X86InstrInfo.cpp revision 90c579de5a383cee278acc3f7e7b9d0a656e6a35
1//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/MC/MCAsmInfo.h"
37
38#include <limits>
39
40using namespace llvm;
41
42static cl::opt<bool>
43NoFusing("disable-spill-fusing",
44         cl::desc("Disable fusing of spill code into instructions"));
45static cl::opt<bool>
46PrintFailedFusing("print-failed-fuse-candidates",
47                  cl::desc("Print instructions that the allocator wants to"
48                           " fuse, but the X86 backend currently can't"),
49                  cl::Hidden);
50static cl::opt<bool>
51ReMatPICStubLoad("remat-pic-stub-load",
52                 cl::desc("Re-materialize load from stub in PIC mode"),
53                 cl::init(false), cl::Hidden);
54
55X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
56  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
57    TM(tm), RI(tm, *this) {
58  SmallVector<unsigned,16> AmbEntries;
59  static const unsigned OpTbl2Addr[][2] = {
60    { X86::ADC32ri,     X86::ADC32mi },
61    { X86::ADC32ri8,    X86::ADC32mi8 },
62    { X86::ADC32rr,     X86::ADC32mr },
63    { X86::ADC64ri32,   X86::ADC64mi32 },
64    { X86::ADC64ri8,    X86::ADC64mi8 },
65    { X86::ADC64rr,     X86::ADC64mr },
66    { X86::ADD16ri,     X86::ADD16mi },
67    { X86::ADD16ri8,    X86::ADD16mi8 },
68    { X86::ADD16rr,     X86::ADD16mr },
69    { X86::ADD32ri,     X86::ADD32mi },
70    { X86::ADD32ri8,    X86::ADD32mi8 },
71    { X86::ADD32rr,     X86::ADD32mr },
72    { X86::ADD64ri32,   X86::ADD64mi32 },
73    { X86::ADD64ri8,    X86::ADD64mi8 },
74    { X86::ADD64rr,     X86::ADD64mr },
75    { X86::ADD8ri,      X86::ADD8mi },
76    { X86::ADD8rr,      X86::ADD8mr },
77    { X86::AND16ri,     X86::AND16mi },
78    { X86::AND16ri8,    X86::AND16mi8 },
79    { X86::AND16rr,     X86::AND16mr },
80    { X86::AND32ri,     X86::AND32mi },
81    { X86::AND32ri8,    X86::AND32mi8 },
82    { X86::AND32rr,     X86::AND32mr },
83    { X86::AND64ri32,   X86::AND64mi32 },
84    { X86::AND64ri8,    X86::AND64mi8 },
85    { X86::AND64rr,     X86::AND64mr },
86    { X86::AND8ri,      X86::AND8mi },
87    { X86::AND8rr,      X86::AND8mr },
88    { X86::DEC16r,      X86::DEC16m },
89    { X86::DEC32r,      X86::DEC32m },
90    { X86::DEC64_16r,   X86::DEC64_16m },
91    { X86::DEC64_32r,   X86::DEC64_32m },
92    { X86::DEC64r,      X86::DEC64m },
93    { X86::DEC8r,       X86::DEC8m },
94    { X86::INC16r,      X86::INC16m },
95    { X86::INC32r,      X86::INC32m },
96    { X86::INC64_16r,   X86::INC64_16m },
97    { X86::INC64_32r,   X86::INC64_32m },
98    { X86::INC64r,      X86::INC64m },
99    { X86::INC8r,       X86::INC8m },
100    { X86::NEG16r,      X86::NEG16m },
101    { X86::NEG32r,      X86::NEG32m },
102    { X86::NEG64r,      X86::NEG64m },
103    { X86::NEG8r,       X86::NEG8m },
104    { X86::NOT16r,      X86::NOT16m },
105    { X86::NOT32r,      X86::NOT32m },
106    { X86::NOT64r,      X86::NOT64m },
107    { X86::NOT8r,       X86::NOT8m },
108    { X86::OR16ri,      X86::OR16mi },
109    { X86::OR16ri8,     X86::OR16mi8 },
110    { X86::OR16rr,      X86::OR16mr },
111    { X86::OR32ri,      X86::OR32mi },
112    { X86::OR32ri8,     X86::OR32mi8 },
113    { X86::OR32rr,      X86::OR32mr },
114    { X86::OR64ri32,    X86::OR64mi32 },
115    { X86::OR64ri8,     X86::OR64mi8 },
116    { X86::OR64rr,      X86::OR64mr },
117    { X86::OR8ri,       X86::OR8mi },
118    { X86::OR8rr,       X86::OR8mr },
119    { X86::ROL16r1,     X86::ROL16m1 },
120    { X86::ROL16rCL,    X86::ROL16mCL },
121    { X86::ROL16ri,     X86::ROL16mi },
122    { X86::ROL32r1,     X86::ROL32m1 },
123    { X86::ROL32rCL,    X86::ROL32mCL },
124    { X86::ROL32ri,     X86::ROL32mi },
125    { X86::ROL64r1,     X86::ROL64m1 },
126    { X86::ROL64rCL,    X86::ROL64mCL },
127    { X86::ROL64ri,     X86::ROL64mi },
128    { X86::ROL8r1,      X86::ROL8m1 },
129    { X86::ROL8rCL,     X86::ROL8mCL },
130    { X86::ROL8ri,      X86::ROL8mi },
131    { X86::ROR16r1,     X86::ROR16m1 },
132    { X86::ROR16rCL,    X86::ROR16mCL },
133    { X86::ROR16ri,     X86::ROR16mi },
134    { X86::ROR32r1,     X86::ROR32m1 },
135    { X86::ROR32rCL,    X86::ROR32mCL },
136    { X86::ROR32ri,     X86::ROR32mi },
137    { X86::ROR64r1,     X86::ROR64m1 },
138    { X86::ROR64rCL,    X86::ROR64mCL },
139    { X86::ROR64ri,     X86::ROR64mi },
140    { X86::ROR8r1,      X86::ROR8m1 },
141    { X86::ROR8rCL,     X86::ROR8mCL },
142    { X86::ROR8ri,      X86::ROR8mi },
143    { X86::SAR16r1,     X86::SAR16m1 },
144    { X86::SAR16rCL,    X86::SAR16mCL },
145    { X86::SAR16ri,     X86::SAR16mi },
146    { X86::SAR32r1,     X86::SAR32m1 },
147    { X86::SAR32rCL,    X86::SAR32mCL },
148    { X86::SAR32ri,     X86::SAR32mi },
149    { X86::SAR64r1,     X86::SAR64m1 },
150    { X86::SAR64rCL,    X86::SAR64mCL },
151    { X86::SAR64ri,     X86::SAR64mi },
152    { X86::SAR8r1,      X86::SAR8m1 },
153    { X86::SAR8rCL,     X86::SAR8mCL },
154    { X86::SAR8ri,      X86::SAR8mi },
155    { X86::SBB32ri,     X86::SBB32mi },
156    { X86::SBB32ri8,    X86::SBB32mi8 },
157    { X86::SBB32rr,     X86::SBB32mr },
158    { X86::SBB64ri32,   X86::SBB64mi32 },
159    { X86::SBB64ri8,    X86::SBB64mi8 },
160    { X86::SBB64rr,     X86::SBB64mr },
161    { X86::SHL16rCL,    X86::SHL16mCL },
162    { X86::SHL16ri,     X86::SHL16mi },
163    { X86::SHL32rCL,    X86::SHL32mCL },
164    { X86::SHL32ri,     X86::SHL32mi },
165    { X86::SHL64rCL,    X86::SHL64mCL },
166    { X86::SHL64ri,     X86::SHL64mi },
167    { X86::SHL8rCL,     X86::SHL8mCL },
168    { X86::SHL8ri,      X86::SHL8mi },
169    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
170    { X86::SHLD16rri8,  X86::SHLD16mri8 },
171    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
172    { X86::SHLD32rri8,  X86::SHLD32mri8 },
173    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
174    { X86::SHLD64rri8,  X86::SHLD64mri8 },
175    { X86::SHR16r1,     X86::SHR16m1 },
176    { X86::SHR16rCL,    X86::SHR16mCL },
177    { X86::SHR16ri,     X86::SHR16mi },
178    { X86::SHR32r1,     X86::SHR32m1 },
179    { X86::SHR32rCL,    X86::SHR32mCL },
180    { X86::SHR32ri,     X86::SHR32mi },
181    { X86::SHR64r1,     X86::SHR64m1 },
182    { X86::SHR64rCL,    X86::SHR64mCL },
183    { X86::SHR64ri,     X86::SHR64mi },
184    { X86::SHR8r1,      X86::SHR8m1 },
185    { X86::SHR8rCL,     X86::SHR8mCL },
186    { X86::SHR8ri,      X86::SHR8mi },
187    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
188    { X86::SHRD16rri8,  X86::SHRD16mri8 },
189    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
190    { X86::SHRD32rri8,  X86::SHRD32mri8 },
191    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
192    { X86::SHRD64rri8,  X86::SHRD64mri8 },
193    { X86::SUB16ri,     X86::SUB16mi },
194    { X86::SUB16ri8,    X86::SUB16mi8 },
195    { X86::SUB16rr,     X86::SUB16mr },
196    { X86::SUB32ri,     X86::SUB32mi },
197    { X86::SUB32ri8,    X86::SUB32mi8 },
198    { X86::SUB32rr,     X86::SUB32mr },
199    { X86::SUB64ri32,   X86::SUB64mi32 },
200    { X86::SUB64ri8,    X86::SUB64mi8 },
201    { X86::SUB64rr,     X86::SUB64mr },
202    { X86::SUB8ri,      X86::SUB8mi },
203    { X86::SUB8rr,      X86::SUB8mr },
204    { X86::XOR16ri,     X86::XOR16mi },
205    { X86::XOR16ri8,    X86::XOR16mi8 },
206    { X86::XOR16rr,     X86::XOR16mr },
207    { X86::XOR32ri,     X86::XOR32mi },
208    { X86::XOR32ri8,    X86::XOR32mi8 },
209    { X86::XOR32rr,     X86::XOR32mr },
210    { X86::XOR64ri32,   X86::XOR64mi32 },
211    { X86::XOR64ri8,    X86::XOR64mi8 },
212    { X86::XOR64rr,     X86::XOR64mr },
213    { X86::XOR8ri,      X86::XOR8mi },
214    { X86::XOR8rr,      X86::XOR8mr }
215  };
216
217  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
218    unsigned RegOp = OpTbl2Addr[i][0];
219    unsigned MemOp = OpTbl2Addr[i][1];
220    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
221                                               std::make_pair(MemOp,0))).second)
222      assert(false && "Duplicated entries?");
223    // Index 0, folded load and store, no alignment requirement.
224    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
225    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
226                                                std::make_pair(RegOp,
227                                                              AuxInfo))).second)
228      AmbEntries.push_back(MemOp);
229  }
230
231  // If the third value is 1, then it's folding either a load or a store.
232  static const unsigned OpTbl0[][4] = {
233    { X86::BT16ri8,     X86::BT16mi8, 1, 0 },
234    { X86::BT32ri8,     X86::BT32mi8, 1, 0 },
235    { X86::BT64ri8,     X86::BT64mi8, 1, 0 },
236    { X86::CALL32r,     X86::CALL32m, 1, 0 },
237    { X86::CALL64r,     X86::CALL64m, 1, 0 },
238    { X86::CMP16ri,     X86::CMP16mi, 1, 0 },
239    { X86::CMP16ri8,    X86::CMP16mi8, 1, 0 },
240    { X86::CMP16rr,     X86::CMP16mr, 1, 0 },
241    { X86::CMP32ri,     X86::CMP32mi, 1, 0 },
242    { X86::CMP32ri8,    X86::CMP32mi8, 1, 0 },
243    { X86::CMP32rr,     X86::CMP32mr, 1, 0 },
244    { X86::CMP64ri32,   X86::CMP64mi32, 1, 0 },
245    { X86::CMP64ri8,    X86::CMP64mi8, 1, 0 },
246    { X86::CMP64rr,     X86::CMP64mr, 1, 0 },
247    { X86::CMP8ri,      X86::CMP8mi, 1, 0 },
248    { X86::CMP8rr,      X86::CMP8mr, 1, 0 },
249    { X86::DIV16r,      X86::DIV16m, 1, 0 },
250    { X86::DIV32r,      X86::DIV32m, 1, 0 },
251    { X86::DIV64r,      X86::DIV64m, 1, 0 },
252    { X86::DIV8r,       X86::DIV8m, 1, 0 },
253    { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
254    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0, 0 },
255    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0, 0 },
256    { X86::IDIV16r,     X86::IDIV16m, 1, 0 },
257    { X86::IDIV32r,     X86::IDIV32m, 1, 0 },
258    { X86::IDIV64r,     X86::IDIV64m, 1, 0 },
259    { X86::IDIV8r,      X86::IDIV8m, 1, 0 },
260    { X86::IMUL16r,     X86::IMUL16m, 1, 0 },
261    { X86::IMUL32r,     X86::IMUL32m, 1, 0 },
262    { X86::IMUL64r,     X86::IMUL64m, 1, 0 },
263    { X86::IMUL8r,      X86::IMUL8m, 1, 0 },
264    { X86::JMP32r,      X86::JMP32m, 1, 0 },
265    { X86::JMP64r,      X86::JMP64m, 1, 0 },
266    { X86::MOV16ri,     X86::MOV16mi, 0, 0 },
267    { X86::MOV16rr,     X86::MOV16mr, 0, 0 },
268    { X86::MOV32ri,     X86::MOV32mi, 0, 0 },
269    { X86::MOV32rr,     X86::MOV32mr, 0, 0 },
270    { X86::MOV32rr_TC,  X86::MOV32mr_TC, 0, 0 },
271    { X86::MOV64ri32,   X86::MOV64mi32, 0, 0 },
272    { X86::MOV64rr,     X86::MOV64mr, 0, 0 },
273    { X86::MOV8ri,      X86::MOV8mi, 0, 0 },
274    { X86::MOV8rr,      X86::MOV8mr, 0, 0 },
275    { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
276    { X86::MOVAPDrr,    X86::MOVAPDmr, 0, 16 },
277    { X86::MOVAPSrr,    X86::MOVAPSmr, 0, 16 },
278    { X86::MOVDQArr,    X86::MOVDQAmr, 0, 16 },
279    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
280    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
281    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
282    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0, 0 },
283    { X86::MOVUPDrr,    X86::MOVUPDmr, 0, 0 },
284    { X86::MOVUPSrr,    X86::MOVUPSmr, 0, 0 },
285    { X86::MUL16r,      X86::MUL16m, 1, 0 },
286    { X86::MUL32r,      X86::MUL32m, 1, 0 },
287    { X86::MUL64r,      X86::MUL64m, 1, 0 },
288    { X86::MUL8r,       X86::MUL8m, 1, 0 },
289    { X86::SETAEr,      X86::SETAEm, 0, 0 },
290    { X86::SETAr,       X86::SETAm, 0, 0 },
291    { X86::SETBEr,      X86::SETBEm, 0, 0 },
292    { X86::SETBr,       X86::SETBm, 0, 0 },
293    { X86::SETEr,       X86::SETEm, 0, 0 },
294    { X86::SETGEr,      X86::SETGEm, 0, 0 },
295    { X86::SETGr,       X86::SETGm, 0, 0 },
296    { X86::SETLEr,      X86::SETLEm, 0, 0 },
297    { X86::SETLr,       X86::SETLm, 0, 0 },
298    { X86::SETNEr,      X86::SETNEm, 0, 0 },
299    { X86::SETNOr,      X86::SETNOm, 0, 0 },
300    { X86::SETNPr,      X86::SETNPm, 0, 0 },
301    { X86::SETNSr,      X86::SETNSm, 0, 0 },
302    { X86::SETOr,       X86::SETOm, 0, 0 },
303    { X86::SETPr,       X86::SETPm, 0, 0 },
304    { X86::SETSr,       X86::SETSm, 0, 0 },
305    { X86::TAILJMPr,    X86::TAILJMPm, 1, 0 },
306    { X86::TAILJMPr64,  X86::TAILJMPm64, 1, 0 },
307    { X86::TEST16ri,    X86::TEST16mi, 1, 0 },
308    { X86::TEST32ri,    X86::TEST32mi, 1, 0 },
309    { X86::TEST64ri32,  X86::TEST64mi32, 1, 0 },
310    { X86::TEST8ri,     X86::TEST8mi, 1, 0 }
311  };
312
313  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
314    unsigned RegOp = OpTbl0[i][0];
315    unsigned MemOp = OpTbl0[i][1];
316    unsigned Align = OpTbl0[i][3];
317    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
318                                           std::make_pair(MemOp,Align))).second)
319      assert(false && "Duplicated entries?");
320    unsigned FoldedLoad = OpTbl0[i][2];
321    // Index 0, folded load or store.
322    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
323    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
324      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
325                                     std::make_pair(RegOp, AuxInfo))).second)
326        AmbEntries.push_back(MemOp);
327  }
328
329  static const unsigned OpTbl1[][3] = {
330    { X86::CMP16rr,         X86::CMP16rm, 0 },
331    { X86::CMP32rr,         X86::CMP32rm, 0 },
332    { X86::CMP64rr,         X86::CMP64rm, 0 },
333    { X86::CMP8rr,          X86::CMP8rm, 0 },
334    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm, 0 },
335    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm, 0 },
336    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm, 0 },
337    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm, 0 },
338    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm, 0 },
339    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm, 0 },
340    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm, 0 },
341    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm, 0 },
342    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm, 0 },
343    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm, 0 },
344    { X86::FsMOVAPDrr,      X86::MOVSDrm, 0 },
345    { X86::FsMOVAPSrr,      X86::MOVSSrm, 0 },
346    { X86::IMUL16rri,       X86::IMUL16rmi, 0 },
347    { X86::IMUL16rri8,      X86::IMUL16rmi8, 0 },
348    { X86::IMUL32rri,       X86::IMUL32rmi, 0 },
349    { X86::IMUL32rri8,      X86::IMUL32rmi8, 0 },
350    { X86::IMUL64rri32,     X86::IMUL64rmi32, 0 },
351    { X86::IMUL64rri8,      X86::IMUL64rmi8, 0 },
352    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm, 0 },
353    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm, 0 },
354    { X86::Int_COMISDrr,    X86::Int_COMISDrm, 0 },
355    { X86::Int_COMISSrr,    X86::Int_COMISSrm, 0 },
356    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm, 16 },
357    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm, 16 },
358    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm, 16 },
359    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm, 16 },
360    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm, 16 },
361    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm, 0 },
362    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
363    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm, 0 },
364    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm, 0 },
365    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
366    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm, 0 },
367    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
368    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm, 0 },
369    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm, 0 },
370    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
371    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm, 0 },
372    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
373    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
374    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
375    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
376    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
377    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
378    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm, 0 },
379    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm, 0 },
380    { X86::MOV16rr,         X86::MOV16rm, 0 },
381    { X86::MOV32rr,         X86::MOV32rm, 0 },
382    { X86::MOV32rr_TC,      X86::MOV32rm_TC, 0 },
383    { X86::MOV64rr,         X86::MOV64rm, 0 },
384    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm, 0 },
385    { X86::MOV64toSDrr,     X86::MOV64toSDrm, 0 },
386    { X86::MOV8rr,          X86::MOV8rm, 0 },
387    { X86::MOVAPDrr,        X86::MOVAPDrm, 16 },
388    { X86::MOVAPSrr,        X86::MOVAPSrm, 16 },
389    { X86::MOVDDUPrr,       X86::MOVDDUPrm, 0 },
390    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm, 0 },
391    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm, 0 },
392    { X86::MOVDQArr,        X86::MOVDQArm, 16 },
393    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm, 16 },
394    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm, 16 },
395    { X86::MOVSX16rr8,      X86::MOVSX16rm8, 0 },
396    { X86::MOVSX32rr16,     X86::MOVSX32rm16, 0 },
397    { X86::MOVSX32rr8,      X86::MOVSX32rm8, 0 },
398    { X86::MOVSX64rr16,     X86::MOVSX64rm16, 0 },
399    { X86::MOVSX64rr32,     X86::MOVSX64rm32, 0 },
400    { X86::MOVSX64rr8,      X86::MOVSX64rm8, 0 },
401    { X86::MOVUPDrr,        X86::MOVUPDrm, 16 },
402    { X86::MOVUPSrr,        X86::MOVUPSrm, 0 },
403    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm, 0 },
404    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm, 0 },
405    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
406    { X86::MOVZX16rr8,      X86::MOVZX16rm8, 0 },
407    { X86::MOVZX32rr16,     X86::MOVZX32rm16, 0 },
408    { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
409    { X86::MOVZX32rr8,      X86::MOVZX32rm8, 0 },
410    { X86::MOVZX64rr16,     X86::MOVZX64rm16, 0 },
411    { X86::MOVZX64rr32,     X86::MOVZX64rm32, 0 },
412    { X86::MOVZX64rr8,      X86::MOVZX64rm8, 0 },
413    { X86::PSHUFDri,        X86::PSHUFDmi, 16 },
414    { X86::PSHUFHWri,       X86::PSHUFHWmi, 16 },
415    { X86::PSHUFLWri,       X86::PSHUFLWmi, 16 },
416    { X86::RCPPSr,          X86::RCPPSm, 16 },
417    { X86::RCPPSr_Int,      X86::RCPPSm_Int, 16 },
418    { X86::RSQRTPSr,        X86::RSQRTPSm, 16 },
419    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int, 16 },
420    { X86::RSQRTSSr,        X86::RSQRTSSm, 0 },
421    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int, 0 },
422    { X86::SQRTPDr,         X86::SQRTPDm, 16 },
423    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int, 16 },
424    { X86::SQRTPSr,         X86::SQRTPSm, 16 },
425    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int, 16 },
426    { X86::SQRTSDr,         X86::SQRTSDm, 0 },
427    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int, 0 },
428    { X86::SQRTSSr,         X86::SQRTSSm, 0 },
429    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int, 0 },
430    { X86::TEST16rr,        X86::TEST16rm, 0 },
431    { X86::TEST32rr,        X86::TEST32rm, 0 },
432    { X86::TEST64rr,        X86::TEST64rm, 0 },
433    { X86::TEST8rr,         X86::TEST8rm, 0 },
434    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
435    { X86::UCOMISDrr,       X86::UCOMISDrm, 0 },
436    { X86::UCOMISSrr,       X86::UCOMISSrm, 0 }
437  };
438
439  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
440    unsigned RegOp = OpTbl1[i][0];
441    unsigned MemOp = OpTbl1[i][1];
442    unsigned Align = OpTbl1[i][2];
443    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
444                                           std::make_pair(MemOp,Align))).second)
445      assert(false && "Duplicated entries?");
446    // Index 1, folded load
447    unsigned AuxInfo = 1 | (1 << 4);
448    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
449      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
450                                     std::make_pair(RegOp, AuxInfo))).second)
451        AmbEntries.push_back(MemOp);
452  }
453
454  static const unsigned OpTbl2[][3] = {
455    { X86::ADC32rr,         X86::ADC32rm, 0 },
456    { X86::ADC64rr,         X86::ADC64rm, 0 },
457    { X86::ADD16rr,         X86::ADD16rm, 0 },
458    { X86::ADD32rr,         X86::ADD32rm, 0 },
459    { X86::ADD64rr,         X86::ADD64rm, 0 },
460    { X86::ADD8rr,          X86::ADD8rm, 0 },
461    { X86::ADDPDrr,         X86::ADDPDrm, 16 },
462    { X86::ADDPSrr,         X86::ADDPSrm, 16 },
463    { X86::ADDSDrr,         X86::ADDSDrm, 0 },
464    { X86::ADDSSrr,         X86::ADDSSrm, 0 },
465    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm, 16 },
466    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm, 16 },
467    { X86::AND16rr,         X86::AND16rm, 0 },
468    { X86::AND32rr,         X86::AND32rm, 0 },
469    { X86::AND64rr,         X86::AND64rm, 0 },
470    { X86::AND8rr,          X86::AND8rm, 0 },
471    { X86::ANDNPDrr,        X86::ANDNPDrm, 16 },
472    { X86::ANDNPSrr,        X86::ANDNPSrm, 16 },
473    { X86::ANDPDrr,         X86::ANDPDrm, 16 },
474    { X86::ANDPSrr,         X86::ANDPSrm, 16 },
475    { X86::CMOVA16rr,       X86::CMOVA16rm, 0 },
476    { X86::CMOVA32rr,       X86::CMOVA32rm, 0 },
477    { X86::CMOVA64rr,       X86::CMOVA64rm, 0 },
478    { X86::CMOVAE16rr,      X86::CMOVAE16rm, 0 },
479    { X86::CMOVAE32rr,      X86::CMOVAE32rm, 0 },
480    { X86::CMOVAE64rr,      X86::CMOVAE64rm, 0 },
481    { X86::CMOVB16rr,       X86::CMOVB16rm, 0 },
482    { X86::CMOVB32rr,       X86::CMOVB32rm, 0 },
483    { X86::CMOVB64rr,       X86::CMOVB64rm, 0 },
484    { X86::CMOVBE16rr,      X86::CMOVBE16rm, 0 },
485    { X86::CMOVBE32rr,      X86::CMOVBE32rm, 0 },
486    { X86::CMOVBE64rr,      X86::CMOVBE64rm, 0 },
487    { X86::CMOVE16rr,       X86::CMOVE16rm, 0 },
488    { X86::CMOVE32rr,       X86::CMOVE32rm, 0 },
489    { X86::CMOVE64rr,       X86::CMOVE64rm, 0 },
490    { X86::CMOVG16rr,       X86::CMOVG16rm, 0 },
491    { X86::CMOVG32rr,       X86::CMOVG32rm, 0 },
492    { X86::CMOVG64rr,       X86::CMOVG64rm, 0 },
493    { X86::CMOVGE16rr,      X86::CMOVGE16rm, 0 },
494    { X86::CMOVGE32rr,      X86::CMOVGE32rm, 0 },
495    { X86::CMOVGE64rr,      X86::CMOVGE64rm, 0 },
496    { X86::CMOVL16rr,       X86::CMOVL16rm, 0 },
497    { X86::CMOVL32rr,       X86::CMOVL32rm, 0 },
498    { X86::CMOVL64rr,       X86::CMOVL64rm, 0 },
499    { X86::CMOVLE16rr,      X86::CMOVLE16rm, 0 },
500    { X86::CMOVLE32rr,      X86::CMOVLE32rm, 0 },
501    { X86::CMOVLE64rr,      X86::CMOVLE64rm, 0 },
502    { X86::CMOVNE16rr,      X86::CMOVNE16rm, 0 },
503    { X86::CMOVNE32rr,      X86::CMOVNE32rm, 0 },
504    { X86::CMOVNE64rr,      X86::CMOVNE64rm, 0 },
505    { X86::CMOVNO16rr,      X86::CMOVNO16rm, 0 },
506    { X86::CMOVNO32rr,      X86::CMOVNO32rm, 0 },
507    { X86::CMOVNO64rr,      X86::CMOVNO64rm, 0 },
508    { X86::CMOVNP16rr,      X86::CMOVNP16rm, 0 },
509    { X86::CMOVNP32rr,      X86::CMOVNP32rm, 0 },
510    { X86::CMOVNP64rr,      X86::CMOVNP64rm, 0 },
511    { X86::CMOVNS16rr,      X86::CMOVNS16rm, 0 },
512    { X86::CMOVNS32rr,      X86::CMOVNS32rm, 0 },
513    { X86::CMOVNS64rr,      X86::CMOVNS64rm, 0 },
514    { X86::CMOVO16rr,       X86::CMOVO16rm, 0 },
515    { X86::CMOVO32rr,       X86::CMOVO32rm, 0 },
516    { X86::CMOVO64rr,       X86::CMOVO64rm, 0 },
517    { X86::CMOVP16rr,       X86::CMOVP16rm, 0 },
518    { X86::CMOVP32rr,       X86::CMOVP32rm, 0 },
519    { X86::CMOVP64rr,       X86::CMOVP64rm, 0 },
520    { X86::CMOVS16rr,       X86::CMOVS16rm, 0 },
521    { X86::CMOVS32rr,       X86::CMOVS32rm, 0 },
522    { X86::CMOVS64rr,       X86::CMOVS64rm, 0 },
523    { X86::CMPPDrri,        X86::CMPPDrmi, 16 },
524    { X86::CMPPSrri,        X86::CMPPSrmi, 16 },
525    { X86::CMPSDrr,         X86::CMPSDrm, 0 },
526    { X86::CMPSSrr,         X86::CMPSSrm, 0 },
527    { X86::DIVPDrr,         X86::DIVPDrm, 16 },
528    { X86::DIVPSrr,         X86::DIVPSrm, 16 },
529    { X86::DIVSDrr,         X86::DIVSDrm, 0 },
530    { X86::DIVSSrr,         X86::DIVSSrm, 0 },
531    { X86::FsANDNPDrr,      X86::FsANDNPDrm, 16 },
532    { X86::FsANDNPSrr,      X86::FsANDNPSrm, 16 },
533    { X86::FsANDPDrr,       X86::FsANDPDrm, 16 },
534    { X86::FsANDPSrr,       X86::FsANDPSrm, 16 },
535    { X86::FsORPDrr,        X86::FsORPDrm, 16 },
536    { X86::FsORPSrr,        X86::FsORPSrm, 16 },
537    { X86::FsXORPDrr,       X86::FsXORPDrm, 16 },
538    { X86::FsXORPSrr,       X86::FsXORPSrm, 16 },
539    { X86::HADDPDrr,        X86::HADDPDrm, 16 },
540    { X86::HADDPSrr,        X86::HADDPSrm, 16 },
541    { X86::HSUBPDrr,        X86::HSUBPDrm, 16 },
542    { X86::HSUBPSrr,        X86::HSUBPSrm, 16 },
543    { X86::IMUL16rr,        X86::IMUL16rm, 0 },
544    { X86::IMUL32rr,        X86::IMUL32rm, 0 },
545    { X86::IMUL64rr,        X86::IMUL64rm, 0 },
546    { X86::MAXPDrr,         X86::MAXPDrm, 16 },
547    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int, 16 },
548    { X86::MAXPSrr,         X86::MAXPSrm, 16 },
549    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int, 16 },
550    { X86::MAXSDrr,         X86::MAXSDrm, 0 },
551    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int, 0 },
552    { X86::MAXSSrr,         X86::MAXSSrm, 0 },
553    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int, 0 },
554    { X86::MINPDrr,         X86::MINPDrm, 16 },
555    { X86::MINPDrr_Int,     X86::MINPDrm_Int, 16 },
556    { X86::MINPSrr,         X86::MINPSrm, 16 },
557    { X86::MINPSrr_Int,     X86::MINPSrm_Int, 16 },
558    { X86::MINSDrr,         X86::MINSDrm, 0 },
559    { X86::MINSDrr_Int,     X86::MINSDrm_Int, 0 },
560    { X86::MINSSrr,         X86::MINSSrm, 0 },
561    { X86::MINSSrr_Int,     X86::MINSSrm_Int, 0 },
562    { X86::MULPDrr,         X86::MULPDrm, 16 },
563    { X86::MULPSrr,         X86::MULPSrm, 16 },
564    { X86::MULSDrr,         X86::MULSDrm, 0 },
565    { X86::MULSSrr,         X86::MULSSrm, 0 },
566    { X86::OR16rr,          X86::OR16rm, 0 },
567    { X86::OR32rr,          X86::OR32rm, 0 },
568    { X86::OR64rr,          X86::OR64rm, 0 },
569    { X86::OR8rr,           X86::OR8rm, 0 },
570    { X86::ORPDrr,          X86::ORPDrm, 16 },
571    { X86::ORPSrr,          X86::ORPSrm, 16 },
572    { X86::PACKSSDWrr,      X86::PACKSSDWrm, 16 },
573    { X86::PACKSSWBrr,      X86::PACKSSWBrm, 16 },
574    { X86::PACKUSWBrr,      X86::PACKUSWBrm, 16 },
575    { X86::PADDBrr,         X86::PADDBrm, 16 },
576    { X86::PADDDrr,         X86::PADDDrm, 16 },
577    { X86::PADDQrr,         X86::PADDQrm, 16 },
578    { X86::PADDSBrr,        X86::PADDSBrm, 16 },
579    { X86::PADDSWrr,        X86::PADDSWrm, 16 },
580    { X86::PADDWrr,         X86::PADDWrm, 16 },
581    { X86::PANDNrr,         X86::PANDNrm, 16 },
582    { X86::PANDrr,          X86::PANDrm, 16 },
583    { X86::PAVGBrr,         X86::PAVGBrm, 16 },
584    { X86::PAVGWrr,         X86::PAVGWrm, 16 },
585    { X86::PCMPEQBrr,       X86::PCMPEQBrm, 16 },
586    { X86::PCMPEQDrr,       X86::PCMPEQDrm, 16 },
587    { X86::PCMPEQWrr,       X86::PCMPEQWrm, 16 },
588    { X86::PCMPGTBrr,       X86::PCMPGTBrm, 16 },
589    { X86::PCMPGTDrr,       X86::PCMPGTDrm, 16 },
590    { X86::PCMPGTWrr,       X86::PCMPGTWrm, 16 },
591    { X86::PINSRWrri,       X86::PINSRWrmi, 16 },
592    { X86::PMADDWDrr,       X86::PMADDWDrm, 16 },
593    { X86::PMAXSWrr,        X86::PMAXSWrm, 16 },
594    { X86::PMAXUBrr,        X86::PMAXUBrm, 16 },
595    { X86::PMINSWrr,        X86::PMINSWrm, 16 },
596    { X86::PMINUBrr,        X86::PMINUBrm, 16 },
597    { X86::PMULDQrr,        X86::PMULDQrm, 16 },
598    { X86::PMULHUWrr,       X86::PMULHUWrm, 16 },
599    { X86::PMULHWrr,        X86::PMULHWrm, 16 },
600    { X86::PMULLDrr,        X86::PMULLDrm, 16 },
601    { X86::PMULLWrr,        X86::PMULLWrm, 16 },
602    { X86::PMULUDQrr,       X86::PMULUDQrm, 16 },
603    { X86::PORrr,           X86::PORrm, 16 },
604    { X86::PSADBWrr,        X86::PSADBWrm, 16 },
605    { X86::PSLLDrr,         X86::PSLLDrm, 16 },
606    { X86::PSLLQrr,         X86::PSLLQrm, 16 },
607    { X86::PSLLWrr,         X86::PSLLWrm, 16 },
608    { X86::PSRADrr,         X86::PSRADrm, 16 },
609    { X86::PSRAWrr,         X86::PSRAWrm, 16 },
610    { X86::PSRLDrr,         X86::PSRLDrm, 16 },
611    { X86::PSRLQrr,         X86::PSRLQrm, 16 },
612    { X86::PSRLWrr,         X86::PSRLWrm, 16 },
613    { X86::PSUBBrr,         X86::PSUBBrm, 16 },
614    { X86::PSUBDrr,         X86::PSUBDrm, 16 },
615    { X86::PSUBSBrr,        X86::PSUBSBrm, 16 },
616    { X86::PSUBSWrr,        X86::PSUBSWrm, 16 },
617    { X86::PSUBWrr,         X86::PSUBWrm, 16 },
618    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm, 16 },
619    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm, 16 },
620    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm, 16 },
621    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm, 16 },
622    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm, 16 },
623    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm, 16 },
624    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm, 16 },
625    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm, 16 },
626    { X86::PXORrr,          X86::PXORrm, 16 },
627    { X86::SBB32rr,         X86::SBB32rm, 0 },
628    { X86::SBB64rr,         X86::SBB64rm, 0 },
629    { X86::SHUFPDrri,       X86::SHUFPDrmi, 16 },
630    { X86::SHUFPSrri,       X86::SHUFPSrmi, 16 },
631    { X86::SUB16rr,         X86::SUB16rm, 0 },
632    { X86::SUB32rr,         X86::SUB32rm, 0 },
633    { X86::SUB64rr,         X86::SUB64rm, 0 },
634    { X86::SUB8rr,          X86::SUB8rm, 0 },
635    { X86::SUBPDrr,         X86::SUBPDrm, 16 },
636    { X86::SUBPSrr,         X86::SUBPSrm, 16 },
637    { X86::SUBSDrr,         X86::SUBSDrm, 0 },
638    { X86::SUBSSrr,         X86::SUBSSrm, 0 },
639    // FIXME: TEST*rr -> swapped operand of TEST*mr.
640    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm, 16 },
641    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm, 16 },
642    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm, 16 },
643    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm, 16 },
644    { X86::XOR16rr,         X86::XOR16rm, 0 },
645    { X86::XOR32rr,         X86::XOR32rm, 0 },
646    { X86::XOR64rr,         X86::XOR64rm, 0 },
647    { X86::XOR8rr,          X86::XOR8rm, 0 },
648    { X86::XORPDrr,         X86::XORPDrm, 16 },
649    { X86::XORPSrr,         X86::XORPSrm, 16 }
650  };
651
652  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
653    unsigned RegOp = OpTbl2[i][0];
654    unsigned MemOp = OpTbl2[i][1];
655    unsigned Align = OpTbl2[i][2];
656    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
657                                           std::make_pair(MemOp,Align))).second)
658      assert(false && "Duplicated entries?");
659    // Index 2, folded load
660    unsigned AuxInfo = 2 | (1 << 4);
661    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
662                                   std::make_pair(RegOp, AuxInfo))).second)
663      AmbEntries.push_back(MemOp);
664  }
665
666  // Remove ambiguous entries.
667  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
668}
669
670bool
671X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
672                                    unsigned &SrcReg, unsigned &DstReg,
673                                    unsigned &SubIdx) const {
674  switch (MI.getOpcode()) {
675  default: break;
676  case X86::MOVSX16rr8:
677  case X86::MOVZX16rr8:
678  case X86::MOVSX32rr8:
679  case X86::MOVZX32rr8:
680  case X86::MOVSX64rr8:
681  case X86::MOVZX64rr8:
682    if (!TM.getSubtarget<X86Subtarget>().is64Bit())
683      // It's not always legal to reference the low 8-bit of the larger
684      // register in 32-bit mode.
685      return false;
686  case X86::MOVSX32rr16:
687  case X86::MOVZX32rr16:
688  case X86::MOVSX64rr16:
689  case X86::MOVZX64rr16:
690  case X86::MOVSX64rr32:
691  case X86::MOVZX64rr32: {
692    if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
693      // Be conservative.
694      return false;
695    SrcReg = MI.getOperand(1).getReg();
696    DstReg = MI.getOperand(0).getReg();
697    switch (MI.getOpcode()) {
698    default:
699      llvm_unreachable(0);
700      break;
701    case X86::MOVSX16rr8:
702    case X86::MOVZX16rr8:
703    case X86::MOVSX32rr8:
704    case X86::MOVZX32rr8:
705    case X86::MOVSX64rr8:
706    case X86::MOVZX64rr8:
707      SubIdx = X86::sub_8bit;
708      break;
709    case X86::MOVSX32rr16:
710    case X86::MOVZX32rr16:
711    case X86::MOVSX64rr16:
712    case X86::MOVZX64rr16:
713      SubIdx = X86::sub_16bit;
714      break;
715    case X86::MOVSX64rr32:
716    case X86::MOVZX64rr32:
717      SubIdx = X86::sub_32bit;
718      break;
719    }
720    return true;
721  }
722  }
723  return false;
724}
725
726/// isFrameOperand - Return true and the FrameIndex if the specified
727/// operand and follow operands form a reference to the stack frame.
728bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
729                                  int &FrameIndex) const {
730  if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
731      MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
732      MI->getOperand(Op+1).getImm() == 1 &&
733      MI->getOperand(Op+2).getReg() == 0 &&
734      MI->getOperand(Op+3).getImm() == 0) {
735    FrameIndex = MI->getOperand(Op).getIndex();
736    return true;
737  }
738  return false;
739}
740
741static bool isFrameLoadOpcode(int Opcode) {
742  switch (Opcode) {
743  default: break;
744  case X86::MOV8rm:
745  case X86::MOV16rm:
746  case X86::MOV32rm:
747  case X86::MOV32rm_TC:
748  case X86::MOV64rm:
749  case X86::MOV64rm_TC:
750  case X86::LD_Fp64m:
751  case X86::MOVSSrm:
752  case X86::MOVSDrm:
753  case X86::MOVAPSrm:
754  case X86::MOVAPDrm:
755  case X86::MOVDQArm:
756  case X86::MMX_MOVD64rm:
757  case X86::MMX_MOVQ64rm:
758    return true;
759    break;
760  }
761  return false;
762}
763
764static bool isFrameStoreOpcode(int Opcode) {
765  switch (Opcode) {
766  default: break;
767  case X86::MOV8mr:
768  case X86::MOV16mr:
769  case X86::MOV32mr:
770  case X86::MOV32mr_TC:
771  case X86::MOV64mr:
772  case X86::MOV64mr_TC:
773  case X86::ST_FpP64m:
774  case X86::MOVSSmr:
775  case X86::MOVSDmr:
776  case X86::MOVAPSmr:
777  case X86::MOVAPDmr:
778  case X86::MOVDQAmr:
779  case X86::MMX_MOVD64mr:
780  case X86::MMX_MOVQ64mr:
781  case X86::MMX_MOVNTQmr:
782    return true;
783  }
784  return false;
785}
786
787unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
788                                           int &FrameIndex) const {
789  if (isFrameLoadOpcode(MI->getOpcode()))
790    if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
791      return MI->getOperand(0).getReg();
792  return 0;
793}
794
795unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
796                                                 int &FrameIndex) const {
797  if (isFrameLoadOpcode(MI->getOpcode())) {
798    unsigned Reg;
799    if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
800      return Reg;
801    // Check for post-frame index elimination operations
802    const MachineMemOperand *Dummy;
803    return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
804  }
805  return 0;
806}
807
808bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
809                                        const MachineMemOperand *&MMO,
810                                        int &FrameIndex) const {
811  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
812         oe = MI->memoperands_end();
813       o != oe;
814       ++o) {
815    if ((*o)->isLoad() && (*o)->getValue())
816      if (const FixedStackPseudoSourceValue *Value =
817          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
818        FrameIndex = Value->getFrameIndex();
819        MMO = *o;
820        return true;
821      }
822  }
823  return false;
824}
825
826unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
827                                          int &FrameIndex) const {
828  if (isFrameStoreOpcode(MI->getOpcode()))
829    if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
830        isFrameOperand(MI, 0, FrameIndex))
831      return MI->getOperand(X86::AddrNumOperands).getReg();
832  return 0;
833}
834
835unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
836                                                int &FrameIndex) const {
837  if (isFrameStoreOpcode(MI->getOpcode())) {
838    unsigned Reg;
839    if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
840      return Reg;
841    // Check for post-frame index elimination operations
842    const MachineMemOperand *Dummy;
843    return hasStoreToStackSlot(MI, Dummy, FrameIndex);
844  }
845  return 0;
846}
847
848bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
849                                       const MachineMemOperand *&MMO,
850                                       int &FrameIndex) const {
851  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
852         oe = MI->memoperands_end();
853       o != oe;
854       ++o) {
855    if ((*o)->isStore() && (*o)->getValue())
856      if (const FixedStackPseudoSourceValue *Value =
857          dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
858        FrameIndex = Value->getFrameIndex();
859        MMO = *o;
860        return true;
861      }
862  }
863  return false;
864}
865
866/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
867/// X86::MOVPC32r.
868static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
869  bool isPICBase = false;
870  for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
871         E = MRI.def_end(); I != E; ++I) {
872    MachineInstr *DefMI = I.getOperand().getParent();
873    if (DefMI->getOpcode() != X86::MOVPC32r)
874      return false;
875    assert(!isPICBase && "More than one PIC base?");
876    isPICBase = true;
877  }
878  return isPICBase;
879}
880
881bool
882X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
883                                                AliasAnalysis *AA) const {
884  switch (MI->getOpcode()) {
885  default: break;
886    case X86::MOV8rm:
887    case X86::MOV16rm:
888    case X86::MOV32rm:
889    case X86::MOV64rm:
890    case X86::LD_Fp64m:
891    case X86::MOVSSrm:
892    case X86::MOVSDrm:
893    case X86::MOVAPSrm:
894    case X86::MOVUPSrm:
895    case X86::MOVUPSrm_Int:
896    case X86::MOVAPDrm:
897    case X86::MOVDQArm:
898    case X86::MMX_MOVD64rm:
899    case X86::MMX_MOVQ64rm:
900    case X86::FsMOVAPSrm:
901    case X86::FsMOVAPDrm: {
902      // Loads from constant pools are trivially rematerializable.
903      if (MI->getOperand(1).isReg() &&
904          MI->getOperand(2).isImm() &&
905          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
906          MI->isInvariantLoad(AA)) {
907        unsigned BaseReg = MI->getOperand(1).getReg();
908        if (BaseReg == 0 || BaseReg == X86::RIP)
909          return true;
910        // Allow re-materialization of PIC load.
911        if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
912          return false;
913        const MachineFunction &MF = *MI->getParent()->getParent();
914        const MachineRegisterInfo &MRI = MF.getRegInfo();
915        bool isPICBase = false;
916        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
917               E = MRI.def_end(); I != E; ++I) {
918          MachineInstr *DefMI = I.getOperand().getParent();
919          if (DefMI->getOpcode() != X86::MOVPC32r)
920            return false;
921          assert(!isPICBase && "More than one PIC base?");
922          isPICBase = true;
923        }
924        return isPICBase;
925      }
926      return false;
927    }
928
929     case X86::LEA32r:
930     case X86::LEA64r: {
931       if (MI->getOperand(2).isImm() &&
932           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
933           !MI->getOperand(4).isReg()) {
934         // lea fi#, lea GV, etc. are all rematerializable.
935         if (!MI->getOperand(1).isReg())
936           return true;
937         unsigned BaseReg = MI->getOperand(1).getReg();
938         if (BaseReg == 0)
939           return true;
940         // Allow re-materialization of lea PICBase + x.
941         const MachineFunction &MF = *MI->getParent()->getParent();
942         const MachineRegisterInfo &MRI = MF.getRegInfo();
943         return regIsPICBase(BaseReg, MRI);
944       }
945       return false;
946     }
947  }
948
949  // All other instructions marked M_REMATERIALIZABLE are always trivially
950  // rematerializable.
951  return true;
952}
953
954/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
955/// would clobber the EFLAGS condition register. Note the result may be
956/// conservative. If it cannot definitely determine the safety after visiting
957/// a few instructions in each direction it assumes it's not safe.
958static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
959                                  MachineBasicBlock::iterator I) {
960  MachineBasicBlock::iterator E = MBB.end();
961
962  // It's always safe to clobber EFLAGS at the end of a block.
963  if (I == E)
964    return true;
965
966  // For compile time consideration, if we are not able to determine the
967  // safety after visiting 4 instructions in each direction, we will assume
968  // it's not safe.
969  MachineBasicBlock::iterator Iter = I;
970  for (unsigned i = 0; i < 4; ++i) {
971    bool SeenDef = false;
972    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
973      MachineOperand &MO = Iter->getOperand(j);
974      if (!MO.isReg())
975        continue;
976      if (MO.getReg() == X86::EFLAGS) {
977        if (MO.isUse())
978          return false;
979        SeenDef = true;
980      }
981    }
982
983    if (SeenDef)
984      // This instruction defines EFLAGS, no need to look any further.
985      return true;
986    ++Iter;
987    // Skip over DBG_VALUE.
988    while (Iter != E && Iter->isDebugValue())
989      ++Iter;
990
991    // If we make it to the end of the block, it's safe to clobber EFLAGS.
992    if (Iter == E)
993      return true;
994  }
995
996  MachineBasicBlock::iterator B = MBB.begin();
997  Iter = I;
998  for (unsigned i = 0; i < 4; ++i) {
999    // If we make it to the beginning of the block, it's safe to clobber
1000    // EFLAGS iff EFLAGS is not live-in.
1001    if (Iter == B)
1002      return !MBB.isLiveIn(X86::EFLAGS);
1003
1004    --Iter;
1005    // Skip over DBG_VALUE.
1006    while (Iter != B && Iter->isDebugValue())
1007      --Iter;
1008
1009    bool SawKill = false;
1010    for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1011      MachineOperand &MO = Iter->getOperand(j);
1012      if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1013        if (MO.isDef()) return MO.isDead();
1014        if (MO.isKill()) SawKill = true;
1015      }
1016    }
1017
1018    if (SawKill)
1019      // This instruction kills EFLAGS and doesn't redefine it, so
1020      // there's no need to look further.
1021      return true;
1022  }
1023
1024  // Conservative answer.
1025  return false;
1026}
1027
1028void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1029                                 MachineBasicBlock::iterator I,
1030                                 unsigned DestReg, unsigned SubIdx,
1031                                 const MachineInstr *Orig,
1032                                 const TargetRegisterInfo &TRI) const {
1033  DebugLoc DL = Orig->getDebugLoc();
1034
1035  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1036  // Re-materialize them as movri instructions to avoid side effects.
1037  bool Clone = true;
1038  unsigned Opc = Orig->getOpcode();
1039  switch (Opc) {
1040  default: break;
1041  case X86::MOV8r0:
1042  case X86::MOV16r0:
1043  case X86::MOV32r0:
1044  case X86::MOV64r0: {
1045    if (!isSafeToClobberEFLAGS(MBB, I)) {
1046      switch (Opc) {
1047      default: break;
1048      case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
1049      case X86::MOV16r0: Opc = X86::MOV16ri; break;
1050      case X86::MOV32r0: Opc = X86::MOV32ri; break;
1051      case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
1052      }
1053      Clone = false;
1054    }
1055    break;
1056  }
1057  }
1058
1059  if (Clone) {
1060    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1061    MBB.insert(I, MI);
1062  } else {
1063    BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
1064  }
1065
1066  MachineInstr *NewMI = prior(I);
1067  NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1068}
1069
1070/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1071/// is not marked dead.
1072static bool hasLiveCondCodeDef(MachineInstr *MI) {
1073  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1074    MachineOperand &MO = MI->getOperand(i);
1075    if (MO.isReg() && MO.isDef() &&
1076        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1077      return true;
1078    }
1079  }
1080  return false;
1081}
1082
1083/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
1084/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1085/// to a 32-bit superregister and then truncating back down to a 16-bit
1086/// subregister.
1087MachineInstr *
1088X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1089                                           MachineFunction::iterator &MFI,
1090                                           MachineBasicBlock::iterator &MBBI,
1091                                           LiveVariables *LV) const {
1092  MachineInstr *MI = MBBI;
1093  unsigned Dest = MI->getOperand(0).getReg();
1094  unsigned Src = MI->getOperand(1).getReg();
1095  bool isDead = MI->getOperand(0).isDead();
1096  bool isKill = MI->getOperand(1).isKill();
1097
1098  unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1099    ? X86::LEA64_32r : X86::LEA32r;
1100  MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
1101  unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1102  unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1103
1104  // Build and insert into an implicit UNDEF value. This is OK because
1105  // well be shifting and then extracting the lower 16-bits.
1106  // This has the potential to cause partial register stall. e.g.
1107  //   movw    (%rbp,%rcx,2), %dx
1108  //   leal    -65(%rdx), %esi
1109  // But testing has shown this *does* help performance in 64-bit mode (at
1110  // least on modern x86 machines).
1111  BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1112  MachineInstr *InsMI =
1113    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1114    .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1115    .addReg(Src, getKillRegState(isKill));
1116
1117  MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1118                                    get(Opc), leaOutReg);
1119  switch (MIOpc) {
1120  default:
1121    llvm_unreachable(0);
1122    break;
1123  case X86::SHL16ri: {
1124    unsigned ShAmt = MI->getOperand(2).getImm();
1125    MIB.addReg(0).addImm(1 << ShAmt)
1126       .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
1127    break;
1128  }
1129  case X86::INC16r:
1130  case X86::INC64_16r:
1131    addRegOffset(MIB, leaInReg, true, 1);
1132    break;
1133  case X86::DEC16r:
1134  case X86::DEC64_16r:
1135    addRegOffset(MIB, leaInReg, true, -1);
1136    break;
1137  case X86::ADD16ri:
1138  case X86::ADD16ri8:
1139    addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
1140    break;
1141  case X86::ADD16rr: {
1142    unsigned Src2 = MI->getOperand(2).getReg();
1143    bool isKill2 = MI->getOperand(2).isKill();
1144    unsigned leaInReg2 = 0;
1145    MachineInstr *InsMI2 = 0;
1146    if (Src == Src2) {
1147      // ADD16rr %reg1028<kill>, %reg1028
1148      // just a single insert_subreg.
1149      addRegReg(MIB, leaInReg, true, leaInReg, false);
1150    } else {
1151      leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1152      // Build and insert into an implicit UNDEF value. This is OK because
1153      // well be shifting and then extracting the lower 16-bits.
1154      BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1155      InsMI2 =
1156        BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1157        .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1158        .addReg(Src2, getKillRegState(isKill2));
1159      addRegReg(MIB, leaInReg, true, leaInReg2, true);
1160    }
1161    if (LV && isKill2 && InsMI2)
1162      LV->replaceKillInstruction(Src2, MI, InsMI2);
1163    break;
1164  }
1165  }
1166
1167  MachineInstr *NewMI = MIB;
1168  MachineInstr *ExtMI =
1169    BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1170    .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1171    .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
1172
1173  if (LV) {
1174    // Update live variables
1175    LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1176    LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1177    if (isKill)
1178      LV->replaceKillInstruction(Src, MI, InsMI);
1179    if (isDead)
1180      LV->replaceKillInstruction(Dest, MI, ExtMI);
1181  }
1182
1183  return ExtMI;
1184}
1185
1186/// convertToThreeAddress - This method must be implemented by targets that
1187/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
1188/// may be able to convert a two-address instruction into a true
1189/// three-address instruction on demand.  This allows the X86 target (for
1190/// example) to convert ADD and SHL instructions into LEA instructions if they
1191/// would require register copies due to two-addressness.
1192///
1193/// This method returns a null pointer if the transformation cannot be
1194/// performed, otherwise it returns the new instruction.
1195///
1196MachineInstr *
1197X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1198                                    MachineBasicBlock::iterator &MBBI,
1199                                    LiveVariables *LV) const {
1200  MachineInstr *MI = MBBI;
1201  MachineFunction &MF = *MI->getParent()->getParent();
1202  // All instructions input are two-addr instructions.  Get the known operands.
1203  unsigned Dest = MI->getOperand(0).getReg();
1204  unsigned Src = MI->getOperand(1).getReg();
1205  bool isDead = MI->getOperand(0).isDead();
1206  bool isKill = MI->getOperand(1).isKill();
1207
1208  MachineInstr *NewMI = NULL;
1209  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
1210  // we have better subtarget support, enable the 16-bit LEA generation here.
1211  // 16-bit LEA is also slow on Core2.
1212  bool DisableLEA16 = true;
1213  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1214
1215  unsigned MIOpc = MI->getOpcode();
1216  switch (MIOpc) {
1217  case X86::SHUFPSrri: {
1218    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1219    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1220
1221    unsigned B = MI->getOperand(1).getReg();
1222    unsigned C = MI->getOperand(2).getReg();
1223    if (B != C) return 0;
1224    unsigned A = MI->getOperand(0).getReg();
1225    unsigned M = MI->getOperand(3).getImm();
1226    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1227      .addReg(A, RegState::Define | getDeadRegState(isDead))
1228      .addReg(B, getKillRegState(isKill)).addImm(M);
1229    break;
1230  }
1231  case X86::SHL64ri: {
1232    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1233    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1234    // the flags produced by a shift yet, so this is safe.
1235    unsigned ShAmt = MI->getOperand(2).getImm();
1236    if (ShAmt == 0 || ShAmt >= 4) return 0;
1237
1238    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1239      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1240      .addReg(0).addImm(1 << ShAmt)
1241      .addReg(Src, getKillRegState(isKill))
1242      .addImm(0).addReg(0);
1243    break;
1244  }
1245  case X86::SHL32ri: {
1246    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1247    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1248    // the flags produced by a shift yet, so this is safe.
1249    unsigned ShAmt = MI->getOperand(2).getImm();
1250    if (ShAmt == 0 || ShAmt >= 4) return 0;
1251
1252    unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1253    NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1254      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1255      .addReg(0).addImm(1 << ShAmt)
1256      .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
1257    break;
1258  }
1259  case X86::SHL16ri: {
1260    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
1261    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1262    // the flags produced by a shift yet, so this is safe.
1263    unsigned ShAmt = MI->getOperand(2).getImm();
1264    if (ShAmt == 0 || ShAmt >= 4) return 0;
1265
1266    if (DisableLEA16)
1267      return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1268    NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1269      .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1270      .addReg(0).addImm(1 << ShAmt)
1271      .addReg(Src, getKillRegState(isKill))
1272      .addImm(0).addReg(0);
1273    break;
1274  }
1275  default: {
1276    // The following opcodes also sets the condition code register(s). Only
1277    // convert them to equivalent lea if the condition code register def's
1278    // are dead!
1279    if (hasLiveCondCodeDef(MI))
1280      return 0;
1281
1282    switch (MIOpc) {
1283    default: return 0;
1284    case X86::INC64r:
1285    case X86::INC32r:
1286    case X86::INC64_32r: {
1287      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1288      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1289        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1290      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1291                              .addReg(Dest, RegState::Define |
1292                                      getDeadRegState(isDead)),
1293                              Src, isKill, 1);
1294      break;
1295    }
1296    case X86::INC16r:
1297    case X86::INC64_16r:
1298      if (DisableLEA16)
1299        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1300      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1301      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1302                           .addReg(Dest, RegState::Define |
1303                                   getDeadRegState(isDead)),
1304                           Src, isKill, 1);
1305      break;
1306    case X86::DEC64r:
1307    case X86::DEC32r:
1308    case X86::DEC64_32r: {
1309      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1310      unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1311        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1312      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1313                              .addReg(Dest, RegState::Define |
1314                                      getDeadRegState(isDead)),
1315                              Src, isKill, -1);
1316      break;
1317    }
1318    case X86::DEC16r:
1319    case X86::DEC64_16r:
1320      if (DisableLEA16)
1321        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1322      assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1323      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1324                           .addReg(Dest, RegState::Define |
1325                                   getDeadRegState(isDead)),
1326                           Src, isKill, -1);
1327      break;
1328    case X86::ADD64rr:
1329    case X86::ADD32rr: {
1330      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1331      unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1332        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
1333      unsigned Src2 = MI->getOperand(2).getReg();
1334      bool isKill2 = MI->getOperand(2).isKill();
1335      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1336                        .addReg(Dest, RegState::Define |
1337                                getDeadRegState(isDead)),
1338                        Src, isKill, Src2, isKill2);
1339      if (LV && isKill2)
1340        LV->replaceKillInstruction(Src2, MI, NewMI);
1341      break;
1342    }
1343    case X86::ADD16rr: {
1344      if (DisableLEA16)
1345        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1346      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1347      unsigned Src2 = MI->getOperand(2).getReg();
1348      bool isKill2 = MI->getOperand(2).isKill();
1349      NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1350                        .addReg(Dest, RegState::Define |
1351                                getDeadRegState(isDead)),
1352                        Src, isKill, Src2, isKill2);
1353      if (LV && isKill2)
1354        LV->replaceKillInstruction(Src2, MI, NewMI);
1355      break;
1356    }
1357    case X86::ADD64ri32:
1358    case X86::ADD64ri8:
1359      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1360      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1361                              .addReg(Dest, RegState::Define |
1362                                      getDeadRegState(isDead)),
1363                              Src, isKill, MI->getOperand(2).getImm());
1364      break;
1365    case X86::ADD32ri:
1366    case X86::ADD32ri8: {
1367      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1368      unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1369      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
1370                              .addReg(Dest, RegState::Define |
1371                                      getDeadRegState(isDead)),
1372                                Src, isKill, MI->getOperand(2).getImm());
1373      break;
1374    }
1375    case X86::ADD16ri:
1376    case X86::ADD16ri8:
1377      if (DisableLEA16)
1378        return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
1379      assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1380      NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1381                              .addReg(Dest, RegState::Define |
1382                                      getDeadRegState(isDead)),
1383                              Src, isKill, MI->getOperand(2).getImm());
1384      break;
1385    }
1386  }
1387  }
1388
1389  if (!NewMI) return 0;
1390
1391  if (LV) {  // Update live variables
1392    if (isKill)
1393      LV->replaceKillInstruction(Src, MI, NewMI);
1394    if (isDead)
1395      LV->replaceKillInstruction(Dest, MI, NewMI);
1396  }
1397
1398  MFI->insert(MBBI, NewMI);          // Insert the new inst
1399  return NewMI;
1400}
1401
1402/// commuteInstruction - We have a few instructions that must be hacked on to
1403/// commute them.
1404///
1405MachineInstr *
1406X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1407  switch (MI->getOpcode()) {
1408  case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1409  case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1410  case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1411  case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1412  case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1413  case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1414    unsigned Opc;
1415    unsigned Size;
1416    switch (MI->getOpcode()) {
1417    default: llvm_unreachable("Unreachable!");
1418    case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1419    case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1420    case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1421    case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
1422    case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1423    case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
1424    }
1425    unsigned Amt = MI->getOperand(3).getImm();
1426    if (NewMI) {
1427      MachineFunction &MF = *MI->getParent()->getParent();
1428      MI = MF.CloneMachineInstr(MI);
1429      NewMI = false;
1430    }
1431    MI->setDesc(get(Opc));
1432    MI->getOperand(3).setImm(Size-Amt);
1433    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1434  }
1435  case X86::CMOVB16rr:
1436  case X86::CMOVB32rr:
1437  case X86::CMOVB64rr:
1438  case X86::CMOVAE16rr:
1439  case X86::CMOVAE32rr:
1440  case X86::CMOVAE64rr:
1441  case X86::CMOVE16rr:
1442  case X86::CMOVE32rr:
1443  case X86::CMOVE64rr:
1444  case X86::CMOVNE16rr:
1445  case X86::CMOVNE32rr:
1446  case X86::CMOVNE64rr:
1447  case X86::CMOVBE16rr:
1448  case X86::CMOVBE32rr:
1449  case X86::CMOVBE64rr:
1450  case X86::CMOVA16rr:
1451  case X86::CMOVA32rr:
1452  case X86::CMOVA64rr:
1453  case X86::CMOVL16rr:
1454  case X86::CMOVL32rr:
1455  case X86::CMOVL64rr:
1456  case X86::CMOVGE16rr:
1457  case X86::CMOVGE32rr:
1458  case X86::CMOVGE64rr:
1459  case X86::CMOVLE16rr:
1460  case X86::CMOVLE32rr:
1461  case X86::CMOVLE64rr:
1462  case X86::CMOVG16rr:
1463  case X86::CMOVG32rr:
1464  case X86::CMOVG64rr:
1465  case X86::CMOVS16rr:
1466  case X86::CMOVS32rr:
1467  case X86::CMOVS64rr:
1468  case X86::CMOVNS16rr:
1469  case X86::CMOVNS32rr:
1470  case X86::CMOVNS64rr:
1471  case X86::CMOVP16rr:
1472  case X86::CMOVP32rr:
1473  case X86::CMOVP64rr:
1474  case X86::CMOVNP16rr:
1475  case X86::CMOVNP32rr:
1476  case X86::CMOVNP64rr:
1477  case X86::CMOVO16rr:
1478  case X86::CMOVO32rr:
1479  case X86::CMOVO64rr:
1480  case X86::CMOVNO16rr:
1481  case X86::CMOVNO32rr:
1482  case X86::CMOVNO64rr: {
1483    unsigned Opc = 0;
1484    switch (MI->getOpcode()) {
1485    default: break;
1486    case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
1487    case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
1488    case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
1489    case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1490    case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1491    case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1492    case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
1493    case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
1494    case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
1495    case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1496    case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1497    case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1498    case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1499    case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1500    case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1501    case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
1502    case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
1503    case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
1504    case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
1505    case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
1506    case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
1507    case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1508    case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1509    case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1510    case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1511    case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1512    case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1513    case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
1514    case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
1515    case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
1516    case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
1517    case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
1518    case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
1519    case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1520    case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1521    case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1522    case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
1523    case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
1524    case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
1525    case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1526    case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1527    case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1528    case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
1529    case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
1530    case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
1531    case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1532    case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1533    case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
1534    }
1535    if (NewMI) {
1536      MachineFunction &MF = *MI->getParent()->getParent();
1537      MI = MF.CloneMachineInstr(MI);
1538      NewMI = false;
1539    }
1540    MI->setDesc(get(Opc));
1541    // Fallthrough intended.
1542  }
1543  default:
1544    return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
1545  }
1546}
1547
1548static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1549  switch (BrOpc) {
1550  default: return X86::COND_INVALID;
1551  case X86::JE_4:  return X86::COND_E;
1552  case X86::JNE_4: return X86::COND_NE;
1553  case X86::JL_4:  return X86::COND_L;
1554  case X86::JLE_4: return X86::COND_LE;
1555  case X86::JG_4:  return X86::COND_G;
1556  case X86::JGE_4: return X86::COND_GE;
1557  case X86::JB_4:  return X86::COND_B;
1558  case X86::JBE_4: return X86::COND_BE;
1559  case X86::JA_4:  return X86::COND_A;
1560  case X86::JAE_4: return X86::COND_AE;
1561  case X86::JS_4:  return X86::COND_S;
1562  case X86::JNS_4: return X86::COND_NS;
1563  case X86::JP_4:  return X86::COND_P;
1564  case X86::JNP_4: return X86::COND_NP;
1565  case X86::JO_4:  return X86::COND_O;
1566  case X86::JNO_4: return X86::COND_NO;
1567  }
1568}
1569
1570unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1571  switch (CC) {
1572  default: llvm_unreachable("Illegal condition code!");
1573  case X86::COND_E:  return X86::JE_4;
1574  case X86::COND_NE: return X86::JNE_4;
1575  case X86::COND_L:  return X86::JL_4;
1576  case X86::COND_LE: return X86::JLE_4;
1577  case X86::COND_G:  return X86::JG_4;
1578  case X86::COND_GE: return X86::JGE_4;
1579  case X86::COND_B:  return X86::JB_4;
1580  case X86::COND_BE: return X86::JBE_4;
1581  case X86::COND_A:  return X86::JA_4;
1582  case X86::COND_AE: return X86::JAE_4;
1583  case X86::COND_S:  return X86::JS_4;
1584  case X86::COND_NS: return X86::JNS_4;
1585  case X86::COND_P:  return X86::JP_4;
1586  case X86::COND_NP: return X86::JNP_4;
1587  case X86::COND_O:  return X86::JO_4;
1588  case X86::COND_NO: return X86::JNO_4;
1589  }
1590}
1591
1592/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1593/// e.g. turning COND_E to COND_NE.
1594X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1595  switch (CC) {
1596  default: llvm_unreachable("Illegal condition code!");
1597  case X86::COND_E:  return X86::COND_NE;
1598  case X86::COND_NE: return X86::COND_E;
1599  case X86::COND_L:  return X86::COND_GE;
1600  case X86::COND_LE: return X86::COND_G;
1601  case X86::COND_G:  return X86::COND_LE;
1602  case X86::COND_GE: return X86::COND_L;
1603  case X86::COND_B:  return X86::COND_AE;
1604  case X86::COND_BE: return X86::COND_A;
1605  case X86::COND_A:  return X86::COND_BE;
1606  case X86::COND_AE: return X86::COND_B;
1607  case X86::COND_S:  return X86::COND_NS;
1608  case X86::COND_NS: return X86::COND_S;
1609  case X86::COND_P:  return X86::COND_NP;
1610  case X86::COND_NP: return X86::COND_P;
1611  case X86::COND_O:  return X86::COND_NO;
1612  case X86::COND_NO: return X86::COND_O;
1613  }
1614}
1615
1616bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1617  const TargetInstrDesc &TID = MI->getDesc();
1618  if (!TID.isTerminator()) return false;
1619
1620  // Conditional branch is a special case.
1621  if (TID.isBranch() && !TID.isBarrier())
1622    return true;
1623  if (!TID.isPredicable())
1624    return true;
1625  return !isPredicated(MI);
1626}
1627
1628bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1629                                 MachineBasicBlock *&TBB,
1630                                 MachineBasicBlock *&FBB,
1631                                 SmallVectorImpl<MachineOperand> &Cond,
1632                                 bool AllowModify) const {
1633  // Start from the bottom of the block and work up, examining the
1634  // terminator instructions.
1635  MachineBasicBlock::iterator I = MBB.end();
1636  MachineBasicBlock::iterator UnCondBrIter = MBB.end();
1637  while (I != MBB.begin()) {
1638    --I;
1639    if (I->isDebugValue())
1640      continue;
1641
1642    // Working from the bottom, when we see a non-terminator instruction, we're
1643    // done.
1644    if (!isUnpredicatedTerminator(I))
1645      break;
1646
1647    // A terminator that isn't a branch can't easily be handled by this
1648    // analysis.
1649    if (!I->getDesc().isBranch())
1650      return true;
1651
1652    // Handle unconditional branches.
1653    if (I->getOpcode() == X86::JMP_4) {
1654      UnCondBrIter = I;
1655
1656      if (!AllowModify) {
1657        TBB = I->getOperand(0).getMBB();
1658        continue;
1659      }
1660
1661      // If the block has any instructions after a JMP, delete them.
1662      while (llvm::next(I) != MBB.end())
1663        llvm::next(I)->eraseFromParent();
1664
1665      Cond.clear();
1666      FBB = 0;
1667
1668      // Delete the JMP if it's equivalent to a fall-through.
1669      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1670        TBB = 0;
1671        I->eraseFromParent();
1672        I = MBB.end();
1673        UnCondBrIter = MBB.end();
1674        continue;
1675      }
1676
1677      // TBB is used to indicate the unconditional destination.
1678      TBB = I->getOperand(0).getMBB();
1679      continue;
1680    }
1681
1682    // Handle conditional branches.
1683    X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
1684    if (BranchCode == X86::COND_INVALID)
1685      return true;  // Can't handle indirect branch.
1686
1687    // Working from the bottom, handle the first conditional branch.
1688    if (Cond.empty()) {
1689      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1690      if (AllowModify && UnCondBrIter != MBB.end() &&
1691          MBB.isLayoutSuccessor(TargetBB)) {
1692        // If we can modify the code and it ends in something like:
1693        //
1694        //     jCC L1
1695        //     jmp L2
1696        //   L1:
1697        //     ...
1698        //   L2:
1699        //
1700        // Then we can change this to:
1701        //
1702        //     jnCC L2
1703        //   L1:
1704        //     ...
1705        //   L2:
1706        //
1707        // Which is a bit more efficient.
1708        // We conditionally jump to the fall-through block.
1709        BranchCode = GetOppositeBranchCondition(BranchCode);
1710        unsigned JNCC = GetCondBranchFromCond(BranchCode);
1711        MachineBasicBlock::iterator OldInst = I;
1712
1713        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1714          .addMBB(UnCondBrIter->getOperand(0).getMBB());
1715        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1716          .addMBB(TargetBB);
1717        MBB.addSuccessor(TargetBB);
1718
1719        OldInst->eraseFromParent();
1720        UnCondBrIter->eraseFromParent();
1721
1722        // Restart the analysis.
1723        UnCondBrIter = MBB.end();
1724        I = MBB.end();
1725        continue;
1726      }
1727
1728      FBB = TBB;
1729      TBB = I->getOperand(0).getMBB();
1730      Cond.push_back(MachineOperand::CreateImm(BranchCode));
1731      continue;
1732    }
1733
1734    // Handle subsequent conditional branches. Only handle the case where all
1735    // conditional branches branch to the same destination and their condition
1736    // opcodes fit one of the special multi-branch idioms.
1737    assert(Cond.size() == 1);
1738    assert(TBB);
1739
1740    // Only handle the case where all conditional branches branch to the same
1741    // destination.
1742    if (TBB != I->getOperand(0).getMBB())
1743      return true;
1744
1745    // If the conditions are the same, we can leave them alone.
1746    X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1747    if (OldBranchCode == BranchCode)
1748      continue;
1749
1750    // If they differ, see if they fit one of the known patterns. Theoretically,
1751    // we could handle more patterns here, but we shouldn't expect to see them
1752    // if instruction selection has done a reasonable job.
1753    if ((OldBranchCode == X86::COND_NP &&
1754         BranchCode == X86::COND_E) ||
1755        (OldBranchCode == X86::COND_E &&
1756         BranchCode == X86::COND_NP))
1757      BranchCode = X86::COND_NP_OR_E;
1758    else if ((OldBranchCode == X86::COND_P &&
1759              BranchCode == X86::COND_NE) ||
1760             (OldBranchCode == X86::COND_NE &&
1761              BranchCode == X86::COND_P))
1762      BranchCode = X86::COND_NE_OR_P;
1763    else
1764      return true;
1765
1766    // Update the MachineOperand.
1767    Cond[0].setImm(BranchCode);
1768  }
1769
1770  return false;
1771}
1772
1773unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1774  MachineBasicBlock::iterator I = MBB.end();
1775  unsigned Count = 0;
1776
1777  while (I != MBB.begin()) {
1778    --I;
1779    if (I->isDebugValue())
1780      continue;
1781    if (I->getOpcode() != X86::JMP_4 &&
1782        GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1783      break;
1784    // Remove the branch.
1785    I->eraseFromParent();
1786    I = MBB.end();
1787    ++Count;
1788  }
1789
1790  return Count;
1791}
1792
1793unsigned
1794X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1795                           MachineBasicBlock *FBB,
1796                           const SmallVectorImpl<MachineOperand> &Cond,
1797                           DebugLoc DL) const {
1798  // Shouldn't be a fall through.
1799  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1800  assert((Cond.size() == 1 || Cond.size() == 0) &&
1801         "X86 branch conditions have one component!");
1802
1803  if (Cond.empty()) {
1804    // Unconditional branch?
1805    assert(!FBB && "Unconditional branch with multiple successors!");
1806    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
1807    return 1;
1808  }
1809
1810  // Conditional branch.
1811  unsigned Count = 0;
1812  X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1813  switch (CC) {
1814  case X86::COND_NP_OR_E:
1815    // Synthesize NP_OR_E with two branches.
1816    BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
1817    ++Count;
1818    BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
1819    ++Count;
1820    break;
1821  case X86::COND_NE_OR_P:
1822    // Synthesize NE_OR_P with two branches.
1823    BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
1824    ++Count;
1825    BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
1826    ++Count;
1827    break;
1828  default: {
1829    unsigned Opc = GetCondBranchFromCond(CC);
1830    BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
1831    ++Count;
1832  }
1833  }
1834  if (FBB) {
1835    // Two-way Conditional branch. Insert the second branch.
1836    BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
1837    ++Count;
1838  }
1839  return Count;
1840}
1841
1842/// isHReg - Test if the given register is a physical h register.
1843static bool isHReg(unsigned Reg) {
1844  return X86::GR8_ABCD_HRegClass.contains(Reg);
1845}
1846
1847void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1848                               MachineBasicBlock::iterator MI, DebugLoc DL,
1849                               unsigned DestReg, unsigned SrcReg,
1850                               bool KillSrc) const {
1851  // First deal with the normal symmetric copies.
1852  unsigned Opc = 0;
1853  if (X86::GR64RegClass.contains(DestReg, SrcReg))
1854    Opc = X86::MOV64rr;
1855  else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1856    Opc = X86::MOV32rr;
1857  else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1858    Opc = X86::MOV16rr;
1859  else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1860    // Copying to or from a physical H register on x86-64 requires a NOREX
1861    // move.  Otherwise use a normal move.
1862    if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1863        TM.getSubtarget<X86Subtarget>().is64Bit())
1864      Opc = X86::MOV8rr_NOREX;
1865    else
1866      Opc = X86::MOV8rr;
1867  } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
1868    Opc = X86::MOVAPSrr;
1869  else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1870    Opc = X86::MMX_MOVQ64rr;
1871
1872  if (Opc) {
1873    BuildMI(MBB, MI, DL, get(Opc), DestReg)
1874      .addReg(SrcReg, getKillRegState(KillSrc));
1875    return;
1876  }
1877
1878  // Moving EFLAGS to / from another register requires a push and a pop.
1879  if (SrcReg == X86::EFLAGS) {
1880    if (X86::GR64RegClass.contains(DestReg)) {
1881      BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1882      BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1883      return;
1884    } else if (X86::GR32RegClass.contains(DestReg)) {
1885      BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1886      BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1887      return;
1888    }
1889  }
1890  if (DestReg == X86::EFLAGS) {
1891    if (X86::GR64RegClass.contains(SrcReg)) {
1892      BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1893        .addReg(SrcReg, getKillRegState(KillSrc));
1894      BuildMI(MBB, MI, DL, get(X86::POPF64));
1895      return;
1896    } else if (X86::GR32RegClass.contains(SrcReg)) {
1897      BuildMI(MBB, MI, DL, get(X86::PUSH32r))
1898        .addReg(SrcReg, getKillRegState(KillSrc));
1899      BuildMI(MBB, MI, DL, get(X86::POPF32));
1900      return;
1901    }
1902  }
1903
1904  DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
1905               << " to " << RI.getName(DestReg) << '\n');
1906  llvm_unreachable("Cannot emit physreg copy instruction");
1907}
1908
1909static unsigned getLoadStoreRegOpcode(unsigned Reg,
1910                                      const TargetRegisterClass *RC,
1911                                      bool isStackAligned,
1912                                      const TargetMachine &TM,
1913                                      bool load) {
1914  switch (RC->getID()) {
1915  default:
1916    llvm_unreachable("Unknown regclass");
1917  case X86::GR64RegClassID:
1918  case X86::GR64_NOSPRegClassID:
1919    return load ? X86::MOV64rm : X86::MOV64mr;
1920  case X86::GR32RegClassID:
1921  case X86::GR32_NOSPRegClassID:
1922  case X86::GR32_ADRegClassID:
1923    return load ? X86::MOV32rm : X86::MOV32mr;
1924  case X86::GR16RegClassID:
1925    return load ? X86::MOV16rm : X86::MOV16mr;
1926  case X86::GR8RegClassID:
1927    // Copying to or from a physical H register on x86-64 requires a NOREX
1928    // move.  Otherwise use a normal move.
1929    if (isHReg(Reg) &&
1930        TM.getSubtarget<X86Subtarget>().is64Bit())
1931      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1932    else
1933      return load ? X86::MOV8rm : X86::MOV8mr;
1934  case X86::GR64_ABCDRegClassID:
1935    return load ? X86::MOV64rm : X86::MOV64mr;
1936  case X86::GR32_ABCDRegClassID:
1937    return load ? X86::MOV32rm : X86::MOV32mr;
1938  case X86::GR16_ABCDRegClassID:
1939    return load ? X86::MOV16rm : X86::MOV16mr;
1940  case X86::GR8_ABCD_LRegClassID:
1941    return load ? X86::MOV8rm :X86::MOV8mr;
1942  case X86::GR8_ABCD_HRegClassID:
1943    if (TM.getSubtarget<X86Subtarget>().is64Bit())
1944      return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
1945    else
1946      return load ? X86::MOV8rm : X86::MOV8mr;
1947  case X86::GR64_NOREXRegClassID:
1948  case X86::GR64_NOREX_NOSPRegClassID:
1949    return load ? X86::MOV64rm : X86::MOV64mr;
1950  case X86::GR32_NOREXRegClassID:
1951    return load ? X86::MOV32rm : X86::MOV32mr;
1952  case X86::GR16_NOREXRegClassID:
1953    return load ? X86::MOV16rm : X86::MOV16mr;
1954  case X86::GR8_NOREXRegClassID:
1955    return load ? X86::MOV8rm : X86::MOV8mr;
1956  case X86::GR64_TCRegClassID:
1957    return load ? X86::MOV64rm_TC : X86::MOV64mr_TC;
1958  case X86::GR32_TCRegClassID:
1959    return load ? X86::MOV32rm_TC : X86::MOV32mr_TC;
1960  case X86::RFP80RegClassID:
1961    return load ? X86::LD_Fp80m : X86::ST_FpP80m;
1962  case X86::RFP64RegClassID:
1963    return load ? X86::LD_Fp64m : X86::ST_Fp64m;
1964  case X86::RFP32RegClassID:
1965    return load ? X86::LD_Fp32m : X86::ST_Fp32m;
1966  case X86::FR32RegClassID:
1967    return load ? X86::MOVSSrm : X86::MOVSSmr;
1968  case X86::FR64RegClassID:
1969    return load ? X86::MOVSDrm : X86::MOVSDmr;
1970  case X86::VR128RegClassID:
1971    // If stack is realigned we can use aligned stores.
1972    if (isStackAligned)
1973      return load ? X86::MOVAPSrm : X86::MOVAPSmr;
1974    else
1975      return load ? X86::MOVUPSrm : X86::MOVUPSmr;
1976  case X86::VR64RegClassID:
1977    return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
1978  }
1979}
1980
1981static unsigned getStoreRegOpcode(unsigned SrcReg,
1982                                  const TargetRegisterClass *RC,
1983                                  bool isStackAligned,
1984                                  TargetMachine &TM) {
1985  return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
1986}
1987
1988
1989static unsigned getLoadRegOpcode(unsigned DestReg,
1990                                 const TargetRegisterClass *RC,
1991                                 bool isStackAligned,
1992                                 const TargetMachine &TM) {
1993  return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
1994}
1995
1996void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1997                                       MachineBasicBlock::iterator MI,
1998                                       unsigned SrcReg, bool isKill, int FrameIdx,
1999                                       const TargetRegisterClass *RC,
2000                                       const TargetRegisterInfo *TRI) const {
2001  const MachineFunction &MF = *MBB.getParent();
2002  assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2003         "Stack slot too small for store");
2004  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2005  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2006  DebugLoc DL = MBB.findDebugLoc(MI);
2007  addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
2008    .addReg(SrcReg, getKillRegState(isKill));
2009}
2010
2011void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2012                                  bool isKill,
2013                                  SmallVectorImpl<MachineOperand> &Addr,
2014                                  const TargetRegisterClass *RC,
2015                                  MachineInstr::mmo_iterator MMOBegin,
2016                                  MachineInstr::mmo_iterator MMOEnd,
2017                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
2018  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2019  unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
2020  DebugLoc DL;
2021  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
2022  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2023    MIB.addOperand(Addr[i]);
2024  MIB.addReg(SrcReg, getKillRegState(isKill));
2025  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2026  NewMIs.push_back(MIB);
2027}
2028
2029
2030void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2031                                        MachineBasicBlock::iterator MI,
2032                                        unsigned DestReg, int FrameIdx,
2033                                        const TargetRegisterClass *RC,
2034                                        const TargetRegisterInfo *TRI) const {
2035  const MachineFunction &MF = *MBB.getParent();
2036  bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
2037  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2038  DebugLoc DL = MBB.findDebugLoc(MI);
2039  addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
2040}
2041
2042void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
2043                                 SmallVectorImpl<MachineOperand> &Addr,
2044                                 const TargetRegisterClass *RC,
2045                                 MachineInstr::mmo_iterator MMOBegin,
2046                                 MachineInstr::mmo_iterator MMOEnd,
2047                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2048  bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
2049  unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
2050  DebugLoc DL;
2051  MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
2052  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
2053    MIB.addOperand(Addr[i]);
2054  (*MIB).setMemRefs(MMOBegin, MMOEnd);
2055  NewMIs.push_back(MIB);
2056}
2057
2058bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
2059                                             MachineBasicBlock::iterator MI,
2060                                        const std::vector<CalleeSavedInfo> &CSI,
2061                                          const TargetRegisterInfo *TRI) const {
2062  if (CSI.empty())
2063    return false;
2064
2065  DebugLoc DL = MBB.findDebugLoc(MI);
2066
2067  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2068  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2069  unsigned SlotSize = is64Bit ? 8 : 4;
2070
2071  MachineFunction &MF = *MBB.getParent();
2072  unsigned FPReg = RI.getFrameRegister(MF);
2073  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2074  unsigned CalleeFrameSize = 0;
2075
2076  unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
2077  for (unsigned i = CSI.size(); i != 0; --i) {
2078    unsigned Reg = CSI[i-1].getReg();
2079    // Add the callee-saved register as live-in. It's killed at the spill.
2080    MBB.addLiveIn(Reg);
2081    if (Reg == FPReg)
2082      // X86RegisterInfo::emitPrologue will handle spilling of frame register.
2083      continue;
2084    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2085      CalleeFrameSize += SlotSize;
2086      BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
2087    } else {
2088      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2089      storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
2090                          RC, &RI);
2091    }
2092  }
2093
2094  X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
2095  return true;
2096}
2097
2098bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2099                                               MachineBasicBlock::iterator MI,
2100                                        const std::vector<CalleeSavedInfo> &CSI,
2101                                          const TargetRegisterInfo *TRI) const {
2102  if (CSI.empty())
2103    return false;
2104
2105  DebugLoc DL = MBB.findDebugLoc(MI);
2106
2107  MachineFunction &MF = *MBB.getParent();
2108  unsigned FPReg = RI.getFrameRegister(MF);
2109  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
2110  bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
2111  unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
2112  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2113    unsigned Reg = CSI[i].getReg();
2114    if (Reg == FPReg)
2115      // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
2116      continue;
2117    if (!X86::VR128RegClass.contains(Reg) && !isWin64) {
2118      BuildMI(MBB, MI, DL, get(Opc), Reg);
2119    } else {
2120      const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2121      loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
2122                           RC, &RI);
2123    }
2124  }
2125  return true;
2126}
2127
2128MachineInstr*
2129X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
2130                                       int FrameIx, uint64_t Offset,
2131                                       const MDNode *MDPtr,
2132                                       DebugLoc DL) const {
2133  X86AddressMode AM;
2134  AM.BaseType = X86AddressMode::FrameIndexBase;
2135  AM.Base.FrameIndex = FrameIx;
2136  MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2137  addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2138  return &*MIB;
2139}
2140
2141static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
2142                                     const SmallVectorImpl<MachineOperand> &MOs,
2143                                     MachineInstr *MI,
2144                                     const TargetInstrInfo &TII) {
2145  // Create the base instruction with the memory operand as the first part.
2146  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2147                                              MI->getDebugLoc(), true);
2148  MachineInstrBuilder MIB(NewMI);
2149  unsigned NumAddrOps = MOs.size();
2150  for (unsigned i = 0; i != NumAddrOps; ++i)
2151    MIB.addOperand(MOs[i]);
2152  if (NumAddrOps < 4)  // FrameIndex only
2153    addOffset(MIB, 0);
2154
2155  // Loop over the rest of the ri operands, converting them over.
2156  unsigned NumOps = MI->getDesc().getNumOperands()-2;
2157  for (unsigned i = 0; i != NumOps; ++i) {
2158    MachineOperand &MO = MI->getOperand(i+2);
2159    MIB.addOperand(MO);
2160  }
2161  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2162    MachineOperand &MO = MI->getOperand(i);
2163    MIB.addOperand(MO);
2164  }
2165  return MIB;
2166}
2167
2168static MachineInstr *FuseInst(MachineFunction &MF,
2169                              unsigned Opcode, unsigned OpNo,
2170                              const SmallVectorImpl<MachineOperand> &MOs,
2171                              MachineInstr *MI, const TargetInstrInfo &TII) {
2172  MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2173                                              MI->getDebugLoc(), true);
2174  MachineInstrBuilder MIB(NewMI);
2175
2176  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2177    MachineOperand &MO = MI->getOperand(i);
2178    if (i == OpNo) {
2179      assert(MO.isReg() && "Expected to fold into reg operand!");
2180      unsigned NumAddrOps = MOs.size();
2181      for (unsigned i = 0; i != NumAddrOps; ++i)
2182        MIB.addOperand(MOs[i]);
2183      if (NumAddrOps < 4)  // FrameIndex only
2184        addOffset(MIB, 0);
2185    } else {
2186      MIB.addOperand(MO);
2187    }
2188  }
2189  return MIB;
2190}
2191
2192static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
2193                                const SmallVectorImpl<MachineOperand> &MOs,
2194                                MachineInstr *MI) {
2195  MachineFunction &MF = *MI->getParent()->getParent();
2196  MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
2197
2198  unsigned NumAddrOps = MOs.size();
2199  for (unsigned i = 0; i != NumAddrOps; ++i)
2200    MIB.addOperand(MOs[i]);
2201  if (NumAddrOps < 4)  // FrameIndex only
2202    addOffset(MIB, 0);
2203  return MIB.addImm(0);
2204}
2205
2206MachineInstr*
2207X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2208                                    MachineInstr *MI, unsigned i,
2209                                    const SmallVectorImpl<MachineOperand> &MOs,
2210                                    unsigned Size, unsigned Align) const {
2211  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2212  bool isTwoAddrFold = false;
2213  unsigned NumOps = MI->getDesc().getNumOperands();
2214  bool isTwoAddr = NumOps > 1 &&
2215    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2216
2217  MachineInstr *NewMI = NULL;
2218  // Folding a memory location into the two-address part of a two-address
2219  // instruction is different than folding it other places.  It requires
2220  // replacing the *two* registers with the memory location.
2221  if (isTwoAddr && NumOps >= 2 && i < 2 &&
2222      MI->getOperand(0).isReg() &&
2223      MI->getOperand(1).isReg() &&
2224      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2225    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2226    isTwoAddrFold = true;
2227  } else if (i == 0) { // If operand 0
2228    if (MI->getOpcode() == X86::MOV64r0)
2229      NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2230    else if (MI->getOpcode() == X86::MOV32r0)
2231      NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2232    else if (MI->getOpcode() == X86::MOV16r0)
2233      NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2234    else if (MI->getOpcode() == X86::MOV8r0)
2235      NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
2236    if (NewMI)
2237      return NewMI;
2238
2239    OpcodeTablePtr = &RegOp2MemOpTable0;
2240  } else if (i == 1) {
2241    OpcodeTablePtr = &RegOp2MemOpTable1;
2242  } else if (i == 2) {
2243    OpcodeTablePtr = &RegOp2MemOpTable2;
2244  }
2245
2246  // If table selected...
2247  if (OpcodeTablePtr) {
2248    // Find the Opcode to fuse
2249    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2250      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2251    if (I != OpcodeTablePtr->end()) {
2252      unsigned Opcode = I->second.first;
2253      unsigned MinAlign = I->second.second;
2254      if (Align < MinAlign)
2255        return NULL;
2256      bool NarrowToMOV32rm = false;
2257      if (Size) {
2258        unsigned RCSize =  MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
2259        if (Size < RCSize) {
2260          // Check if it's safe to fold the load. If the size of the object is
2261          // narrower than the load width, then it's not.
2262          if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2263            return NULL;
2264          // If this is a 64-bit load, but the spill slot is 32, then we can do
2265          // a 32-bit load which is implicitly zero-extended. This likely is due
2266          // to liveintervalanalysis remat'ing a load from stack slot.
2267          if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2268            return NULL;
2269          Opcode = X86::MOV32rm;
2270          NarrowToMOV32rm = true;
2271        }
2272      }
2273
2274      if (isTwoAddrFold)
2275        NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
2276      else
2277        NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
2278
2279      if (NarrowToMOV32rm) {
2280        // If this is the special case where we use a MOV32rm to load a 32-bit
2281        // value and zero-extend the top bits. Change the destination register
2282        // to a 32-bit one.
2283        unsigned DstReg = NewMI->getOperand(0).getReg();
2284        if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2285          NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
2286                                                   X86::sub_32bit));
2287        else
2288          NewMI->getOperand(0).setSubReg(X86::sub_32bit);
2289      }
2290      return NewMI;
2291    }
2292  }
2293
2294  // No fusion
2295  if (PrintFailedFusing && !MI->isCopy())
2296    dbgs() << "We failed to fuse operand " << i << " in " << *MI;
2297  return NULL;
2298}
2299
2300
2301MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2302                                                  MachineInstr *MI,
2303                                           const SmallVectorImpl<unsigned> &Ops,
2304                                                  int FrameIndex) const {
2305  // Check switch flag
2306  if (NoFusing) return NULL;
2307
2308  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2309    switch (MI->getOpcode()) {
2310    case X86::CVTSD2SSrr:
2311    case X86::Int_CVTSD2SSrr:
2312    case X86::CVTSS2SDrr:
2313    case X86::Int_CVTSS2SDrr:
2314    case X86::RCPSSr:
2315    case X86::RCPSSr_Int:
2316    case X86::ROUNDSDr_Int:
2317    case X86::ROUNDSSr_Int:
2318    case X86::RSQRTSSr:
2319    case X86::RSQRTSSr_Int:
2320    case X86::SQRTSSr:
2321    case X86::SQRTSSr_Int:
2322      return 0;
2323    }
2324
2325  const MachineFrameInfo *MFI = MF.getFrameInfo();
2326  unsigned Size = MFI->getObjectSize(FrameIndex);
2327  unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2328  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2329    unsigned NewOpc = 0;
2330    unsigned RCSize = 0;
2331    switch (MI->getOpcode()) {
2332    default: return NULL;
2333    case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
2334    case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2335    case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2336    case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
2337    }
2338    // Check if it's safe to fold the load. If the size of the object is
2339    // narrower than the load width, then it's not.
2340    if (Size < RCSize)
2341      return NULL;
2342    // Change to CMPXXri r, 0 first.
2343    MI->setDesc(get(NewOpc));
2344    MI->getOperand(1).ChangeToImmediate(0);
2345  } else if (Ops.size() != 1)
2346    return NULL;
2347
2348  SmallVector<MachineOperand,4> MOs;
2349  MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2350  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
2351}
2352
2353MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2354                                                  MachineInstr *MI,
2355                                           const SmallVectorImpl<unsigned> &Ops,
2356                                                  MachineInstr *LoadMI) const {
2357  // Check switch flag
2358  if (NoFusing) return NULL;
2359
2360  if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
2361    switch (MI->getOpcode()) {
2362    case X86::CVTSD2SSrr:
2363    case X86::Int_CVTSD2SSrr:
2364    case X86::CVTSS2SDrr:
2365    case X86::Int_CVTSS2SDrr:
2366    case X86::RCPSSr:
2367    case X86::RCPSSr_Int:
2368    case X86::ROUNDSDr_Int:
2369    case X86::ROUNDSSr_Int:
2370    case X86::RSQRTSSr:
2371    case X86::RSQRTSSr_Int:
2372    case X86::SQRTSSr:
2373    case X86::SQRTSSr_Int:
2374      return 0;
2375    }
2376
2377  // Determine the alignment of the load.
2378  unsigned Alignment = 0;
2379  if (LoadMI->hasOneMemOperand())
2380    Alignment = (*LoadMI->memoperands_begin())->getAlignment();
2381  else
2382    switch (LoadMI->getOpcode()) {
2383    case X86::V_SET0PS:
2384    case X86::V_SET0PD:
2385    case X86::V_SET0PI:
2386    case X86::V_SETALLONES:
2387      Alignment = 16;
2388      break;
2389    case X86::FsFLD0SD:
2390      Alignment = 8;
2391      break;
2392    case X86::FsFLD0SS:
2393      Alignment = 4;
2394      break;
2395    default:
2396      llvm_unreachable("Don't know how to fold this instruction!");
2397    }
2398  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2399    unsigned NewOpc = 0;
2400    switch (MI->getOpcode()) {
2401    default: return NULL;
2402    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
2403    case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2404    case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2405    case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
2406    }
2407    // Change to CMPXXri r, 0 first.
2408    MI->setDesc(get(NewOpc));
2409    MI->getOperand(1).ChangeToImmediate(0);
2410  } else if (Ops.size() != 1)
2411    return NULL;
2412
2413  SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
2414  switch (LoadMI->getOpcode()) {
2415  case X86::V_SET0PS:
2416  case X86::V_SET0PD:
2417  case X86::V_SET0PI:
2418  case X86::V_SETALLONES:
2419  case X86::FsFLD0SD:
2420  case X86::FsFLD0SS: {
2421    // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
2422    // Create a constant-pool entry and operands to load from it.
2423
2424    // Medium and large mode can't fold loads this way.
2425    if (TM.getCodeModel() != CodeModel::Small &&
2426        TM.getCodeModel() != CodeModel::Kernel)
2427      return NULL;
2428
2429    // x86-32 PIC requires a PIC base register for constant pools.
2430    unsigned PICBase = 0;
2431    if (TM.getRelocationModel() == Reloc::PIC_) {
2432      if (TM.getSubtarget<X86Subtarget>().is64Bit())
2433        PICBase = X86::RIP;
2434      else
2435        // FIXME: PICBase = getGlobalBaseReg(&MF);
2436        // This doesn't work for several reasons.
2437        // 1. GlobalBaseReg may have been spilled.
2438        // 2. It may not be live at MI.
2439        return NULL;
2440    }
2441
2442    // Create a constant-pool entry.
2443    MachineConstantPool &MCP = *MF.getConstantPool();
2444    const Type *Ty;
2445    if (LoadMI->getOpcode() == X86::FsFLD0SS)
2446      Ty = Type::getFloatTy(MF.getFunction()->getContext());
2447    else if (LoadMI->getOpcode() == X86::FsFLD0SD)
2448      Ty = Type::getDoubleTy(MF.getFunction()->getContext());
2449    else
2450      Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
2451    const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
2452                    Constant::getAllOnesValue(Ty) :
2453                    Constant::getNullValue(Ty);
2454    unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
2455
2456    // Create operands to load from the constant pool entry.
2457    MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2458    MOs.push_back(MachineOperand::CreateImm(1));
2459    MOs.push_back(MachineOperand::CreateReg(0, false));
2460    MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2461    MOs.push_back(MachineOperand::CreateReg(0, false));
2462    break;
2463  }
2464  default: {
2465    // Folding a normal load. Just copy the load's address operands.
2466    unsigned NumOps = LoadMI->getDesc().getNumOperands();
2467    for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
2468      MOs.push_back(LoadMI->getOperand(i));
2469    break;
2470  }
2471  }
2472  return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
2473}
2474
2475
2476bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2477                                  const SmallVectorImpl<unsigned> &Ops) const {
2478  // Check switch flag
2479  if (NoFusing) return 0;
2480
2481  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2482    switch (MI->getOpcode()) {
2483    default: return false;
2484    case X86::TEST8rr:
2485    case X86::TEST16rr:
2486    case X86::TEST32rr:
2487    case X86::TEST64rr:
2488      return true;
2489    }
2490  }
2491
2492  if (Ops.size() != 1)
2493    return false;
2494
2495  unsigned OpNum = Ops[0];
2496  unsigned Opc = MI->getOpcode();
2497  unsigned NumOps = MI->getDesc().getNumOperands();
2498  bool isTwoAddr = NumOps > 1 &&
2499    MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
2500
2501  // Folding a memory location into the two-address part of a two-address
2502  // instruction is different than folding it other places.  It requires
2503  // replacing the *two* registers with the memory location.
2504  const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
2505  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2506    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2507  } else if (OpNum == 0) { // If operand 0
2508    switch (Opc) {
2509    case X86::MOV8r0:
2510    case X86::MOV16r0:
2511    case X86::MOV32r0:
2512    case X86::MOV64r0:
2513      return true;
2514    default: break;
2515    }
2516    OpcodeTablePtr = &RegOp2MemOpTable0;
2517  } else if (OpNum == 1) {
2518    OpcodeTablePtr = &RegOp2MemOpTable1;
2519  } else if (OpNum == 2) {
2520    OpcodeTablePtr = &RegOp2MemOpTable2;
2521  }
2522
2523  if (OpcodeTablePtr) {
2524    // Find the Opcode to fuse
2525    DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2526      OpcodeTablePtr->find((unsigned*)Opc);
2527    if (I != OpcodeTablePtr->end())
2528      return true;
2529  }
2530  return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
2531}
2532
2533bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2534                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2535                                SmallVectorImpl<MachineInstr*> &NewMIs) const {
2536  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2537    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2538  if (I == MemOp2RegOpTable.end())
2539    return false;
2540  unsigned Opc = I->second.first;
2541  unsigned Index = I->second.second & 0xf;
2542  bool FoldedLoad = I->second.second & (1 << 4);
2543  bool FoldedStore = I->second.second & (1 << 5);
2544  if (UnfoldLoad && !FoldedLoad)
2545    return false;
2546  UnfoldLoad &= FoldedLoad;
2547  if (UnfoldStore && !FoldedStore)
2548    return false;
2549  UnfoldStore &= FoldedStore;
2550
2551  const TargetInstrDesc &TID = get(Opc);
2552  const TargetOperandInfo &TOI = TID.OpInfo[Index];
2553  const TargetRegisterClass *RC = TOI.getRegClass(&RI);
2554  if (!MI->hasOneMemOperand() &&
2555      RC == &X86::VR128RegClass &&
2556      !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2557    // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2558    // conservatively assume the address is unaligned. That's bad for
2559    // performance.
2560    return false;
2561  SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
2562  SmallVector<MachineOperand,2> BeforeOps;
2563  SmallVector<MachineOperand,2> AfterOps;
2564  SmallVector<MachineOperand,4> ImpOps;
2565  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2566    MachineOperand &Op = MI->getOperand(i);
2567    if (i >= Index && i < Index + X86::AddrNumOperands)
2568      AddrOps.push_back(Op);
2569    else if (Op.isReg() && Op.isImplicit())
2570      ImpOps.push_back(Op);
2571    else if (i < Index)
2572      BeforeOps.push_back(Op);
2573    else if (i > Index)
2574      AfterOps.push_back(Op);
2575  }
2576
2577  // Emit the load instruction.
2578  if (UnfoldLoad) {
2579    std::pair<MachineInstr::mmo_iterator,
2580              MachineInstr::mmo_iterator> MMOs =
2581      MF.extractLoadMemRefs(MI->memoperands_begin(),
2582                            MI->memoperands_end());
2583    loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
2584    if (UnfoldStore) {
2585      // Address operands cannot be marked isKill.
2586      for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
2587        MachineOperand &MO = NewMIs[0]->getOperand(i);
2588        if (MO.isReg())
2589          MO.setIsKill(false);
2590      }
2591    }
2592  }
2593
2594  // Emit the data processing instruction.
2595  MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
2596  MachineInstrBuilder MIB(DataMI);
2597
2598  if (FoldedStore)
2599    MIB.addReg(Reg, RegState::Define);
2600  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2601    MIB.addOperand(BeforeOps[i]);
2602  if (FoldedLoad)
2603    MIB.addReg(Reg);
2604  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2605    MIB.addOperand(AfterOps[i]);
2606  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2607    MachineOperand &MO = ImpOps[i];
2608    MIB.addReg(MO.getReg(),
2609               getDefRegState(MO.isDef()) |
2610               RegState::Implicit |
2611               getKillRegState(MO.isKill()) |
2612               getDeadRegState(MO.isDead()) |
2613               getUndefRegState(MO.isUndef()));
2614  }
2615  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2616  unsigned NewOpc = 0;
2617  switch (DataMI->getOpcode()) {
2618  default: break;
2619  case X86::CMP64ri32:
2620  case X86::CMP64ri8:
2621  case X86::CMP32ri:
2622  case X86::CMP32ri8:
2623  case X86::CMP16ri:
2624  case X86::CMP16ri8:
2625  case X86::CMP8ri: {
2626    MachineOperand &MO0 = DataMI->getOperand(0);
2627    MachineOperand &MO1 = DataMI->getOperand(1);
2628    if (MO1.getImm() == 0) {
2629      switch (DataMI->getOpcode()) {
2630      default: break;
2631      case X86::CMP64ri8:
2632      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2633      case X86::CMP32ri8:
2634      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
2635      case X86::CMP16ri8:
2636      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
2637      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
2638      }
2639      DataMI->setDesc(get(NewOpc));
2640      MO1.ChangeToRegister(MO0.getReg(), false);
2641    }
2642  }
2643  }
2644  NewMIs.push_back(DataMI);
2645
2646  // Emit the store instruction.
2647  if (UnfoldStore) {
2648    const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
2649    std::pair<MachineInstr::mmo_iterator,
2650              MachineInstr::mmo_iterator> MMOs =
2651      MF.extractStoreMemRefs(MI->memoperands_begin(),
2652                             MI->memoperands_end());
2653    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
2654  }
2655
2656  return true;
2657}
2658
2659bool
2660X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2661                                  SmallVectorImpl<SDNode*> &NewNodes) const {
2662  if (!N->isMachineOpcode())
2663    return false;
2664
2665  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2666    MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
2667  if (I == MemOp2RegOpTable.end())
2668    return false;
2669  unsigned Opc = I->second.first;
2670  unsigned Index = I->second.second & 0xf;
2671  bool FoldedLoad = I->second.second & (1 << 4);
2672  bool FoldedStore = I->second.second & (1 << 5);
2673  const TargetInstrDesc &TID = get(Opc);
2674  const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
2675  unsigned NumDefs = TID.NumDefs;
2676  std::vector<SDValue> AddrOps;
2677  std::vector<SDValue> BeforeOps;
2678  std::vector<SDValue> AfterOps;
2679  DebugLoc dl = N->getDebugLoc();
2680  unsigned NumOps = N->getNumOperands();
2681  for (unsigned i = 0; i != NumOps-1; ++i) {
2682    SDValue Op = N->getOperand(i);
2683    if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
2684      AddrOps.push_back(Op);
2685    else if (i < Index-NumDefs)
2686      BeforeOps.push_back(Op);
2687    else if (i > Index-NumDefs)
2688      AfterOps.push_back(Op);
2689  }
2690  SDValue Chain = N->getOperand(NumOps-1);
2691  AddrOps.push_back(Chain);
2692
2693  // Emit the load instruction.
2694  SDNode *Load = 0;
2695  MachineFunction &MF = DAG.getMachineFunction();
2696  if (FoldedLoad) {
2697    EVT VT = *RC->vt_begin();
2698    std::pair<MachineInstr::mmo_iterator,
2699              MachineInstr::mmo_iterator> MMOs =
2700      MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2701                            cast<MachineSDNode>(N)->memoperands_end());
2702    if (!(*MMOs.first) &&
2703        RC == &X86::VR128RegClass &&
2704        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2705      // Do not introduce a slow unaligned load.
2706      return false;
2707    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2708    Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2709                              VT, MVT::Other, &AddrOps[0], AddrOps.size());
2710    NewNodes.push_back(Load);
2711
2712    // Preserve memory reference information.
2713    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2714  }
2715
2716  // Emit the data processing instruction.
2717  std::vector<EVT> VTs;
2718  const TargetRegisterClass *DstRC = 0;
2719  if (TID.getNumDefs() > 0) {
2720    DstRC = TID.OpInfo[0].getRegClass(&RI);
2721    VTs.push_back(*DstRC->vt_begin());
2722  }
2723  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2724    EVT VT = N->getValueType(i);
2725    if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
2726      VTs.push_back(VT);
2727  }
2728  if (Load)
2729    BeforeOps.push_back(SDValue(Load, 0));
2730  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2731  SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2732                                      BeforeOps.size());
2733  NewNodes.push_back(NewNode);
2734
2735  // Emit the store instruction.
2736  if (FoldedStore) {
2737    AddrOps.pop_back();
2738    AddrOps.push_back(SDValue(NewNode, 0));
2739    AddrOps.push_back(Chain);
2740    std::pair<MachineInstr::mmo_iterator,
2741              MachineInstr::mmo_iterator> MMOs =
2742      MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2743                             cast<MachineSDNode>(N)->memoperands_end());
2744    if (!(*MMOs.first) &&
2745        RC == &X86::VR128RegClass &&
2746        !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2747      // Do not introduce a slow unaligned store.
2748      return false;
2749    bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
2750    SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2751                                                         isAligned, TM),
2752                                       dl, MVT::Other,
2753                                       &AddrOps[0], AddrOps.size());
2754    NewNodes.push_back(Store);
2755
2756    // Preserve memory reference information.
2757    cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
2758  }
2759
2760  return true;
2761}
2762
2763unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2764                                      bool UnfoldLoad, bool UnfoldStore,
2765                                      unsigned *LoadRegIndex) const {
2766  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
2767    MemOp2RegOpTable.find((unsigned*)Opc);
2768  if (I == MemOp2RegOpTable.end())
2769    return 0;
2770  bool FoldedLoad = I->second.second & (1 << 4);
2771  bool FoldedStore = I->second.second & (1 << 5);
2772  if (UnfoldLoad && !FoldedLoad)
2773    return 0;
2774  if (UnfoldStore && !FoldedStore)
2775    return 0;
2776  if (LoadRegIndex)
2777    *LoadRegIndex = I->second.second & 0xf;
2778  return I->second.first;
2779}
2780
2781bool
2782X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2783                                     int64_t &Offset1, int64_t &Offset2) const {
2784  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2785    return false;
2786  unsigned Opc1 = Load1->getMachineOpcode();
2787  unsigned Opc2 = Load2->getMachineOpcode();
2788  switch (Opc1) {
2789  default: return false;
2790  case X86::MOV8rm:
2791  case X86::MOV16rm:
2792  case X86::MOV32rm:
2793  case X86::MOV64rm:
2794  case X86::LD_Fp32m:
2795  case X86::LD_Fp64m:
2796  case X86::LD_Fp80m:
2797  case X86::MOVSSrm:
2798  case X86::MOVSDrm:
2799  case X86::MMX_MOVD64rm:
2800  case X86::MMX_MOVQ64rm:
2801  case X86::FsMOVAPSrm:
2802  case X86::FsMOVAPDrm:
2803  case X86::MOVAPSrm:
2804  case X86::MOVUPSrm:
2805  case X86::MOVUPSrm_Int:
2806  case X86::MOVAPDrm:
2807  case X86::MOVDQArm:
2808  case X86::MOVDQUrm:
2809  case X86::MOVDQUrm_Int:
2810    break;
2811  }
2812  switch (Opc2) {
2813  default: return false;
2814  case X86::MOV8rm:
2815  case X86::MOV16rm:
2816  case X86::MOV32rm:
2817  case X86::MOV64rm:
2818  case X86::LD_Fp32m:
2819  case X86::LD_Fp64m:
2820  case X86::LD_Fp80m:
2821  case X86::MOVSSrm:
2822  case X86::MOVSDrm:
2823  case X86::MMX_MOVD64rm:
2824  case X86::MMX_MOVQ64rm:
2825  case X86::FsMOVAPSrm:
2826  case X86::FsMOVAPDrm:
2827  case X86::MOVAPSrm:
2828  case X86::MOVUPSrm:
2829  case X86::MOVUPSrm_Int:
2830  case X86::MOVAPDrm:
2831  case X86::MOVDQArm:
2832  case X86::MOVDQUrm:
2833  case X86::MOVDQUrm_Int:
2834    break;
2835  }
2836
2837  // Check if chain operands and base addresses match.
2838  if (Load1->getOperand(0) != Load2->getOperand(0) ||
2839      Load1->getOperand(5) != Load2->getOperand(5))
2840    return false;
2841  // Segment operands should match as well.
2842  if (Load1->getOperand(4) != Load2->getOperand(4))
2843    return false;
2844  // Scale should be 1, Index should be Reg0.
2845  if (Load1->getOperand(1) == Load2->getOperand(1) &&
2846      Load1->getOperand(2) == Load2->getOperand(2)) {
2847    if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2848      return false;
2849
2850    // Now let's examine the displacements.
2851    if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2852        isa<ConstantSDNode>(Load2->getOperand(3))) {
2853      Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2854      Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2855      return true;
2856    }
2857  }
2858  return false;
2859}
2860
2861bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2862                                           int64_t Offset1, int64_t Offset2,
2863                                           unsigned NumLoads) const {
2864  assert(Offset2 > Offset1);
2865  if ((Offset2 - Offset1) / 8 > 64)
2866    return false;
2867
2868  unsigned Opc1 = Load1->getMachineOpcode();
2869  unsigned Opc2 = Load2->getMachineOpcode();
2870  if (Opc1 != Opc2)
2871    return false;  // FIXME: overly conservative?
2872
2873  switch (Opc1) {
2874  default: break;
2875  case X86::LD_Fp32m:
2876  case X86::LD_Fp64m:
2877  case X86::LD_Fp80m:
2878  case X86::MMX_MOVD64rm:
2879  case X86::MMX_MOVQ64rm:
2880    return false;
2881  }
2882
2883  EVT VT = Load1->getValueType(0);
2884  switch (VT.getSimpleVT().SimpleTy) {
2885  default:
2886    // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2887    // have 16 of them to play with.
2888    if (TM.getSubtargetImpl()->is64Bit()) {
2889      if (NumLoads >= 3)
2890        return false;
2891    } else if (NumLoads) {
2892      return false;
2893    }
2894    break;
2895  case MVT::i8:
2896  case MVT::i16:
2897  case MVT::i32:
2898  case MVT::i64:
2899  case MVT::f32:
2900  case MVT::f64:
2901    if (NumLoads)
2902      return false;
2903    break;
2904  }
2905
2906  return true;
2907}
2908
2909
2910bool X86InstrInfo::
2911ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2912  assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2913  X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
2914  if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2915    return true;
2916  Cond[0].setImm(GetOppositeBranchCondition(CC));
2917  return false;
2918}
2919
2920bool X86InstrInfo::
2921isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2922  // FIXME: Return false for x87 stack register classes for now. We can't
2923  // allow any loads of these registers before FpGet_ST0_80.
2924  return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2925           RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
2926}
2927
2928
2929/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
2930/// register?  e.g. r8, xmm8, xmm13, etc.
2931bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
2932  switch (RegNo) {
2933  default: break;
2934  case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
2935  case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
2936  case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
2937  case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
2938  case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
2939  case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
2940  case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
2941  case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
2942  case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
2943  case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2944  case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
2945  case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
2946    return true;
2947  }
2948  return false;
2949}
2950
2951/// getGlobalBaseReg - Return a virtual register initialized with the
2952/// the global base register value. Output instructions required to
2953/// initialize the register in the function entry block, if necessary.
2954///
2955/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
2956///
2957unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
2958  assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
2959         "X86-64 PIC uses RIP relative addressing");
2960
2961  X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2962  unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
2963  if (GlobalBaseReg != 0)
2964    return GlobalBaseReg;
2965
2966  // Create the register. The code to initialize it is inserted
2967  // later, by the CGBR pass (below).
2968  MachineRegisterInfo &RegInfo = MF->getRegInfo();
2969  GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
2970  X86FI->setGlobalBaseReg(GlobalBaseReg);
2971  return GlobalBaseReg;
2972}
2973
2974// These are the replaceable SSE instructions. Some of these have Int variants
2975// that we don't include here. We don't want to replace instructions selected
2976// by intrinsics.
2977static const unsigned ReplaceableInstrs[][3] = {
2978  //PackedInt       PackedSingle     PackedDouble
2979  { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
2980  { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
2981  { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
2982  { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
2983  { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
2984  { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
2985  { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
2986  { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
2987  { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
2988  { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
2989  { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
2990  { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
2991  { X86::V_SET0PS,   X86::V_SET0PD,  X86::V_SET0PI  },
2992  { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
2993  { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
2994};
2995
2996// FIXME: Some shuffle and unpack instructions have equivalents in different
2997// domains, but they require a bit more work than just switching opcodes.
2998
2999static const unsigned *lookup(unsigned opcode, unsigned domain) {
3000  for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
3001    if (ReplaceableInstrs[i][domain-1] == opcode)
3002      return ReplaceableInstrs[i];
3003  return 0;
3004}
3005
3006std::pair<uint16_t, uint16_t>
3007X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3008  uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3009  return std::make_pair(domain,
3010                        domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
3011}
3012
3013void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3014  assert(Domain>0 && Domain<4 && "Invalid execution domain");
3015  uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3016  assert(dom && "Not an SSE instruction");
3017  const unsigned *table = lookup(MI->getOpcode(), dom);
3018  assert(table && "Cannot change domain");
3019  MI->setDesc(get(table[Domain-1]));
3020}
3021
3022/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3023void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3024  NopInst.setOpcode(X86::NOOP);
3025}
3026
3027namespace {
3028  /// CGBR - Create Global Base Reg pass. This initializes the PIC
3029  /// global base register for x86-32.
3030  struct CGBR : public MachineFunctionPass {
3031    static char ID;
3032    CGBR() : MachineFunctionPass(ID) {}
3033
3034    virtual bool runOnMachineFunction(MachineFunction &MF) {
3035      const X86TargetMachine *TM =
3036        static_cast<const X86TargetMachine *>(&MF.getTarget());
3037
3038      assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3039             "X86-64 PIC uses RIP relative addressing");
3040
3041      // Only emit a global base reg in PIC mode.
3042      if (TM->getRelocationModel() != Reloc::PIC_)
3043        return false;
3044
3045      // Insert the set of GlobalBaseReg into the first MBB of the function
3046      MachineBasicBlock &FirstMBB = MF.front();
3047      MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3048      DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3049      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3050      const X86InstrInfo *TII = TM->getInstrInfo();
3051
3052      unsigned PC;
3053      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3054        PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3055      else
3056        PC = TII->getGlobalBaseReg(&MF);
3057
3058      // Operand of MovePCtoStack is completely ignored by asm printer. It's
3059      // only used in JIT code emission as displacement to pc.
3060      BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
3061
3062      // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3063      // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3064      if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
3065        unsigned GlobalBaseReg = TII->getGlobalBaseReg(&MF);
3066        // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3067        BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3068          .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3069                                        X86II::MO_GOT_ABSOLUTE_ADDRESS);
3070      }
3071
3072      return true;
3073    }
3074
3075    virtual const char *getPassName() const {
3076      return "X86 PIC Global Base Reg Initialization";
3077    }
3078
3079    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3080      AU.setPreservesCFG();
3081      MachineFunctionPass::getAnalysisUsage(AU);
3082    }
3083  };
3084}
3085
3086char CGBR::ID = 0;
3087FunctionPass*
3088llvm::createGlobalBaseRegPass() { return new CGBR(); }
3089