode *Load = 0;
2361  const MachineFunction &MF = DAG.getMachineFunction();
2362  if (FoldedLoad) {
2363    MVT VT = *RC->vt_begin();
2364    bool isAligned = (RI.getStackAlignment() >= 16) ||
2365      RI.needsStackRealignment(MF);
2366    Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned),
2367                             VT, MVT::Other,
2368                             &AddrOps[0], AddrOps.size());
2369    NewNodes.push_back(Load);
2370  }
2371
2372  // Emit the data processing instruction.
2373  std::vector<MVT> VTs;
2374  const TargetRegisterClass *DstRC = 0;
2375  if (TID.getNumDefs() > 0) {
2376    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2377    DstRC = DstTOI.isLookupPtrRegClass()
2378      ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2379    VTs.push_back(*DstRC->vt_begin());
2380  }
2381  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2382    MVT VT = N->getValueType(i);
2383    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2384      VTs.push_back(VT);
2385  }
2386  if (Load)
2387    BeforeOps.push_back(SDValue(Load, 0));
2388  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2389  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2390  NewNodes.push_back(NewNode);
2391
2392  // Emit the store instruction.
2393  if (FoldedStore) {
2394    AddrOps.pop_back();
2395    AddrOps.push_back(SDValue(NewNode, 0));
2396    AddrOps.push_back(Chain);
2397    bool isAligned = (RI.getStackAlignment() >= 16) ||
2398      RI.needsStackRealignment(MF);
2399    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned),
2400                                      MVT::Other, &AddrOps[0], AddrOps.size());
2401    NewNodes.push_back(Store);
2402  }
2403
2404  return true;
2405}
2406
2407unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2408                                      bool UnfoldLoad, bool UnfoldStore) const {
2409  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2410    MemOp2RegOpTable.find((unsigned*)Opc);
2411  if (I == MemOp2RegOpTable.end())
2412    return 0;
2413  bool FoldedLoad = I->second.second & (1 << 4);
2414  bool FoldedStore = I->second.second & (1 << 5);
2415  if (UnfoldLoad && !FoldedLoad)
2416    return 0;
2417  if (UnfoldStore && !FoldedStore)
2418    return 0;
2419  return I->second.first;
2420}
2421
2422bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
2423  if (MBB.empty()) return false;
2424
2425  switch (MBB.back().getOpcode()) {
2426  case X86::TCRETURNri:
2427  case X86::TCRETURNdi:
2428  case X86::RET:     // Return.
2429  case X86::RETI:
2430  case X86::TAILJMPd:
2431  case X86::TAILJMPr:
2432  case X86::TAILJMPm:
2433  case X86::JMP:     // Uncond branch.
2434  case X86::JMP32r:  // Indirect branch.
2435  case X86::JMP64r:  // Indirect branch (64-bit).
2436  case X86::JMP32m:  // Indirect branch through mem.
2437  case X86::JMP64m:  // Indirect branch through mem (64-bit).
2438    return true;
2439  default: return false;
2440  }
2441}
2442
2443bool X86InstrInfo::
2444ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2445  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2446  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2447  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2448    return true;
2449  Cond[0].setImm(GetOppositeBranchCondition(CC));
2450  return false;
2451}
2452
2453bool X86InstrInfo::
2454IgnoreRegisterClassBarriers(const TargetRegisterClass *RC) const {
2455  // FIXME: Ignore bariers of x87 stack registers for now. We can't
2456  // allow any loads of these registers before FpGet_ST0_80.
2457  return RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2458    RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass;
2459}
2460
2461const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2462  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2463  if (Subtarget->is64Bit())
2464    return &X86::GR64RegClass;
2465  else
2466    return &X86::GR32RegClass;
2467}
2468
2469unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2470  switch (Desc->TSFlags & X86II::ImmMask) {
2471  case X86II::Imm8:   return 1;
2472  case X86II::Imm16:  return 2;
2473  case X86II::Imm32:  return 4;
2474  case X86II::Imm64:  return 8;
2475  default: assert(0 && "Immediate size not set!");
2476    return 0;
2477  }
2478}
2479
2480/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2481/// e.g. r8, xmm8, etc.
2482bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2483  if (!MO.isReg()) return false;
2484  switch (MO.getReg()) {
2485  default: break;
2486  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2487  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2488  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2489  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2490  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2491  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2492  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2493  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2494  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2495  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2496    return true;
2497  }
2498  return false;
2499}
2500
2501
2502/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2503/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2504/// size, and 3) use of X86-64 extended registers.
2505unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2506  unsigned REX = 0;
2507  const TargetInstrDesc &Desc = MI.getDesc();
2508
2509  // Pseudo instructions do not need REX prefix byte.
2510  if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2511    return 0;
2512  if (Desc.TSFlags & X86II::REX_W)
2513    REX |= 1 << 3;
2514
2515  unsigned NumOps = Desc.getNumOperands();
2516  if (NumOps) {
2517    bool isTwoAddr = NumOps > 1 &&
2518      Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2519
2520    // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2521    unsigned i = isTwoAddr ? 1 : 0;
2522    for (unsigned e = NumOps; i != e; ++i) {
2523      const MachineOperand& MO = MI.getOperand(i);
2524      if (MO.isReg()) {
2525        unsigned Reg = MO.getReg();
2526        if (isX86_64NonExtLowByteReg(Reg))
2527          REX |= 0x40;
2528      }
2529    }
2530
2531    switch (Desc.TSFlags & X86II::FormMask) {
2532    case X86II::MRMInitReg:
2533      if (isX86_64ExtendedReg(MI.getOperand(0)))
2534        REX |= (1 << 0) | (1 << 2);
2535      break;
2536    case X86II::MRMSrcReg: {
2537      if (isX86_64ExtendedReg(MI.getOperand(0)))
2538        REX |= 1 << 2;
2539      i = isTwoAddr ? 2 : 1;
2540      for (unsigned e = NumOps; i != e; ++i) {
2541        const MachineOperand& MO = MI.getOperand(i);
2542        if (isX86_64ExtendedReg(MO))
2543          REX |= 1 << 0;
2544      }
2545      break;
2546    }
2547    case X86II::MRMSrcMem: {
2548      if (isX86_64ExtendedReg(MI.getOperand(0)))
2549        REX |= 1 << 2;
2550      unsigned Bit = 0;
2551      i = isTwoAddr ? 2 : 1;
2552      for (; i != NumOps; ++i) {
2553        const MachineOperand& MO = MI.getOperand(i);
2554        if (MO.isReg()) {
2555          if (isX86_64ExtendedReg(MO))
2556            REX |= 1 << Bit;
2557          Bit++;
2558        }
2559      }
2560      break;
2561    }
2562    case X86II::MRM0m: case X86II::MRM1m:
2563    case X86II::MRM2m: case X86II::MRM3m:
2564    case X86II::MRM4m: case X86II::MRM5m:
2565    case X86II::MRM6m: case X86II::MRM7m:
2566    case X86II::MRMDestMem: {
2567      unsigned e = isTwoAddr ? 5 : 4;
2568      i = isTwoAddr ? 1 : 0;
2569      if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2570        REX |= 1 << 2;
2571      unsigned Bit = 0;
2572      for (; i != e; ++i) {
2573        const MachineOperand& MO = MI.getOperand(i);
2574        if (MO.isReg()) {
2575          if (isX86_64ExtendedReg(MO))
2576            REX |= 1 << Bit;
2577          Bit++;
2578        }
2579      }
2580      break;
2581    }
2582    default: {
2583      if (isX86_64ExtendedReg(MI.getOperand(0)))
2584        REX |= 1 << 0;
2585      i = isTwoAddr ? 2 : 1;
2586      for (unsigned e = NumOps; i != e; ++i) {
2587        const MachineOperand& MO = MI.getOperand(i);
2588        if (isX86_64ExtendedReg(MO))
2589          REX |= 1 << 2;
2590      }
2591      break;
2592    }
2593    }
2594  }
2595  return REX;
2596}
2597
2598/// sizePCRelativeBlockAddress - This method returns the size of a PC
2599/// relative block address instruction
2600///
2601static unsigned sizePCRelativeBlockAddress() {
2602  return 4;
2603}
2604
2605/// sizeGlobalAddress - Give the size of the emission of this global address
2606///
2607static unsigned sizeGlobalAddress(bool dword) {
2608  return dword ? 8 : 4;
2609}
2610
2611/// sizeConstPoolAddress - Give the size of the emission of this constant
2612/// pool address
2613///
2614static unsigned sizeConstPoolAddress(bool dword) {
2615  return dword ? 8 : 4;
2616}
2617
2618/// sizeExternalSymbolAddress - Give the size of the emission of this external
2619/// symbol
2620///
2621static unsigned sizeExternalSymbolAddress(bool dword) {
2622  return dword ? 8 : 4;
2623}
2624
2625/// sizeJumpTableAddress - Give the size of the emission of this jump
2626/// table address
2627///
2628static unsigned sizeJumpTableAddress(bool dword) {
2629  return dword ? 8 : 4;
2630}
2631
2632static unsigned sizeConstant(unsigned Size) {
2633  return Size;
2634}
2635
2636static unsigned sizeRegModRMByte(){
2637  return 1;
2638}
2639
2640static unsigned sizeSIBByte(){
2641  return 1;
2642}
2643
2644static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2645  unsigned FinalSize = 0;
2646  // If this is a simple integer displacement that doesn't require a relocation.
2647  if (!RelocOp) {
2648    FinalSize += sizeConstant(4);
2649    return FinalSize;
2650  }
2651
2652  // Otherwise, this is something that requires a relocation.
2653  if (RelocOp->isGlobal()) {
2654    FinalSize += sizeGlobalAddress(false);
2655  } else if (RelocOp->isCPI()) {
2656    FinalSize += sizeConstPoolAddress(false);
2657  } else if (RelocOp->isJTI()) {
2658    FinalSize += sizeJumpTableAddress(false);
2659  } else {
2660    assert(0 && "Unknown value to relocate!");
2661  }
2662  return FinalSize;
2663}
2664
2665static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2666                                    bool IsPIC, bool Is64BitMode) {
2667  const MachineOperand &Op3 = MI.getOperand(Op+3);
2668  int DispVal = 0;
2669  const MachineOperand *DispForReloc = 0;
2670  unsigned FinalSize = 0;
2671
2672  // Figure out what sort of displacement we have to handle here.
2673  if (Op3.isGlobal()) {
2674    DispForReloc = &Op3;
2675  } else if (Op3.isCPI()) {
2676    if (Is64BitMode || IsPIC) {
2677      DispForReloc = &Op3;
2678    } else {
2679      DispVal = 1;
2680    }
2681  } else if (Op3.isJTI()) {
2682    if (Is64BitMode || IsPIC) {
2683      DispForReloc = &Op3;
2684    } else {
2685      DispVal = 1;
2686    }
2687  } else {
2688    DispVal = 1;
2689  }
2690
2691  const MachineOperand &Base     = MI.getOperand(Op);
2692  const MachineOperand &IndexReg = MI.getOperand(Op+2);
2693
2694  unsigned BaseReg = Base.getReg();
2695
2696  // Is a SIB byte needed?
2697  if (IndexReg.getReg() == 0 &&
2698      (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2699    if (BaseReg == 0) {  // Just a displacement?
2700      // Emit special case [disp32] encoding
2701      ++FinalSize;
2702      FinalSize += getDisplacementFieldSize(DispForReloc);
2703    } else {
2704      unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2705      if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2706        // Emit simple indirect register encoding... [EAX] f.e.
2707        ++FinalSize;
2708      // Be pessimistic and assume it's a disp32, not a disp8
2709      } else {
2710        // Emit the most general non-SIB encoding: [REG+disp32]
2711        ++FinalSize;
2712        FinalSize += getDisplacementFieldSize(DispForReloc);
2713      }
2714    }
2715
2716  } else {  // We need a SIB byte, so start by outputting the ModR/M byte first
2717    assert(IndexReg.getReg() != X86::ESP &&
2718           IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2719
2720    bool ForceDisp32 = false;
2721    if (BaseReg == 0 || DispForReloc) {
2722      // Emit the normal disp32 encoding.
2723      ++FinalSize;
2724      ForceDisp32 = true;
2725    } else {
2726      ++FinalSize;
2727    }
2728
2729    FinalSize += sizeSIBByte();
2730
2731    // Do we need to output a displacement?
2732    if (DispVal != 0 || ForceDisp32) {
2733      FinalSize += getDisplacementFieldSize(DispForReloc);
2734    }
2735  }
2736  return FinalSize;
2737}
2738
2739
2740static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2741                                    const TargetInstrDesc *Desc,
2742                                    bool IsPIC, bool Is64BitMode) {
2743
2744  unsigned Opcode = Desc->Opcode;
2745  unsigned FinalSize = 0;
2746
2747  // Emit the lock opcode prefix as needed.
2748  if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2749
2750  // Emit segment overrid opcode prefix as needed.
2751  switch (Desc->TSFlags & X86II::SegOvrMask) {
2752  case X86II::FS:
2753  case X86II::GS:
2754   ++FinalSize;
2755   break;
2756  default: assert(0 && "Invalid segment!");
2757  case 0: break;  // No segment override!
2758  }
2759
2760  // Emit the repeat opcode prefix as needed.
2761  if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2762
2763  // Emit the operand size opcode prefix as needed.
2764  if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2765
2766  // Emit the address size opcode prefix as needed.
2767  if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2768
2769  bool Need0FPrefix = false;
2770  switch (Desc->TSFlags & X86II::Op0Mask) {
2771  case X86II::TB:  // Two-byte opcode prefix
2772  case X86II::T8:  // 0F 38
2773  case X86II::TA:  // 0F 3A
2774    Need0FPrefix = true;
2775    break;
2776  case X86II::REP: break; // already handled.
2777  case X86II::XS:   // F3 0F
2778    ++FinalSize;
2779    Need0FPrefix = true;
2780    break;
2781  case X86II::XD:   // F2 0F
2782    ++FinalSize;
2783    Need0FPrefix = true;
2784    break;
2785  case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2786  case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2787    ++FinalSize;
2788    break; // Two-byte opcode prefix
2789  default: assert(0 && "Invalid prefix!");
2790  case 0: break;  // No prefix!
2791  }
2792
2793  if (Is64BitMode) {
2794    // REX prefix
2795    unsigned REX = X86InstrInfo::determineREX(MI);
2796    if (REX)
2797      ++FinalSize;
2798  }
2799
2800  // 0x0F escape code must be emitted just before the opcode.
2801  if (Need0FPrefix)
2802    ++FinalSize;
2803
2804  switch (Desc->TSFlags & X86II::Op0Mask) {
2805  case X86II::T8:  // 0F 38
2806    ++FinalSize;
2807    break;
2808  case X86II::TA:    // 0F 3A
2809    ++FinalSize;
2810    break;
2811  }
2812
2813  // If this is a two-address instruction, skip one of the register operands.
2814  unsigned NumOps = Desc->getNumOperands();
2815  unsigned CurOp = 0;
2816  if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2817    CurOp++;
2818
2819  switch (Desc->TSFlags & X86II::FormMask) {
2820  default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2821  case X86II::Pseudo:
2822    // Remember the current PC offset, this is the PIC relocation
2823    // base address.
2824    switch (Opcode) {
2825    default:
2826      break;
2827    case TargetInstrInfo::INLINEASM: {
2828      const MachineFunction *MF = MI.getParent()->getParent();
2829      const char *AsmStr = MI.getOperand(0).getSymbolName();
2830      const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2831      FinalSize += AI->getInlineAsmLength(AsmStr);
2832      break;
2833    }
2834    case TargetInstrInfo::DBG_LABEL:
2835    case TargetInstrInfo::EH_LABEL:
2836      break;
2837    case TargetInstrInfo::IMPLICIT_DEF:
2838    case TargetInstrInfo::DECLARE:
2839    case X86::DWARF_LOC:
2840    case X86::FP_REG_KILL:
2841      break;
2842    case X86::MOVPC32r: {
2843      // This emits the "call" portion of this pseudo instruction.
2844      ++FinalSize;
2845      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2846      break;
2847    }
2848    case X86::TLS_tp:
2849    case X86::TLS_gs_ri:
2850      FinalSize += 2;
2851      FinalSize += sizeGlobalAddress(false);
2852      break;
2853    }
2854    CurOp = NumOps;
2855    break;
2856  case X86II::RawFrm:
2857    ++FinalSize;
2858
2859    if (CurOp != NumOps) {
2860      const MachineOperand &MO = MI.getOperand(CurOp++);
2861      if (MO.isMBB()) {
2862        FinalSize += sizePCRelativeBlockAddress();
2863      } else if (MO.isGlobal()) {
2864        FinalSize += sizeGlobalAddress(false);
2865      } else if (MO.isSymbol()) {
2866        FinalSize += sizeExternalSymbolAddress(false);
2867      } else if (MO.isImm()) {
2868        FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2869      } else {
2870        assert(0 && "Unknown RawFrm operand!");
2871      }
2872    }
2873    break;
2874
2875  case X86II::AddRegFrm:
2876    ++FinalSize;
2877    ++CurOp;
2878
2879    if (CurOp != NumOps) {
2880      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2881      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2882      if (MO1.isImm())
2883        FinalSize += sizeConstant(Size);
2884      else {
2885        bool dword = false;
2886        if (Opcode == X86::MOV64ri)
2887          dword = true;
2888        if (MO1.isGlobal()) {
2889          FinalSize += sizeGlobalAddress(dword);
2890        } else if (MO1.isSymbol())
2891          FinalSize += sizeExternalSymbolAddress(dword);
2892        else if (MO1.isCPI())
2893          FinalSize += sizeConstPoolAddress(dword);
2894        else if (MO1.isJTI())
2895          FinalSize += sizeJumpTableAddress(dword);
2896      }
2897    }
2898    break;
2899
2900  case X86II::MRMDestReg: {
2901    ++FinalSize;
2902    FinalSize += sizeRegModRMByte();
2903    CurOp += 2;
2904    if (CurOp != NumOps) {
2905      ++CurOp;
2906      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2907    }
2908    break;
2909  }
2910  case X86II::MRMDestMem: {
2911    ++FinalSize;
2912    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2913    CurOp += 5;
2914    if (CurOp != NumOps) {
2915      ++CurOp;
2916      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2917    }
2918    break;
2919  }
2920
2921  case X86II::MRMSrcReg:
2922    ++FinalSize;
2923    FinalSize += sizeRegModRMByte();
2924    CurOp += 2;
2925    if (CurOp != NumOps) {
2926      ++CurOp;
2927      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2928    }
2929    break;
2930
2931  case X86II::MRMSrcMem: {
2932
2933    ++FinalSize;
2934    FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2935    CurOp += 5;
2936    if (CurOp != NumOps) {
2937      ++CurOp;
2938      FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2939    }
2940    break;
2941  }
2942
2943  case X86II::MRM0r: case X86II::MRM1r:
2944  case X86II::MRM2r: case X86II::MRM3r:
2945  case X86II::MRM4r: case X86II::MRM5r:
2946  case X86II::MRM6r: case X86II::MRM7r:
2947    ++FinalSize;
2948    ++CurOp;
2949    FinalSize += sizeRegModRMByte();
2950
2951    if (CurOp != NumOps) {
2952      const MachineOperand &MO1 = MI.getOperand(CurOp++);
2953      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2954      if (MO1.isImm())
2955        FinalSize += sizeConstant(Size);
2956      else {
2957        bool dword = false;
2958        if (Opcode == X86::MOV64ri32)
2959          dword = true;
2960        if (MO1.isGlobal()) {
2961          FinalSize += sizeGlobalAddress(dword);
2962        } else if (MO1.isSymbol())
2963          FinalSize += sizeExternalSymbolAddress(dword);
2964        else if (MO1.isCPI())
2965          FinalSize += sizeConstPoolAddress(dword);
2966        else if (MO1.isJTI())
2967          FinalSize += sizeJumpTableAddress(dword);
2968      }
2969    }
2970    break;
2971
2972  case X86II::MRM0m: case X86II::MRM1m:
2973  case X86II::MRM2m: case X86II::MRM3m:
2974  case X86II::MRM4m: case X86II::MRM5m:
2975  case X86II::MRM6m: case X86II::MRM7m: {
2976
2977    ++FinalSize;
2978    FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2979    CurOp += 4;
2980
2981    if (CurOp != NumOps) {
2982      const MachineOperand &MO = MI.getOperand(CurOp++);
2983      unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2984      if (MO.isImm())
2985        FinalSize += sizeConstant(Size);
2986      else {
2987        bool dword = false;
2988        if (Opcode == X86::MOV64mi32)
2989          dword = true;
2990        if (MO.isGlobal()) {
2991          FinalSize += sizeGlobalAddress(dword);
2992        } else if (MO.isSymbol())
2993          FinalSize += sizeExternalSymbolAddress(dword);
2994        else if (MO.isCPI())
2995          FinalSize += sizeConstPoolAddress(dword);
2996        else if (MO.isJTI())
2997          FinalSize += sizeJumpTableAddress(dword);
2998      }
2999    }
3000    break;
3001  }
3002
3003  case X86II::MRMInitReg:
3004    ++FinalSize;
3005    // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3006    FinalSize += sizeRegModRMByte();
3007    ++CurOp;
3008    break;
3009  }
3010
3011  if (!Desc->isVariadic() && CurOp != NumOps) {
3012    cerr << "Cannot determine size: ";
3013    MI.dump();
3014    cerr << '\n';
3015    abort();
3016  }
3017
3018
3019  return FinalSize;
3020}
3021
3022
3023unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3024  const TargetInstrDesc &Desc = MI->getDesc();
3025  bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
3026  bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
3027  unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3028  if (Desc.getOpcode() == X86::MOVPC32r) {
3029    Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3030  }
3031  return Size;
3032}
3033
3034/// getGlobalBaseReg - Return a virtual register initialized with the
3035/// the global base register value. Output instructions required to
3036/// initialize the register in the function entry block, if necessary.
3037///
3038unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3039  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3040         "X86-64 PIC uses RIP relative addressing");
3041
3042  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3043  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3044  if (GlobalBaseReg != 0)
3045    return GlobalBaseReg;
3046
3047  // Insert the set of GlobalBaseReg into the first MBB of the function
3048  MachineBasicBlock &FirstMBB = MF->front();
3049  MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3050  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3051  unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3052
3053  const TargetInstrInfo *TII = TM.getInstrInfo();
3054  // Operand of MovePCtoStack is completely ignored by asm printer. It's
3055  // only used in JIT code emission as displacement to pc.
3056  BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
3057
3058  // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3059  // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3060  if (TM.getRelocationModel() == Reloc::PIC_ &&
3061      TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3062    GlobalBaseReg =
3063      RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3064    BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
3065      .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
3066  } else {
3067    GlobalBaseReg = PC;
3068  }
3069
3070  X86FI->setGlobalBaseReg(GlobalBaseReg);
3071  return GlobalBaseReg;
3072}
3073