Inliner.cpp revision d6fc26217e194372cabe4ef9e2514beac511a943
1//===- Inliner.cpp - Code common to all inliners --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the mechanics required to implement inlining without
11// missing any calls and updating the call graph.  The decisions of which calls
12// are profitable to inline are implemented elsewhere.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "inline"
17#include "llvm/Module.h"
18#include "llvm/Instructions.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Analysis/CallGraph.h"
21#include "llvm/Analysis/InlineCost.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Transforms/IPO/InlinerPass.h"
24#include "llvm/Transforms/Utils/Cloning.h"
25#include "llvm/Transforms/Utils/Local.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32using namespace llvm;
33
34STATISTIC(NumInlined, "Number of functions inlined");
35STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
36STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
37STATISTIC(NumMergedAllocas, "Number of allocas merged together");
38
39// This weirdly named statistic tracks the number of times that, when attemting
40// to inline a function A into B, we analyze the callers of B in order to see
41// if those would be more profitable and blocked inline steps.
42STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
43
44static cl::opt<int>
45InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
46        cl::desc("Control the amount of inlining to perform (default = 225)"));
47
48static cl::opt<int>
49HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
50              cl::desc("Threshold for inlining functions with inline hint"));
51
52// Threshold to use when optsize is specified (and there is no -inline-limit).
53const int OptSizeThreshold = 75;
54
55Inliner::Inliner(char &ID)
56  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
57
58Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
59  : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
60                                          InlineLimit : Threshold),
61    InsertLifetime(InsertLifetime) {}
62
63/// getAnalysisUsage - For this class, we declare that we require and preserve
64/// the call graph.  If the derived class implements this method, it should
65/// always explicitly call the implementation here.
66void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
67  CallGraphSCCPass::getAnalysisUsage(Info);
68}
69
70
71typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
72InlinedArrayAllocasTy;
73
74/// InlineCallIfPossible - If it is possible to inline the specified call site,
75/// do so and update the CallGraph for this operation.
76///
77/// This function also does some basic book-keeping to update the IR.  The
78/// InlinedArrayAllocas map keeps track of any allocas that are already
79/// available from other  functions inlined into the caller.  If we are able to
80/// inline this call site we attempt to reuse already available allocas or add
81/// any new allocas to the set if not possible.
82static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
83                                 InlinedArrayAllocasTy &InlinedArrayAllocas,
84                                 int InlineHistory, bool InsertLifetime) {
85  Function *Callee = CS.getCalledFunction();
86  Function *Caller = CS.getCaller();
87
88  // Try to inline the function.  Get the list of static allocas that were
89  // inlined.
90  if (!InlineFunction(CS, IFI, InsertLifetime))
91    return false;
92
93  // If the inlined function had a higher stack protection level than the
94  // calling function, then bump up the caller's stack protection level.
95  if (Callee->hasFnAttr(Attribute::StackProtectReq))
96    Caller->addFnAttr(Attribute::StackProtectReq);
97  else if (Callee->hasFnAttr(Attribute::StackProtect) &&
98           !Caller->hasFnAttr(Attribute::StackProtectReq))
99    Caller->addFnAttr(Attribute::StackProtect);
100
101  // Look at all of the allocas that we inlined through this call site.  If we
102  // have already inlined other allocas through other calls into this function,
103  // then we know that they have disjoint lifetimes and that we can merge them.
104  //
105  // There are many heuristics possible for merging these allocas, and the
106  // different options have different tradeoffs.  One thing that we *really*
107  // don't want to hurt is SRoA: once inlining happens, often allocas are no
108  // longer address taken and so they can be promoted.
109  //
110  // Our "solution" for that is to only merge allocas whose outermost type is an
111  // array type.  These are usually not promoted because someone is using a
112  // variable index into them.  These are also often the most important ones to
113  // merge.
114  //
115  // A better solution would be to have real memory lifetime markers in the IR
116  // and not have the inliner do any merging of allocas at all.  This would
117  // allow the backend to do proper stack slot coloring of all allocas that
118  // *actually make it to the backend*, which is really what we want.
119  //
120  // Because we don't have this information, we do this simple and useful hack.
121  //
122  SmallPtrSet<AllocaInst*, 16> UsedAllocas;
123
124  // When processing our SCC, check to see if CS was inlined from some other
125  // call site.  For example, if we're processing "A" in this code:
126  //   A() { B() }
127  //   B() { x = alloca ... C() }
128  //   C() { y = alloca ... }
129  // Assume that C was not inlined into B initially, and so we're processing A
130  // and decide to inline B into A.  Doing this makes an alloca available for
131  // reuse and makes a callsite (C) available for inlining.  When we process
132  // the C call site we don't want to do any alloca merging between X and Y
133  // because their scopes are not disjoint.  We could make this smarter by
134  // keeping track of the inline history for each alloca in the
135  // InlinedArrayAllocas but this isn't likely to be a significant win.
136  if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
137    return true;
138
139  // Loop over all the allocas we have so far and see if they can be merged with
140  // a previously inlined alloca.  If not, remember that we had it.
141  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
142       AllocaNo != e; ++AllocaNo) {
143    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
144
145    // Don't bother trying to merge array allocations (they will usually be
146    // canonicalized to be an allocation *of* an array), or allocations whose
147    // type is not itself an array (because we're afraid of pessimizing SRoA).
148    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
149    if (ATy == 0 || AI->isArrayAllocation())
150      continue;
151
152    // Get the list of all available allocas for this array type.
153    std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
154
155    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
156    // that we have to be careful not to reuse the same "available" alloca for
157    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
158    // set to keep track of which "available" allocas are being used by this
159    // function.  Also, AllocasForType can be empty of course!
160    bool MergedAwayAlloca = false;
161    for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
162      AllocaInst *AvailableAlloca = AllocasForType[i];
163
164      // The available alloca has to be in the right function, not in some other
165      // function in this SCC.
166      if (AvailableAlloca->getParent() != AI->getParent())
167        continue;
168
169      // If the inlined function already uses this alloca then we can't reuse
170      // it.
171      if (!UsedAllocas.insert(AvailableAlloca))
172        continue;
173
174      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
175      // success!
176      DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
177                   << *AvailableAlloca << '\n');
178
179      AI->replaceAllUsesWith(AvailableAlloca);
180      AI->eraseFromParent();
181      MergedAwayAlloca = true;
182      ++NumMergedAllocas;
183      IFI.StaticAllocas[AllocaNo] = 0;
184      break;
185    }
186
187    // If we already nuked the alloca, we're done with it.
188    if (MergedAwayAlloca)
189      continue;
190
191    // If we were unable to merge away the alloca either because there are no
192    // allocas of the right type available or because we reused them all
193    // already, remember that this alloca came from an inlined function and mark
194    // it used so we don't reuse it for other allocas from this inline
195    // operation.
196    AllocasForType.push_back(AI);
197    UsedAllocas.insert(AI);
198  }
199
200  return true;
201}
202
203unsigned Inliner::getInlineThreshold(CallSite CS) const {
204  int thres = InlineThreshold;
205
206  // Listen to optsize when -inline-limit is not given.
207  Function *Caller = CS.getCaller();
208  if (Caller && !Caller->isDeclaration() &&
209      Caller->hasFnAttr(Attribute::OptimizeForSize) &&
210      InlineLimit.getNumOccurrences() == 0)
211    thres = OptSizeThreshold;
212
213  // Listen to inlinehint when it would increase the threshold.
214  Function *Callee = CS.getCalledFunction();
215  if (HintThreshold > thres && Callee && !Callee->isDeclaration() &&
216      Callee->hasFnAttr(Attribute::InlineHint))
217    thres = HintThreshold;
218
219  return thres;
220}
221
222/// shouldInline - Return true if the inliner should attempt to inline
223/// at the given CallSite.
224bool Inliner::shouldInline(CallSite CS) {
225  InlineCost IC = getInlineCost(CS);
226
227  if (IC.isAlways()) {
228    DEBUG(dbgs() << "    Inlining: cost=always"
229          << ", Call: " << *CS.getInstruction() << "\n");
230    return true;
231  }
232
233  if (IC.isNever()) {
234    DEBUG(dbgs() << "    NOT Inlining: cost=never"
235          << ", Call: " << *CS.getInstruction() << "\n");
236    return false;
237  }
238
239  Function *Caller = CS.getCaller();
240  if (!IC) {
241    DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
242          << ", thres=" << (IC.getCostDelta() + IC.getCost())
243          << ", Call: " << *CS.getInstruction() << "\n");
244    return false;
245  }
246
247  // Try to detect the case where the current inlining candidate caller (call
248  // it B) is a static or linkonce-ODR function and is an inlining candidate
249  // elsewhere, and the current candidate callee (call it C) is large enough
250  // that inlining it into B would make B too big to inline later. In these
251  // circumstances it may be best not to inline C into B, but to inline B into
252  // its callers.
253  //
254  // This only applies to static and linkonce-ODR functions because those are
255  // expected to be available for inlining in the translation units where they
256  // are used. Thus we will always have the opportunity to make local inlining
257  // decisions. Importantly the linkonce-ODR linkage covers inline functions
258  // and templates in C++.
259  //
260  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
261  // the internal implementation of the inline cost metrics rather than
262  // treating them as truly abstract units etc.
263  if (Caller->hasLocalLinkage() ||
264      Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
265    int TotalSecondaryCost = 0;
266    // The candidate cost to be imposed upon the current function.
267    int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
268    // This bool tracks what happens if we do NOT inline C into B.
269    bool callerWillBeRemoved = Caller->hasLocalLinkage();
270    // This bool tracks what happens if we DO inline C into B.
271    bool inliningPreventsSomeOuterInline = false;
272    for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
273         I != E; ++I) {
274      CallSite CS2(*I);
275
276      // If this isn't a call to Caller (it could be some other sort
277      // of reference) skip it.  Such references will prevent the caller
278      // from being removed.
279      if (!CS2 || CS2.getCalledFunction() != Caller) {
280        callerWillBeRemoved = false;
281        continue;
282      }
283
284      InlineCost IC2 = getInlineCost(CS2);
285      ++NumCallerCallersAnalyzed;
286      if (!IC2) {
287        callerWillBeRemoved = false;
288        continue;
289      }
290      if (IC2.isAlways())
291        continue;
292
293      // See if inlining or original callsite would erase the cost delta of
294      // this callsite. We subtract off the penalty for the call instruction,
295      // which we would be deleting.
296      if (IC2.getCostDelta() <= CandidateCost) {
297        inliningPreventsSomeOuterInline = true;
298        TotalSecondaryCost += IC2.getCost();
299      }
300    }
301    // If all outer calls to Caller would get inlined, the cost for the last
302    // one is set very low by getInlineCost, in anticipation that Caller will
303    // be removed entirely.  We did not account for this above unless there
304    // is only one caller of Caller.
305    if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
306      TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
307
308    if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
309      DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
310           " Cost = " << IC.getCost() <<
311           ", outer Cost = " << TotalSecondaryCost << '\n');
312      return false;
313    }
314  }
315
316  DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
317        << ", thres=" << (IC.getCostDelta() + IC.getCost())
318        << ", Call: " << *CS.getInstruction() << '\n');
319  return true;
320}
321
322/// InlineHistoryIncludes - Return true if the specified inline history ID
323/// indicates an inline history that includes the specified function.
324static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
325            const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
326  while (InlineHistoryID != -1) {
327    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
328           "Invalid inline history ID");
329    if (InlineHistory[InlineHistoryID].first == F)
330      return true;
331    InlineHistoryID = InlineHistory[InlineHistoryID].second;
332  }
333  return false;
334}
335
336bool Inliner::runOnSCC(CallGraphSCC &SCC) {
337  CallGraph &CG = getAnalysis<CallGraph>();
338  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
339
340  SmallPtrSet<Function*, 8> SCCFunctions;
341  DEBUG(dbgs() << "Inliner visiting SCC:");
342  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
343    Function *F = (*I)->getFunction();
344    if (F) SCCFunctions.insert(F);
345    DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
346  }
347
348  // Scan through and identify all call sites ahead of time so that we only
349  // inline call sites in the original functions, not call sites that result
350  // from inlining other functions.
351  SmallVector<std::pair<CallSite, int>, 16> CallSites;
352
353  // When inlining a callee produces new call sites, we want to keep track of
354  // the fact that they were inlined from the callee.  This allows us to avoid
355  // infinite inlining in some obscure cases.  To represent this, we use an
356  // index into the InlineHistory vector.
357  SmallVector<std::pair<Function*, int>, 8> InlineHistory;
358
359  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
360    Function *F = (*I)->getFunction();
361    if (!F) continue;
362
363    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
364      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
365        CallSite CS(cast<Value>(I));
366        // If this isn't a call, or it is a call to an intrinsic, it can
367        // never be inlined.
368        if (!CS || isa<IntrinsicInst>(I))
369          continue;
370
371        // If this is a direct call to an external function, we can never inline
372        // it.  If it is an indirect call, inlining may resolve it to be a
373        // direct call, so we keep it.
374        if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
375          continue;
376
377        CallSites.push_back(std::make_pair(CS, -1));
378      }
379  }
380
381  DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
382
383  // If there are no calls in this function, exit early.
384  if (CallSites.empty())
385    return false;
386
387  // Now that we have all of the call sites, move the ones to functions in the
388  // current SCC to the end of the list.
389  unsigned FirstCallInSCC = CallSites.size();
390  for (unsigned i = 0; i < FirstCallInSCC; ++i)
391    if (Function *F = CallSites[i].first.getCalledFunction())
392      if (SCCFunctions.count(F))
393        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
394
395
396  InlinedArrayAllocasTy InlinedArrayAllocas;
397  InlineFunctionInfo InlineInfo(&CG, TD);
398
399  // Now that we have all of the call sites, loop over them and inline them if
400  // it looks profitable to do so.
401  bool Changed = false;
402  bool LocalChange;
403  do {
404    LocalChange = false;
405    // Iterate over the outer loop because inlining functions can cause indirect
406    // calls to become direct calls.
407    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
408      CallSite CS = CallSites[CSi].first;
409
410      Function *Caller = CS.getCaller();
411      Function *Callee = CS.getCalledFunction();
412
413      // If this call site is dead and it is to a readonly function, we should
414      // just delete the call instead of trying to inline it, regardless of
415      // size.  This happens because IPSCCP propagates the result out of the
416      // call and then we're left with the dead call.
417      if (isInstructionTriviallyDead(CS.getInstruction())) {
418        DEBUG(dbgs() << "    -> Deleting dead call: "
419                     << *CS.getInstruction() << "\n");
420        // Update the call graph by deleting the edge from Callee to Caller.
421        CG[Caller]->removeCallEdgeFor(CS);
422        CS.getInstruction()->eraseFromParent();
423        ++NumCallsDeleted;
424      } else {
425        // We can only inline direct calls to non-declarations.
426        if (Callee == 0 || Callee->isDeclaration()) continue;
427
428        // If this call site was obtained by inlining another function, verify
429        // that the include path for the function did not include the callee
430        // itself.  If so, we'd be recursively inlining the same function,
431        // which would provide the same callsites, which would cause us to
432        // infinitely inline.
433        int InlineHistoryID = CallSites[CSi].second;
434        if (InlineHistoryID != -1 &&
435            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
436          continue;
437
438
439        // If the policy determines that we should inline this function,
440        // try to do so.
441        if (!shouldInline(CS))
442          continue;
443
444        // Attempt to inline the function.
445        if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
446                                  InlineHistoryID, InsertLifetime))
447          continue;
448        ++NumInlined;
449
450        // If inlining this function gave us any new call sites, throw them
451        // onto our worklist to process.  They are useful inline candidates.
452        if (!InlineInfo.InlinedCalls.empty()) {
453          // Create a new inline history entry for this, so that we remember
454          // that these new callsites came about due to inlining Callee.
455          int NewHistoryID = InlineHistory.size();
456          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
457
458          for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
459               i != e; ++i) {
460            Value *Ptr = InlineInfo.InlinedCalls[i];
461            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
462          }
463        }
464      }
465
466      // If we inlined or deleted the last possible call site to the function,
467      // delete the function body now.
468      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
469          // TODO: Can remove if in SCC now.
470          !SCCFunctions.count(Callee) &&
471
472          // The function may be apparently dead, but if there are indirect
473          // callgraph references to the node, we cannot delete it yet, this
474          // could invalidate the CGSCC iterator.
475          CG[Callee]->getNumReferences() == 0) {
476        DEBUG(dbgs() << "    -> Deleting dead function: "
477              << Callee->getName() << "\n");
478        CallGraphNode *CalleeNode = CG[Callee];
479
480        // Remove any call graph edges from the callee to its callees.
481        CalleeNode->removeAllCalledFunctions();
482
483        // Removing the node for callee from the call graph and delete it.
484        delete CG.removeFunctionFromModule(CalleeNode);
485        ++NumDeleted;
486      }
487
488      // Remove this call site from the list.  If possible, use
489      // swap/pop_back for efficiency, but do not use it if doing so would
490      // move a call site to a function in this SCC before the
491      // 'FirstCallInSCC' barrier.
492      if (SCC.isSingular()) {
493        CallSites[CSi] = CallSites.back();
494        CallSites.pop_back();
495      } else {
496        CallSites.erase(CallSites.begin()+CSi);
497      }
498      --CSi;
499
500      Changed = true;
501      LocalChange = true;
502    }
503  } while (LocalChange);
504
505  return Changed;
506}
507
508// doFinalization - Remove now-dead linkonce functions at the end of
509// processing to avoid breaking the SCC traversal.
510bool Inliner::doFinalization(CallGraph &CG) {
511  return removeDeadFunctions(CG);
512}
513
514/// removeDeadFunctions - Remove dead functions that are not included in
515/// DNR (Do Not Remove) list.
516bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
517  SmallVector<CallGraphNode*, 16> FunctionsToRemove;
518
519  // Scan for all of the functions, looking for ones that should now be removed
520  // from the program.  Insert the dead ones in the FunctionsToRemove set.
521  for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
522    CallGraphNode *CGN = I->second;
523    Function *F = CGN->getFunction();
524    if (!F || F->isDeclaration())
525      continue;
526
527    // Handle the case when this function is called and we only want to care
528    // about always-inline functions. This is a bit of a hack to share code
529    // between here and the InlineAlways pass.
530    if (AlwaysInlineOnly && !F->hasFnAttr(Attribute::AlwaysInline))
531      continue;
532
533    // If the only remaining users of the function are dead constants, remove
534    // them.
535    F->removeDeadConstantUsers();
536
537    if (!F->isDefTriviallyDead())
538      continue;
539
540    // Remove any call graph edges from the function to its callees.
541    CGN->removeAllCalledFunctions();
542
543    // Remove any edges from the external node to the function's call graph
544    // node.  These edges might have been made irrelegant due to
545    // optimization of the program.
546    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
547
548    // Removing the node for callee from the call graph and delete it.
549    FunctionsToRemove.push_back(CGN);
550  }
551  if (FunctionsToRemove.empty())
552    return false;
553
554  // Now that we know which functions to delete, do so.  We didn't want to do
555  // this inline, because that would invalidate our CallGraph::iterator
556  // objects. :(
557  //
558  // Note that it doesn't matter that we are iterating over a non-stable order
559  // here to do this, it doesn't matter which order the functions are deleted
560  // in.
561  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
562  FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
563                                      FunctionsToRemove.end()),
564                          FunctionsToRemove.end());
565  for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
566                                                  E = FunctionsToRemove.end();
567       I != E; ++I) {
568    delete CG.removeFunctionFromModule(*I);
569    ++NumDeleted;
570  }
571  return true;
572}
573