MergeFunctions.cpp revision 081c34b725980f995be9080eaec24cd3dfaaf065
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/Constants.h"
54#include "llvm/InlineAsm.h"
55#include "llvm/Instructions.h"
56#include "llvm/LLVMContext.h"
57#include "llvm/Module.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CallSite.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/IRBuilder.h"
63#include "llvm/Support/ValueHandle.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/Target/TargetData.h"
66#include <vector>
67using namespace llvm;
68
69STATISTIC(NumFunctionsMerged, "Number of functions merged");
70STATISTIC(NumThunksWritten, "Number of thunks generated");
71STATISTIC(NumDoubleWeak, "Number of new functions created");
72
73/// ProfileFunction - Creates a hash-code for the function which is the same
74/// for any two functions that will compare equal, without looking at the
75/// instructions inside the function.
76static unsigned ProfileFunction(const Function *F) {
77  const FunctionType *FTy = F->getFunctionType();
78
79  FoldingSetNodeID ID;
80  ID.AddInteger(F->size());
81  ID.AddInteger(F->getCallingConv());
82  ID.AddBoolean(F->hasGC());
83  ID.AddBoolean(FTy->isVarArg());
84  ID.AddInteger(FTy->getReturnType()->getTypeID());
85  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
86    ID.AddInteger(FTy->getParamType(i)->getTypeID());
87  return ID.ComputeHash();
88}
89
90namespace {
91
92class ComparableFunction {
93public:
94  static const ComparableFunction EmptyKey;
95  static const ComparableFunction TombstoneKey;
96
97  ComparableFunction(Function *Func, TargetData *TD)
98    : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
99
100  Function *getFunc() const { return Func; }
101  unsigned getHash() const { return Hash; }
102  TargetData *getTD() const { return TD; }
103
104  // Drops AssertingVH reference to the function. Outside of debug mode, this
105  // does nothing.
106  void release() {
107    assert(Func &&
108           "Attempted to release function twice, or release empty/tombstone!");
109    Func = NULL;
110  }
111
112private:
113  explicit ComparableFunction(unsigned Hash)
114    : Func(NULL), Hash(Hash), TD(NULL) {}
115
116  AssertingVH<Function> Func;
117  unsigned Hash;
118  TargetData *TD;
119};
120
121const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
122const ComparableFunction ComparableFunction::TombstoneKey =
123    ComparableFunction(1);
124
125}
126
127namespace llvm {
128  template <>
129  struct DenseMapInfo<ComparableFunction> {
130    static ComparableFunction getEmptyKey() {
131      return ComparableFunction::EmptyKey;
132    }
133    static ComparableFunction getTombstoneKey() {
134      return ComparableFunction::TombstoneKey;
135    }
136    static unsigned getHashValue(const ComparableFunction &CF) {
137      return CF.getHash();
138    }
139    static bool isEqual(const ComparableFunction &LHS,
140                        const ComparableFunction &RHS);
141  };
142}
143
144namespace {
145
146/// MergeFunctions finds functions which will generate identical machine code,
147/// by considering all pointer types to be equivalent. Once identified,
148/// MergeFunctions will fold them by replacing a call to one to a call to a
149/// bitcast of the other.
150///
151class MergeFunctions : public ModulePass {
152public:
153  static char ID;
154  MergeFunctions() : ModulePass(ID) {
155    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
156  }
157
158  bool runOnModule(Module &M);
159
160private:
161  typedef DenseSet<ComparableFunction> FnSetType;
162
163
164  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
165  /// equal to one that's already present.
166  bool Insert(FnSetType &FnSet, ComparableFunction &NewF);
167
168  /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
169  /// may be deleted, or may be converted into a thunk. In either case, it
170  /// should never be visited again.
171  void MergeTwoFunctions(Function *F, Function *G) const;
172
173  /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
174  /// replace direct uses of G with bitcast(F). Deletes G.
175  void WriteThunk(Function *F, Function *G) const;
176
177  TargetData *TD;
178};
179
180}  // end anonymous namespace
181
182char MergeFunctions::ID = 0;
183INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
184
185ModulePass *llvm::createMergeFunctionsPass() {
186  return new MergeFunctions();
187}
188
189namespace {
190/// FunctionComparator - Compares two functions to determine whether or not
191/// they will generate machine code with the same behaviour. TargetData is
192/// used if available. The comparator always fails conservatively (erring on the
193/// side of claiming that two functions are different).
194class FunctionComparator {
195public:
196  FunctionComparator(const TargetData *TD, const Function *F1,
197                     const Function *F2)
198    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
199
200  /// Compare - test whether the two functions have equivalent behaviour.
201  bool Compare();
202
203private:
204  /// Compare - test whether two basic blocks have equivalent behaviour.
205  bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
206
207  /// Enumerate - Assign or look up previously assigned numbers for the two
208  /// values, and return whether the numbers are equal. Numbers are assigned in
209  /// the order visited.
210  bool Enumerate(const Value *V1, const Value *V2);
211
212  /// isEquivalentOperation - Compare two Instructions for equivalence, similar
213  /// to Instruction::isSameOperationAs but with modifications to the type
214  /// comparison.
215  bool isEquivalentOperation(const Instruction *I1,
216                             const Instruction *I2) const;
217
218  /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
219  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
220  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
221                       const GetElementPtrInst *GEP2) {
222    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
223  }
224
225  /// isEquivalentType - Compare two Types, treating all pointer types as equal.
226  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
227
228  // The two functions undergoing comparison.
229  const Function *F1, *F2;
230
231  const TargetData *TD;
232
233  typedef DenseMap<const Value *, unsigned long> IDMap;
234  IDMap Map1, Map2;
235  unsigned long IDMap1Count, IDMap2Count;
236};
237}
238
239/// isEquivalentType - any two pointers in the same address space are
240/// equivalent. Otherwise, standard type equivalence rules apply.
241bool FunctionComparator::isEquivalentType(const Type *Ty1,
242                                          const Type *Ty2) const {
243  if (Ty1 == Ty2)
244    return true;
245  if (Ty1->getTypeID() != Ty2->getTypeID())
246    return false;
247
248  switch(Ty1->getTypeID()) {
249  default:
250    llvm_unreachable("Unknown type!");
251    // Fall through in Release mode.
252  case Type::IntegerTyID:
253  case Type::OpaqueTyID:
254    // Ty1 == Ty2 would have returned true earlier.
255    return false;
256
257  case Type::VoidTyID:
258  case Type::FloatTyID:
259  case Type::DoubleTyID:
260  case Type::X86_FP80TyID:
261  case Type::FP128TyID:
262  case Type::PPC_FP128TyID:
263  case Type::LabelTyID:
264  case Type::MetadataTyID:
265    return true;
266
267  case Type::PointerTyID: {
268    const PointerType *PTy1 = cast<PointerType>(Ty1);
269    const PointerType *PTy2 = cast<PointerType>(Ty2);
270    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
271  }
272
273  case Type::StructTyID: {
274    const StructType *STy1 = cast<StructType>(Ty1);
275    const StructType *STy2 = cast<StructType>(Ty2);
276    if (STy1->getNumElements() != STy2->getNumElements())
277      return false;
278
279    if (STy1->isPacked() != STy2->isPacked())
280      return false;
281
282    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
283      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
284        return false;
285    }
286    return true;
287  }
288
289  case Type::FunctionTyID: {
290    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
291    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
292    if (FTy1->getNumParams() != FTy2->getNumParams() ||
293        FTy1->isVarArg() != FTy2->isVarArg())
294      return false;
295
296    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
297      return false;
298
299    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
300      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
301        return false;
302    }
303    return true;
304  }
305
306  case Type::ArrayTyID: {
307    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
308    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
309    return ATy1->getNumElements() == ATy2->getNumElements() &&
310           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
311  }
312
313  case Type::VectorTyID: {
314    const VectorType *VTy1 = cast<VectorType>(Ty1);
315    const VectorType *VTy2 = cast<VectorType>(Ty2);
316    return VTy1->getNumElements() == VTy2->getNumElements() &&
317           isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
318  }
319  }
320}
321
322/// isEquivalentOperation - determine whether the two operations are the same
323/// except that pointer-to-A and pointer-to-B are equivalent. This should be
324/// kept in sync with Instruction::isSameOperationAs.
325bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
326                                               const Instruction *I2) const {
327  if (I1->getOpcode() != I2->getOpcode() ||
328      I1->getNumOperands() != I2->getNumOperands() ||
329      !isEquivalentType(I1->getType(), I2->getType()) ||
330      !I1->hasSameSubclassOptionalData(I2))
331    return false;
332
333  // We have two instructions of identical opcode and #operands.  Check to see
334  // if all operands are the same type
335  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
336    if (!isEquivalentType(I1->getOperand(i)->getType(),
337                          I2->getOperand(i)->getType()))
338      return false;
339
340  // Check special state that is a part of some instructions.
341  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
342    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
343           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
344  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
345    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
346           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
347  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
348    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
349  if (const CallInst *CI = dyn_cast<CallInst>(I1))
350    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
351           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
352           CI->getAttributes().getRawPointer() ==
353             cast<CallInst>(I2)->getAttributes().getRawPointer();
354  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
355    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
356           CI->getAttributes().getRawPointer() ==
357             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
358  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
359    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
360      return false;
361    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
362      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
363        return false;
364    return true;
365  }
366  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
367    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
368      return false;
369    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
370      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
371        return false;
372    return true;
373  }
374
375  return true;
376}
377
378/// isEquivalentGEP - determine whether two GEP operations perform the same
379/// underlying arithmetic.
380bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
381                                         const GEPOperator *GEP2) {
382  // When we have target data, we can reduce the GEP down to the value in bytes
383  // added to the address.
384  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
385    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
386    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
387    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
388                                            Indices1.data(), Indices1.size());
389    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
390                                            Indices2.data(), Indices2.size());
391    return Offset1 == Offset2;
392  }
393
394  if (GEP1->getPointerOperand()->getType() !=
395      GEP2->getPointerOperand()->getType())
396    return false;
397
398  if (GEP1->getNumOperands() != GEP2->getNumOperands())
399    return false;
400
401  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
402    if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
403      return false;
404  }
405
406  return true;
407}
408
409/// Enumerate - Compare two values used by the two functions under pair-wise
410/// comparison. If this is the first time the values are seen, they're added to
411/// the mapping so that we will detect mismatches on next use.
412bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
413  // Check for function @f1 referring to itself and function @f2 referring to
414  // itself, or referring to each other, or both referring to either of them.
415  // They're all equivalent if the two functions are otherwise equivalent.
416  if (V1 == F1 && V2 == F2)
417    return true;
418  if (V1 == F2 && V2 == F1)
419    return true;
420
421  // TODO: constant expressions with GEP or references to F1 or F2.
422  if (isa<Constant>(V1))
423    return V1 == V2;
424
425  if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
426    const InlineAsm *IA1 = cast<InlineAsm>(V1);
427    const InlineAsm *IA2 = cast<InlineAsm>(V2);
428    return IA1->getAsmString() == IA2->getAsmString() &&
429           IA1->getConstraintString() == IA2->getConstraintString();
430  }
431
432  unsigned long &ID1 = Map1[V1];
433  if (!ID1)
434    ID1 = ++IDMap1Count;
435
436  unsigned long &ID2 = Map2[V2];
437  if (!ID2)
438    ID2 = ++IDMap2Count;
439
440  return ID1 == ID2;
441}
442
443/// Compare - test whether two basic blocks have equivalent behaviour.
444bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
445  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
446  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
447
448  do {
449    if (!Enumerate(F1I, F2I))
450      return false;
451
452    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
453      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
454      if (!GEP2)
455        return false;
456
457      if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
458        return false;
459
460      if (!isEquivalentGEP(GEP1, GEP2))
461        return false;
462    } else {
463      if (!isEquivalentOperation(F1I, F2I))
464        return false;
465
466      assert(F1I->getNumOperands() == F2I->getNumOperands());
467      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
468        Value *OpF1 = F1I->getOperand(i);
469        Value *OpF2 = F2I->getOperand(i);
470
471        if (!Enumerate(OpF1, OpF2))
472          return false;
473
474        if (OpF1->getValueID() != OpF2->getValueID() ||
475            !isEquivalentType(OpF1->getType(), OpF2->getType()))
476          return false;
477      }
478    }
479
480    ++F1I, ++F2I;
481  } while (F1I != F1E && F2I != F2E);
482
483  return F1I == F1E && F2I == F2E;
484}
485
486/// Compare - test whether the two functions have equivalent behaviour.
487bool FunctionComparator::Compare() {
488  // We need to recheck everything, but check the things that weren't included
489  // in the hash first.
490
491  if (F1->getAttributes() != F2->getAttributes())
492    return false;
493
494  if (F1->hasGC() != F2->hasGC())
495    return false;
496
497  if (F1->hasGC() && F1->getGC() != F2->getGC())
498    return false;
499
500  if (F1->hasSection() != F2->hasSection())
501    return false;
502
503  if (F1->hasSection() && F1->getSection() != F2->getSection())
504    return false;
505
506  if (F1->isVarArg() != F2->isVarArg())
507    return false;
508
509  // TODO: if it's internal and only used in direct calls, we could handle this
510  // case too.
511  if (F1->getCallingConv() != F2->getCallingConv())
512    return false;
513
514  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
515    return false;
516
517  assert(F1->arg_size() == F2->arg_size() &&
518         "Identically typed functions have different numbers of args!");
519
520  // Visit the arguments so that they get enumerated in the order they're
521  // passed in.
522  for (Function::const_arg_iterator f1i = F1->arg_begin(),
523         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
524    if (!Enumerate(f1i, f2i))
525      llvm_unreachable("Arguments repeat!");
526  }
527
528  // We do a CFG-ordered walk since the actual ordering of the blocks in the
529  // linked list is immaterial. Our walk starts at the entry block for both
530  // functions, then takes each block from each terminator in order. As an
531  // artifact, this also means that unreachable blocks are ignored.
532  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
533  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
534
535  F1BBs.push_back(&F1->getEntryBlock());
536  F2BBs.push_back(&F2->getEntryBlock());
537
538  VisitedBBs.insert(F1BBs[0]);
539  while (!F1BBs.empty()) {
540    const BasicBlock *F1BB = F1BBs.pop_back_val();
541    const BasicBlock *F2BB = F2BBs.pop_back_val();
542
543    if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
544      return false;
545
546    const TerminatorInst *F1TI = F1BB->getTerminator();
547    const TerminatorInst *F2TI = F2BB->getTerminator();
548
549    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
550    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
551      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
552        continue;
553
554      F1BBs.push_back(F1TI->getSuccessor(i));
555      F2BBs.push_back(F2TI->getSuccessor(i));
556    }
557  }
558  return true;
559}
560
561/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
562/// direct uses of G with bitcast(F). Deletes G.
563void MergeFunctions::WriteThunk(Function *F, Function *G) const {
564  if (!G->mayBeOverridden()) {
565    // Redirect direct callers of G to F.
566    Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
567    for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
568         UI != UE;) {
569      Value::use_iterator TheIter = UI;
570      ++UI;
571      CallSite CS(*TheIter);
572      if (CS && CS.isCallee(TheIter))
573        TheIter.getUse().set(BitcastF);
574    }
575  }
576
577  // If G was internal then we may have replaced all uses of G with F. If so,
578  // stop here and delete G. There's no need for a thunk.
579  if (G->hasLocalLinkage() && G->use_empty()) {
580    G->eraseFromParent();
581    return;
582  }
583
584  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
585                                    G->getParent());
586  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
587  IRBuilder<false> Builder(BB);
588
589  SmallVector<Value *, 16> Args;
590  unsigned i = 0;
591  const FunctionType *FFTy = F->getFunctionType();
592  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
593       AI != AE; ++AI) {
594    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
595    ++i;
596  }
597
598  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
599  CI->setTailCall();
600  CI->setCallingConv(F->getCallingConv());
601  if (NewG->getReturnType()->isVoidTy()) {
602    Builder.CreateRetVoid();
603  } else {
604    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
605  }
606
607  NewG->copyAttributesFrom(G);
608  NewG->takeName(G);
609  G->replaceAllUsesWith(NewG);
610  G->eraseFromParent();
611
612  DEBUG(dbgs() << "WriteThunk: " << NewG->getName() << '\n');
613  ++NumThunksWritten;
614}
615
616/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
617/// Function G is deleted.
618void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const {
619  if (F->mayBeOverridden()) {
620    assert(G->mayBeOverridden());
621
622    // Make them both thunks to the same internal function.
623    Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
624                                   F->getParent());
625    H->copyAttributesFrom(F);
626    H->takeName(F);
627    F->replaceAllUsesWith(H);
628
629    unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
630
631    WriteThunk(F, G);
632    WriteThunk(F, H);
633
634    F->setAlignment(MaxAlignment);
635    F->setLinkage(GlobalValue::InternalLinkage);
636
637    ++NumDoubleWeak;
638  } else {
639    WriteThunk(F, G);
640  }
641
642  ++NumFunctionsMerged;
643}
644
645// Insert - Insert a ComparableFunction into the FnSet, or merge it away if
646// equal to one that's already inserted.
647bool MergeFunctions::Insert(FnSetType &FnSet, ComparableFunction &NewF) {
648  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
649  if (Result.second)
650    return false;
651
652  const ComparableFunction &OldF = *Result.first;
653
654  // Never thunk a strong function to a weak function.
655  assert(!OldF.getFunc()->mayBeOverridden() ||
656         NewF.getFunc()->mayBeOverridden());
657
658  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
659               << NewF.getFunc()->getName() << '\n');
660
661  Function *DeleteF = NewF.getFunc();
662  NewF.release();
663  MergeTwoFunctions(OldF.getFunc(), DeleteF);
664  return true;
665}
666
667// IsThunk - This method determines whether or not a given Function is a thunk\// like the ones emitted by this pass and therefore not subject to further
668// merging.
669static bool IsThunk(const Function *F) {
670  // The safe direction to fail is to return true. In that case, the function
671  // will be removed from merging analysis. If we failed to including functions
672  // then we may try to merge unmergable thing (ie., identical weak functions)
673  // which will push us into an infinite loop.
674
675  assert(!F->isDeclaration() && "Expected a function definition.");
676
677  const BasicBlock *BB = &F->front();
678  // A thunk is:
679  //   bitcast-inst*
680  //   optional-reg tail call @thunkee(args...*)
681  //   ret void|optional-reg
682  // where the args are in the same order as the arguments.
683
684  // Put this at the top since it triggers most often.
685  const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
686  if (!RI) return false;
687
688  // Verify that the sequence of bitcast-inst's are all casts of arguments and
689  // that there aren't any extras (ie. no repeated casts).
690  int LastArgNo = -1;
691  BasicBlock::const_iterator I = BB->begin();
692  while (const BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
693    const Argument *A = dyn_cast<Argument>(BCI->getOperand(0));
694    if (!A) return false;
695    if ((int)A->getArgNo() <= LastArgNo) return false;
696    LastArgNo = A->getArgNo();
697    ++I;
698  }
699
700  // Verify that we have a direct tail call and that the calling conventions
701  // and number of arguments match.
702  const CallInst *CI = dyn_cast<CallInst>(I++);
703  if (!CI || !CI->isTailCall() || !CI->getCalledFunction() ||
704      CI->getCallingConv() != CI->getCalledFunction()->getCallingConv() ||
705      CI->getNumArgOperands() != F->arg_size())
706    return false;
707
708  // Verify that the call instruction has the same arguments as this function
709  // and that they're all either the incoming argument or a cast of the right
710  // argument.
711  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
712    const Value *V = CI->getArgOperand(i);
713    const Argument *A = dyn_cast<Argument>(V);
714    if (!A) {
715      const BitCastInst *BCI = dyn_cast<BitCastInst>(V);
716      if (!BCI) return false;
717      A = cast<Argument>(BCI->getOperand(0));
718    }
719    if (A->getArgNo() != i) return false;
720  }
721
722  // Verify that the terminator is a ret void (if we're void) or a ret of the
723  // call's return, or a ret of a bitcast of the call's return.
724  const Value *RetOp = CI;
725  if (const BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
726    ++I;
727    if (BCI->getOperand(0) != CI) return false;
728    RetOp = BCI;
729  }
730  if (RI != I) return false;
731  if (RI->getNumOperands() == 0)
732    return CI->getType()->isVoidTy();
733  return RI->getReturnValue() == CI;
734}
735
736bool MergeFunctions::runOnModule(Module &M) {
737  bool Changed = false;
738  TD = getAnalysisIfAvailable<TargetData>();
739
740  bool LocalChanged;
741  do {
742    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
743    LocalChanged = false;
744    FnSetType FnSet;
745
746    // Insert only strong functions and merge them. Strong function merging
747    // always deletes one of them.
748    for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
749      Function *F = I++;
750      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
751          !F->mayBeOverridden() && !IsThunk(F)) {
752        ComparableFunction CF = ComparableFunction(F, TD);
753        LocalChanged |= Insert(FnSet, CF);
754      }
755    }
756
757    // Insert only weak functions and merge them. By doing these second we
758    // create thunks to the strong function when possible. When two weak
759    // functions are identical, we create a new strong function with two weak
760    // weak thunks to it which are identical but not mergable.
761    for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
762      Function *F = I++;
763      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
764          F->mayBeOverridden() && !IsThunk(F)) {
765        ComparableFunction CF = ComparableFunction(F, TD);
766        LocalChanged |= Insert(FnSet, CF);
767      }
768    }
769    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
770    Changed |= LocalChanged;
771  } while (LocalChanged);
772
773  return Changed;
774}
775
776bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
777                                               const ComparableFunction &RHS) {
778  if (LHS.getFunc() == RHS.getFunc() &&
779      LHS.getHash() == RHS.getHash())
780    return true;
781  if (!LHS.getFunc() || !RHS.getFunc())
782    return false;
783  assert(LHS.getTD() == RHS.getTD() &&
784         "Comparing functions for different targets");
785  return FunctionComparator(LHS.getTD(),
786                            LHS.getFunc(), RHS.getFunc()).Compare();
787}
788