MergeFunctions.cpp revision a142c9302b690cda799737d78ec29414e3b47fc8
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found, the functions are folded. We can only fold two
21// functions when we know that the definition of one of them is not
22// overridable.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * fold vector<T*>::push_back and vector<S*>::push_back.
29//
30// These two functions have different types, but in a way that doesn't matter
31// to us. As long as we never see an S or T itself, using S* and S** is the
32// same as using a T* and T**.
33//
34// * virtual functions.
35//
36// Many functions have their address taken by the virtual function table for
37// the object they belong to. However, as long as it's only used for a lookup
38// and call, this is irrelevant, and we'd like to fold such implementations.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "mergefunc"
43#include "llvm/Transforms/IPO.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/FoldingSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Constants.h"
48#include "llvm/InlineAsm.h"
49#include "llvm/Instructions.h"
50#include "llvm/Module.h"
51#include "llvm/Pass.h"
52#include "llvm/Support/CallSite.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include <map>
56#include <vector>
57using namespace llvm;
58
59STATISTIC(NumFunctionsMerged, "Number of functions merged");
60
61namespace {
62  struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
63    static char ID; // Pass identification, replacement for typeid
64    MergeFunctions() : ModulePass((intptr_t)&ID) {}
65
66    bool runOnModule(Module &M);
67  };
68}
69
70char MergeFunctions::ID = 0;
71static RegisterPass<MergeFunctions>
72X("mergefunc", "Merge Functions");
73
74ModulePass *llvm::createMergeFunctionsPass() {
75  return new MergeFunctions();
76}
77
78// ===----------------------------------------------------------------------===
79// Comparison of functions
80// ===----------------------------------------------------------------------===
81
82static unsigned long hash(const Function *F) {
83  const FunctionType *FTy = F->getFunctionType();
84
85  FoldingSetNodeID ID;
86  ID.AddInteger(F->size());
87  ID.AddInteger(F->getCallingConv());
88  ID.AddBoolean(F->hasGC());
89  ID.AddBoolean(FTy->isVarArg());
90  ID.AddInteger(FTy->getReturnType()->getTypeID());
91  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
92    ID.AddInteger(FTy->getParamType(i)->getTypeID());
93  return ID.ComputeHash();
94}
95
96/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
97/// walking the chain of cast operands. Otherwise, returns the argument.
98static Value* IgnoreBitcasts(Value *V) {
99  while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
100    V = BC->getOperand(0);
101
102  return V;
103}
104
105/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
106/// type equivalence rules apply.
107static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
108  if (Ty1 == Ty2)
109    return true;
110  if (Ty1->getTypeID() != Ty2->getTypeID())
111    return false;
112
113  switch(Ty1->getTypeID()) {
114  case Type::VoidTyID:
115  case Type::FloatTyID:
116  case Type::DoubleTyID:
117  case Type::X86_FP80TyID:
118  case Type::FP128TyID:
119  case Type::PPC_FP128TyID:
120  case Type::LabelTyID:
121  case Type::MetadataTyID:
122    return true;
123
124  case Type::IntegerTyID:
125  case Type::OpaqueTyID:
126    // Ty1 == Ty2 would have returned true earlier.
127    return false;
128
129  default:
130    assert(0 && "Unknown type!");
131    return false;
132
133  case Type::PointerTyID: {
134    const PointerType *PTy1 = cast<PointerType>(Ty1);
135    const PointerType *PTy2 = cast<PointerType>(Ty2);
136    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
137  }
138
139  case Type::StructTyID: {
140    const StructType *STy1 = cast<StructType>(Ty1);
141    const StructType *STy2 = cast<StructType>(Ty2);
142    if (STy1->getNumElements() != STy2->getNumElements())
143      return false;
144
145    if (STy1->isPacked() != STy2->isPacked())
146      return false;
147
148    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
149      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
150        return false;
151    }
152    return true;
153  }
154
155  case Type::FunctionTyID: {
156    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
157    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
158    if (FTy1->getNumParams() != FTy2->getNumParams() ||
159        FTy1->isVarArg() != FTy2->isVarArg())
160      return false;
161
162    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
163      return false;
164
165    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
166      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
167        return false;
168    }
169    return true;
170  }
171
172  case Type::ArrayTyID:
173  case Type::VectorTyID: {
174    const SequentialType *STy1 = cast<SequentialType>(Ty1);
175    const SequentialType *STy2 = cast<SequentialType>(Ty2);
176    return isEquivalentType(STy1->getElementType(), STy2->getElementType());
177  }
178  }
179}
180
181/// isEquivalentOperation - determine whether the two operations are the same
182/// except that pointer-to-A and pointer-to-B are equivalent. This should be
183/// kept in sync with Instruction::isSameOperationAs.
184static bool
185isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
186  if (I1->getOpcode() != I2->getOpcode() ||
187      I1->getNumOperands() != I2->getNumOperands() ||
188      !isEquivalentType(I1->getType(), I2->getType()))
189    return false;
190
191  // We have two instructions of identical opcode and #operands.  Check to see
192  // if all operands are the same type
193  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
194    if (!isEquivalentType(I1->getOperand(i)->getType(),
195                          I2->getOperand(i)->getType()))
196      return false;
197
198  // Check special state that is a part of some instructions.
199  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
200    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
201           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
202  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
203    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
204           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
205  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
206    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
207  if (const CallInst *CI = dyn_cast<CallInst>(I1))
208    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
209           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
210           CI->getAttributes().getRawPointer() ==
211             cast<CallInst>(I2)->getAttributes().getRawPointer();
212  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
213    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
214           CI->getAttributes().getRawPointer() ==
215             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
216  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
217    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
218      return false;
219    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
220      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
221        return false;
222    return true;
223  }
224  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
225    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
226      return false;
227    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
228      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
229        return false;
230    return true;
231  }
232
233  return true;
234}
235
236static bool compare(const Value *V, const Value *U) {
237  assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
238         "Must not compare basic blocks.");
239
240  assert(isEquivalentType(V->getType(), U->getType()) &&
241        "Two of the same operation have operands of different type.");
242
243  // TODO: If the constant is an expression of F, we should accept that it's
244  // equal to the same expression in terms of G.
245  if (isa<Constant>(V))
246    return V == U;
247
248  // The caller has ensured that ValueMap[V] != U. Since Arguments are
249  // pre-loaded into the ValueMap, and Instructions are added as we go, we know
250  // that this can only be a mis-match.
251  if (isa<Instruction>(V) || isa<Argument>(V))
252    return false;
253
254  if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
255    const InlineAsm *IAF = cast<InlineAsm>(V);
256    const InlineAsm *IAG = cast<InlineAsm>(U);
257    return IAF->getAsmString() == IAG->getAsmString() &&
258           IAF->getConstraintString() == IAG->getConstraintString();
259  }
260
261  return false;
262}
263
264static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
265                   DenseMap<const Value *, const Value *> &ValueMap,
266                   DenseMap<const Value *, const Value *> &SpeculationMap) {
267  // Speculatively add it anyways. If it's false, we'll notice a difference
268  // later, and this won't matter.
269  ValueMap[BB1] = BB2;
270
271  BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
272  BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
273
274  do {
275    if (isa<BitCastInst>(FI)) {
276      ++FI;
277      continue;
278    }
279    if (isa<BitCastInst>(GI)) {
280      ++GI;
281      continue;
282    }
283
284    if (!isEquivalentOperation(FI, GI))
285      return false;
286
287    if (isa<GetElementPtrInst>(FI)) {
288      const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
289      const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
290      if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
291        // It's effectively a bitcast.
292        ++FI, ++GI;
293        continue;
294      }
295
296      // TODO: we only really care about the elements before the index
297      if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
298        return false;
299    }
300
301    if (ValueMap[FI] == GI) {
302      ++FI, ++GI;
303      continue;
304    }
305
306    if (ValueMap[FI] != NULL)
307      return false;
308
309    for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
310      Value *OpF = IgnoreBitcasts(FI->getOperand(i));
311      Value *OpG = IgnoreBitcasts(GI->getOperand(i));
312
313      if (ValueMap[OpF] == OpG)
314        continue;
315
316      if (ValueMap[OpF] != NULL)
317        return false;
318
319      if (OpF->getValueID() != OpG->getValueID() ||
320          !isEquivalentType(OpF->getType(), OpG->getType()))
321        return false;
322
323      if (isa<PHINode>(FI)) {
324        if (SpeculationMap[OpF] == NULL)
325          SpeculationMap[OpF] = OpG;
326        else if (SpeculationMap[OpF] != OpG)
327          return false;
328        continue;
329      } else if (isa<BasicBlock>(OpF)) {
330        assert(isa<TerminatorInst>(FI) &&
331               "BasicBlock referenced by non-Terminator non-PHI");
332        // This call changes the ValueMap, hence we can't use
333        // Value *& = ValueMap[...]
334        if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
335                    SpeculationMap))
336          return false;
337      } else {
338        if (!compare(OpF, OpG))
339          return false;
340      }
341
342      ValueMap[OpF] = OpG;
343    }
344
345    ValueMap[FI] = GI;
346    ++FI, ++GI;
347  } while (FI != FE && GI != GE);
348
349  return FI == FE && GI == GE;
350}
351
352static bool equals(const Function *F, const Function *G) {
353  // We need to recheck everything, but check the things that weren't included
354  // in the hash first.
355
356  if (F->getAttributes() != G->getAttributes())
357    return false;
358
359  if (F->hasGC() != G->hasGC())
360    return false;
361
362  if (F->hasGC() && F->getGC() != G->getGC())
363    return false;
364
365  if (F->hasSection() != G->hasSection())
366    return false;
367
368  if (F->hasSection() && F->getSection() != G->getSection())
369    return false;
370
371  if (F->isVarArg() != G->isVarArg())
372    return false;
373
374  // TODO: if it's internal and only used in direct calls, we could handle this
375  // case too.
376  if (F->getCallingConv() != G->getCallingConv())
377    return false;
378
379  if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
380    return false;
381
382  DenseMap<const Value *, const Value *> ValueMap;
383  DenseMap<const Value *, const Value *> SpeculationMap;
384  ValueMap[F] = G;
385
386  assert(F->arg_size() == G->arg_size() &&
387         "Identical functions have a different number of args.");
388
389  for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
390         fe = F->arg_end(); fi != fe; ++fi, ++gi)
391    ValueMap[fi] = gi;
392
393  if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
394              SpeculationMap))
395    return false;
396
397  for (DenseMap<const Value *, const Value *>::iterator
398         I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
399    if (ValueMap[I->first] != I->second)
400      return false;
401  }
402
403  return true;
404}
405
406// ===----------------------------------------------------------------------===
407// Folding of functions
408// ===----------------------------------------------------------------------===
409
410// Cases:
411// * F is external strong, G is external strong:
412//   turn G into a thunk to F    (1)
413// * F is external strong, G is external weak:
414//   turn G into a thunk to F    (1)
415// * F is external weak, G is external weak:
416//   unfoldable
417// * F is external strong, G is internal:
418//   address of G taken:
419//     turn G into a thunk to F  (1)
420//   address of G not taken:
421//     make G an alias to F      (2)
422// * F is internal, G is external weak
423//   address of F is taken:
424//     turn G into a thunk to F  (1)
425//   address of F is not taken:
426//     make G an alias of F      (2)
427// * F is internal, G is internal:
428//   address of F and G are taken:
429//     turn G into a thunk to F  (1)
430//   address of G is not taken:
431//     make G an alias to F      (2)
432//
433// alias requires linkage == (external,local,weak) fallback to creating a thunk
434// external means 'externally visible' linkage != (internal,private)
435// internal means linkage == (internal,private)
436// weak means linkage mayBeOverridable
437// being external implies that the address is taken
438//
439// 1. turn G into a thunk to F
440// 2. make G an alias to F
441
442enum LinkageCategory {
443  ExternalStrong,
444  ExternalWeak,
445  Internal
446};
447
448static LinkageCategory categorize(const Function *F) {
449  switch (F->getLinkage()) {
450  case GlobalValue::InternalLinkage:
451  case GlobalValue::PrivateLinkage:
452    return Internal;
453
454  case GlobalValue::WeakAnyLinkage:
455  case GlobalValue::WeakODRLinkage:
456  case GlobalValue::ExternalWeakLinkage:
457    return ExternalWeak;
458
459  case GlobalValue::ExternalLinkage:
460  case GlobalValue::AvailableExternallyLinkage:
461  case GlobalValue::LinkOnceAnyLinkage:
462  case GlobalValue::LinkOnceODRLinkage:
463  case GlobalValue::AppendingLinkage:
464  case GlobalValue::DLLImportLinkage:
465  case GlobalValue::DLLExportLinkage:
466  case GlobalValue::GhostLinkage:
467  case GlobalValue::CommonLinkage:
468    return ExternalStrong;
469  }
470
471  assert(0 && "Unknown LinkageType.");
472  return ExternalWeak;
473}
474
475static void ThunkGToF(Function *F, Function *G) {
476  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
477                                    G->getParent());
478  BasicBlock *BB = BasicBlock::Create("", NewG);
479
480  std::vector<Value *> Args;
481  unsigned i = 0;
482  const FunctionType *FFTy = F->getFunctionType();
483  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
484       AI != AE; ++AI) {
485    if (FFTy->getParamType(i) == AI->getType())
486      Args.push_back(AI);
487    else {
488      Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
489      Args.push_back(BCI);
490    }
491    ++i;
492  }
493
494  CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
495  CI->setTailCall();
496  CI->setCallingConv(F->getCallingConv());
497  if (NewG->getReturnType() == Type::VoidTy) {
498    ReturnInst::Create(BB);
499  } else if (CI->getType() != NewG->getReturnType()) {
500    Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
501    ReturnInst::Create(BCI, BB);
502  } else {
503    ReturnInst::Create(CI, BB);
504  }
505
506  NewG->copyAttributesFrom(G);
507  NewG->takeName(G);
508  G->replaceAllUsesWith(NewG);
509  G->eraseFromParent();
510
511  // TODO: look at direct callers to G and make them all direct callers to F.
512}
513
514static void AliasGToF(Function *F, Function *G) {
515  if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
516    return ThunkGToF(F, G);
517
518  GlobalAlias *GA = new GlobalAlias(
519    G->getType(), G->getLinkage(), "",
520    ConstantExpr::getBitCast(F, G->getType()), G->getParent());
521  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
522  GA->takeName(G);
523  GA->setVisibility(G->getVisibility());
524  G->replaceAllUsesWith(GA);
525  G->eraseFromParent();
526}
527
528static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
529  Function *F = FnVec[i];
530  Function *G = FnVec[j];
531
532  LinkageCategory catF = categorize(F);
533  LinkageCategory catG = categorize(G);
534
535  if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
536    std::swap(FnVec[i], FnVec[j]);
537    std::swap(F, G);
538    std::swap(catF, catG);
539  }
540
541  switch (catF) {
542    case ExternalStrong:
543      switch (catG) {
544        case ExternalStrong:
545        case ExternalWeak:
546          ThunkGToF(F, G);
547          break;
548        case Internal:
549          if (G->hasAddressTaken())
550            ThunkGToF(F, G);
551          else
552            AliasGToF(F, G);
553          break;
554      }
555      break;
556
557    case ExternalWeak: {
558      assert(catG == ExternalWeak);
559
560      // Make them both thunks to the same internal function.
561      F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
562      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
563                                     F->getParent());
564      H->copyAttributesFrom(F);
565      H->takeName(F);
566      F->replaceAllUsesWith(H);
567
568      ThunkGToF(F, G);
569      ThunkGToF(F, H);
570
571      F->setLinkage(GlobalValue::InternalLinkage);
572    } break;
573
574    case Internal:
575      switch (catG) {
576        case ExternalStrong:
577          assert(0);
578          // fall-through
579        case ExternalWeak:
580	  if (F->hasAddressTaken())
581            ThunkGToF(F, G);
582          else
583            AliasGToF(F, G);
584	  break;
585        case Internal: {
586          bool addrTakenF = F->hasAddressTaken();
587          bool addrTakenG = G->hasAddressTaken();
588          if (!addrTakenF && addrTakenG) {
589            std::swap(FnVec[i], FnVec[j]);
590            std::swap(F, G);
591	    std::swap(addrTakenF, addrTakenG);
592	  }
593
594          if (addrTakenF && addrTakenG) {
595            ThunkGToF(F, G);
596          } else {
597            assert(!addrTakenG);
598            AliasGToF(F, G);
599          }
600	} break;
601      }
602      break;
603  }
604
605  ++NumFunctionsMerged;
606  return true;
607}
608
609// ===----------------------------------------------------------------------===
610// Pass definition
611// ===----------------------------------------------------------------------===
612
613bool MergeFunctions::runOnModule(Module &M) {
614  bool Changed = false;
615
616  std::map<unsigned long, std::vector<Function *> > FnMap;
617
618  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
619    if (F->isDeclaration() || F->isIntrinsic())
620      continue;
621
622    FnMap[hash(F)].push_back(F);
623  }
624
625  // TODO: instead of running in a loop, we could also fold functions in
626  // callgraph order. Constructing the CFG probably isn't cheaper than just
627  // running in a loop, unless it happened to already be available.
628
629  bool LocalChanged;
630  do {
631    LocalChanged = false;
632    DOUT << "size: " << FnMap.size() << "\n";
633    for (std::map<unsigned long, std::vector<Function *> >::iterator
634         I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
635      std::vector<Function *> &FnVec = I->second;
636      DOUT << "hash (" << I->first << "): " << FnVec.size() << "\n";
637
638      for (int i = 0, e = FnVec.size(); i != e; ++i) {
639        for (int j = i + 1; j != e; ++j) {
640          bool isEqual = equals(FnVec[i], FnVec[j]);
641
642          DOUT << "  " << FnVec[i]->getName()
643               << (isEqual ? " == " : " != ")
644               << FnVec[j]->getName() << "\n";
645
646          if (isEqual) {
647            if (fold(FnVec, i, j)) {
648              LocalChanged = true;
649              FnVec.erase(FnVec.begin() + j);
650              --j, --e;
651            }
652          }
653        }
654      }
655
656    }
657    Changed |= LocalChanged;
658  } while (LocalChanged);
659
660  return Changed;
661}
662