MergeFunctions.cpp revision 207c193e7e9cc177115101333079e952a7676689
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/Constants.h"
54#include "llvm/InlineAsm.h"
55#include "llvm/Instructions.h"
56#include "llvm/LLVMContext.h"
57#include "llvm/Module.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CallSite.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/IRBuilder.h"
63#include "llvm/Support/ValueHandle.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/Target/TargetData.h"
66#include <vector>
67using namespace llvm;
68
69STATISTIC(NumFunctionsMerged, "Number of functions merged");
70STATISTIC(NumThunksWritten, "Number of thunks generated");
71STATISTIC(NumAliasesWritten, "Number of aliases generated");
72STATISTIC(NumDoubleWeak, "Number of new functions created");
73
74/// ProfileFunction - Creates a hash-code for the function which is the same
75/// for any two functions that will compare equal, without looking at the
76/// instructions inside the function.
77static unsigned ProfileFunction(const Function *F) {
78  const FunctionType *FTy = F->getFunctionType();
79
80  FoldingSetNodeID ID;
81  ID.AddInteger(F->size());
82  ID.AddInteger(F->getCallingConv());
83  ID.AddBoolean(F->hasGC());
84  ID.AddBoolean(FTy->isVarArg());
85  ID.AddInteger(FTy->getReturnType()->getTypeID());
86  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
87    ID.AddInteger(FTy->getParamType(i)->getTypeID());
88  return ID.ComputeHash();
89}
90
91namespace {
92
93class ComparableFunction {
94public:
95  static const ComparableFunction EmptyKey;
96  static const ComparableFunction TombstoneKey;
97
98  ComparableFunction(Function *Func, TargetData *TD)
99    : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
100
101  Function *getFunc() const { return Func; }
102  unsigned getHash() const { return Hash; }
103  TargetData *getTD() const { return TD; }
104
105  // Drops AssertingVH reference to the function. Outside of debug mode, this
106  // does nothing.
107  void release() {
108    assert(Func &&
109           "Attempted to release function twice, or release empty/tombstone!");
110    Func = NULL;
111  }
112
113  bool &getOrInsertCachedComparison(const ComparableFunction &Other,
114                                    bool &inserted) const {
115    typedef DenseMap<Function *, bool>::iterator iterator;
116    std::pair<iterator, bool> p =
117        CompareResultCache.insert(std::make_pair(Other.getFunc(), false));
118    inserted = p.second;
119    return p.first->second;
120  }
121
122private:
123  explicit ComparableFunction(unsigned Hash)
124    : Func(NULL), Hash(Hash), TD(NULL) {}
125
126  // DenseMap::grow() triggers a recomparison of all keys in the map, which is
127  // wildly expensive. This cache tries to preserve known results.
128  mutable DenseMap<Function *, bool> CompareResultCache;
129
130  AssertingVH<Function> Func;
131  unsigned Hash;
132  TargetData *TD;
133};
134
135const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
136const ComparableFunction ComparableFunction::TombstoneKey =
137    ComparableFunction(1);
138
139}
140
141namespace llvm {
142  template <>
143  struct DenseMapInfo<ComparableFunction> {
144    static ComparableFunction getEmptyKey() {
145      return ComparableFunction::EmptyKey;
146    }
147    static ComparableFunction getTombstoneKey() {
148      return ComparableFunction::TombstoneKey;
149    }
150    static unsigned getHashValue(const ComparableFunction &CF) {
151      return CF.getHash();
152    }
153    static bool isEqual(const ComparableFunction &LHS,
154                        const ComparableFunction &RHS);
155  };
156}
157
158namespace {
159
160/// MergeFunctions finds functions which will generate identical machine code,
161/// by considering all pointer types to be equivalent. Once identified,
162/// MergeFunctions will fold them by replacing a call to one to a call to a
163/// bitcast of the other.
164///
165class MergeFunctions : public ModulePass {
166public:
167  static char ID;
168  MergeFunctions()
169    : ModulePass(ID), HasGlobalAliases(false) {
170    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
171  }
172
173  bool runOnModule(Module &M);
174
175private:
176  typedef DenseSet<ComparableFunction> FnSetType;
177
178  /// A work queue of functions that may have been modified and should be
179  /// analyzed again.
180  std::vector<WeakVH> Deferred;
181
182  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
183  /// equal to one that's already present.
184  bool Insert(ComparableFunction &NewF);
185
186  /// Remove a Function from the FnSet and queue it up for a second sweep of
187  /// analysis.
188  void Remove(Function *F);
189
190  /// Find the functions that use this Value and remove them from FnSet and
191  /// queue the functions.
192  void RemoveUsers(Value *V);
193
194  /// Replace all direct calls of Old with calls of New. Will bitcast New if
195  /// necessary to make types match.
196  void replaceDirectCallers(Function *Old, Function *New);
197
198  /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
199  /// may be deleted, or may be converted into a thunk. In either case, it
200  /// should never be visited again.
201  void MergeTwoFunctions(Function *F, Function *G);
202
203  /// WriteThunkOrAlias - Replace G with a thunk or an alias to F. Deletes G.
204  void WriteThunkOrAlias(Function *F, Function *G);
205
206  /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
207  /// replace direct uses of G with bitcast(F). Deletes G.
208  void WriteThunk(Function *F, Function *G);
209
210  /// WriteAlias - Replace G with an alias to F. Deletes G.
211  void WriteAlias(Function *F, Function *G);
212
213  /// The set of all distinct functions. Use the Insert and Remove methods to
214  /// modify it.
215  FnSetType FnSet;
216
217  /// TargetData for more accurate GEP comparisons. May be NULL.
218  TargetData *TD;
219
220  /// Whether or not the target supports global aliases.
221  bool HasGlobalAliases;
222};
223
224}  // end anonymous namespace
225
226char MergeFunctions::ID = 0;
227INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
228
229ModulePass *llvm::createMergeFunctionsPass() {
230  return new MergeFunctions();
231}
232
233namespace {
234/// FunctionComparator - Compares two functions to determine whether or not
235/// they will generate machine code with the same behaviour. TargetData is
236/// used if available. The comparator always fails conservatively (erring on the
237/// side of claiming that two functions are different).
238class FunctionComparator {
239public:
240  FunctionComparator(const TargetData *TD, const Function *F1,
241                     const Function *F2)
242    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
243
244  /// Compare - test whether the two functions have equivalent behaviour.
245  bool Compare();
246
247private:
248  /// Compare - test whether two basic blocks have equivalent behaviour.
249  bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
250
251  /// Enumerate - Assign or look up previously assigned numbers for the two
252  /// values, and return whether the numbers are equal. Numbers are assigned in
253  /// the order visited.
254  bool Enumerate(const Value *V1, const Value *V2);
255
256  /// isEquivalentOperation - Compare two Instructions for equivalence, similar
257  /// to Instruction::isSameOperationAs but with modifications to the type
258  /// comparison.
259  bool isEquivalentOperation(const Instruction *I1,
260                             const Instruction *I2) const;
261
262  /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
263  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
264  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
265                       const GetElementPtrInst *GEP2) {
266    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
267  }
268
269  /// isEquivalentType - Compare two Types, treating all pointer types as equal.
270  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
271
272  // The two functions undergoing comparison.
273  const Function *F1, *F2;
274
275  const TargetData *TD;
276
277  typedef DenseMap<const Value *, unsigned long> IDMap;
278  IDMap Map1, Map2;
279  unsigned long IDMap1Count, IDMap2Count;
280};
281}
282
283/// isEquivalentType - any two pointers in the same address space are
284/// equivalent. Otherwise, standard type equivalence rules apply.
285bool FunctionComparator::isEquivalentType(const Type *Ty1,
286                                          const Type *Ty2) const {
287  if (Ty1 == Ty2)
288    return true;
289  if (Ty1->getTypeID() != Ty2->getTypeID()) {
290    if (TD) {
291      LLVMContext &Ctx = Ty1->getContext();
292      if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
293      if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
294    }
295    return false;
296  }
297
298  switch(Ty1->getTypeID()) {
299  default:
300    llvm_unreachable("Unknown type!");
301    // Fall through in Release mode.
302  case Type::IntegerTyID:
303  case Type::OpaqueTyID:
304  case Type::VectorTyID:
305    // Ty1 == Ty2 would have returned true earlier.
306    return false;
307
308  case Type::VoidTyID:
309  case Type::FloatTyID:
310  case Type::DoubleTyID:
311  case Type::X86_FP80TyID:
312  case Type::FP128TyID:
313  case Type::PPC_FP128TyID:
314  case Type::LabelTyID:
315  case Type::MetadataTyID:
316    return true;
317
318  case Type::PointerTyID: {
319    const PointerType *PTy1 = cast<PointerType>(Ty1);
320    const PointerType *PTy2 = cast<PointerType>(Ty2);
321    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
322  }
323
324  case Type::StructTyID: {
325    const StructType *STy1 = cast<StructType>(Ty1);
326    const StructType *STy2 = cast<StructType>(Ty2);
327    if (STy1->getNumElements() != STy2->getNumElements())
328      return false;
329
330    if (STy1->isPacked() != STy2->isPacked())
331      return false;
332
333    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
334      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
335        return false;
336    }
337    return true;
338  }
339
340  case Type::FunctionTyID: {
341    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
342    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
343    if (FTy1->getNumParams() != FTy2->getNumParams() ||
344        FTy1->isVarArg() != FTy2->isVarArg())
345      return false;
346
347    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
348      return false;
349
350    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
351      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
352        return false;
353    }
354    return true;
355  }
356
357  case Type::ArrayTyID: {
358    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
359    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
360    return ATy1->getNumElements() == ATy2->getNumElements() &&
361           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
362  }
363  }
364}
365
366/// isEquivalentOperation - determine whether the two operations are the same
367/// except that pointer-to-A and pointer-to-B are equivalent. This should be
368/// kept in sync with Instruction::isSameOperationAs.
369bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
370                                               const Instruction *I2) const {
371  if (I1->getOpcode() != I2->getOpcode() ||
372      I1->getNumOperands() != I2->getNumOperands() ||
373      !isEquivalentType(I1->getType(), I2->getType()) ||
374      !I1->hasSameSubclassOptionalData(I2))
375    return false;
376
377  // We have two instructions of identical opcode and #operands.  Check to see
378  // if all operands are the same type
379  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
380    if (!isEquivalentType(I1->getOperand(i)->getType(),
381                          I2->getOperand(i)->getType()))
382      return false;
383
384  // Check special state that is a part of some instructions.
385  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
386    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
387           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
388  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
389    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
390           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
391  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
392    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
393  if (const CallInst *CI = dyn_cast<CallInst>(I1))
394    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
395           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
396           CI->getAttributes().getRawPointer() ==
397             cast<CallInst>(I2)->getAttributes().getRawPointer();
398  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
399    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
400           CI->getAttributes().getRawPointer() ==
401             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
402  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
403    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
404      return false;
405    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
406      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
407        return false;
408    return true;
409  }
410  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
411    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
412      return false;
413    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
414      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
415        return false;
416    return true;
417  }
418
419  return true;
420}
421
422/// isEquivalentGEP - determine whether two GEP operations perform the same
423/// underlying arithmetic.
424bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
425                                         const GEPOperator *GEP2) {
426  // When we have target data, we can reduce the GEP down to the value in bytes
427  // added to the address.
428  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
429    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
430    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
431    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
432                                            Indices1.data(), Indices1.size());
433    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
434                                            Indices2.data(), Indices2.size());
435    return Offset1 == Offset2;
436  }
437
438  if (GEP1->getPointerOperand()->getType() !=
439      GEP2->getPointerOperand()->getType())
440    return false;
441
442  if (GEP1->getNumOperands() != GEP2->getNumOperands())
443    return false;
444
445  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
446    if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
447      return false;
448  }
449
450  return true;
451}
452
453/// Enumerate - Compare two values used by the two functions under pair-wise
454/// comparison. If this is the first time the values are seen, they're added to
455/// the mapping so that we will detect mismatches on next use.
456bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
457  // Check for function @f1 referring to itself and function @f2 referring to
458  // itself, or referring to each other, or both referring to either of them.
459  // They're all equivalent if the two functions are otherwise equivalent.
460  if (V1 == F1 && V2 == F2)
461    return true;
462  if (V1 == F2 && V2 == F1)
463    return true;
464
465  // TODO: constant expressions with GEP or references to F1 or F2.
466  if (isa<Constant>(V1))
467    return V1 == V2;
468
469  if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
470    const InlineAsm *IA1 = cast<InlineAsm>(V1);
471    const InlineAsm *IA2 = cast<InlineAsm>(V2);
472    return IA1->getAsmString() == IA2->getAsmString() &&
473           IA1->getConstraintString() == IA2->getConstraintString();
474  }
475
476  unsigned long &ID1 = Map1[V1];
477  if (!ID1)
478    ID1 = ++IDMap1Count;
479
480  unsigned long &ID2 = Map2[V2];
481  if (!ID2)
482    ID2 = ++IDMap2Count;
483
484  return ID1 == ID2;
485}
486
487/// Compare - test whether two basic blocks have equivalent behaviour.
488bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
489  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
490  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
491
492  do {
493    if (!Enumerate(F1I, F2I))
494      return false;
495
496    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
497      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
498      if (!GEP2)
499        return false;
500
501      if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
502        return false;
503
504      if (!isEquivalentGEP(GEP1, GEP2))
505        return false;
506    } else {
507      if (!isEquivalentOperation(F1I, F2I))
508        return false;
509
510      assert(F1I->getNumOperands() == F2I->getNumOperands());
511      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
512        Value *OpF1 = F1I->getOperand(i);
513        Value *OpF2 = F2I->getOperand(i);
514
515        if (!Enumerate(OpF1, OpF2))
516          return false;
517
518        if (OpF1->getValueID() != OpF2->getValueID() ||
519            !isEquivalentType(OpF1->getType(), OpF2->getType()))
520          return false;
521      }
522    }
523
524    ++F1I, ++F2I;
525  } while (F1I != F1E && F2I != F2E);
526
527  return F1I == F1E && F2I == F2E;
528}
529
530/// Compare - test whether the two functions have equivalent behaviour.
531bool FunctionComparator::Compare() {
532  // We need to recheck everything, but check the things that weren't included
533  // in the hash first.
534
535  if (F1->getAttributes() != F2->getAttributes())
536    return false;
537
538  if (F1->hasGC() != F2->hasGC())
539    return false;
540
541  if (F1->hasGC() && F1->getGC() != F2->getGC())
542    return false;
543
544  if (F1->hasSection() != F2->hasSection())
545    return false;
546
547  if (F1->hasSection() && F1->getSection() != F2->getSection())
548    return false;
549
550  if (F1->isVarArg() != F2->isVarArg())
551    return false;
552
553  // TODO: if it's internal and only used in direct calls, we could handle this
554  // case too.
555  if (F1->getCallingConv() != F2->getCallingConv())
556    return false;
557
558  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
559    return false;
560
561  assert(F1->arg_size() == F2->arg_size() &&
562         "Identically typed functions have different numbers of args!");
563
564  // Visit the arguments so that they get enumerated in the order they're
565  // passed in.
566  for (Function::const_arg_iterator f1i = F1->arg_begin(),
567         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
568    if (!Enumerate(f1i, f2i))
569      llvm_unreachable("Arguments repeat!");
570  }
571
572  // We do a CFG-ordered walk since the actual ordering of the blocks in the
573  // linked list is immaterial. Our walk starts at the entry block for both
574  // functions, then takes each block from each terminator in order. As an
575  // artifact, this also means that unreachable blocks are ignored.
576  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
577  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
578
579  F1BBs.push_back(&F1->getEntryBlock());
580  F2BBs.push_back(&F2->getEntryBlock());
581
582  VisitedBBs.insert(F1BBs[0]);
583  while (!F1BBs.empty()) {
584    const BasicBlock *F1BB = F1BBs.pop_back_val();
585    const BasicBlock *F2BB = F2BBs.pop_back_val();
586
587    if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
588      return false;
589
590    const TerminatorInst *F1TI = F1BB->getTerminator();
591    const TerminatorInst *F2TI = F2BB->getTerminator();
592
593    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
594    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
595      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
596        continue;
597
598      F1BBs.push_back(F1TI->getSuccessor(i));
599      F2BBs.push_back(F2TI->getSuccessor(i));
600    }
601  }
602  return true;
603}
604
605/// Replace direct callers of Old with New.
606void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
607  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
608  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
609       UI != UE;) {
610    Value::use_iterator TheIter = UI;
611    ++UI;
612    CallSite CS(*TheIter);
613    if (CS && CS.isCallee(TheIter)) {
614      Remove(CS.getInstruction()->getParent()->getParent());
615      TheIter.getUse().set(BitcastNew);
616    }
617  }
618}
619
620void MergeFunctions::WriteThunkOrAlias(Function *F, Function *G) {
621  if (HasGlobalAliases && G->hasUnnamedAddr()) {
622    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
623        G->hasWeakLinkage()) {
624      WriteAlias(F, G);
625      return;
626    }
627  }
628
629  WriteThunk(F, G);
630}
631
632/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
633/// direct uses of G with bitcast(F). Deletes G.
634void MergeFunctions::WriteThunk(Function *F, Function *G) {
635  if (!G->mayBeOverridden()) {
636    // Redirect direct callers of G to F.
637    replaceDirectCallers(G, F);
638  }
639
640  // If G was internal then we may have replaced all uses of G with F. If so,
641  // stop here and delete G. There's no need for a thunk.
642  if (G->hasLocalLinkage() && G->use_empty()) {
643    G->eraseFromParent();
644    return;
645  }
646
647  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
648                                    G->getParent());
649  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
650  IRBuilder<false> Builder(BB);
651
652  SmallVector<Value *, 16> Args;
653  unsigned i = 0;
654  const FunctionType *FFTy = F->getFunctionType();
655  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
656       AI != AE; ++AI) {
657    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
658    ++i;
659  }
660
661  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
662  CI->setTailCall();
663  CI->setCallingConv(F->getCallingConv());
664  if (NewG->getReturnType()->isVoidTy()) {
665    Builder.CreateRetVoid();
666  } else {
667    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
668  }
669
670  NewG->copyAttributesFrom(G);
671  NewG->takeName(G);
672  RemoveUsers(G);
673  G->replaceAllUsesWith(NewG);
674  G->eraseFromParent();
675
676  DEBUG(dbgs() << "WriteThunk: " << NewG->getName() << '\n');
677  ++NumThunksWritten;
678}
679
680/// WriteAlias - Replace G with an alias to F and delete G.
681void MergeFunctions::WriteAlias(Function *F, Function *G) {
682  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
683  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
684                                    BitcastF, G->getParent());
685  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
686  GA->takeName(G);
687  GA->setVisibility(G->getVisibility());
688  RemoveUsers(G);
689  G->replaceAllUsesWith(GA);
690  G->eraseFromParent();
691
692  DEBUG(dbgs() << "WriteAlias: " << GA->getName() << '\n');
693  ++NumAliasesWritten;
694}
695
696/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
697/// Function G is deleted.
698void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) {
699  if (F->mayBeOverridden()) {
700    assert(G->mayBeOverridden());
701
702    if (HasGlobalAliases) {
703      // Make them both thunks to the same internal function.
704      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
705                                     F->getParent());
706      H->copyAttributesFrom(F);
707      H->takeName(F);
708      RemoveUsers(F);
709      F->replaceAllUsesWith(H);
710
711      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
712
713      WriteAlias(F, G);
714      WriteAlias(F, H);
715
716      F->setAlignment(MaxAlignment);
717      F->setLinkage(GlobalValue::PrivateLinkage);
718    } else {
719      // We can't merge them. Instead, pick one and update all direct callers
720      // to call it and hope that we improve the instruction cache hit rate.
721      replaceDirectCallers(G, F);
722    }
723
724    ++NumDoubleWeak;
725  } else {
726    WriteThunkOrAlias(F, G);
727  }
728
729  ++NumFunctionsMerged;
730}
731
732// Insert - Insert a ComparableFunction into the FnSet, or merge it away if
733// equal to one that's already inserted.
734bool MergeFunctions::Insert(ComparableFunction &NewF) {
735  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
736  if (Result.second)
737    return false;
738
739  const ComparableFunction &OldF = *Result.first;
740
741  // Never thunk a strong function to a weak function.
742  assert(!OldF.getFunc()->mayBeOverridden() ||
743         NewF.getFunc()->mayBeOverridden());
744
745  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
746               << NewF.getFunc()->getName() << '\n');
747
748  Function *DeleteF = NewF.getFunc();
749  NewF.release();
750  MergeTwoFunctions(OldF.getFunc(), DeleteF);
751  return true;
752}
753
754// Remove - Remove a function from FnSet. If it was already in FnSet, add it to
755// Deferred so that we'll look at it in the next round.
756void MergeFunctions::Remove(Function *F) {
757  ComparableFunction CF = ComparableFunction(F, TD);
758  if (FnSet.erase(CF)) {
759    Deferred.push_back(F);
760  }
761}
762
763// RemoveUsers - For each instruction used by the value, Remove() the function
764// that contains the instruction. This should happen right before a call to RAUW.
765void MergeFunctions::RemoveUsers(Value *V) {
766  std::vector<Value *> Worklist;
767  Worklist.push_back(V);
768  while (!Worklist.empty()) {
769    Value *V = Worklist.back();
770    Worklist.pop_back();
771
772    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
773         UI != UE; ++UI) {
774      Use &U = UI.getUse();
775      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
776        Remove(I->getParent()->getParent());
777      } else if (isa<GlobalValue>(U.getUser())) {
778        // do nothing
779      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
780        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
781             CUI != CUE; ++CUI)
782          Worklist.push_back(*CUI);
783      }
784    }
785  }
786}
787
788bool MergeFunctions::runOnModule(Module &M) {
789  bool Changed = false;
790  TD = getAnalysisIfAvailable<TargetData>();
791
792  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
793    Deferred.push_back(WeakVH(I));
794  }
795
796  do {
797    std::vector<WeakVH> Worklist;
798    Deferred.swap(Worklist);
799
800    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
801    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
802
803    // Insert only strong functions and merge them. Strong function merging
804    // always deletes one of them.
805    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
806           E = Worklist.end(); I != E; ++I) {
807      if (!*I) continue;
808      Function *F = cast<Function>(*I);
809      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
810          !F->mayBeOverridden()) {
811        ComparableFunction CF = ComparableFunction(F, TD);
812        Changed |= Insert(CF);
813      }
814    }
815
816    // Insert only weak functions and merge them. By doing these second we
817    // create thunks to the strong function when possible. When two weak
818    // functions are identical, we create a new strong function with two weak
819    // weak thunks to it which are identical but not mergable.
820    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
821           E = Worklist.end(); I != E; ++I) {
822      if (!*I) continue;
823      Function *F = cast<Function>(*I);
824      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
825          F->mayBeOverridden()) {
826        ComparableFunction CF = ComparableFunction(F, TD);
827        Changed |= Insert(CF);
828      }
829    }
830    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
831  } while (!Deferred.empty());
832
833  FnSet.clear();
834
835  return Changed;
836}
837
838bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
839                                               const ComparableFunction &RHS) {
840  if (LHS.getFunc() == RHS.getFunc() &&
841      LHS.getHash() == RHS.getHash())
842    return true;
843  if (!LHS.getFunc() || !RHS.getFunc())
844    return false;
845  assert(LHS.getTD() == RHS.getTD() &&
846         "Comparing functions for different targets");
847
848  bool inserted;
849  bool &result1 = LHS.getOrInsertCachedComparison(RHS, inserted);
850  if (!inserted)
851    return result1;
852  bool &result2 = RHS.getOrInsertCachedComparison(LHS, inserted);
853  if (!inserted)
854    return result1 = result2;
855
856  return result1 = result2 = FunctionComparator(LHS.getTD(), LHS.getFunc(),
857                                                RHS.getFunc()).Compare();
858}
859