1//===- Inliner.cpp - Code common to all inliners --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the mechanics required to implement inlining without
11// missing any calls and updating the call graph.  The decisions of which calls
12// are profitable to inline are implemented elsewhere.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO/InlinerPass.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/CallGraph.h"
20#include "llvm/Analysis/InlineCost.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DiagnosticInfo.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Module.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetLibraryInfo.h"
31#include "llvm/Transforms/Utils/Cloning.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace llvm;
34
35#define DEBUG_TYPE "inline"
36
37STATISTIC(NumInlined, "Number of functions inlined");
38STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
39STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
40STATISTIC(NumMergedAllocas, "Number of allocas merged together");
41
42// This weirdly named statistic tracks the number of times that, when attempting
43// to inline a function A into B, we analyze the callers of B in order to see
44// if those would be more profitable and blocked inline steps.
45STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
46
47static cl::opt<int>
48InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
49        cl::desc("Control the amount of inlining to perform (default = 225)"));
50
51static cl::opt<int>
52HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
53              cl::desc("Threshold for inlining functions with inline hint"));
54
55// We instroduce this threshold to help performance of instrumentation based
56// PGO before we actually hook up inliner with analysis passes such as BPI and
57// BFI.
58static cl::opt<int>
59ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225),
60              cl::desc("Threshold for inlining functions with cold attribute"));
61
62// Threshold to use when optsize is specified (and there is no -inline-limit).
63const int OptSizeThreshold = 75;
64
65Inliner::Inliner(char &ID)
66  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
67
68Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
69  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
70                                          InlineLimit : Threshold),
71    InsertLifetime(InsertLifetime) {}
72
73/// getAnalysisUsage - For this class, we declare that we require and preserve
74/// the call graph.  If the derived class implements this method, it should
75/// always explicitly call the implementation here.
76void Inliner::getAnalysisUsage(AnalysisUsage &AU) const {
77  CallGraphSCCPass::getAnalysisUsage(AU);
78}
79
80
81typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
82InlinedArrayAllocasTy;
83
84/// \brief If the inlined function had a higher stack protection level than the
85/// calling function, then bump up the caller's stack protection level.
86static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) {
87  // If upgrading the SSP attribute, clear out the old SSP Attributes first.
88  // Having multiple SSP attributes doesn't actually hurt, but it adds useless
89  // clutter to the IR.
90  AttrBuilder B;
91  B.addAttribute(Attribute::StackProtect)
92    .addAttribute(Attribute::StackProtectStrong);
93  AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(),
94                                              AttributeSet::FunctionIndex,
95                                              B);
96  AttributeSet CallerAttr = Caller->getAttributes(),
97               CalleeAttr = Callee->getAttributes();
98
99  if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
100                              Attribute::StackProtectReq)) {
101    Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
102    Caller->addFnAttr(Attribute::StackProtectReq);
103  } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
104                                     Attribute::StackProtectStrong) &&
105             !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
106                                      Attribute::StackProtectReq)) {
107    Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr);
108    Caller->addFnAttr(Attribute::StackProtectStrong);
109  } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex,
110                                     Attribute::StackProtect) &&
111           !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
112                                    Attribute::StackProtectReq) &&
113           !CallerAttr.hasAttribute(AttributeSet::FunctionIndex,
114                                    Attribute::StackProtectStrong))
115    Caller->addFnAttr(Attribute::StackProtect);
116}
117
118/// InlineCallIfPossible - If it is possible to inline the specified call site,
119/// do so and update the CallGraph for this operation.
120///
121/// This function also does some basic book-keeping to update the IR.  The
122/// InlinedArrayAllocas map keeps track of any allocas that are already
123/// available from other  functions inlined into the caller.  If we are able to
124/// inline this call site we attempt to reuse already available allocas or add
125/// any new allocas to the set if not possible.
126static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
127                                 InlinedArrayAllocasTy &InlinedArrayAllocas,
128                                 int InlineHistory, bool InsertLifetime,
129                                 const DataLayout *DL) {
130  Function *Callee = CS.getCalledFunction();
131  Function *Caller = CS.getCaller();
132
133  // Try to inline the function.  Get the list of static allocas that were
134  // inlined.
135  if (!InlineFunction(CS, IFI, InsertLifetime))
136    return false;
137
138  AdjustCallerSSPLevel(Caller, Callee);
139
140  // Look at all of the allocas that we inlined through this call site.  If we
141  // have already inlined other allocas through other calls into this function,
142  // then we know that they have disjoint lifetimes and that we can merge them.
143  //
144  // There are many heuristics possible for merging these allocas, and the
145  // different options have different tradeoffs.  One thing that we *really*
146  // don't want to hurt is SRoA: once inlining happens, often allocas are no
147  // longer address taken and so they can be promoted.
148  //
149  // Our "solution" for that is to only merge allocas whose outermost type is an
150  // array type.  These are usually not promoted because someone is using a
151  // variable index into them.  These are also often the most important ones to
152  // merge.
153  //
154  // A better solution would be to have real memory lifetime markers in the IR
155  // and not have the inliner do any merging of allocas at all.  This would
156  // allow the backend to do proper stack slot coloring of all allocas that
157  // *actually make it to the backend*, which is really what we want.
158  //
159  // Because we don't have this information, we do this simple and useful hack.
160  //
161  SmallPtrSet<AllocaInst*, 16> UsedAllocas;
162
163  // When processing our SCC, check to see if CS was inlined from some other
164  // call site.  For example, if we're processing "A" in this code:
165  //   A() { B() }
166  //   B() { x = alloca ... C() }
167  //   C() { y = alloca ... }
168  // Assume that C was not inlined into B initially, and so we're processing A
169  // and decide to inline B into A.  Doing this makes an alloca available for
170  // reuse and makes a callsite (C) available for inlining.  When we process
171  // the C call site we don't want to do any alloca merging between X and Y
172  // because their scopes are not disjoint.  We could make this smarter by
173  // keeping track of the inline history for each alloca in the
174  // InlinedArrayAllocas but this isn't likely to be a significant win.
175  if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
176    return true;
177
178  // Loop over all the allocas we have so far and see if they can be merged with
179  // a previously inlined alloca.  If not, remember that we had it.
180  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
181       AllocaNo != e; ++AllocaNo) {
182    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
183
184    // Don't bother trying to merge array allocations (they will usually be
185    // canonicalized to be an allocation *of* an array), or allocations whose
186    // type is not itself an array (because we're afraid of pessimizing SRoA).
187    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
188    if (!ATy || AI->isArrayAllocation())
189      continue;
190
191    // Get the list of all available allocas for this array type.
192    std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
193
194    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
195    // that we have to be careful not to reuse the same "available" alloca for
196    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
197    // set to keep track of which "available" allocas are being used by this
198    // function.  Also, AllocasForType can be empty of course!
199    bool MergedAwayAlloca = false;
200    for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
201      AllocaInst *AvailableAlloca = AllocasForType[i];
202
203      unsigned Align1 = AI->getAlignment(),
204               Align2 = AvailableAlloca->getAlignment();
205      // If we don't have data layout information, and only one alloca is using
206      // the target default, then we can't safely merge them because we can't
207      // pick the greater alignment.
208      if (!DL && (!Align1 || !Align2) && Align1 != Align2)
209        continue;
210
211      // The available alloca has to be in the right function, not in some other
212      // function in this SCC.
213      if (AvailableAlloca->getParent() != AI->getParent())
214        continue;
215
216      // If the inlined function already uses this alloca then we can't reuse
217      // it.
218      if (!UsedAllocas.insert(AvailableAlloca))
219        continue;
220
221      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
222      // success!
223      DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
224                   << *AvailableAlloca << '\n');
225
226      AI->replaceAllUsesWith(AvailableAlloca);
227
228      if (Align1 != Align2) {
229        if (!Align1 || !Align2) {
230          assert(DL && "DataLayout required to compare default alignments");
231          unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType());
232
233          Align1 = Align1 ? Align1 : TypeAlign;
234          Align2 = Align2 ? Align2 : TypeAlign;
235        }
236
237        if (Align1 > Align2)
238          AvailableAlloca->setAlignment(AI->getAlignment());
239      }
240
241      AI->eraseFromParent();
242      MergedAwayAlloca = true;
243      ++NumMergedAllocas;
244      IFI.StaticAllocas[AllocaNo] = nullptr;
245      break;
246    }
247
248    // If we already nuked the alloca, we're done with it.
249    if (MergedAwayAlloca)
250      continue;
251
252    // If we were unable to merge away the alloca either because there are no
253    // allocas of the right type available or because we reused them all
254    // already, remember that this alloca came from an inlined function and mark
255    // it used so we don't reuse it for other allocas from this inline
256    // operation.
257    AllocasForType.push_back(AI);
258    UsedAllocas.insert(AI);
259  }
260
261  return true;
262}
263
264unsigned Inliner::getInlineThreshold(CallSite CS) const {
265  int thres = InlineThreshold; // -inline-threshold or else selected by
266                               // overall opt level
267
268  // If -inline-threshold is not given, listen to the optsize attribute when it
269  // would decrease the threshold.
270  Function *Caller = CS.getCaller();
271  bool OptSize = Caller && !Caller->isDeclaration() &&
272    Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
273                                         Attribute::OptimizeForSize);
274  if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
275      OptSizeThreshold < thres)
276    thres = OptSizeThreshold;
277
278  // Listen to the inlinehint attribute when it would increase the threshold
279  // and the caller does not need to minimize its size.
280  Function *Callee = CS.getCalledFunction();
281  bool InlineHint = Callee && !Callee->isDeclaration() &&
282    Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
283                                         Attribute::InlineHint);
284  if (InlineHint && HintThreshold > thres
285      && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
286                                               Attribute::MinSize))
287    thres = HintThreshold;
288
289  // Listen to the cold attribute when it would decrease the threshold.
290  bool ColdCallee = Callee && !Callee->isDeclaration() &&
291    Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
292                                         Attribute::Cold);
293  // Command line argument for InlineLimit will override the default
294  // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold,
295  // do not use the default cold threshold even if it is smaller.
296  if ((InlineLimit.getNumOccurrences() == 0 ||
297       ColdThreshold.getNumOccurrences() > 0) && ColdCallee &&
298      ColdThreshold < thres)
299    thres = ColdThreshold;
300
301  return thres;
302}
303
304static void emitAnalysis(CallSite CS, const Twine &Msg) {
305  Function *Caller = CS.getCaller();
306  LLVMContext &Ctx = Caller->getContext();
307  DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
308  emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg);
309}
310
311/// shouldInline - Return true if the inliner should attempt to inline
312/// at the given CallSite.
313bool Inliner::shouldInline(CallSite CS) {
314  InlineCost IC = getInlineCost(CS);
315
316  if (IC.isAlways()) {
317    DEBUG(dbgs() << "    Inlining: cost=always"
318          << ", Call: " << *CS.getInstruction() << "\n");
319    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) +
320                         " should always be inlined (cost=always)");
321    return true;
322  }
323
324  if (IC.isNever()) {
325    DEBUG(dbgs() << "    NOT Inlining: cost=never"
326          << ", Call: " << *CS.getInstruction() << "\n");
327    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
328                           " should never be inlined (cost=never)"));
329    return false;
330  }
331
332  Function *Caller = CS.getCaller();
333  if (!IC) {
334    DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
335          << ", thres=" << (IC.getCostDelta() + IC.getCost())
336          << ", Call: " << *CS.getInstruction() << "\n");
337    emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() +
338                           " too costly to inline (cost=") +
339                         Twine(IC.getCost()) + ", threshold=" +
340                         Twine(IC.getCostDelta() + IC.getCost()) + ")");
341    return false;
342  }
343
344  // Try to detect the case where the current inlining candidate caller (call
345  // it B) is a static or linkonce-ODR function and is an inlining candidate
346  // elsewhere, and the current candidate callee (call it C) is large enough
347  // that inlining it into B would make B too big to inline later. In these
348  // circumstances it may be best not to inline C into B, but to inline B into
349  // its callers.
350  //
351  // This only applies to static and linkonce-ODR functions because those are
352  // expected to be available for inlining in the translation units where they
353  // are used. Thus we will always have the opportunity to make local inlining
354  // decisions. Importantly the linkonce-ODR linkage covers inline functions
355  // and templates in C++.
356  //
357  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
358  // the internal implementation of the inline cost metrics rather than
359  // treating them as truly abstract units etc.
360  if (Caller->hasLocalLinkage() ||
361      Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
362    int TotalSecondaryCost = 0;
363    // The candidate cost to be imposed upon the current function.
364    int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
365    // This bool tracks what happens if we do NOT inline C into B.
366    bool callerWillBeRemoved = Caller->hasLocalLinkage();
367    // This bool tracks what happens if we DO inline C into B.
368    bool inliningPreventsSomeOuterInline = false;
369    for (User *U : Caller->users()) {
370      CallSite CS2(U);
371
372      // If this isn't a call to Caller (it could be some other sort
373      // of reference) skip it.  Such references will prevent the caller
374      // from being removed.
375      if (!CS2 || CS2.getCalledFunction() != Caller) {
376        callerWillBeRemoved = false;
377        continue;
378      }
379
380      InlineCost IC2 = getInlineCost(CS2);
381      ++NumCallerCallersAnalyzed;
382      if (!IC2) {
383        callerWillBeRemoved = false;
384        continue;
385      }
386      if (IC2.isAlways())
387        continue;
388
389      // See if inlining or original callsite would erase the cost delta of
390      // this callsite. We subtract off the penalty for the call instruction,
391      // which we would be deleting.
392      if (IC2.getCostDelta() <= CandidateCost) {
393        inliningPreventsSomeOuterInline = true;
394        TotalSecondaryCost += IC2.getCost();
395      }
396    }
397    // If all outer calls to Caller would get inlined, the cost for the last
398    // one is set very low by getInlineCost, in anticipation that Caller will
399    // be removed entirely.  We did not account for this above unless there
400    // is only one caller of Caller.
401    if (callerWillBeRemoved && !Caller->use_empty())
402      TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
403
404    if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
405      DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
406           " Cost = " << IC.getCost() <<
407           ", outer Cost = " << TotalSecondaryCost << '\n');
408      emitAnalysis(
409          CS, Twine("Not inlining. Cost of inlining " +
410                    CS.getCalledFunction()->getName() +
411                    " increases the cost of inlining " +
412                    CS.getCaller()->getName() + " in other contexts"));
413      return false;
414    }
415  }
416
417  DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
418        << ", thres=" << (IC.getCostDelta() + IC.getCost())
419        << ", Call: " << *CS.getInstruction() << '\n');
420  emitAnalysis(
421      CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") +
422              CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) +
423              " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")");
424  return true;
425}
426
427/// InlineHistoryIncludes - Return true if the specified inline history ID
428/// indicates an inline history that includes the specified function.
429static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
430            const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
431  while (InlineHistoryID != -1) {
432    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
433           "Invalid inline history ID");
434    if (InlineHistory[InlineHistoryID].first == F)
435      return true;
436    InlineHistoryID = InlineHistory[InlineHistoryID].second;
437  }
438  return false;
439}
440
441bool Inliner::runOnSCC(CallGraphSCC &SCC) {
442  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
443  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
444  const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
445  const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
446
447  SmallPtrSet<Function*, 8> SCCFunctions;
448  DEBUG(dbgs() << "Inliner visiting SCC:");
449  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
450    Function *F = (*I)->getFunction();
451    if (F) SCCFunctions.insert(F);
452    DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
453  }
454
455  // Scan through and identify all call sites ahead of time so that we only
456  // inline call sites in the original functions, not call sites that result
457  // from inlining other functions.
458  SmallVector<std::pair<CallSite, int>, 16> CallSites;
459
460  // When inlining a callee produces new call sites, we want to keep track of
461  // the fact that they were inlined from the callee.  This allows us to avoid
462  // infinite inlining in some obscure cases.  To represent this, we use an
463  // index into the InlineHistory vector.
464  SmallVector<std::pair<Function*, int>, 8> InlineHistory;
465
466  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
467    Function *F = (*I)->getFunction();
468    if (!F) continue;
469
470    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
471      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
472        CallSite CS(cast<Value>(I));
473        // If this isn't a call, or it is a call to an intrinsic, it can
474        // never be inlined.
475        if (!CS || isa<IntrinsicInst>(I))
476          continue;
477
478        // If this is a direct call to an external function, we can never inline
479        // it.  If it is an indirect call, inlining may resolve it to be a
480        // direct call, so we keep it.
481        if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
482          continue;
483
484        CallSites.push_back(std::make_pair(CS, -1));
485      }
486  }
487
488  DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
489
490  // If there are no calls in this function, exit early.
491  if (CallSites.empty())
492    return false;
493
494  // Now that we have all of the call sites, move the ones to functions in the
495  // current SCC to the end of the list.
496  unsigned FirstCallInSCC = CallSites.size();
497  for (unsigned i = 0; i < FirstCallInSCC; ++i)
498    if (Function *F = CallSites[i].first.getCalledFunction())
499      if (SCCFunctions.count(F))
500        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
501
502
503  InlinedArrayAllocasTy InlinedArrayAllocas;
504  InlineFunctionInfo InlineInfo(&CG, DL);
505
506  // Now that we have all of the call sites, loop over them and inline them if
507  // it looks profitable to do so.
508  bool Changed = false;
509  bool LocalChange;
510  do {
511    LocalChange = false;
512    // Iterate over the outer loop because inlining functions can cause indirect
513    // calls to become direct calls.
514    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
515      CallSite CS = CallSites[CSi].first;
516
517      Function *Caller = CS.getCaller();
518      Function *Callee = CS.getCalledFunction();
519
520      // If this call site is dead and it is to a readonly function, we should
521      // just delete the call instead of trying to inline it, regardless of
522      // size.  This happens because IPSCCP propagates the result out of the
523      // call and then we're left with the dead call.
524      if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
525        DEBUG(dbgs() << "    -> Deleting dead call: "
526                     << *CS.getInstruction() << "\n");
527        // Update the call graph by deleting the edge from Callee to Caller.
528        CG[Caller]->removeCallEdgeFor(CS);
529        CS.getInstruction()->eraseFromParent();
530        ++NumCallsDeleted;
531      } else {
532        // We can only inline direct calls to non-declarations.
533        if (!Callee || Callee->isDeclaration()) continue;
534
535        // If this call site was obtained by inlining another function, verify
536        // that the include path for the function did not include the callee
537        // itself.  If so, we'd be recursively inlining the same function,
538        // which would provide the same callsites, which would cause us to
539        // infinitely inline.
540        int InlineHistoryID = CallSites[CSi].second;
541        if (InlineHistoryID != -1 &&
542            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
543          continue;
544
545        LLVMContext &CallerCtx = Caller->getContext();
546
547        // Get DebugLoc to report. CS will be invalid after Inliner.
548        DebugLoc DLoc = CS.getInstruction()->getDebugLoc();
549
550        // If the policy determines that we should inline this function,
551        // try to do so.
552        if (!shouldInline(CS)) {
553          emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
554                                       Twine(Callee->getName() +
555                                             " will not be inlined into " +
556                                             Caller->getName()));
557          continue;
558        }
559
560        // Attempt to inline the function.
561        if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
562                                  InlineHistoryID, InsertLifetime, DL)) {
563          emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc,
564                                       Twine(Callee->getName() +
565                                             " will not be inlined into " +
566                                             Caller->getName()));
567          continue;
568        }
569        ++NumInlined;
570
571        // Report the inline decision.
572        emitOptimizationRemark(
573            CallerCtx, DEBUG_TYPE, *Caller, DLoc,
574            Twine(Callee->getName() + " inlined into " + Caller->getName()));
575
576        // If inlining this function gave us any new call sites, throw them
577        // onto our worklist to process.  They are useful inline candidates.
578        if (!InlineInfo.InlinedCalls.empty()) {
579          // Create a new inline history entry for this, so that we remember
580          // that these new callsites came about due to inlining Callee.
581          int NewHistoryID = InlineHistory.size();
582          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
583
584          for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
585               i != e; ++i) {
586            Value *Ptr = InlineInfo.InlinedCalls[i];
587            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
588          }
589        }
590      }
591
592      // If we inlined or deleted the last possible call site to the function,
593      // delete the function body now.
594      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
595          // TODO: Can remove if in SCC now.
596          !SCCFunctions.count(Callee) &&
597
598          // The function may be apparently dead, but if there are indirect
599          // callgraph references to the node, we cannot delete it yet, this
600          // could invalidate the CGSCC iterator.
601          CG[Callee]->getNumReferences() == 0) {
602        DEBUG(dbgs() << "    -> Deleting dead function: "
603              << Callee->getName() << "\n");
604        CallGraphNode *CalleeNode = CG[Callee];
605
606        // Remove any call graph edges from the callee to its callees.
607        CalleeNode->removeAllCalledFunctions();
608
609        // Removing the node for callee from the call graph and delete it.
610        delete CG.removeFunctionFromModule(CalleeNode);
611        ++NumDeleted;
612      }
613
614      // Remove this call site from the list.  If possible, use
615      // swap/pop_back for efficiency, but do not use it if doing so would
616      // move a call site to a function in this SCC before the
617      // 'FirstCallInSCC' barrier.
618      if (SCC.isSingular()) {
619        CallSites[CSi] = CallSites.back();
620        CallSites.pop_back();
621      } else {
622        CallSites.erase(CallSites.begin()+CSi);
623      }
624      --CSi;
625
626      Changed = true;
627      LocalChange = true;
628    }
629  } while (LocalChange);
630
631  return Changed;
632}
633
634// doFinalization - Remove now-dead linkonce functions at the end of
635// processing to avoid breaking the SCC traversal.
636bool Inliner::doFinalization(CallGraph &CG) {
637  return removeDeadFunctions(CG);
638}
639
640/// removeDeadFunctions - Remove dead functions that are not included in
641/// DNR (Do Not Remove) list.
642bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
643  SmallVector<CallGraphNode*, 16> FunctionsToRemove;
644
645  // Scan for all of the functions, looking for ones that should now be removed
646  // from the program.  Insert the dead ones in the FunctionsToRemove set.
647  for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
648    CallGraphNode *CGN = I->second;
649    Function *F = CGN->getFunction();
650    if (!F || F->isDeclaration())
651      continue;
652
653    // Handle the case when this function is called and we only want to care
654    // about always-inline functions. This is a bit of a hack to share code
655    // between here and the InlineAlways pass.
656    if (AlwaysInlineOnly &&
657        !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
658                                         Attribute::AlwaysInline))
659      continue;
660
661    // If the only remaining users of the function are dead constants, remove
662    // them.
663    F->removeDeadConstantUsers();
664
665    if (!F->isDefTriviallyDead())
666      continue;
667
668    // Remove any call graph edges from the function to its callees.
669    CGN->removeAllCalledFunctions();
670
671    // Remove any edges from the external node to the function's call graph
672    // node.  These edges might have been made irrelegant due to
673    // optimization of the program.
674    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
675
676    // Removing the node for callee from the call graph and delete it.
677    FunctionsToRemove.push_back(CGN);
678  }
679  if (FunctionsToRemove.empty())
680    return false;
681
682  // Now that we know which functions to delete, do so.  We didn't want to do
683  // this inline, because that would invalidate our CallGraph::iterator
684  // objects. :(
685  //
686  // Note that it doesn't matter that we are iterating over a non-stable order
687  // here to do this, it doesn't matter which order the functions are deleted
688  // in.
689  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
690  FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
691                                      FunctionsToRemove.end()),
692                          FunctionsToRemove.end());
693  for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
694                                                  E = FunctionsToRemove.end();
695       I != E; ++I) {
696    delete CG.removeFunctionFromModule(*I);
697    ++NumDeleted;
698  }
699  return true;
700}
701