MergeFunctions.cpp revision 90c579de5a383cee278acc3f7e7b9d0a656e6a35
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such implementations.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcast.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to peer through bitcasts without imposing bad
43// performance properties.
44//
45//===----------------------------------------------------------------------===//
46
47#define DEBUG_TYPE "mergefunc"
48#include "llvm/Transforms/IPO.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/FoldingSet.h"
51#include "llvm/ADT/SmallSet.h"
52#include "llvm/ADT/Statistic.h"
53#include "llvm/Constants.h"
54#include "llvm/InlineAsm.h"
55#include "llvm/Instructions.h"
56#include "llvm/LLVMContext.h"
57#include "llvm/Module.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CallSite.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Target/TargetData.h"
64#include <map>
65#include <vector>
66using namespace llvm;
67
68STATISTIC(NumFunctionsMerged, "Number of functions merged");
69
70namespace {
71  /// MergeFunctions finds functions which will generate identical machine code,
72  /// by considering all pointer types to be equivalent. Once identified,
73  /// MergeFunctions will fold them by replacing a call to one to a call to a
74  /// bitcast of the other.
75  ///
76  struct MergeFunctions : public ModulePass {
77    static char ID; // Pass identification, replacement for typeid
78    MergeFunctions() : ModulePass(ID) {}
79
80    bool runOnModule(Module &M);
81  };
82}
83
84char MergeFunctions::ID = 0;
85INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
86
87ModulePass *llvm::createMergeFunctionsPass() {
88  return new MergeFunctions();
89}
90
91// ===----------------------------------------------------------------------===
92// Comparison of functions
93// ===----------------------------------------------------------------------===
94namespace {
95class FunctionComparator {
96public:
97  FunctionComparator(TargetData *TD, Function *F1, Function *F2)
98    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
99
100  // Compare - test whether the two functions have equivalent behaviour.
101  bool Compare();
102
103private:
104  // Compare - test whether two basic blocks have equivalent behaviour.
105  bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
106
107  // Enumerate - Assign or look up previously assigned numbers for the two
108  // values, and return whether the numbers are equal. Numbers are assigned in
109  // the order visited.
110  bool Enumerate(const Value *V1, const Value *V2);
111
112  // isEquivalentOperation - Compare two Instructions for equivalence, similar
113  // to Instruction::isSameOperationAs but with modifications to the type
114  // comparison.
115  bool isEquivalentOperation(const Instruction *I1,
116                             const Instruction *I2) const;
117
118  // isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
119  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
120
121  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
122		       const GetElementPtrInst *GEP2) {
123    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
124  }
125
126  // isEquivalentType - Compare two Types, treating all pointer types as equal.
127  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
128
129  // The two functions undergoing comparison.
130  Function *F1, *F2;
131
132  TargetData *TD;
133
134  typedef DenseMap<const Value *, unsigned long> IDMap;
135  IDMap Map1, Map2;
136  unsigned long IDMap1Count, IDMap2Count;
137};
138}
139
140/// Compute a number which is guaranteed to be equal for two equivalent
141/// functions, but is very likely to be different for different functions. This
142/// needs to be computed as efficiently as possible.
143static unsigned long ProfileFunction(const Function *F) {
144  const FunctionType *FTy = F->getFunctionType();
145
146  FoldingSetNodeID ID;
147  ID.AddInteger(F->size());
148  ID.AddInteger(F->getCallingConv());
149  ID.AddBoolean(F->hasGC());
150  ID.AddBoolean(FTy->isVarArg());
151  ID.AddInteger(FTy->getReturnType()->getTypeID());
152  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
153    ID.AddInteger(FTy->getParamType(i)->getTypeID());
154  return ID.ComputeHash();
155}
156
157/// isEquivalentType - any two pointers in the same address space are
158/// equivalent. Otherwise, standard type equivalence rules apply.
159bool FunctionComparator::isEquivalentType(const Type *Ty1,
160                                          const Type *Ty2) const {
161  if (Ty1 == Ty2)
162    return true;
163  if (Ty1->getTypeID() != Ty2->getTypeID())
164    return false;
165
166  switch(Ty1->getTypeID()) {
167  default:
168    llvm_unreachable("Unknown type!");
169    // Fall through in Release mode.
170  case Type::IntegerTyID:
171  case Type::OpaqueTyID:
172    // Ty1 == Ty2 would have returned true earlier.
173    return false;
174
175  case Type::VoidTyID:
176  case Type::FloatTyID:
177  case Type::DoubleTyID:
178  case Type::X86_FP80TyID:
179  case Type::FP128TyID:
180  case Type::PPC_FP128TyID:
181  case Type::LabelTyID:
182  case Type::MetadataTyID:
183    return true;
184
185  case Type::PointerTyID: {
186    const PointerType *PTy1 = cast<PointerType>(Ty1);
187    const PointerType *PTy2 = cast<PointerType>(Ty2);
188    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
189  }
190
191  case Type::StructTyID: {
192    const StructType *STy1 = cast<StructType>(Ty1);
193    const StructType *STy2 = cast<StructType>(Ty2);
194    if (STy1->getNumElements() != STy2->getNumElements())
195      return false;
196
197    if (STy1->isPacked() != STy2->isPacked())
198      return false;
199
200    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
201      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
202        return false;
203    }
204    return true;
205  }
206
207  case Type::UnionTyID: {
208    const UnionType *UTy1 = cast<UnionType>(Ty1);
209    const UnionType *UTy2 = cast<UnionType>(Ty2);
210
211    // TODO: we could be fancy with union(A, union(A, B)) === union(A, B), etc.
212    if (UTy1->getNumElements() != UTy2->getNumElements())
213      return false;
214
215    for (unsigned i = 0, e = UTy1->getNumElements(); i != e; ++i) {
216      if (!isEquivalentType(UTy1->getElementType(i), UTy2->getElementType(i)))
217        return false;
218    }
219    return true;
220  }
221
222  case Type::FunctionTyID: {
223    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
224    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
225    if (FTy1->getNumParams() != FTy2->getNumParams() ||
226        FTy1->isVarArg() != FTy2->isVarArg())
227      return false;
228
229    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
230      return false;
231
232    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
233      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
234        return false;
235    }
236    return true;
237  }
238
239  case Type::ArrayTyID: {
240    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
241    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
242    return ATy1->getNumElements() == ATy2->getNumElements() &&
243           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
244  }
245
246  case Type::VectorTyID: {
247    const VectorType *VTy1 = cast<VectorType>(Ty1);
248    const VectorType *VTy2 = cast<VectorType>(Ty2);
249    return VTy1->getNumElements() == VTy2->getNumElements() &&
250           isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
251  }
252  }
253}
254
255/// isEquivalentOperation - determine whether the two operations are the same
256/// except that pointer-to-A and pointer-to-B are equivalent. This should be
257/// kept in sync with Instruction::isSameOperationAs.
258bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
259                                               const Instruction *I2) const {
260  if (I1->getOpcode() != I2->getOpcode() ||
261      I1->getNumOperands() != I2->getNumOperands() ||
262      !isEquivalentType(I1->getType(), I2->getType()) ||
263      !I1->hasSameSubclassOptionalData(I2))
264    return false;
265
266  // We have two instructions of identical opcode and #operands.  Check to see
267  // if all operands are the same type
268  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
269    if (!isEquivalentType(I1->getOperand(i)->getType(),
270                          I2->getOperand(i)->getType()))
271      return false;
272
273  // Check special state that is a part of some instructions.
274  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
275    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
276           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
277  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
278    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
279           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
280  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
281    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
282  if (const CallInst *CI = dyn_cast<CallInst>(I1))
283    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
284           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
285           CI->getAttributes().getRawPointer() ==
286             cast<CallInst>(I2)->getAttributes().getRawPointer();
287  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
288    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
289           CI->getAttributes().getRawPointer() ==
290             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
291  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
292    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
293      return false;
294    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
295      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
296        return false;
297    return true;
298  }
299  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
300    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
301      return false;
302    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
303      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
304        return false;
305    return true;
306  }
307
308  return true;
309}
310
311/// isEquivalentGEP - determine whether two GEP operations perform the same
312/// underlying arithmetic.
313bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
314                                         const GEPOperator *GEP2) {
315  // When we have target data, we can reduce the GEP down to the value in bytes
316  // added to the address.
317  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
318    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
319    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
320    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
321                                            Indices1.data(), Indices1.size());
322    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
323                                            Indices2.data(), Indices2.size());
324    return Offset1 == Offset2;
325  }
326
327  if (GEP1->getPointerOperand()->getType() !=
328      GEP2->getPointerOperand()->getType())
329    return false;
330
331  if (GEP1->getNumOperands() != GEP2->getNumOperands())
332    return false;
333
334  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
335    if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
336      return false;
337  }
338
339  return true;
340}
341
342/// Enumerate - Compare two values used by the two functions under pair-wise
343/// comparison. If this is the first time the values are seen, they're added to
344/// the mapping so that we will detect mismatches on next use.
345bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
346  // Check for function @f1 referring to itself and function @f2 referring to
347  // itself, or referring to each other, or both referring to either of them.
348  // They're all equivalent if the two functions are otherwise equivalent.
349  if (V1 == F1 && V2 == F2)
350    return true;
351  if (V1 == F2 && V2 == F1)
352    return true;
353
354  // TODO: constant expressions with GEP or references to F1 or F2.
355  if (isa<Constant>(V1))
356    return V1 == V2;
357
358  if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
359    const InlineAsm *IA1 = cast<InlineAsm>(V1);
360    const InlineAsm *IA2 = cast<InlineAsm>(V2);
361    return IA1->getAsmString() == IA2->getAsmString() &&
362           IA1->getConstraintString() == IA2->getConstraintString();
363  }
364
365  unsigned long &ID1 = Map1[V1];
366  if (!ID1)
367    ID1 = ++IDMap1Count;
368
369  unsigned long &ID2 = Map2[V2];
370  if (!ID2)
371    ID2 = ++IDMap2Count;
372
373  return ID1 == ID2;
374}
375
376// Compare - test whether two basic blocks have equivalent behaviour.
377bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
378  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
379  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
380
381  do {
382    if (!Enumerate(F1I, F2I))
383      return false;
384
385    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
386      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
387      if (!GEP2)
388        return false;
389
390      if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
391        return false;
392
393      if (!isEquivalentGEP(GEP1, GEP2))
394        return false;
395    } else {
396      if (!isEquivalentOperation(F1I, F2I))
397        return false;
398
399      assert(F1I->getNumOperands() == F2I->getNumOperands());
400      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
401        Value *OpF1 = F1I->getOperand(i);
402        Value *OpF2 = F2I->getOperand(i);
403
404        if (!Enumerate(OpF1, OpF2))
405          return false;
406
407        if (OpF1->getValueID() != OpF2->getValueID() ||
408            !isEquivalentType(OpF1->getType(), OpF2->getType()))
409          return false;
410      }
411    }
412
413    ++F1I, ++F2I;
414  } while (F1I != F1E && F2I != F2E);
415
416  return F1I == F1E && F2I == F2E;
417}
418
419bool FunctionComparator::Compare() {
420  // We need to recheck everything, but check the things that weren't included
421  // in the hash first.
422
423  if (F1->getAttributes() != F2->getAttributes())
424    return false;
425
426  if (F1->hasGC() != F2->hasGC())
427    return false;
428
429  if (F1->hasGC() && F1->getGC() != F2->getGC())
430    return false;
431
432  if (F1->hasSection() != F2->hasSection())
433    return false;
434
435  if (F1->hasSection() && F1->getSection() != F2->getSection())
436    return false;
437
438  if (F1->isVarArg() != F2->isVarArg())
439    return false;
440
441  // TODO: if it's internal and only used in direct calls, we could handle this
442  // case too.
443  if (F1->getCallingConv() != F2->getCallingConv())
444    return false;
445
446  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
447    return false;
448
449  assert(F1->arg_size() == F2->arg_size() &&
450         "Identical functions have a different number of args.");
451
452  // Visit the arguments so that they get enumerated in the order they're
453  // passed in.
454  for (Function::const_arg_iterator f1i = F1->arg_begin(),
455         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
456    if (!Enumerate(f1i, f2i))
457      llvm_unreachable("Arguments repeat");
458  }
459
460  // We need to do an ordered walk since the actual ordering of the blocks in
461  // the linked list is immaterial. Our walk starts at the entry block for both
462  // functions, then takes each block from each terminator in order. As an
463  // artifact, this also means that unreachable blocks are ignored.
464  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
465  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
466
467  F1BBs.push_back(&F1->getEntryBlock());
468  F2BBs.push_back(&F2->getEntryBlock());
469
470  VisitedBBs.insert(F1BBs[0]);
471  while (!F1BBs.empty()) {
472    const BasicBlock *F1BB = F1BBs.pop_back_val();
473    const BasicBlock *F2BB = F2BBs.pop_back_val();
474
475    if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
476      return false;
477
478    const TerminatorInst *F1TI = F1BB->getTerminator();
479    const TerminatorInst *F2TI = F2BB->getTerminator();
480
481    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
482    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
483      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
484        continue;
485
486      F1BBs.push_back(F1TI->getSuccessor(i));
487      F2BBs.push_back(F2TI->getSuccessor(i));
488    }
489  }
490  return true;
491}
492
493// ===----------------------------------------------------------------------===
494// Folding of functions
495// ===----------------------------------------------------------------------===
496
497// Cases:
498// * F is external strong, G is external strong:
499//   turn G into a thunk to F
500// * F is external strong, G is external weak:
501//   turn G into a thunk to F
502// * F is external weak, G is external weak:
503//   unfoldable
504// * F is external strong, G is internal:
505//     turn G into a thunk to F
506// * F is internal, G is external weak
507//     turn G into a thunk to F
508// * F is internal, G is internal:
509//     turn G into a thunk to F
510//
511// external means 'externally visible' linkage != (internal,private)
512// internal means linkage == (internal,private)
513// weak means linkage mayBeOverridable
514
515/// ThunkGToF - Replace G with a simple tail call to bitcast(F). Also replace
516/// direct uses of G with bitcast(F).
517static void ThunkGToF(Function *F, Function *G) {
518  if (!G->mayBeOverridden()) {
519    // Redirect direct callers of G to F.
520    Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
521    for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
522         UI != UE;) {
523      Value::use_iterator TheIter = UI;
524      ++UI;
525      CallSite CS(*TheIter);
526      if (CS && CS.isCallee(TheIter))
527        TheIter.getUse().set(BitcastF);
528    }
529  }
530
531  // If G was internal then we may have replaced all uses if G with F. If so,
532  // stop here and delete G. There's no need for a thunk.
533  if (G->hasLocalLinkage() && G->use_empty()) {
534    G->eraseFromParent();
535    return;
536  }
537
538  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
539                                    G->getParent());
540  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
541
542  SmallVector<Value *, 16> Args;
543  unsigned i = 0;
544  const FunctionType *FFTy = F->getFunctionType();
545  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
546       AI != AE; ++AI) {
547    if (FFTy->getParamType(i) == AI->getType()) {
548      Args.push_back(AI);
549    } else {
550      Args.push_back(new BitCastInst(AI, FFTy->getParamType(i), "", BB));
551    }
552    ++i;
553  }
554
555  CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
556  CI->setTailCall();
557  CI->setCallingConv(F->getCallingConv());
558  if (NewG->getReturnType()->isVoidTy()) {
559    ReturnInst::Create(F->getContext(), BB);
560  } else if (CI->getType() != NewG->getReturnType()) {
561    Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
562    ReturnInst::Create(F->getContext(), BCI, BB);
563  } else {
564    ReturnInst::Create(F->getContext(), CI, BB);
565  }
566
567  NewG->copyAttributesFrom(G);
568  NewG->takeName(G);
569  G->replaceAllUsesWith(NewG);
570  G->eraseFromParent();
571}
572
573static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
574  Function *F = FnVec[i];
575  Function *G = FnVec[j];
576
577  if (F->isWeakForLinker() && !G->isWeakForLinker()) {
578    std::swap(FnVec[i], FnVec[j]);
579    std::swap(F, G);
580  }
581
582  if (F->isWeakForLinker()) {
583    assert(G->isWeakForLinker());
584
585    // Make them both thunks to the same internal function.
586    Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
587                                   F->getParent());
588    H->copyAttributesFrom(F);
589    H->takeName(F);
590    F->replaceAllUsesWith(H);
591
592    ThunkGToF(F, G);
593    ThunkGToF(F, H);
594
595    F->setAlignment(std::max(G->getAlignment(), H->getAlignment()));
596    F->setLinkage(GlobalValue::InternalLinkage);
597  } else {
598    ThunkGToF(F, G);
599  }
600
601  ++NumFunctionsMerged;
602  return true;
603}
604
605// ===----------------------------------------------------------------------===
606// Pass definition
607// ===----------------------------------------------------------------------===
608
609bool MergeFunctions::runOnModule(Module &M) {
610  bool Changed = false;
611
612  std::map<unsigned long, std::vector<Function *> > FnMap;
613
614  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
615    if (F->isDeclaration() || F->hasAvailableExternallyLinkage())
616      continue;
617
618    FnMap[ProfileFunction(F)].push_back(F);
619  }
620
621  TargetData *TD = getAnalysisIfAvailable<TargetData>();
622
623  bool LocalChanged;
624  do {
625    LocalChanged = false;
626    DEBUG(dbgs() << "size: " << FnMap.size() << "\n");
627    for (std::map<unsigned long, std::vector<Function *> >::iterator
628           I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
629      std::vector<Function *> &FnVec = I->second;
630      DEBUG(dbgs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
631
632      for (int i = 0, e = FnVec.size(); i != e; ++i) {
633        for (int j = i + 1; j != e; ++j) {
634          bool isEqual = FunctionComparator(TD, FnVec[i], FnVec[j]).Compare();
635
636          DEBUG(dbgs() << "  " << FnVec[i]->getName()
637                << (isEqual ? " == " : " != ")
638                << FnVec[j]->getName() << "\n");
639
640          if (isEqual) {
641            if (fold(FnVec, i, j)) {
642              LocalChanged = true;
643              FnVec.erase(FnVec.begin() + j);
644              --j, --e;
645            }
646          }
647        }
648      }
649
650    }
651    Changed |= LocalChanged;
652  } while (LocalChanged);
653
654  return Changed;
655}
656