MergeFunctions.cpp revision 35b4707edb32008b1a7976dcbf3920b1160fc1c6
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found, the functions are folded. We can only fold two
21// functions when we know that the definition of one of them is not
22// overridable.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * fold vector<T*>::push_back and vector<S*>::push_back.
29//
30// These two functions have different types, but in a way that doesn't matter
31// to us. As long as we never see an S or T itself, using S* and S** is the
32// same as using a T* and T**.
33//
34// * virtual functions.
35//
36// Many functions have their address taken by the virtual function table for
37// the object they belong to. However, as long as it's only used for a lookup
38// and call, this is irrelevant, and we'd like to fold such implementations.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "mergefunc"
43#include "llvm/Transforms/IPO.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/FoldingSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Constants.h"
48#include "llvm/InlineAsm.h"
49#include "llvm/Instructions.h"
50#include "llvm/LLVMContext.h"
51#include "llvm/Module.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/CallSite.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/raw_ostream.h"
58#include <map>
59#include <vector>
60using namespace llvm;
61
62STATISTIC(NumFunctionsMerged, "Number of functions merged");
63
64namespace {
65  struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
66    static char ID; // Pass identification, replacement for typeid
67    MergeFunctions() : ModulePass(&ID) {}
68
69    bool runOnModule(Module &M);
70  };
71}
72
73char MergeFunctions::ID = 0;
74static RegisterPass<MergeFunctions>
75X("mergefunc", "Merge Functions");
76
77ModulePass *llvm::createMergeFunctionsPass() {
78  return new MergeFunctions();
79}
80
81// ===----------------------------------------------------------------------===
82// Comparison of functions
83// ===----------------------------------------------------------------------===
84
85static unsigned long hash(const Function *F) {
86  const FunctionType *FTy = F->getFunctionType();
87
88  FoldingSetNodeID ID;
89  ID.AddInteger(F->size());
90  ID.AddInteger(F->getCallingConv());
91  ID.AddBoolean(F->hasGC());
92  ID.AddBoolean(FTy->isVarArg());
93  ID.AddInteger(FTy->getReturnType()->getTypeID());
94  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
95    ID.AddInteger(FTy->getParamType(i)->getTypeID());
96  return ID.ComputeHash();
97}
98
99/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
100/// walking the chain of cast operands. Otherwise, returns the argument.
101static Value* IgnoreBitcasts(Value *V) {
102  while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
103    V = BC->getOperand(0);
104
105  return V;
106}
107
108/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
109/// type equivalence rules apply.
110static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
111  if (Ty1 == Ty2)
112    return true;
113  if (Ty1->getTypeID() != Ty2->getTypeID())
114    return false;
115
116  switch(Ty1->getTypeID()) {
117  case Type::VoidTyID:
118  case Type::FloatTyID:
119  case Type::DoubleTyID:
120  case Type::X86_FP80TyID:
121  case Type::FP128TyID:
122  case Type::PPC_FP128TyID:
123  case Type::LabelTyID:
124  case Type::MetadataTyID:
125    return true;
126
127  case Type::IntegerTyID:
128  case Type::OpaqueTyID:
129    // Ty1 == Ty2 would have returned true earlier.
130    return false;
131
132  default:
133    llvm_unreachable("Unknown type!");
134    return false;
135
136  case Type::PointerTyID: {
137    const PointerType *PTy1 = cast<PointerType>(Ty1);
138    const PointerType *PTy2 = cast<PointerType>(Ty2);
139    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
140  }
141
142  case Type::StructTyID: {
143    const StructType *STy1 = cast<StructType>(Ty1);
144    const StructType *STy2 = cast<StructType>(Ty2);
145    if (STy1->getNumElements() != STy2->getNumElements())
146      return false;
147
148    if (STy1->isPacked() != STy2->isPacked())
149      return false;
150
151    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
152      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
153        return false;
154    }
155    return true;
156  }
157
158  case Type::FunctionTyID: {
159    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
160    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
161    if (FTy1->getNumParams() != FTy2->getNumParams() ||
162        FTy1->isVarArg() != FTy2->isVarArg())
163      return false;
164
165    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
166      return false;
167
168    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
169      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
170        return false;
171    }
172    return true;
173  }
174
175  case Type::ArrayTyID:
176  case Type::VectorTyID: {
177    const SequentialType *STy1 = cast<SequentialType>(Ty1);
178    const SequentialType *STy2 = cast<SequentialType>(Ty2);
179    return isEquivalentType(STy1->getElementType(), STy2->getElementType());
180  }
181  }
182}
183
184/// isEquivalentOperation - determine whether the two operations are the same
185/// except that pointer-to-A and pointer-to-B are equivalent. This should be
186/// kept in sync with Instruction::isSameOperationAs.
187static bool
188isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
189  if (I1->getOpcode() != I2->getOpcode() ||
190      I1->getNumOperands() != I2->getNumOperands() ||
191      !isEquivalentType(I1->getType(), I2->getType()))
192    return false;
193
194  // We have two instructions of identical opcode and #operands.  Check to see
195  // if all operands are the same type
196  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
197    if (!isEquivalentType(I1->getOperand(i)->getType(),
198                          I2->getOperand(i)->getType()))
199      return false;
200
201  // Check special state that is a part of some instructions.
202  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
203    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
204           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
205  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
206    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
207           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
208  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
209    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
210  if (const CallInst *CI = dyn_cast<CallInst>(I1))
211    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
212           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
213           CI->getAttributes().getRawPointer() ==
214             cast<CallInst>(I2)->getAttributes().getRawPointer();
215  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
216    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
217           CI->getAttributes().getRawPointer() ==
218             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
219  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
220    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
221      return false;
222    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
223      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
224        return false;
225    return true;
226  }
227  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
228    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
229      return false;
230    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
231      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
232        return false;
233    return true;
234  }
235
236  return true;
237}
238
239static bool compare(const Value *V, const Value *U) {
240  assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
241         "Must not compare basic blocks.");
242
243  assert(isEquivalentType(V->getType(), U->getType()) &&
244        "Two of the same operation have operands of different type.");
245
246  // TODO: If the constant is an expression of F, we should accept that it's
247  // equal to the same expression in terms of G.
248  if (isa<Constant>(V))
249    return V == U;
250
251  // The caller has ensured that ValueMap[V] != U. Since Arguments are
252  // pre-loaded into the ValueMap, and Instructions are added as we go, we know
253  // that this can only be a mis-match.
254  if (isa<Instruction>(V) || isa<Argument>(V))
255    return false;
256
257  if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
258    const InlineAsm *IAF = cast<InlineAsm>(V);
259    const InlineAsm *IAG = cast<InlineAsm>(U);
260    return IAF->getAsmString() == IAG->getAsmString() &&
261           IAF->getConstraintString() == IAG->getConstraintString();
262  }
263
264  return false;
265}
266
267static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
268                   DenseMap<const Value *, const Value *> &ValueMap,
269                   DenseMap<const Value *, const Value *> &SpeculationMap) {
270  // Speculatively add it anyways. If it's false, we'll notice a difference
271  // later, and this won't matter.
272  ValueMap[BB1] = BB2;
273
274  BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
275  BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
276
277  do {
278    if (isa<BitCastInst>(FI)) {
279      ++FI;
280      continue;
281    }
282    if (isa<BitCastInst>(GI)) {
283      ++GI;
284      continue;
285    }
286
287    if (!isEquivalentOperation(FI, GI))
288      return false;
289
290    if (isa<GetElementPtrInst>(FI)) {
291      const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
292      const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
293      if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
294        // It's effectively a bitcast.
295        ++FI, ++GI;
296        continue;
297      }
298
299      // TODO: we only really care about the elements before the index
300      if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
301        return false;
302    }
303
304    if (ValueMap[FI] == GI) {
305      ++FI, ++GI;
306      continue;
307    }
308
309    if (ValueMap[FI] != NULL)
310      return false;
311
312    for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
313      Value *OpF = IgnoreBitcasts(FI->getOperand(i));
314      Value *OpG = IgnoreBitcasts(GI->getOperand(i));
315
316      if (ValueMap[OpF] == OpG)
317        continue;
318
319      if (ValueMap[OpF] != NULL)
320        return false;
321
322      if (OpF->getValueID() != OpG->getValueID() ||
323          !isEquivalentType(OpF->getType(), OpG->getType()))
324        return false;
325
326      if (isa<PHINode>(FI)) {
327        if (SpeculationMap[OpF] == NULL)
328          SpeculationMap[OpF] = OpG;
329        else if (SpeculationMap[OpF] != OpG)
330          return false;
331        continue;
332      } else if (isa<BasicBlock>(OpF)) {
333        assert(isa<TerminatorInst>(FI) &&
334               "BasicBlock referenced by non-Terminator non-PHI");
335        // This call changes the ValueMap, hence we can't use
336        // Value *& = ValueMap[...]
337        if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
338                    SpeculationMap))
339          return false;
340      } else {
341        if (!compare(OpF, OpG))
342          return false;
343      }
344
345      ValueMap[OpF] = OpG;
346    }
347
348    ValueMap[FI] = GI;
349    ++FI, ++GI;
350  } while (FI != FE && GI != GE);
351
352  return FI == FE && GI == GE;
353}
354
355static bool equals(const Function *F, const Function *G) {
356  // We need to recheck everything, but check the things that weren't included
357  // in the hash first.
358
359  if (F->getAttributes() != G->getAttributes())
360    return false;
361
362  if (F->hasGC() != G->hasGC())
363    return false;
364
365  if (F->hasGC() && F->getGC() != G->getGC())
366    return false;
367
368  if (F->hasSection() != G->hasSection())
369    return false;
370
371  if (F->hasSection() && F->getSection() != G->getSection())
372    return false;
373
374  if (F->isVarArg() != G->isVarArg())
375    return false;
376
377  // TODO: if it's internal and only used in direct calls, we could handle this
378  // case too.
379  if (F->getCallingConv() != G->getCallingConv())
380    return false;
381
382  if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
383    return false;
384
385  DenseMap<const Value *, const Value *> ValueMap;
386  DenseMap<const Value *, const Value *> SpeculationMap;
387  ValueMap[F] = G;
388
389  assert(F->arg_size() == G->arg_size() &&
390         "Identical functions have a different number of args.");
391
392  for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
393         fe = F->arg_end(); fi != fe; ++fi, ++gi)
394    ValueMap[fi] = gi;
395
396  if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
397              SpeculationMap))
398    return false;
399
400  for (DenseMap<const Value *, const Value *>::iterator
401         I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
402    if (ValueMap[I->first] != I->second)
403      return false;
404  }
405
406  return true;
407}
408
409// ===----------------------------------------------------------------------===
410// Folding of functions
411// ===----------------------------------------------------------------------===
412
413// Cases:
414// * F is external strong, G is external strong:
415//   turn G into a thunk to F    (1)
416// * F is external strong, G is external weak:
417//   turn G into a thunk to F    (1)
418// * F is external weak, G is external weak:
419//   unfoldable
420// * F is external strong, G is internal:
421//   address of G taken:
422//     turn G into a thunk to F  (1)
423//   address of G not taken:
424//     make G an alias to F      (2)
425// * F is internal, G is external weak
426//   address of F is taken:
427//     turn G into a thunk to F  (1)
428//   address of F is not taken:
429//     make G an alias of F      (2)
430// * F is internal, G is internal:
431//   address of F and G are taken:
432//     turn G into a thunk to F  (1)
433//   address of G is not taken:
434//     make G an alias to F      (2)
435//
436// alias requires linkage == (external,local,weak) fallback to creating a thunk
437// external means 'externally visible' linkage != (internal,private)
438// internal means linkage == (internal,private)
439// weak means linkage mayBeOverridable
440// being external implies that the address is taken
441//
442// 1. turn G into a thunk to F
443// 2. make G an alias to F
444
445enum LinkageCategory {
446  ExternalStrong,
447  ExternalWeak,
448  Internal
449};
450
451static LinkageCategory categorize(const Function *F) {
452  switch (F->getLinkage()) {
453  case GlobalValue::InternalLinkage:
454  case GlobalValue::PrivateLinkage:
455  case GlobalValue::LinkerPrivateLinkage:
456    return Internal;
457
458  case GlobalValue::WeakAnyLinkage:
459  case GlobalValue::WeakODRLinkage:
460  case GlobalValue::ExternalWeakLinkage:
461    return ExternalWeak;
462
463  case GlobalValue::ExternalLinkage:
464  case GlobalValue::AvailableExternallyLinkage:
465  case GlobalValue::LinkOnceAnyLinkage:
466  case GlobalValue::LinkOnceODRLinkage:
467  case GlobalValue::AppendingLinkage:
468  case GlobalValue::DLLImportLinkage:
469  case GlobalValue::DLLExportLinkage:
470  case GlobalValue::GhostLinkage:
471  case GlobalValue::CommonLinkage:
472    return ExternalStrong;
473  }
474
475  llvm_unreachable("Unknown LinkageType.");
476  return ExternalWeak;
477}
478
479static void ThunkGToF(Function *F, Function *G) {
480  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
481                                    G->getParent());
482  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
483
484  std::vector<Value *> Args;
485  unsigned i = 0;
486  const FunctionType *FFTy = F->getFunctionType();
487  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
488       AI != AE; ++AI) {
489    if (FFTy->getParamType(i) == AI->getType())
490      Args.push_back(AI);
491    else {
492      Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
493      Args.push_back(BCI);
494    }
495    ++i;
496  }
497
498  CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
499  CI->setTailCall();
500  CI->setCallingConv(F->getCallingConv());
501  if (NewG->getReturnType() == Type::getVoidTy(F->getContext())) {
502    ReturnInst::Create(F->getContext(), BB);
503  } else if (CI->getType() != NewG->getReturnType()) {
504    Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
505    ReturnInst::Create(F->getContext(), BCI, BB);
506  } else {
507    ReturnInst::Create(F->getContext(), CI, BB);
508  }
509
510  NewG->copyAttributesFrom(G);
511  NewG->takeName(G);
512  G->replaceAllUsesWith(NewG);
513  G->eraseFromParent();
514
515  // TODO: look at direct callers to G and make them all direct callers to F.
516}
517
518static void AliasGToF(Function *F, Function *G) {
519  if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
520    return ThunkGToF(F, G);
521
522  GlobalAlias *GA = new GlobalAlias(
523    G->getType(), G->getLinkage(), "",
524    ConstantExpr::getBitCast(F, G->getType()), G->getParent());
525  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
526  GA->takeName(G);
527  GA->setVisibility(G->getVisibility());
528  G->replaceAllUsesWith(GA);
529  G->eraseFromParent();
530}
531
532static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
533  Function *F = FnVec[i];
534  Function *G = FnVec[j];
535
536  LinkageCategory catF = categorize(F);
537  LinkageCategory catG = categorize(G);
538
539  if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
540    std::swap(FnVec[i], FnVec[j]);
541    std::swap(F, G);
542    std::swap(catF, catG);
543  }
544
545  switch (catF) {
546    case ExternalStrong:
547      switch (catG) {
548        case ExternalStrong:
549        case ExternalWeak:
550          ThunkGToF(F, G);
551          break;
552        case Internal:
553          if (G->hasAddressTaken())
554            ThunkGToF(F, G);
555          else
556            AliasGToF(F, G);
557          break;
558      }
559      break;
560
561    case ExternalWeak: {
562      assert(catG == ExternalWeak);
563
564      // Make them both thunks to the same internal function.
565      F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
566      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
567                                     F->getParent());
568      H->copyAttributesFrom(F);
569      H->takeName(F);
570      F->replaceAllUsesWith(H);
571
572      ThunkGToF(F, G);
573      ThunkGToF(F, H);
574
575      F->setLinkage(GlobalValue::InternalLinkage);
576    } break;
577
578    case Internal:
579      switch (catG) {
580        case ExternalStrong:
581          llvm_unreachable(0);
582          // fall-through
583        case ExternalWeak:
584	  if (F->hasAddressTaken())
585            ThunkGToF(F, G);
586          else
587            AliasGToF(F, G);
588	  break;
589        case Internal: {
590          bool addrTakenF = F->hasAddressTaken();
591          bool addrTakenG = G->hasAddressTaken();
592          if (!addrTakenF && addrTakenG) {
593            std::swap(FnVec[i], FnVec[j]);
594            std::swap(F, G);
595	    std::swap(addrTakenF, addrTakenG);
596	  }
597
598          if (addrTakenF && addrTakenG) {
599            ThunkGToF(F, G);
600          } else {
601            assert(!addrTakenG);
602            AliasGToF(F, G);
603          }
604	} break;
605      }
606      break;
607  }
608
609  ++NumFunctionsMerged;
610  return true;
611}
612
613// ===----------------------------------------------------------------------===
614// Pass definition
615// ===----------------------------------------------------------------------===
616
617bool MergeFunctions::runOnModule(Module &M) {
618  bool Changed = false;
619
620  std::map<unsigned long, std::vector<Function *> > FnMap;
621
622  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
623    if (F->isDeclaration() || F->isIntrinsic())
624      continue;
625
626    FnMap[hash(F)].push_back(F);
627  }
628
629  // TODO: instead of running in a loop, we could also fold functions in
630  // callgraph order. Constructing the CFG probably isn't cheaper than just
631  // running in a loop, unless it happened to already be available.
632
633  bool LocalChanged;
634  do {
635    LocalChanged = false;
636    DOUT << "size: " << FnMap.size() << "\n";
637    for (std::map<unsigned long, std::vector<Function *> >::iterator
638         I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
639      std::vector<Function *> &FnVec = I->second;
640      DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n";
641
642      for (int i = 0, e = FnVec.size(); i != e; ++i) {
643        for (int j = i + 1; j != e; ++j) {
644          bool isEqual = equals(FnVec[i], FnVec[j]);
645
646          DEBUG(errs() << "  " << FnVec[i]->getName()
647                << (isEqual ? " == " : " != ")
648                << FnVec[j]->getName() << "\n");
649
650          if (isEqual) {
651            if (fold(FnVec, i, j)) {
652              LocalChanged = true;
653              FnVec.erase(FnVec.begin() + j);
654              --j, --e;
655            }
656          }
657        }
658      }
659
660    }
661    Changed |= LocalChanged;
662  } while (LocalChanged);
663
664  return Changed;
665}
666