XCoreISelLowering.cpp revision 8b99622b9b0902c709a33a07efb3461bc7830852
1//===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the XCoreTargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "xcore-lower"
15
16#include "XCoreISelLowering.h"
17#include "XCore.h"
18#include "XCoreMachineFunctionInfo.h"
19#include "XCoreSubtarget.h"
20#include "XCoreTargetMachine.h"
21#include "XCoreTargetObjectFile.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAGISel.h"
29#include "llvm/CodeGen/ValueTypes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/GlobalAlias.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40
41using namespace llvm;
42
43const char *XCoreTargetLowering::
44getTargetNodeName(unsigned Opcode) const
45{
46  switch (Opcode)
47  {
48    case XCoreISD::BL                : return "XCoreISD::BL";
49    case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
50    case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
51    case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
52    case XCoreISD::STWSP             : return "XCoreISD::STWSP";
53    case XCoreISD::RETSP             : return "XCoreISD::RETSP";
54    case XCoreISD::LADD              : return "XCoreISD::LADD";
55    case XCoreISD::LSUB              : return "XCoreISD::LSUB";
56    case XCoreISD::LMUL              : return "XCoreISD::LMUL";
57    case XCoreISD::MACCU             : return "XCoreISD::MACCU";
58    case XCoreISD::MACCS             : return "XCoreISD::MACCS";
59    case XCoreISD::CRC8              : return "XCoreISD::CRC8";
60    case XCoreISD::BR_JT             : return "XCoreISD::BR_JT";
61    case XCoreISD::BR_JT32           : return "XCoreISD::BR_JT32";
62    case XCoreISD::MEMBARRIER        : return "XCoreISD::MEMBARRIER";
63    default                          : return NULL;
64  }
65}
66
67XCoreTargetLowering::XCoreTargetLowering(XCoreTargetMachine &XTM)
68  : TargetLowering(XTM, new XCoreTargetObjectFile()),
69    TM(XTM),
70    Subtarget(*XTM.getSubtargetImpl()) {
71
72  // Set up the register classes.
73  addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
74
75  // Compute derived properties from the register classes
76  computeRegisterProperties();
77
78  // Division is expensive
79  setIntDivIsCheap(false);
80
81  setStackPointerRegisterToSaveRestore(XCore::SP);
82
83  setSchedulingPreference(Sched::Source);
84
85  // Use i32 for setcc operations results (slt, sgt, ...).
86  setBooleanContents(ZeroOrOneBooleanContent);
87  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
88
89  // XCore does not have the NodeTypes below.
90  setOperationAction(ISD::BR_CC,     MVT::i32,   Expand);
91  setOperationAction(ISD::SELECT_CC, MVT::i32,   Custom);
92  setOperationAction(ISD::ADDC, MVT::i32, Expand);
93  setOperationAction(ISD::ADDE, MVT::i32, Expand);
94  setOperationAction(ISD::SUBC, MVT::i32, Expand);
95  setOperationAction(ISD::SUBE, MVT::i32, Expand);
96
97  // Stop the combiner recombining select and set_cc
98  setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
99
100  // 64bit
101  setOperationAction(ISD::ADD, MVT::i64, Custom);
102  setOperationAction(ISD::SUB, MVT::i64, Custom);
103  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
104  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
105  setOperationAction(ISD::MULHS, MVT::i32, Expand);
106  setOperationAction(ISD::MULHU, MVT::i32, Expand);
107  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
109  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
110
111  // Bit Manipulation
112  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
113  setOperationAction(ISD::ROTL , MVT::i32, Expand);
114  setOperationAction(ISD::ROTR , MVT::i32, Expand);
115  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
116  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
117
118  setOperationAction(ISD::TRAP, MVT::Other, Legal);
119
120  // Jump tables.
121  setOperationAction(ISD::BR_JT, MVT::Other, Custom);
122
123  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
124  setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
125
126  // Conversion of i64 -> double produces constantpool nodes
127  setOperationAction(ISD::ConstantPool, MVT::i32,   Custom);
128
129  // Loads
130  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
131  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
132  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
133
134  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
135  setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand);
136
137  // Custom expand misaligned loads / stores.
138  setOperationAction(ISD::LOAD, MVT::i32, Custom);
139  setOperationAction(ISD::STORE, MVT::i32, Custom);
140
141  // Varargs
142  setOperationAction(ISD::VAEND, MVT::Other, Expand);
143  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
144  setOperationAction(ISD::VAARG, MVT::Other, Custom);
145  setOperationAction(ISD::VASTART, MVT::Other, Custom);
146
147  // Dynamic stack
148  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
149  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
150  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
151
152  // Exception handling
153  setExceptionPointerRegister(XCore::R0);
154  setExceptionSelectorRegister(XCore::R1);
155
156  // Atomic operations
157  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
158
159  // TRAMPOLINE is custom lowered.
160  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
161  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
162
163  // We want to custom lower some of our intrinsics.
164  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
165
166  MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
167  MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
168    = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
169
170  // We have target-specific dag combine patterns for the following nodes:
171  setTargetDAGCombine(ISD::STORE);
172  setTargetDAGCombine(ISD::ADD);
173
174  setMinFunctionAlignment(1);
175}
176
177bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
178  if (Val.getOpcode() != ISD::LOAD)
179    return false;
180
181  EVT VT1 = Val.getValueType();
182  if (!VT1.isSimple() || !VT1.isInteger() ||
183      !VT2.isSimple() || !VT2.isInteger())
184    return false;
185
186  switch (VT1.getSimpleVT().SimpleTy) {
187  default: break;
188  case MVT::i8:
189    return true;
190  }
191
192  return false;
193}
194
195SDValue XCoreTargetLowering::
196LowerOperation(SDValue Op, SelectionDAG &DAG) const {
197  switch (Op.getOpcode())
198  {
199  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
200  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
201  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
202  case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
203  case ISD::LOAD:               return LowerLOAD(Op, DAG);
204  case ISD::STORE:              return LowerSTORE(Op, DAG);
205  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
206  case ISD::VAARG:              return LowerVAARG(Op, DAG);
207  case ISD::VASTART:            return LowerVASTART(Op, DAG);
208  case ISD::SMUL_LOHI:          return LowerSMUL_LOHI(Op, DAG);
209  case ISD::UMUL_LOHI:          return LowerUMUL_LOHI(Op, DAG);
210  // FIXME: Remove these when LegalizeDAGTypes lands.
211  case ISD::ADD:
212  case ISD::SUB:                return ExpandADDSUB(Op.getNode(), DAG);
213  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
214  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
215  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
216  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
217  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
218  default:
219    llvm_unreachable("unimplemented operand");
220  }
221}
222
223/// ReplaceNodeResults - Replace the results of node with an illegal result
224/// type with new values built out of custom code.
225void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
226                                             SmallVectorImpl<SDValue>&Results,
227                                             SelectionDAG &DAG) const {
228  switch (N->getOpcode()) {
229  default:
230    llvm_unreachable("Don't know how to custom expand this!");
231  case ISD::ADD:
232  case ISD::SUB:
233    Results.push_back(ExpandADDSUB(N, DAG));
234    return;
235  }
236}
237
238//===----------------------------------------------------------------------===//
239//  Misc Lower Operation implementation
240//===----------------------------------------------------------------------===//
241
242SDValue XCoreTargetLowering::
243LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
244{
245  SDLoc dl(Op);
246  SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i32, Op.getOperand(2),
247                             Op.getOperand(3), Op.getOperand(4));
248  return DAG.getNode(ISD::SELECT, dl, MVT::i32, Cond, Op.getOperand(0),
249                     Op.getOperand(1));
250}
251
252SDValue XCoreTargetLowering::
253getGlobalAddressWrapper(SDValue GA, const GlobalValue *GV,
254                        SelectionDAG &DAG) const
255{
256  // FIXME there is no actual debug info here
257  SDLoc dl(GA);
258  const GlobalValue *UnderlyingGV = GV;
259  // If GV is an alias then use the aliasee to determine the wrapper type
260  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
261    UnderlyingGV = GA->resolveAliasedGlobal();
262  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(UnderlyingGV)) {
263    if (GVar->isConstant())
264      return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
265    return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
266  }
267  return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
268}
269
270SDValue XCoreTargetLowering::
271LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
272{
273  SDLoc DL(Op);
274  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
275  const GlobalValue *GV = GN->getGlobal();
276  int64_t Offset = GN->getOffset();
277  // We can only fold positive offsets that are a multiple of the word size.
278  int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
279  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
280  GA = getGlobalAddressWrapper(GA, GV, DAG);
281  // Handle the rest of the offset.
282  if (Offset != FoldedOffset) {
283    SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
284    GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
285  }
286  return GA;
287}
288
289SDValue XCoreTargetLowering::
290LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
291{
292  SDLoc DL(Op);
293
294  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
295  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
296
297  return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
298}
299
300SDValue XCoreTargetLowering::
301LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
302{
303  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
304  // FIXME there isn't really debug info here
305  SDLoc dl(CP);
306  EVT PtrVT = Op.getValueType();
307  SDValue Res;
308  if (CP->isMachineConstantPoolEntry()) {
309    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
310                                    CP->getAlignment());
311  } else {
312    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
313                                    CP->getAlignment());
314  }
315  return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
316}
317
318unsigned XCoreTargetLowering::getJumpTableEncoding() const {
319  return MachineJumpTableInfo::EK_Inline;
320}
321
322SDValue XCoreTargetLowering::
323LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
324{
325  SDValue Chain = Op.getOperand(0);
326  SDValue Table = Op.getOperand(1);
327  SDValue Index = Op.getOperand(2);
328  SDLoc dl(Op);
329  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
330  unsigned JTI = JT->getIndex();
331  MachineFunction &MF = DAG.getMachineFunction();
332  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
333  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
334
335  unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
336  if (NumEntries <= 32) {
337    return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
338  }
339  assert((NumEntries >> 31) == 0);
340  SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
341                                    DAG.getConstant(1, MVT::i32));
342  return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
343                     ScaledIndex);
344}
345
346SDValue XCoreTargetLowering::
347lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
348                                       int64_t Offset, SelectionDAG &DAG) const
349{
350  if ((Offset & 0x3) == 0) {
351    return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
352                       false, false, false, 0);
353  }
354  // Lower to pair of consecutive word aligned loads plus some bit shifting.
355  int32_t HighOffset = RoundUpToAlignment(Offset, 4);
356  int32_t LowOffset = HighOffset - 4;
357  SDValue LowAddr, HighAddr;
358  if (GlobalAddressSDNode *GASD =
359        dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
360    LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
361                                   LowOffset);
362    HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
363                                    HighOffset);
364  } else {
365    LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
366                          DAG.getConstant(LowOffset, MVT::i32));
367    HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
368                           DAG.getConstant(HighOffset, MVT::i32));
369  }
370  SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
371  SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
372
373  SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
374                            LowAddr, MachinePointerInfo(),
375                            false, false, false, 0);
376  SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
377                             HighAddr, MachinePointerInfo(),
378                             false, false, false, 0);
379  SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
380  SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
381  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
382  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
383                      High.getValue(1));
384  SDValue Ops[] = { Result, Chain };
385  return DAG.getMergeValues(Ops, 2, DL);
386}
387
388static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
389{
390  APInt KnownZero, KnownOne;
391  DAG.ComputeMaskedBits(Value, KnownZero, KnownOne);
392  return KnownZero.countTrailingOnes() >= 2;
393}
394
395SDValue XCoreTargetLowering::
396LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
397  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
398  LoadSDNode *LD = cast<LoadSDNode>(Op);
399  assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
400         "Unexpected extension type");
401  assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
402  if (allowsUnalignedMemoryAccesses(LD->getMemoryVT()))
403    return SDValue();
404
405  unsigned ABIAlignment = getDataLayout()->
406    getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
407  // Leave aligned load alone.
408  if (LD->getAlignment() >= ABIAlignment)
409    return SDValue();
410
411  SDValue Chain = LD->getChain();
412  SDValue BasePtr = LD->getBasePtr();
413  SDLoc DL(Op);
414
415  if (!LD->isVolatile()) {
416    const GlobalValue *GV;
417    int64_t Offset = 0;
418    if (DAG.isBaseWithConstantOffset(BasePtr) &&
419        isWordAligned(BasePtr->getOperand(0), DAG)) {
420      SDValue NewBasePtr = BasePtr->getOperand(0);
421      Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
422      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
423                                                    Offset, DAG);
424    }
425    if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
426        MinAlign(GV->getAlignment(), 4) == 4) {
427      SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
428                                                BasePtr->getValueType(0));
429      return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
430                                                    Offset, DAG);
431    }
432  }
433
434  if (LD->getAlignment() == 2) {
435    SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
436                                 BasePtr, LD->getPointerInfo(), MVT::i16,
437                                 LD->isVolatile(), LD->isNonTemporal(), 2);
438    SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
439                                   DAG.getConstant(2, MVT::i32));
440    SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
441                                  HighAddr,
442                                  LD->getPointerInfo().getWithOffset(2),
443                                  MVT::i16, LD->isVolatile(),
444                                  LD->isNonTemporal(), 2);
445    SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
446                                      DAG.getConstant(16, MVT::i32));
447    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
448    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
449                             High.getValue(1));
450    SDValue Ops[] = { Result, Chain };
451    return DAG.getMergeValues(Ops, 2, DL);
452  }
453
454  // Lower to a call to __misaligned_load(BasePtr).
455  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
456  TargetLowering::ArgListTy Args;
457  TargetLowering::ArgListEntry Entry;
458
459  Entry.Ty = IntPtrTy;
460  Entry.Node = BasePtr;
461  Args.push_back(Entry);
462
463  TargetLowering::CallLoweringInfo CLI(Chain, IntPtrTy, false, false,
464                    false, false, 0, CallingConv::C, /*isTailCall=*/false,
465                    /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
466                    DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
467                    Args, DAG, DL);
468  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
469
470  SDValue Ops[] =
471    { CallResult.first, CallResult.second };
472
473  return DAG.getMergeValues(Ops, 2, DL);
474}
475
476SDValue XCoreTargetLowering::
477LowerSTORE(SDValue Op, SelectionDAG &DAG) const
478{
479  StoreSDNode *ST = cast<StoreSDNode>(Op);
480  assert(!ST->isTruncatingStore() && "Unexpected store type");
481  assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
482  if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
483    return SDValue();
484  }
485  unsigned ABIAlignment = getDataLayout()->
486    getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
487  // Leave aligned store alone.
488  if (ST->getAlignment() >= ABIAlignment) {
489    return SDValue();
490  }
491  SDValue Chain = ST->getChain();
492  SDValue BasePtr = ST->getBasePtr();
493  SDValue Value = ST->getValue();
494  SDLoc dl(Op);
495
496  if (ST->getAlignment() == 2) {
497    SDValue Low = Value;
498    SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
499                                      DAG.getConstant(16, MVT::i32));
500    SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
501                                         ST->getPointerInfo(), MVT::i16,
502                                         ST->isVolatile(), ST->isNonTemporal(),
503                                         2);
504    SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
505                                   DAG.getConstant(2, MVT::i32));
506    SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
507                                          ST->getPointerInfo().getWithOffset(2),
508                                          MVT::i16, ST->isVolatile(),
509                                          ST->isNonTemporal(), 2);
510    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
511  }
512
513  // Lower to a call to __misaligned_store(BasePtr, Value).
514  Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
515  TargetLowering::ArgListTy Args;
516  TargetLowering::ArgListEntry Entry;
517
518  Entry.Ty = IntPtrTy;
519  Entry.Node = BasePtr;
520  Args.push_back(Entry);
521
522  Entry.Node = Value;
523  Args.push_back(Entry);
524
525  TargetLowering::CallLoweringInfo CLI(Chain,
526                    Type::getVoidTy(*DAG.getContext()), false, false,
527                    false, false, 0, CallingConv::C, /*isTailCall=*/false,
528                    /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
529                    DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
530                    Args, DAG, dl);
531  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
532
533  return CallResult.second;
534}
535
536SDValue XCoreTargetLowering::
537LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
538{
539  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
540         "Unexpected operand to lower!");
541  SDLoc dl(Op);
542  SDValue LHS = Op.getOperand(0);
543  SDValue RHS = Op.getOperand(1);
544  SDValue Zero = DAG.getConstant(0, MVT::i32);
545  SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
546                           DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
547                           LHS, RHS);
548  SDValue Lo(Hi.getNode(), 1);
549  SDValue Ops[] = { Lo, Hi };
550  return DAG.getMergeValues(Ops, 2, dl);
551}
552
553SDValue XCoreTargetLowering::
554LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
555{
556  assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
557         "Unexpected operand to lower!");
558  SDLoc dl(Op);
559  SDValue LHS = Op.getOperand(0);
560  SDValue RHS = Op.getOperand(1);
561  SDValue Zero = DAG.getConstant(0, MVT::i32);
562  SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
563                           DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
564                           Zero, Zero);
565  SDValue Lo(Hi.getNode(), 1);
566  SDValue Ops[] = { Lo, Hi };
567  return DAG.getMergeValues(Ops, 2, dl);
568}
569
570/// isADDADDMUL - Return whether Op is in a form that is equivalent to
571/// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
572/// each intermediate result in the calculation must also have a single use.
573/// If the Op is in the correct form the constituent parts are written to Mul0,
574/// Mul1, Addend0 and Addend1.
575static bool
576isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
577            SDValue &Addend1, bool requireIntermediatesHaveOneUse)
578{
579  if (Op.getOpcode() != ISD::ADD)
580    return false;
581  SDValue N0 = Op.getOperand(0);
582  SDValue N1 = Op.getOperand(1);
583  SDValue AddOp;
584  SDValue OtherOp;
585  if (N0.getOpcode() == ISD::ADD) {
586    AddOp = N0;
587    OtherOp = N1;
588  } else if (N1.getOpcode() == ISD::ADD) {
589    AddOp = N1;
590    OtherOp = N0;
591  } else {
592    return false;
593  }
594  if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
595    return false;
596  if (OtherOp.getOpcode() == ISD::MUL) {
597    // add(add(a,b),mul(x,y))
598    if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
599      return false;
600    Mul0 = OtherOp.getOperand(0);
601    Mul1 = OtherOp.getOperand(1);
602    Addend0 = AddOp.getOperand(0);
603    Addend1 = AddOp.getOperand(1);
604    return true;
605  }
606  if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
607    // add(add(mul(x,y),a),b)
608    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
609      return false;
610    Mul0 = AddOp.getOperand(0).getOperand(0);
611    Mul1 = AddOp.getOperand(0).getOperand(1);
612    Addend0 = AddOp.getOperand(1);
613    Addend1 = OtherOp;
614    return true;
615  }
616  if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
617    // add(add(a,mul(x,y)),b)
618    if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
619      return false;
620    Mul0 = AddOp.getOperand(1).getOperand(0);
621    Mul1 = AddOp.getOperand(1).getOperand(1);
622    Addend0 = AddOp.getOperand(0);
623    Addend1 = OtherOp;
624    return true;
625  }
626  return false;
627}
628
629SDValue XCoreTargetLowering::
630TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
631{
632  SDValue Mul;
633  SDValue Other;
634  if (N->getOperand(0).getOpcode() == ISD::MUL) {
635    Mul = N->getOperand(0);
636    Other = N->getOperand(1);
637  } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
638    Mul = N->getOperand(1);
639    Other = N->getOperand(0);
640  } else {
641    return SDValue();
642  }
643  SDLoc dl(N);
644  SDValue LL, RL, AddendL, AddendH;
645  LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
646                   Mul.getOperand(0),  DAG.getConstant(0, MVT::i32));
647  RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
648                   Mul.getOperand(1),  DAG.getConstant(0, MVT::i32));
649  AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
650                        Other,  DAG.getConstant(0, MVT::i32));
651  AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
652                        Other,  DAG.getConstant(1, MVT::i32));
653  APInt HighMask = APInt::getHighBitsSet(64, 32);
654  unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
655  unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
656  if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
657      DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
658    // The inputs are both zero-extended.
659    SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
660                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
661                             AddendL, LL, RL);
662    SDValue Lo(Hi.getNode(), 1);
663    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
664  }
665  if (LHSSB > 32 && RHSSB > 32) {
666    // The inputs are both sign-extended.
667    SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
668                             DAG.getVTList(MVT::i32, MVT::i32), AddendH,
669                             AddendL, LL, RL);
670    SDValue Lo(Hi.getNode(), 1);
671    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
672  }
673  SDValue LH, RH;
674  LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
675                   Mul.getOperand(0),  DAG.getConstant(1, MVT::i32));
676  RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
677                   Mul.getOperand(1),  DAG.getConstant(1, MVT::i32));
678  SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
679                           DAG.getVTList(MVT::i32, MVT::i32), AddendH,
680                           AddendL, LL, RL);
681  SDValue Lo(Hi.getNode(), 1);
682  RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
683  LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
684  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
685  Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
686  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
687}
688
689SDValue XCoreTargetLowering::
690ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
691{
692  assert(N->getValueType(0) == MVT::i64 &&
693         (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
694        "Unknown operand to lower!");
695
696  if (N->getOpcode() == ISD::ADD) {
697    SDValue Result = TryExpandADDWithMul(N, DAG);
698    if (Result.getNode() != 0)
699      return Result;
700  }
701
702  SDLoc dl(N);
703
704  // Extract components
705  SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
706                            N->getOperand(0),  DAG.getConstant(0, MVT::i32));
707  SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
708                            N->getOperand(0),  DAG.getConstant(1, MVT::i32));
709  SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
710                             N->getOperand(1), DAG.getConstant(0, MVT::i32));
711  SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
712                             N->getOperand(1), DAG.getConstant(1, MVT::i32));
713
714  // Expand
715  unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
716                                                   XCoreISD::LSUB;
717  SDValue Zero = DAG.getConstant(0, MVT::i32);
718  SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
719                           LHSL, RHSL, Zero);
720  SDValue Carry(Lo.getNode(), 1);
721
722  SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
723                           LHSH, RHSH, Carry);
724  SDValue Ignored(Hi.getNode(), 1);
725  // Merge the pieces
726  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
727}
728
729SDValue XCoreTargetLowering::
730LowerVAARG(SDValue Op, SelectionDAG &DAG) const
731{
732  // Whist llvm does not support aggregate varargs we can ignore
733  // the possibility of the ValueType being an implicit byVal vararg.
734  SDNode *Node = Op.getNode();
735  EVT VT = Node->getValueType(0); // not an aggregate
736  SDValue InChain = Node->getOperand(0);
737  SDValue VAListPtr = Node->getOperand(1);
738  EVT PtrVT = VAListPtr.getValueType();
739  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
740  SDLoc dl(Node);
741  SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
742                               VAListPtr, MachinePointerInfo(SV),
743                               false, false, false, 0);
744  // Increment the pointer, VAList, to the next vararg
745  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
746                                DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
747  // Store the incremented VAList to the legalized pointer
748  InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
749                         MachinePointerInfo(SV), false, false, 0);
750  // Load the actual argument out of the pointer VAList
751  return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
752                     false, false, false, 0);
753}
754
755SDValue XCoreTargetLowering::
756LowerVASTART(SDValue Op, SelectionDAG &DAG) const
757{
758  SDLoc dl(Op);
759  // vastart stores the address of the VarArgsFrameIndex slot into the
760  // memory location argument
761  MachineFunction &MF = DAG.getMachineFunction();
762  XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
763  SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
764  return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
765                      MachinePointerInfo(), false, false, 0);
766}
767
768SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
769                                            SelectionDAG &DAG) const {
770  SDLoc dl(Op);
771  // Depths > 0 not supported yet!
772  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
773    return SDValue();
774
775  MachineFunction &MF = DAG.getMachineFunction();
776  const TargetRegisterInfo *RegInfo = getTargetMachine().getRegisterInfo();
777  return DAG.getCopyFromReg(DAG.getEntryNode(), dl,
778                            RegInfo->getFrameRegister(MF), MVT::i32);
779}
780
781SDValue XCoreTargetLowering::
782LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
783  return Op.getOperand(0);
784}
785
786SDValue XCoreTargetLowering::
787LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
788  SDValue Chain = Op.getOperand(0);
789  SDValue Trmp = Op.getOperand(1); // trampoline
790  SDValue FPtr = Op.getOperand(2); // nested function
791  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
792
793  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
794
795  // .align 4
796  // LDAPF_u10 r11, nest
797  // LDW_2rus r11, r11[0]
798  // STWSP_ru6 r11, sp[0]
799  // LDAPF_u10 r11, fptr
800  // LDW_2rus r11, r11[0]
801  // BAU_1r r11
802  // nest:
803  // .word nest
804  // fptr:
805  // .word fptr
806  SDValue OutChains[5];
807
808  SDValue Addr = Trmp;
809
810  SDLoc dl(Op);
811  OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
812                              Addr, MachinePointerInfo(TrmpAddr), false, false,
813                              0);
814
815  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
816                     DAG.getConstant(4, MVT::i32));
817  OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
818                              Addr, MachinePointerInfo(TrmpAddr, 4), false,
819                              false, 0);
820
821  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
822                     DAG.getConstant(8, MVT::i32));
823  OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
824                              Addr, MachinePointerInfo(TrmpAddr, 8), false,
825                              false, 0);
826
827  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
828                     DAG.getConstant(12, MVT::i32));
829  OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
830                              MachinePointerInfo(TrmpAddr, 12), false, false,
831                              0);
832
833  Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
834                     DAG.getConstant(16, MVT::i32));
835  OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
836                              MachinePointerInfo(TrmpAddr, 16), false, false,
837                              0);
838
839  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 5);
840}
841
842SDValue XCoreTargetLowering::
843LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
844  SDLoc DL(Op);
845  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
846  switch (IntNo) {
847    case Intrinsic::xcore_crc8:
848      EVT VT = Op.getValueType();
849      SDValue Data =
850        DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
851                    Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
852      SDValue Crc(Data.getNode(), 1);
853      SDValue Results[] = { Crc, Data };
854      return DAG.getMergeValues(Results, 2, DL);
855  }
856  return SDValue();
857}
858
859SDValue XCoreTargetLowering::
860LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
861  SDLoc DL(Op);
862  return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
863}
864
865//===----------------------------------------------------------------------===//
866//                      Calling Convention Implementation
867//===----------------------------------------------------------------------===//
868
869#include "XCoreGenCallingConv.inc"
870
871//===----------------------------------------------------------------------===//
872//                  Call Calling Convention Implementation
873//===----------------------------------------------------------------------===//
874
875/// XCore call implementation
876SDValue
877XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
878                               SmallVectorImpl<SDValue> &InVals) const {
879  SelectionDAG &DAG                     = CLI.DAG;
880  SDLoc &dl                             = CLI.DL;
881  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
882  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
883  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
884  SDValue Chain                         = CLI.Chain;
885  SDValue Callee                        = CLI.Callee;
886  bool &isTailCall                      = CLI.IsTailCall;
887  CallingConv::ID CallConv              = CLI.CallConv;
888  bool isVarArg                         = CLI.IsVarArg;
889
890  // XCore target does not yet support tail call optimization.
891  isTailCall = false;
892
893  // For now, only CallingConv::C implemented
894  switch (CallConv)
895  {
896    default:
897      llvm_unreachable("Unsupported calling convention");
898    case CallingConv::Fast:
899    case CallingConv::C:
900      return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
901                            Outs, OutVals, Ins, dl, DAG, InVals);
902  }
903}
904
905/// LowerCCCCallTo - functions arguments are copied from virtual
906/// regs to (physical regs)/(stack frame), CALLSEQ_START and
907/// CALLSEQ_END are emitted.
908/// TODO: isTailCall, sret.
909SDValue
910XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
911                                    CallingConv::ID CallConv, bool isVarArg,
912                                    bool isTailCall,
913                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
914                                    const SmallVectorImpl<SDValue> &OutVals,
915                                    const SmallVectorImpl<ISD::InputArg> &Ins,
916                                    SDLoc dl, SelectionDAG &DAG,
917                                    SmallVectorImpl<SDValue> &InVals) const {
918
919  // Analyze operands of the call, assigning locations to each operand.
920  SmallVector<CCValAssign, 16> ArgLocs;
921  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
922                 getTargetMachine(), ArgLocs, *DAG.getContext());
923
924  // The ABI dictates there should be one stack slot available to the callee
925  // on function entry (for saving lr).
926  CCInfo.AllocateStack(4, 4);
927
928  CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
929
930  // Get a count of how many bytes are to be pushed on the stack.
931  unsigned NumBytes = CCInfo.getNextStackOffset();
932
933  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
934                                 getPointerTy(), true), dl);
935
936  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
937  SmallVector<SDValue, 12> MemOpChains;
938
939  // Walk the register/memloc assignments, inserting copies/loads.
940  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
941    CCValAssign &VA = ArgLocs[i];
942    SDValue Arg = OutVals[i];
943
944    // Promote the value if needed.
945    switch (VA.getLocInfo()) {
946      default: llvm_unreachable("Unknown loc info!");
947      case CCValAssign::Full: break;
948      case CCValAssign::SExt:
949        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
950        break;
951      case CCValAssign::ZExt:
952        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
953        break;
954      case CCValAssign::AExt:
955        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
956        break;
957    }
958
959    // Arguments that can be passed on register must be kept at
960    // RegsToPass vector
961    if (VA.isRegLoc()) {
962      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
963    } else {
964      assert(VA.isMemLoc());
965
966      int Offset = VA.getLocMemOffset();
967
968      MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
969                                        Chain, Arg,
970                                        DAG.getConstant(Offset/4, MVT::i32)));
971    }
972  }
973
974  // Transform all store nodes into one single node because
975  // all store nodes are independent of each other.
976  if (!MemOpChains.empty())
977    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
978                        &MemOpChains[0], MemOpChains.size());
979
980  // Build a sequence of copy-to-reg nodes chained together with token
981  // chain and flag operands which copy the outgoing args into registers.
982  // The InFlag in necessary since all emitted instructions must be
983  // stuck together.
984  SDValue InFlag;
985  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
986    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
987                             RegsToPass[i].second, InFlag);
988    InFlag = Chain.getValue(1);
989  }
990
991  // If the callee is a GlobalAddress node (quite common, every direct call is)
992  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
993  // Likewise ExternalSymbol -> TargetExternalSymbol.
994  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
995    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
996  else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
997    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
998
999  // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1000  //             = Chain, Callee, Reg#1, Reg#2, ...
1001  //
1002  // Returns a chain & a flag for retval copy to use.
1003  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1004  SmallVector<SDValue, 8> Ops;
1005  Ops.push_back(Chain);
1006  Ops.push_back(Callee);
1007
1008  // Add argument registers to the end of the list so that they are
1009  // known live into the call.
1010  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1011    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1012                                  RegsToPass[i].second.getValueType()));
1013
1014  if (InFlag.getNode())
1015    Ops.push_back(InFlag);
1016
1017  Chain  = DAG.getNode(XCoreISD::BL, dl, NodeTys, &Ops[0], Ops.size());
1018  InFlag = Chain.getValue(1);
1019
1020  // Create the CALLSEQ_END node.
1021  Chain = DAG.getCALLSEQ_END(Chain,
1022                             DAG.getConstant(NumBytes, getPointerTy(), true),
1023                             DAG.getConstant(0, getPointerTy(), true),
1024                             InFlag, dl);
1025  InFlag = Chain.getValue(1);
1026
1027  // Handle result values, copying them out of physregs into vregs that we
1028  // return.
1029  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
1030                         Ins, dl, DAG, InVals);
1031}
1032
1033/// LowerCallResult - Lower the result values of a call into the
1034/// appropriate copies out of appropriate physical registers.
1035SDValue
1036XCoreTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1037                                     CallingConv::ID CallConv, bool isVarArg,
1038                                     const SmallVectorImpl<ISD::InputArg> &Ins,
1039                                     SDLoc dl, SelectionDAG &DAG,
1040                                     SmallVectorImpl<SDValue> &InVals) const {
1041
1042  // Assign locations to each value returned by this call.
1043  SmallVector<CCValAssign, 16> RVLocs;
1044  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1045                 getTargetMachine(), RVLocs, *DAG.getContext());
1046
1047  CCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1048
1049  // Copy all of the result registers out of their specified physreg.
1050  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1051    Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
1052                                 RVLocs[i].getValVT(), InFlag).getValue(1);
1053    InFlag = Chain.getValue(2);
1054    InVals.push_back(Chain.getValue(0));
1055  }
1056
1057  return Chain;
1058}
1059
1060//===----------------------------------------------------------------------===//
1061//             Formal Arguments Calling Convention Implementation
1062//===----------------------------------------------------------------------===//
1063
1064namespace {
1065  struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1066}
1067
1068/// XCore formal arguments implementation
1069SDValue
1070XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1071                                          CallingConv::ID CallConv,
1072                                          bool isVarArg,
1073                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1074                                          SDLoc dl,
1075                                          SelectionDAG &DAG,
1076                                          SmallVectorImpl<SDValue> &InVals)
1077                                            const {
1078  switch (CallConv)
1079  {
1080    default:
1081      llvm_unreachable("Unsupported calling convention");
1082    case CallingConv::C:
1083    case CallingConv::Fast:
1084      return LowerCCCArguments(Chain, CallConv, isVarArg,
1085                               Ins, dl, DAG, InVals);
1086  }
1087}
1088
1089/// LowerCCCArguments - transform physical registers into
1090/// virtual registers and generate load operations for
1091/// arguments places on the stack.
1092/// TODO: sret
1093SDValue
1094XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1095                                       CallingConv::ID CallConv,
1096                                       bool isVarArg,
1097                                       const SmallVectorImpl<ISD::InputArg>
1098                                         &Ins,
1099                                       SDLoc dl,
1100                                       SelectionDAG &DAG,
1101                                       SmallVectorImpl<SDValue> &InVals) const {
1102  MachineFunction &MF = DAG.getMachineFunction();
1103  MachineFrameInfo *MFI = MF.getFrameInfo();
1104  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1105
1106  // Assign locations to all of the incoming arguments.
1107  SmallVector<CCValAssign, 16> ArgLocs;
1108  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1109                 getTargetMachine(), ArgLocs, *DAG.getContext());
1110
1111  CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1112
1113  unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1114
1115  unsigned LRSaveSize = StackSlotSize;
1116
1117  // All getCopyFromReg ops must precede any getMemcpys to prevent the
1118  // scheduler clobbering a register before it has been copied.
1119  // The stages are:
1120  // 1. CopyFromReg (and load) arg & vararg registers.
1121  // 2. Chain CopyFromReg nodes into a TokenFactor.
1122  // 3. Memcpy 'byVal' args & push final InVals.
1123  // 4. Chain mem ops nodes into a TokenFactor.
1124  SmallVector<SDValue, 4> CFRegNode;
1125  SmallVector<ArgDataPair, 4> ArgData;
1126  SmallVector<SDValue, 4> MemOps;
1127
1128  // 1a. CopyFromReg (and load) arg registers.
1129  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1130
1131    CCValAssign &VA = ArgLocs[i];
1132    SDValue ArgIn;
1133
1134    if (VA.isRegLoc()) {
1135      // Arguments passed in registers
1136      EVT RegVT = VA.getLocVT();
1137      switch (RegVT.getSimpleVT().SimpleTy) {
1138      default:
1139        {
1140#ifndef NDEBUG
1141          errs() << "LowerFormalArguments Unhandled argument type: "
1142                 << RegVT.getSimpleVT().SimpleTy << "\n";
1143#endif
1144          llvm_unreachable(0);
1145        }
1146      case MVT::i32:
1147        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1148        RegInfo.addLiveIn(VA.getLocReg(), VReg);
1149        ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1150        CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1151      }
1152    } else {
1153      // sanity check
1154      assert(VA.isMemLoc());
1155      // Load the argument to a virtual register
1156      unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1157      if (ObjSize > StackSlotSize) {
1158        errs() << "LowerFormalArguments Unhandled argument type: "
1159               << EVT(VA.getLocVT()).getEVTString()
1160               << "\n";
1161      }
1162      // Create the frame index object for this incoming parameter...
1163      int FI = MFI->CreateFixedObject(ObjSize,
1164                                      LRSaveSize + VA.getLocMemOffset(),
1165                                      true);
1166
1167      // Create the SelectionDAG nodes corresponding to a load
1168      //from this parameter
1169      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1170      ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1171                          MachinePointerInfo::getFixedStack(FI),
1172                          false, false, false, 0);
1173    }
1174    const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1175    ArgData.push_back(ADP);
1176  }
1177
1178  // 1b. CopyFromReg vararg registers.
1179  if (isVarArg) {
1180    // Argument registers
1181    static const uint16_t ArgRegs[] = {
1182      XCore::R0, XCore::R1, XCore::R2, XCore::R3
1183    };
1184    XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1185    unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs,
1186                                                     array_lengthof(ArgRegs));
1187    if (FirstVAReg < array_lengthof(ArgRegs)) {
1188      int offset = 0;
1189      // Save remaining registers, storing higher register numbers at a higher
1190      // address
1191      for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1192        // Create a stack slot
1193        int FI = MFI->CreateFixedObject(4, offset, true);
1194        if (i == (int)FirstVAReg) {
1195          XFI->setVarArgsFrameIndex(FI);
1196        }
1197        offset -= StackSlotSize;
1198        SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1199        // Move argument from phys reg -> virt reg
1200        unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1201        RegInfo.addLiveIn(ArgRegs[i], VReg);
1202        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1203        CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1204        // Move argument from virt reg -> stack
1205        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1206                                     MachinePointerInfo(), false, false, 0);
1207        MemOps.push_back(Store);
1208      }
1209    } else {
1210      // This will point to the next argument passed via stack.
1211      XFI->setVarArgsFrameIndex(
1212        MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1213                               true));
1214    }
1215  }
1216
1217  // 2. chain CopyFromReg nodes into a TokenFactor.
1218  if (!CFRegNode.empty())
1219    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &CFRegNode[0],
1220                        CFRegNode.size());
1221
1222  // 3. Memcpy 'byVal' args & push final InVals.
1223  // Aggregates passed "byVal" need to be copied by the callee.
1224  // The callee will use a pointer to this copy, rather than the original
1225  // pointer.
1226  for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1227                                                    ArgDE = ArgData.end();
1228       ArgDI != ArgDE; ++ArgDI) {
1229    if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1230      unsigned Size = ArgDI->Flags.getByValSize();
1231      unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1232      // Create a new object on the stack and copy the pointee into it.
1233      int FI = MFI->CreateStackObject(Size, Align, false, false);
1234      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1235      InVals.push_back(FIN);
1236      MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1237                                     DAG.getConstant(Size, MVT::i32),
1238                                     Align, false, false,
1239                                     MachinePointerInfo(),
1240                                     MachinePointerInfo()));
1241    } else {
1242      InVals.push_back(ArgDI->SDV);
1243    }
1244  }
1245
1246  // 4, chain mem ops nodes into a TokenFactor.
1247  if (!MemOps.empty()) {
1248    MemOps.push_back(Chain);
1249    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0],
1250                        MemOps.size());
1251  }
1252
1253  return Chain;
1254}
1255
1256//===----------------------------------------------------------------------===//
1257//               Return Value Calling Convention Implementation
1258//===----------------------------------------------------------------------===//
1259
1260bool XCoreTargetLowering::
1261CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1262               bool isVarArg,
1263               const SmallVectorImpl<ISD::OutputArg> &Outs,
1264               LLVMContext &Context) const {
1265  SmallVector<CCValAssign, 16> RVLocs;
1266  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1267  return CCInfo.CheckReturn(Outs, RetCC_XCore);
1268}
1269
1270SDValue
1271XCoreTargetLowering::LowerReturn(SDValue Chain,
1272                                 CallingConv::ID CallConv, bool isVarArg,
1273                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1274                                 const SmallVectorImpl<SDValue> &OutVals,
1275                                 SDLoc dl, SelectionDAG &DAG) const {
1276
1277  // CCValAssign - represent the assignment of
1278  // the return value to a location
1279  SmallVector<CCValAssign, 16> RVLocs;
1280
1281  // CCState - Info about the registers and stack slot.
1282  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1283                 getTargetMachine(), RVLocs, *DAG.getContext());
1284
1285  // Analyze return values.
1286  CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1287
1288  SDValue Flag;
1289  SmallVector<SDValue, 4> RetOps(1, Chain);
1290
1291  // Return on XCore is always a "retsp 0"
1292  RetOps.push_back(DAG.getConstant(0, MVT::i32));
1293
1294  // Copy the result values into the output registers.
1295  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1296    CCValAssign &VA = RVLocs[i];
1297    assert(VA.isRegLoc() && "Can only return in registers!");
1298
1299    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1300                             OutVals[i], Flag);
1301
1302    // guarantee that all emitted copies are
1303    // stuck together, avoiding something bad
1304    Flag = Chain.getValue(1);
1305    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1306  }
1307
1308  RetOps[0] = Chain;  // Update chain.
1309
1310  // Add the flag if we have it.
1311  if (Flag.getNode())
1312    RetOps.push_back(Flag);
1313
1314  return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other,
1315                     &RetOps[0], RetOps.size());
1316}
1317
1318//===----------------------------------------------------------------------===//
1319//  Other Lowering Code
1320//===----------------------------------------------------------------------===//
1321
1322MachineBasicBlock *
1323XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1324                                                 MachineBasicBlock *BB) const {
1325  const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
1326  DebugLoc dl = MI->getDebugLoc();
1327  assert((MI->getOpcode() == XCore::SELECT_CC) &&
1328         "Unexpected instr type to insert");
1329
1330  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1331  // control-flow pattern.  The incoming instruction knows the destination vreg
1332  // to set, the condition code register to branch on, the true/false values to
1333  // select between, and a branch opcode to use.
1334  const BasicBlock *LLVM_BB = BB->getBasicBlock();
1335  MachineFunction::iterator It = BB;
1336  ++It;
1337
1338  //  thisMBB:
1339  //  ...
1340  //   TrueVal = ...
1341  //   cmpTY ccX, r1, r2
1342  //   bCC copy1MBB
1343  //   fallthrough --> copy0MBB
1344  MachineBasicBlock *thisMBB = BB;
1345  MachineFunction *F = BB->getParent();
1346  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1347  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1348  F->insert(It, copy0MBB);
1349  F->insert(It, sinkMBB);
1350
1351  // Transfer the remainder of BB and its successor edges to sinkMBB.
1352  sinkMBB->splice(sinkMBB->begin(), BB,
1353                  llvm::next(MachineBasicBlock::iterator(MI)),
1354                  BB->end());
1355  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1356
1357  // Next, add the true and fallthrough blocks as its successors.
1358  BB->addSuccessor(copy0MBB);
1359  BB->addSuccessor(sinkMBB);
1360
1361  BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1362    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1363
1364  //  copy0MBB:
1365  //   %FalseValue = ...
1366  //   # fallthrough to sinkMBB
1367  BB = copy0MBB;
1368
1369  // Update machine-CFG edges
1370  BB->addSuccessor(sinkMBB);
1371
1372  //  sinkMBB:
1373  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1374  //  ...
1375  BB = sinkMBB;
1376  BuildMI(*BB, BB->begin(), dl,
1377          TII.get(XCore::PHI), MI->getOperand(0).getReg())
1378    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1379    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1380
1381  MI->eraseFromParent();   // The pseudo instruction is gone now.
1382  return BB;
1383}
1384
1385//===----------------------------------------------------------------------===//
1386// Target Optimization Hooks
1387//===----------------------------------------------------------------------===//
1388
1389SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1390                                             DAGCombinerInfo &DCI) const {
1391  SelectionDAG &DAG = DCI.DAG;
1392  SDLoc dl(N);
1393  switch (N->getOpcode()) {
1394  default: break;
1395  case XCoreISD::LADD: {
1396    SDValue N0 = N->getOperand(0);
1397    SDValue N1 = N->getOperand(1);
1398    SDValue N2 = N->getOperand(2);
1399    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1400    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1401    EVT VT = N0.getValueType();
1402
1403    // canonicalize constant to RHS
1404    if (N0C && !N1C)
1405      return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1406
1407    // fold (ladd 0, 0, x) -> 0, x & 1
1408    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1409      SDValue Carry = DAG.getConstant(0, VT);
1410      SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1411                                   DAG.getConstant(1, VT));
1412      SDValue Ops[] = { Result, Carry };
1413      return DAG.getMergeValues(Ops, 2, dl);
1414    }
1415
1416    // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1417    // low bit set
1418    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1419      APInt KnownZero, KnownOne;
1420      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1421                                         VT.getSizeInBits() - 1);
1422      DAG.ComputeMaskedBits(N2, KnownZero, KnownOne);
1423      if ((KnownZero & Mask) == Mask) {
1424        SDValue Carry = DAG.getConstant(0, VT);
1425        SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1426        SDValue Ops[] = { Result, Carry };
1427        return DAG.getMergeValues(Ops, 2, dl);
1428      }
1429    }
1430  }
1431  break;
1432  case XCoreISD::LSUB: {
1433    SDValue N0 = N->getOperand(0);
1434    SDValue N1 = N->getOperand(1);
1435    SDValue N2 = N->getOperand(2);
1436    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1437    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1438    EVT VT = N0.getValueType();
1439
1440    // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1441    if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1442      APInt KnownZero, KnownOne;
1443      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1444                                         VT.getSizeInBits() - 1);
1445      DAG.ComputeMaskedBits(N2, KnownZero, KnownOne);
1446      if ((KnownZero & Mask) == Mask) {
1447        SDValue Borrow = N2;
1448        SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1449                                     DAG.getConstant(0, VT), N2);
1450        SDValue Ops[] = { Result, Borrow };
1451        return DAG.getMergeValues(Ops, 2, dl);
1452      }
1453    }
1454
1455    // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1456    // low bit set
1457    if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1458      APInt KnownZero, KnownOne;
1459      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1460                                         VT.getSizeInBits() - 1);
1461      DAG.ComputeMaskedBits(N2, KnownZero, KnownOne);
1462      if ((KnownZero & Mask) == Mask) {
1463        SDValue Borrow = DAG.getConstant(0, VT);
1464        SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1465        SDValue Ops[] = { Result, Borrow };
1466        return DAG.getMergeValues(Ops, 2, dl);
1467      }
1468    }
1469  }
1470  break;
1471  case XCoreISD::LMUL: {
1472    SDValue N0 = N->getOperand(0);
1473    SDValue N1 = N->getOperand(1);
1474    SDValue N2 = N->getOperand(2);
1475    SDValue N3 = N->getOperand(3);
1476    ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1477    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1478    EVT VT = N0.getValueType();
1479    // Canonicalize multiplicative constant to RHS. If both multiplicative
1480    // operands are constant canonicalize smallest to RHS.
1481    if ((N0C && !N1C) ||
1482        (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1483      return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1484                         N1, N0, N2, N3);
1485
1486    // lmul(x, 0, a, b)
1487    if (N1C && N1C->isNullValue()) {
1488      // If the high result is unused fold to add(a, b)
1489      if (N->hasNUsesOfValue(0, 0)) {
1490        SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1491        SDValue Ops[] = { Lo, Lo };
1492        return DAG.getMergeValues(Ops, 2, dl);
1493      }
1494      // Otherwise fold to ladd(a, b, 0)
1495      SDValue Result =
1496        DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1497      SDValue Carry(Result.getNode(), 1);
1498      SDValue Ops[] = { Carry, Result };
1499      return DAG.getMergeValues(Ops, 2, dl);
1500    }
1501  }
1502  break;
1503  case ISD::ADD: {
1504    // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1505    // lmul(x, y, a, b). The high result of lmul will be ignored.
1506    // This is only profitable if the intermediate results are unused
1507    // elsewhere.
1508    SDValue Mul0, Mul1, Addend0, Addend1;
1509    if (N->getValueType(0) == MVT::i32 &&
1510        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1511      SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1512                                    DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1513                                    Mul1, Addend0, Addend1);
1514      SDValue Result(Ignored.getNode(), 1);
1515      return Result;
1516    }
1517    APInt HighMask = APInt::getHighBitsSet(64, 32);
1518    // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1519    // lmul(x, y, a, b) if all operands are zero-extended. We do this
1520    // before type legalization as it is messy to match the operands after
1521    // that.
1522    if (N->getValueType(0) == MVT::i64 &&
1523        isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1524        DAG.MaskedValueIsZero(Mul0, HighMask) &&
1525        DAG.MaskedValueIsZero(Mul1, HighMask) &&
1526        DAG.MaskedValueIsZero(Addend0, HighMask) &&
1527        DAG.MaskedValueIsZero(Addend1, HighMask)) {
1528      SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1529                                  Mul0, DAG.getConstant(0, MVT::i32));
1530      SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1531                                  Mul1, DAG.getConstant(0, MVT::i32));
1532      SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1533                                     Addend0, DAG.getConstant(0, MVT::i32));
1534      SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1535                                     Addend1, DAG.getConstant(0, MVT::i32));
1536      SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1537                               DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1538                               Addend0L, Addend1L);
1539      SDValue Lo(Hi.getNode(), 1);
1540      return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1541    }
1542  }
1543  break;
1544  case ISD::STORE: {
1545    // Replace unaligned store of unaligned load with memmove.
1546    StoreSDNode *ST  = cast<StoreSDNode>(N);
1547    if (!DCI.isBeforeLegalize() ||
1548        allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
1549        ST->isVolatile() || ST->isIndexed()) {
1550      break;
1551    }
1552    SDValue Chain = ST->getChain();
1553
1554    unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1555    if (StoreBits % 8) {
1556      break;
1557    }
1558    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1559        ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1560    unsigned Alignment = ST->getAlignment();
1561    if (Alignment >= ABIAlignment) {
1562      break;
1563    }
1564
1565    if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1566      if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1567        LD->getAlignment() == Alignment &&
1568        !LD->isVolatile() && !LD->isIndexed() &&
1569        Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1570        return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1571                              LD->getBasePtr(),
1572                              DAG.getConstant(StoreBits/8, MVT::i32),
1573                              Alignment, false, ST->getPointerInfo(),
1574                              LD->getPointerInfo());
1575      }
1576    }
1577    break;
1578  }
1579  }
1580  return SDValue();
1581}
1582
1583void XCoreTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1584                                                         APInt &KnownZero,
1585                                                         APInt &KnownOne,
1586                                                         const SelectionDAG &DAG,
1587                                                         unsigned Depth) const {
1588  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1589  switch (Op.getOpcode()) {
1590  default: break;
1591  case XCoreISD::LADD:
1592  case XCoreISD::LSUB:
1593    if (Op.getResNo() == 1) {
1594      // Top bits of carry / borrow are clear.
1595      KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1596                                        KnownZero.getBitWidth() - 1);
1597    }
1598    break;
1599  }
1600}
1601
1602//===----------------------------------------------------------------------===//
1603//  Addressing mode description hooks
1604//===----------------------------------------------------------------------===//
1605
1606static inline bool isImmUs(int64_t val)
1607{
1608  return (val >= 0 && val <= 11);
1609}
1610
1611static inline bool isImmUs2(int64_t val)
1612{
1613  return (val%2 == 0 && isImmUs(val/2));
1614}
1615
1616static inline bool isImmUs4(int64_t val)
1617{
1618  return (val%4 == 0 && isImmUs(val/4));
1619}
1620
1621/// isLegalAddressingMode - Return true if the addressing mode represented
1622/// by AM is legal for this target, for a load/store of the specified type.
1623bool
1624XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1625                                              Type *Ty) const {
1626  if (Ty->getTypeID() == Type::VoidTyID)
1627    return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1628
1629  const DataLayout *TD = TM.getDataLayout();
1630  unsigned Size = TD->getTypeAllocSize(Ty);
1631  if (AM.BaseGV) {
1632    return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1633                 AM.BaseOffs%4 == 0;
1634  }
1635
1636  switch (Size) {
1637  case 1:
1638    // reg + imm
1639    if (AM.Scale == 0) {
1640      return isImmUs(AM.BaseOffs);
1641    }
1642    // reg + reg
1643    return AM.Scale == 1 && AM.BaseOffs == 0;
1644  case 2:
1645  case 3:
1646    // reg + imm
1647    if (AM.Scale == 0) {
1648      return isImmUs2(AM.BaseOffs);
1649    }
1650    // reg + reg<<1
1651    return AM.Scale == 2 && AM.BaseOffs == 0;
1652  default:
1653    // reg + imm
1654    if (AM.Scale == 0) {
1655      return isImmUs4(AM.BaseOffs);
1656    }
1657    // reg + reg<<2
1658    return AM.Scale == 4 && AM.BaseOffs == 0;
1659  }
1660}
1661
1662//===----------------------------------------------------------------------===//
1663//                           XCore Inline Assembly Support
1664//===----------------------------------------------------------------------===//
1665
1666std::pair<unsigned, const TargetRegisterClass*>
1667XCoreTargetLowering::
1668getRegForInlineAsmConstraint(const std::string &Constraint,
1669                             MVT VT) const {
1670  if (Constraint.size() == 1) {
1671    switch (Constraint[0]) {
1672    default : break;
1673    case 'r':
1674      return std::make_pair(0U, &XCore::GRRegsRegClass);
1675    }
1676  }
1677  // Use the default implementation in TargetLowering to convert the register
1678  // constraint into a member of a register class.
1679  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1680}
1681