MergeFunctions.cpp revision 3221834f8a6216d01a7e1d1201bd14eafd79cff3
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/Constants.h"
53#include "llvm/InlineAsm.h"
54#include "llvm/Instructions.h"
55#include "llvm/LLVMContext.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/CallSite.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/IRBuilder.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Target/TargetData.h"
64#include <map>
65#include <vector>
66using namespace llvm;
67
68STATISTIC(NumFunctionsMerged, "Number of functions merged");
69
70namespace {
71  /// MergeFunctions finds functions which will generate identical machine code,
72  /// by considering all pointer types to be equivalent. Once identified,
73  /// MergeFunctions will fold them by replacing a call to one to a call to a
74  /// bitcast of the other.
75  ///
76  class MergeFunctions : public ModulePass {
77  public:
78    static char ID;
79    MergeFunctions() : ModulePass(ID) {}
80
81    bool runOnModule(Module &M);
82
83  private:
84    /// PairwiseCompareAndMerge - Given a list of functions, compare each pair
85    /// and merge the pairs of equivalent functions.
86    bool PairwiseCompareAndMerge(std::vector<Function *> &FnVec);
87
88    /// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
89    /// FnVec[j] should never be visited again.
90    void MergeTwoFunctions(std::vector<Function *> &FnVec,
91                           unsigned i, unsigned j) const;
92
93    /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
94    /// replace direct uses of G with bitcast(F).
95    void WriteThunk(Function *F, Function *G) const;
96
97    TargetData *TD;
98  };
99}
100
101char MergeFunctions::ID = 0;
102INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
103
104ModulePass *llvm::createMergeFunctionsPass() {
105  return new MergeFunctions();
106}
107
108namespace {
109/// FunctionComparator - Compares two functions to determine whether or not
110/// they will generate machine code with the same behaviour. TargetData is
111/// used if available. The comparator always fails conservatively (erring on the
112/// side of claiming that two functions are different).
113class FunctionComparator {
114public:
115  FunctionComparator(TargetData *TD, Function *F1, Function *F2)
116    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
117
118  /// Compare - test whether the two functions have equivalent behaviour.
119  bool Compare();
120
121private:
122  /// Compare - test whether two basic blocks have equivalent behaviour.
123  bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
124
125  /// Enumerate - Assign or look up previously assigned numbers for the two
126  /// values, and return whether the numbers are equal. Numbers are assigned in
127  /// the order visited.
128  bool Enumerate(const Value *V1, const Value *V2);
129
130  /// isEquivalentOperation - Compare two Instructions for equivalence, similar
131  /// to Instruction::isSameOperationAs but with modifications to the type
132  /// comparison.
133  bool isEquivalentOperation(const Instruction *I1,
134                             const Instruction *I2) const;
135
136  /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
137  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
138  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
139                       const GetElementPtrInst *GEP2) {
140    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
141  }
142
143  /// isEquivalentType - Compare two Types, treating all pointer types as equal.
144  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
145
146  // The two functions undergoing comparison.
147  Function *F1, *F2;
148
149  TargetData *TD;
150
151  typedef DenseMap<const Value *, unsigned long> IDMap;
152  IDMap Map1, Map2;
153  unsigned long IDMap1Count, IDMap2Count;
154};
155}
156
157/// Compute a hash guaranteed to be equal for two equivalent functions, but
158/// very likely to be different for different functions.
159static unsigned long ProfileFunction(const Function *F) {
160  const FunctionType *FTy = F->getFunctionType();
161
162  FoldingSetNodeID ID;
163  ID.AddInteger(F->size());
164  ID.AddInteger(F->getCallingConv());
165  ID.AddBoolean(F->hasGC());
166  ID.AddBoolean(FTy->isVarArg());
167  ID.AddInteger(FTy->getReturnType()->getTypeID());
168  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
169    ID.AddInteger(FTy->getParamType(i)->getTypeID());
170  return ID.ComputeHash();
171}
172
173/// isEquivalentType - any two pointers in the same address space are
174/// equivalent. Otherwise, standard type equivalence rules apply.
175bool FunctionComparator::isEquivalentType(const Type *Ty1,
176                                          const Type *Ty2) const {
177  if (Ty1 == Ty2)
178    return true;
179  if (Ty1->getTypeID() != Ty2->getTypeID())
180    return false;
181
182  switch(Ty1->getTypeID()) {
183  default:
184    llvm_unreachable("Unknown type!");
185    // Fall through in Release mode.
186  case Type::IntegerTyID:
187  case Type::OpaqueTyID:
188    // Ty1 == Ty2 would have returned true earlier.
189    return false;
190
191  case Type::VoidTyID:
192  case Type::FloatTyID:
193  case Type::DoubleTyID:
194  case Type::X86_FP80TyID:
195  case Type::FP128TyID:
196  case Type::PPC_FP128TyID:
197  case Type::LabelTyID:
198  case Type::MetadataTyID:
199    return true;
200
201  case Type::PointerTyID: {
202    const PointerType *PTy1 = cast<PointerType>(Ty1);
203    const PointerType *PTy2 = cast<PointerType>(Ty2);
204    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
205  }
206
207  case Type::StructTyID: {
208    const StructType *STy1 = cast<StructType>(Ty1);
209    const StructType *STy2 = cast<StructType>(Ty2);
210    if (STy1->getNumElements() != STy2->getNumElements())
211      return false;
212
213    if (STy1->isPacked() != STy2->isPacked())
214      return false;
215
216    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
217      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
218        return false;
219    }
220    return true;
221  }
222
223  case Type::UnionTyID: {
224    const UnionType *UTy1 = cast<UnionType>(Ty1);
225    const UnionType *UTy2 = cast<UnionType>(Ty2);
226
227    if (UTy1->getNumElements() != UTy2->getNumElements())
228      return false;
229
230    for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
231      if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
232        return false;
233    }
234    return true;
235  }
236
237  case Type::FunctionTyID: {
238    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
239    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
240    if (FTy1->getNumParams() != FTy2->getNumParams() ||
241        FTy1->isVarArg() != FTy2->isVarArg())
242      return false;
243
244    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
245      return false;
246
247    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
248      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
249        return false;
250    }
251    return true;
252  }
253
254  case Type::ArrayTyID: {
255    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
256    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
257    return ATy1->getNumElements() == ATy2->getNumElements() &&
258           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
259  }
260
261  case Type::VectorTyID: {
262    const VectorType *VTy1 = cast<VectorType>(Ty1);
263    const VectorType *VTy2 = cast<VectorType>(Ty2);
264    return VTy1->getNumElements() == VTy2->getNumElements() &&
265           isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
266  }
267  }
268}
269
270/// isEquivalentOperation - determine whether the two operations are the same
271/// except that pointer-to-A and pointer-to-B are equivalent. This should be
272/// kept in sync with Instruction::isSameOperationAs.
273bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
274                                               const Instruction *I2) const {
275  if (I1->getOpcode() != I2->getOpcode() ||
276      I1->getNumOperands() != I2->getNumOperands() ||
277      !isEquivalentType(I1->getType(), I2->getType()) ||
278      !I1->hasSameSubclassOptionalData(I2))
279    return false;
280
281  // We have two instructions of identical opcode and #operands.  Check to see
282  // if all operands are the same type
283  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
284    if (!isEquivalentType(I1->getOperand(i)->getType(),
285                          I2->getOperand(i)->getType()))
286      return false;
287
288  // Check special state that is a part of some instructions.
289  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
290    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
291           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
292  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
293    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
294           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
295  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
296    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
297  if (const CallInst *CI = dyn_cast<CallInst>(I1))
298    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
299           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
300           CI->getAttributes().getRawPointer() ==
301             cast<CallInst>(I2)->getAttributes().getRawPointer();
302  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
303    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
304           CI->getAttributes().getRawPointer() ==
305             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
306  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
307    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
308      return false;
309    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
310      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
311        return false;
312    return true;
313  }
314  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
315    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
316      return false;
317    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
318      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
319        return false;
320    return true;
321  }
322
323  return true;
324}
325
326/// isEquivalentGEP - determine whether two GEP operations perform the same
327/// underlying arithmetic.
328bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
329                                         const GEPOperator *GEP2) {
330  // When we have target data, we can reduce the GEP down to the value in bytes
331  // added to the address.
332  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
333    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
334    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
335    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
336                                            Indices1.data(), Indices1.size());
337    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
338                                            Indices2.data(), Indices2.size());
339    return Offset1 == Offset2;
340  }
341
342  if (GEP1->getPointerOperand()->getType() !=
343      GEP2->getPointerOperand()->getType())
344    return false;
345
346  if (GEP1->getNumOperands() != GEP2->getNumOperands())
347    return false;
348
349  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
350    if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
351      return false;
352  }
353
354  return true;
355}
356
357/// Enumerate - Compare two values used by the two functions under pair-wise
358/// comparison. If this is the first time the values are seen, they're added to
359/// the mapping so that we will detect mismatches on next use.
360bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
361  // Check for function @f1 referring to itself and function @f2 referring to
362  // itself, or referring to each other, or both referring to either of them.
363  // They're all equivalent if the two functions are otherwise equivalent.
364  if (V1 == F1 && V2 == F2)
365    return true;
366  if (V1 == F2 && V2 == F1)
367    return true;
368
369  // TODO: constant expressions with GEP or references to F1 or F2.
370  if (isa<Constant>(V1))
371    return V1 == V2;
372
373  if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
374    const InlineAsm *IA1 = cast<InlineAsm>(V1);
375    const InlineAsm *IA2 = cast<InlineAsm>(V2);
376    return IA1->getAsmString() == IA2->getAsmString() &&
377           IA1->getConstraintString() == IA2->getConstraintString();
378  }
379
380  unsigned long &ID1 = Map1[V1];
381  if (!ID1)
382    ID1 = ++IDMap1Count;
383
384  unsigned long &ID2 = Map2[V2];
385  if (!ID2)
386    ID2 = ++IDMap2Count;
387
388  return ID1 == ID2;
389}
390
391/// Compare - test whether two basic blocks have equivalent behaviour.
392bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
393  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
394  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
395
396  do {
397    if (!Enumerate(F1I, F2I))
398      return false;
399
400    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
401      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
402      if (!GEP2)
403        return false;
404
405      if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
406        return false;
407
408      if (!isEquivalentGEP(GEP1, GEP2))
409        return false;
410    } else {
411      if (!isEquivalentOperation(F1I, F2I))
412        return false;
413
414      assert(F1I->getNumOperands() == F2I->getNumOperands());
415      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
416        Value *OpF1 = F1I->getOperand(i);
417        Value *OpF2 = F2I->getOperand(i);
418
419        if (!Enumerate(OpF1, OpF2))
420          return false;
421
422        if (OpF1->getValueID() != OpF2->getValueID() ||
423            !isEquivalentType(OpF1->getType(), OpF2->getType()))
424          return false;
425      }
426    }
427
428    ++F1I, ++F2I;
429  } while (F1I != F1E && F2I != F2E);
430
431  return F1I == F1E && F2I == F2E;
432}
433
434/// Compare - test whether the two functions have equivalent behaviour.
435bool FunctionComparator::Compare() {
436  // We need to recheck everything, but check the things that weren't included
437  // in the hash first.
438
439  if (F1->getAttributes() != F2->getAttributes())
440    return false;
441
442  if (F1->hasGC() != F2->hasGC())
443    return false;
444
445  if (F1->hasGC() && F1->getGC() != F2->getGC())
446    return false;
447
448  if (F1->hasSection() != F2->hasSection())
449    return false;
450
451  if (F1->hasSection() && F1->getSection() != F2->getSection())
452    return false;
453
454  if (F1->isVarArg() != F2->isVarArg())
455    return false;
456
457  // TODO: if it's internal and only used in direct calls, we could handle this
458  // case too.
459  if (F1->getCallingConv() != F2->getCallingConv())
460    return false;
461
462  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
463    return false;
464
465  assert(F1->arg_size() == F2->arg_size() &&
466         "Identical functions have a different number of args.");
467
468  // Visit the arguments so that they get enumerated in the order they're
469  // passed in.
470  for (Function::const_arg_iterator f1i = F1->arg_begin(),
471         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
472    if (!Enumerate(f1i, f2i))
473      llvm_unreachable("Arguments repeat");
474  }
475
476  // We do a CFG-ordered walk since the actual ordering of the blocks in the
477  // linked list is immaterial. Our walk starts at the entry block for both
478  // functions, then takes each block from each terminator in order. As an
479  // artifact, this also means that unreachable blocks are ignored.
480  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
481  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
482
483  F1BBs.push_back(&F1->getEntryBlock());
484  F2BBs.push_back(&F2->getEntryBlock());
485
486  VisitedBBs.insert(F1BBs[0]);
487  while (!F1BBs.empty()) {
488    const BasicBlock *F1BB = F1BBs.pop_back_val();
489    const BasicBlock *F2BB = F2BBs.pop_back_val();
490
491    if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
492      return false;
493
494    const TerminatorInst *F1TI = F1BB->getTerminator();
495    const TerminatorInst *F2TI = F2BB->getTerminator();
496
497    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
498    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
499      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
500        continue;
501
502      F1BBs.push_back(F1TI->getSuccessor(i));
503      F2BBs.push_back(F2TI->getSuccessor(i));
504    }
505  }
506  return true;
507}
508
509/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
510/// direct uses of G with bitcast(F).
511void MergeFunctions::WriteThunk(Function *F, Function *G) const {
512  if (!G->mayBeOverridden()) {
513    // Redirect direct callers of G to F.
514    Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
515    for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
516         UI != UE;) {
517      Value::use_iterator TheIter = UI;
518      ++UI;
519      CallSite CS(*TheIter);
520      if (CS && CS.isCallee(TheIter))
521        TheIter.getUse().set(BitcastF);
522    }
523  }
524
525  // If G was internal then we may have replaced all uses if G with F. If so,
526  // stop here and delete G. There's no need for a thunk.
527  if (G->hasLocalLinkage() && G->use_empty()) {
528    G->eraseFromParent();
529    return;
530  }
531
532  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
533                                    G->getParent());
534  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
535  IRBuilder<false> Builder(BB);
536
537  SmallVector<Value *, 16> Args;
538  unsigned i = 0;
539  const FunctionType *FFTy = F->getFunctionType();
540  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
541       AI != AE; ++AI) {
542    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
543    ++i;
544  }
545
546  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
547  CI->setTailCall();
548  CI->setCallingConv(F->getCallingConv());
549  if (NewG->getReturnType()->isVoidTy()) {
550    Builder.CreateRetVoid();
551  } else {
552    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
553  }
554
555  NewG->copyAttributesFrom(G);
556  NewG->takeName(G);
557  G->replaceAllUsesWith(NewG);
558  G->eraseFromParent();
559}
560
561/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
562/// FnVec[j] is deleted but not removed from the vector.
563void MergeFunctions::MergeTwoFunctions(std::vector<Function *> &FnVec,
564                                       unsigned i, unsigned j) const {
565  Function *F = FnVec[i];
566  Function *G = FnVec[j];
567
568  if (F->isWeakForLinker() && !G->isWeakForLinker()) {
569    std::swap(FnVec[i], FnVec[j]);
570    std::swap(F, G);
571  }
572
573  if (F->isWeakForLinker()) {
574    assert(G->isWeakForLinker());
575
576    // Make them both thunks to the same internal function.
577    Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
578                                   F->getParent());
579    H->copyAttributesFrom(F);
580    H->takeName(F);
581    F->replaceAllUsesWith(H);
582
583    unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
584
585    WriteThunk(F, G);
586    WriteThunk(F, H);
587
588    F->setAlignment(MaxAlignment);
589    F->setLinkage(GlobalValue::InternalLinkage);
590  } else {
591    WriteThunk(F, G);
592  }
593
594  ++NumFunctionsMerged;
595}
596
597/// PairwiseCompareAndMerge - Given a list of functions, compare each pair and
598/// merge the pairs of equivalent functions.
599bool MergeFunctions::PairwiseCompareAndMerge(std::vector<Function *> &FnVec) {
600  bool Changed = false;
601  for (int i = 0, e = FnVec.size(); i != e; ++i) {
602    for (int j = i + 1; j != e; ++j) {
603      bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare();
604
605      DEBUG(dbgs() << "  " << FnVec[i]->getName()
606            << (isEqual ? " == " : " != ") << FnVec[j]->getName() << "\n");
607
608      if (isEqual) {
609        MergeTwoFunctions(FnVec, i, j);
610        Changed = true;
611        FnVec.erase(FnVec.begin() + j);
612        --j, --e;
613      }
614    }
615  }
616  return Changed;
617}
618
619bool MergeFunctions::runOnModule(Module &M) {
620  bool Changed = false;
621
622  std::map<unsigned long, std::vector<Function *> > FnMap;
623
624  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
625    if (F->isDeclaration() || F->hasAvailableExternallyLinkage())
626      continue;
627
628    FnMap[ProfileFunction(F)].push_back(F);
629  }
630
631  TD = getAnalysisIfAvailable<TargetData>();
632
633  bool LocalChanged;
634  do {
635    LocalChanged = false;
636    DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
637    for (std::map<unsigned long, std::vector<Function *> >::iterator
638           I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
639      std::vector<Function *> &FnVec = I->second;
640      DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
641      LocalChanged |= PairwiseCompareAndMerge(FnVec);
642    }
643    Changed |= LocalChanged;
644  } while (LocalChanged);
645
646  return Changed;
647}
648