Inliner.cpp revision 034b94b17006f51722886b0f2283fb6fb19aca1f
1//===- Inliner.cpp - Code common to all inliners --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the mechanics required to implement inlining without
11// missing any calls and updating the call graph.  The decisions of which calls
12// are profitable to inline are implemented elsewhere.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "inline"
17#include "llvm/Transforms/IPO/InlinerPass.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/CallGraph.h"
21#include "llvm/Analysis/InlineCost.h"
22#include "llvm/DataLayout.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Module.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetLibraryInfo.h"
31#include "llvm/Transforms/Utils/Cloning.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace llvm;
34
35STATISTIC(NumInlined, "Number of functions inlined");
36STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
37STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
38STATISTIC(NumMergedAllocas, "Number of allocas merged together");
39
40// This weirdly named statistic tracks the number of times that, when attempting
41// to inline a function A into B, we analyze the callers of B in order to see
42// if those would be more profitable and blocked inline steps.
43STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
44
45static cl::opt<int>
46InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
47        cl::desc("Control the amount of inlining to perform (default = 225)"));
48
49static cl::opt<int>
50HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
51              cl::desc("Threshold for inlining functions with inline hint"));
52
53// Threshold to use when optsize is specified (and there is no -inline-limit).
54const int OptSizeThreshold = 75;
55
56Inliner::Inliner(char &ID)
57  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
58
59Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
60  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
61                                          InlineLimit : Threshold),
62    InsertLifetime(InsertLifetime) {}
63
64/// getAnalysisUsage - For this class, we declare that we require and preserve
65/// the call graph.  If the derived class implements this method, it should
66/// always explicitly call the implementation here.
67void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
68  CallGraphSCCPass::getAnalysisUsage(Info);
69}
70
71
72typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
73InlinedArrayAllocasTy;
74
75/// InlineCallIfPossible - If it is possible to inline the specified call site,
76/// do so and update the CallGraph for this operation.
77///
78/// This function also does some basic book-keeping to update the IR.  The
79/// InlinedArrayAllocas map keeps track of any allocas that are already
80/// available from other  functions inlined into the caller.  If we are able to
81/// inline this call site we attempt to reuse already available allocas or add
82/// any new allocas to the set if not possible.
83static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
84                                 InlinedArrayAllocasTy &InlinedArrayAllocas,
85                                 int InlineHistory, bool InsertLifetime) {
86  Function *Callee = CS.getCalledFunction();
87  Function *Caller = CS.getCaller();
88
89  // Try to inline the function.  Get the list of static allocas that were
90  // inlined.
91  if (!InlineFunction(CS, IFI, InsertLifetime))
92    return false;
93
94  // If the inlined function had a higher stack protection level than the
95  // calling function, then bump up the caller's stack protection level.
96  if (Callee->getFnAttributes().hasAttribute(Attribute::StackProtectReq))
97    Caller->addFnAttr(Attribute::StackProtectReq);
98  else if (Callee->getFnAttributes().hasAttribute(Attribute::StackProtect) &&
99           !Caller->getFnAttributes().hasAttribute(Attribute::StackProtectReq))
100    Caller->addFnAttr(Attribute::StackProtect);
101
102  // Look at all of the allocas that we inlined through this call site.  If we
103  // have already inlined other allocas through other calls into this function,
104  // then we know that they have disjoint lifetimes and that we can merge them.
105  //
106  // There are many heuristics possible for merging these allocas, and the
107  // different options have different tradeoffs.  One thing that we *really*
108  // don't want to hurt is SRoA: once inlining happens, often allocas are no
109  // longer address taken and so they can be promoted.
110  //
111  // Our "solution" for that is to only merge allocas whose outermost type is an
112  // array type.  These are usually not promoted because someone is using a
113  // variable index into them.  These are also often the most important ones to
114  // merge.
115  //
116  // A better solution would be to have real memory lifetime markers in the IR
117  // and not have the inliner do any merging of allocas at all.  This would
118  // allow the backend to do proper stack slot coloring of all allocas that
119  // *actually make it to the backend*, which is really what we want.
120  //
121  // Because we don't have this information, we do this simple and useful hack.
122  //
123  SmallPtrSet<AllocaInst*, 16> UsedAllocas;
124
125  // When processing our SCC, check to see if CS was inlined from some other
126  // call site.  For example, if we're processing "A" in this code:
127  //   A() { B() }
128  //   B() { x = alloca ... C() }
129  //   C() { y = alloca ... }
130  // Assume that C was not inlined into B initially, and so we're processing A
131  // and decide to inline B into A.  Doing this makes an alloca available for
132  // reuse and makes a callsite (C) available for inlining.  When we process
133  // the C call site we don't want to do any alloca merging between X and Y
134  // because their scopes are not disjoint.  We could make this smarter by
135  // keeping track of the inline history for each alloca in the
136  // InlinedArrayAllocas but this isn't likely to be a significant win.
137  if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
138    return true;
139
140  // Loop over all the allocas we have so far and see if they can be merged with
141  // a previously inlined alloca.  If not, remember that we had it.
142  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
143       AllocaNo != e; ++AllocaNo) {
144    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
145
146    // Don't bother trying to merge array allocations (they will usually be
147    // canonicalized to be an allocation *of* an array), or allocations whose
148    // type is not itself an array (because we're afraid of pessimizing SRoA).
149    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
150    if (ATy == 0 || AI->isArrayAllocation())
151      continue;
152
153    // Get the list of all available allocas for this array type.
154    std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
155
156    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
157    // that we have to be careful not to reuse the same "available" alloca for
158    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
159    // set to keep track of which "available" allocas are being used by this
160    // function.  Also, AllocasForType can be empty of course!
161    bool MergedAwayAlloca = false;
162    for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
163      AllocaInst *AvailableAlloca = AllocasForType[i];
164
165      // The available alloca has to be in the right function, not in some other
166      // function in this SCC.
167      if (AvailableAlloca->getParent() != AI->getParent())
168        continue;
169
170      // If the inlined function already uses this alloca then we can't reuse
171      // it.
172      if (!UsedAllocas.insert(AvailableAlloca))
173        continue;
174
175      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
176      // success!
177      DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
178                   << *AvailableAlloca << '\n');
179
180      AI->replaceAllUsesWith(AvailableAlloca);
181      AI->eraseFromParent();
182      MergedAwayAlloca = true;
183      ++NumMergedAllocas;
184      IFI.StaticAllocas[AllocaNo] = 0;
185      break;
186    }
187
188    // If we already nuked the alloca, we're done with it.
189    if (MergedAwayAlloca)
190      continue;
191
192    // If we were unable to merge away the alloca either because there are no
193    // allocas of the right type available or because we reused them all
194    // already, remember that this alloca came from an inlined function and mark
195    // it used so we don't reuse it for other allocas from this inline
196    // operation.
197    AllocasForType.push_back(AI);
198    UsedAllocas.insert(AI);
199  }
200
201  return true;
202}
203
204unsigned Inliner::getInlineThreshold(CallSite CS) const {
205  int thres = InlineThreshold; // -inline-threshold or else selected by
206                               // overall opt level
207
208  // If -inline-threshold is not given, listen to the optsize attribute when it
209  // would decrease the threshold.
210  Function *Caller = CS.getCaller();
211  bool OptSize = Caller && !Caller->isDeclaration() &&
212    Caller->getFnAttributes().hasAttribute(Attribute::OptimizeForSize);
213  if (!(InlineLimit.getNumOccurrences() > 0) && OptSize &&
214      OptSizeThreshold < thres)
215    thres = OptSizeThreshold;
216
217  // Listen to the inlinehint attribute when it would increase the threshold
218  // and the caller does not need to minimize its size.
219  Function *Callee = CS.getCalledFunction();
220  bool InlineHint = Callee && !Callee->isDeclaration() &&
221    Callee->getFnAttributes().hasAttribute(Attribute::InlineHint);
222  if (InlineHint && HintThreshold > thres
223      && !Caller->getFnAttributes().hasAttribute(Attribute::MinSize))
224    thres = HintThreshold;
225
226  return thres;
227}
228
229/// shouldInline - Return true if the inliner should attempt to inline
230/// at the given CallSite.
231bool Inliner::shouldInline(CallSite CS) {
232  InlineCost IC = getInlineCost(CS);
233
234  if (IC.isAlways()) {
235    DEBUG(dbgs() << "    Inlining: cost=always"
236          << ", Call: " << *CS.getInstruction() << "\n");
237    return true;
238  }
239
240  if (IC.isNever()) {
241    DEBUG(dbgs() << "    NOT Inlining: cost=never"
242          << ", Call: " << *CS.getInstruction() << "\n");
243    return false;
244  }
245
246  Function *Caller = CS.getCaller();
247  if (!IC) {
248    DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
249          << ", thres=" << (IC.getCostDelta() + IC.getCost())
250          << ", Call: " << *CS.getInstruction() << "\n");
251    return false;
252  }
253
254  // Try to detect the case where the current inlining candidate caller (call
255  // it B) is a static or linkonce-ODR function and is an inlining candidate
256  // elsewhere, and the current candidate callee (call it C) is large enough
257  // that inlining it into B would make B too big to inline later. In these
258  // circumstances it may be best not to inline C into B, but to inline B into
259  // its callers.
260  //
261  // This only applies to static and linkonce-ODR functions because those are
262  // expected to be available for inlining in the translation units where they
263  // are used. Thus we will always have the opportunity to make local inlining
264  // decisions. Importantly the linkonce-ODR linkage covers inline functions
265  // and templates in C++.
266  //
267  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
268  // the internal implementation of the inline cost metrics rather than
269  // treating them as truly abstract units etc.
270  if (Caller->hasLocalLinkage() ||
271      Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
272    int TotalSecondaryCost = 0;
273    // The candidate cost to be imposed upon the current function.
274    int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
275    // This bool tracks what happens if we do NOT inline C into B.
276    bool callerWillBeRemoved = Caller->hasLocalLinkage();
277    // This bool tracks what happens if we DO inline C into B.
278    bool inliningPreventsSomeOuterInline = false;
279    for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
280         I != E; ++I) {
281      CallSite CS2(*I);
282
283      // If this isn't a call to Caller (it could be some other sort
284      // of reference) skip it.  Such references will prevent the caller
285      // from being removed.
286      if (!CS2 || CS2.getCalledFunction() != Caller) {
287        callerWillBeRemoved = false;
288        continue;
289      }
290
291      InlineCost IC2 = getInlineCost(CS2);
292      ++NumCallerCallersAnalyzed;
293      if (!IC2) {
294        callerWillBeRemoved = false;
295        continue;
296      }
297      if (IC2.isAlways())
298        continue;
299
300      // See if inlining or original callsite would erase the cost delta of
301      // this callsite. We subtract off the penalty for the call instruction,
302      // which we would be deleting.
303      if (IC2.getCostDelta() <= CandidateCost) {
304        inliningPreventsSomeOuterInline = true;
305        TotalSecondaryCost += IC2.getCost();
306      }
307    }
308    // If all outer calls to Caller would get inlined, the cost for the last
309    // one is set very low by getInlineCost, in anticipation that Caller will
310    // be removed entirely.  We did not account for this above unless there
311    // is only one caller of Caller.
312    if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
313      TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
314
315    if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
316      DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
317           " Cost = " << IC.getCost() <<
318           ", outer Cost = " << TotalSecondaryCost << '\n');
319      return false;
320    }
321  }
322
323  DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
324        << ", thres=" << (IC.getCostDelta() + IC.getCost())
325        << ", Call: " << *CS.getInstruction() << '\n');
326  return true;
327}
328
329/// InlineHistoryIncludes - Return true if the specified inline history ID
330/// indicates an inline history that includes the specified function.
331static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
332            const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
333  while (InlineHistoryID != -1) {
334    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
335           "Invalid inline history ID");
336    if (InlineHistory[InlineHistoryID].first == F)
337      return true;
338    InlineHistoryID = InlineHistory[InlineHistoryID].second;
339  }
340  return false;
341}
342
343bool Inliner::runOnSCC(CallGraphSCC &SCC) {
344  CallGraph &CG = getAnalysis<CallGraph>();
345  const DataLayout *TD = getAnalysisIfAvailable<DataLayout>();
346  const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
347
348  SmallPtrSet<Function*, 8> SCCFunctions;
349  DEBUG(dbgs() << "Inliner visiting SCC:");
350  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
351    Function *F = (*I)->getFunction();
352    if (F) SCCFunctions.insert(F);
353    DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
354  }
355
356  // Scan through and identify all call sites ahead of time so that we only
357  // inline call sites in the original functions, not call sites that result
358  // from inlining other functions.
359  SmallVector<std::pair<CallSite, int>, 16> CallSites;
360
361  // When inlining a callee produces new call sites, we want to keep track of
362  // the fact that they were inlined from the callee.  This allows us to avoid
363  // infinite inlining in some obscure cases.  To represent this, we use an
364  // index into the InlineHistory vector.
365  SmallVector<std::pair<Function*, int>, 8> InlineHistory;
366
367  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
368    Function *F = (*I)->getFunction();
369    if (!F) continue;
370
371    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
372      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
373        CallSite CS(cast<Value>(I));
374        // If this isn't a call, or it is a call to an intrinsic, it can
375        // never be inlined.
376        if (!CS || isa<IntrinsicInst>(I))
377          continue;
378
379        // If this is a direct call to an external function, we can never inline
380        // it.  If it is an indirect call, inlining may resolve it to be a
381        // direct call, so we keep it.
382        if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
383          continue;
384
385        CallSites.push_back(std::make_pair(CS, -1));
386      }
387  }
388
389  DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
390
391  // If there are no calls in this function, exit early.
392  if (CallSites.empty())
393    return false;
394
395  // Now that we have all of the call sites, move the ones to functions in the
396  // current SCC to the end of the list.
397  unsigned FirstCallInSCC = CallSites.size();
398  for (unsigned i = 0; i < FirstCallInSCC; ++i)
399    if (Function *F = CallSites[i].first.getCalledFunction())
400      if (SCCFunctions.count(F))
401        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
402
403
404  InlinedArrayAllocasTy InlinedArrayAllocas;
405  InlineFunctionInfo InlineInfo(&CG, TD);
406
407  // Now that we have all of the call sites, loop over them and inline them if
408  // it looks profitable to do so.
409  bool Changed = false;
410  bool LocalChange;
411  do {
412    LocalChange = false;
413    // Iterate over the outer loop because inlining functions can cause indirect
414    // calls to become direct calls.
415    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
416      CallSite CS = CallSites[CSi].first;
417
418      Function *Caller = CS.getCaller();
419      Function *Callee = CS.getCalledFunction();
420
421      // If this call site is dead and it is to a readonly function, we should
422      // just delete the call instead of trying to inline it, regardless of
423      // size.  This happens because IPSCCP propagates the result out of the
424      // call and then we're left with the dead call.
425      if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) {
426        DEBUG(dbgs() << "    -> Deleting dead call: "
427                     << *CS.getInstruction() << "\n");
428        // Update the call graph by deleting the edge from Callee to Caller.
429        CG[Caller]->removeCallEdgeFor(CS);
430        CS.getInstruction()->eraseFromParent();
431        ++NumCallsDeleted;
432      } else {
433        // We can only inline direct calls to non-declarations.
434        if (Callee == 0 || Callee->isDeclaration()) continue;
435
436        // If this call site was obtained by inlining another function, verify
437        // that the include path for the function did not include the callee
438        // itself.  If so, we'd be recursively inlining the same function,
439        // which would provide the same callsites, which would cause us to
440        // infinitely inline.
441        int InlineHistoryID = CallSites[CSi].second;
442        if (InlineHistoryID != -1 &&
443            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
444          continue;
445
446
447        // If the policy determines that we should inline this function,
448        // try to do so.
449        if (!shouldInline(CS))
450          continue;
451
452        // Attempt to inline the function.
453        if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
454                                  InlineHistoryID, InsertLifetime))
455          continue;
456        ++NumInlined;
457
458        // If inlining this function gave us any new call sites, throw them
459        // onto our worklist to process.  They are useful inline candidates.
460        if (!InlineInfo.InlinedCalls.empty()) {
461          // Create a new inline history entry for this, so that we remember
462          // that these new callsites came about due to inlining Callee.
463          int NewHistoryID = InlineHistory.size();
464          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
465
466          for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
467               i != e; ++i) {
468            Value *Ptr = InlineInfo.InlinedCalls[i];
469            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
470          }
471        }
472      }
473
474      // If we inlined or deleted the last possible call site to the function,
475      // delete the function body now.
476      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
477          // TODO: Can remove if in SCC now.
478          !SCCFunctions.count(Callee) &&
479
480          // The function may be apparently dead, but if there are indirect
481          // callgraph references to the node, we cannot delete it yet, this
482          // could invalidate the CGSCC iterator.
483          CG[Callee]->getNumReferences() == 0) {
484        DEBUG(dbgs() << "    -> Deleting dead function: "
485              << Callee->getName() << "\n");
486        CallGraphNode *CalleeNode = CG[Callee];
487
488        // Remove any call graph edges from the callee to its callees.
489        CalleeNode->removeAllCalledFunctions();
490
491        // Removing the node for callee from the call graph and delete it.
492        delete CG.removeFunctionFromModule(CalleeNode);
493        ++NumDeleted;
494      }
495
496      // Remove this call site from the list.  If possible, use
497      // swap/pop_back for efficiency, but do not use it if doing so would
498      // move a call site to a function in this SCC before the
499      // 'FirstCallInSCC' barrier.
500      if (SCC.isSingular()) {
501        CallSites[CSi] = CallSites.back();
502        CallSites.pop_back();
503      } else {
504        CallSites.erase(CallSites.begin()+CSi);
505      }
506      --CSi;
507
508      Changed = true;
509      LocalChange = true;
510    }
511  } while (LocalChange);
512
513  return Changed;
514}
515
516// doFinalization - Remove now-dead linkonce functions at the end of
517// processing to avoid breaking the SCC traversal.
518bool Inliner::doFinalization(CallGraph &CG) {
519  return removeDeadFunctions(CG);
520}
521
522/// removeDeadFunctions - Remove dead functions that are not included in
523/// DNR (Do Not Remove) list.
524bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
525  SmallVector<CallGraphNode*, 16> FunctionsToRemove;
526
527  // Scan for all of the functions, looking for ones that should now be removed
528  // from the program.  Insert the dead ones in the FunctionsToRemove set.
529  for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
530    CallGraphNode *CGN = I->second;
531    Function *F = CGN->getFunction();
532    if (!F || F->isDeclaration())
533      continue;
534
535    // Handle the case when this function is called and we only want to care
536    // about always-inline functions. This is a bit of a hack to share code
537    // between here and the InlineAlways pass.
538    if (AlwaysInlineOnly &&
539        !F->getFnAttributes().hasAttribute(Attribute::AlwaysInline))
540      continue;
541
542    // If the only remaining users of the function are dead constants, remove
543    // them.
544    F->removeDeadConstantUsers();
545
546    if (!F->isDefTriviallyDead())
547      continue;
548
549    // Remove any call graph edges from the function to its callees.
550    CGN->removeAllCalledFunctions();
551
552    // Remove any edges from the external node to the function's call graph
553    // node.  These edges might have been made irrelegant due to
554    // optimization of the program.
555    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
556
557    // Removing the node for callee from the call graph and delete it.
558    FunctionsToRemove.push_back(CGN);
559  }
560  if (FunctionsToRemove.empty())
561    return false;
562
563  // Now that we know which functions to delete, do so.  We didn't want to do
564  // this inline, because that would invalidate our CallGraph::iterator
565  // objects. :(
566  //
567  // Note that it doesn't matter that we are iterating over a non-stable order
568  // here to do this, it doesn't matter which order the functions are deleted
569  // in.
570  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
571  FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
572                                      FunctionsToRemove.end()),
573                          FunctionsToRemove.end());
574  for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
575                                                  E = FunctionsToRemove.end();
576       I != E; ++I) {
577    delete CG.removeFunctionFromModule(*I);
578    ++NumDeleted;
579  }
580  return true;
581}
582