MergeFunctions.cpp revision d489332549f226701825de990a2f5869dad96ace
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/Constants.h"
54#include "llvm/InlineAsm.h"
55#include "llvm/Instructions.h"
56#include "llvm/LLVMContext.h"
57#include "llvm/Module.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CallSite.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/IRBuilder.h"
63#include "llvm/Support/ValueHandle.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/Target/TargetData.h"
66#include <vector>
67using namespace llvm;
68
69STATISTIC(NumFunctionsMerged, "Number of functions merged");
70STATISTIC(NumThunksWritten, "Number of thunks generated");
71STATISTIC(NumAliasesWritten, "Number of aliases generated");
72STATISTIC(NumDoubleWeak, "Number of new functions created");
73
74/// Creates a hash-code for the function which is the same for any two
75/// functions that will compare equal, without looking at the instructions
76/// inside the function.
77static unsigned profileFunction(const Function *F) {
78  const FunctionType *FTy = F->getFunctionType();
79
80  FoldingSetNodeID ID;
81  ID.AddInteger(F->size());
82  ID.AddInteger(F->getCallingConv());
83  ID.AddBoolean(F->hasGC());
84  ID.AddBoolean(FTy->isVarArg());
85  ID.AddInteger(FTy->getReturnType()->getTypeID());
86  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
87    ID.AddInteger(FTy->getParamType(i)->getTypeID());
88  return ID.ComputeHash();
89}
90
91namespace {
92
93/// ComparableFunction - A struct that pairs together functions with a
94/// TargetData so that we can keep them together as elements in the DenseSet.
95class ComparableFunction {
96public:
97  static const ComparableFunction EmptyKey;
98  static const ComparableFunction TombstoneKey;
99
100  ComparableFunction(Function *Func, TargetData *TD)
101    : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
102
103  Function *getFunc() const { return Func; }
104  unsigned getHash() const { return Hash; }
105  TargetData *getTD() const { return TD; }
106
107  // Drops AssertingVH reference to the function. Outside of debug mode, this
108  // does nothing.
109  void release() {
110    assert(Func &&
111           "Attempted to release function twice, or release empty/tombstone!");
112    Func = NULL;
113  }
114
115private:
116  explicit ComparableFunction(unsigned Hash)
117    : Func(NULL), Hash(Hash), TD(NULL) {}
118
119  AssertingVH<Function> Func;
120  unsigned Hash;
121  TargetData *TD;
122};
123
124const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
125const ComparableFunction ComparableFunction::TombstoneKey =
126    ComparableFunction(1);
127
128}
129
130namespace llvm {
131  template <>
132  struct DenseMapInfo<ComparableFunction> {
133    static ComparableFunction getEmptyKey() {
134      return ComparableFunction::EmptyKey;
135    }
136    static ComparableFunction getTombstoneKey() {
137      return ComparableFunction::TombstoneKey;
138    }
139    static unsigned getHashValue(const ComparableFunction &CF) {
140      return CF.getHash();
141    }
142    static bool isEqual(const ComparableFunction &LHS,
143                        const ComparableFunction &RHS);
144  };
145}
146
147namespace {
148
149/// FunctionComparator - Compares two functions to determine whether or not
150/// they will generate machine code with the same behaviour. TargetData is
151/// used if available. The comparator always fails conservatively (erring on the
152/// side of claiming that two functions are different).
153class FunctionComparator {
154public:
155  FunctionComparator(const TargetData *TD, const Function *F1,
156                     const Function *F2)
157    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
158
159  /// Test whether the two functions have equivalent behaviour.
160  bool compare();
161
162private:
163  /// Test whether two basic blocks have equivalent behaviour.
164  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
165
166  /// Assign or look up previously assigned numbers for the two values, and
167  /// return whether the numbers are equal. Numbers are assigned in the order
168  /// visited.
169  bool enumerate(const Value *V1, const Value *V2);
170
171  /// Compare two Instructions for equivalence, similar to
172  /// Instruction::isSameOperationAs but with modifications to the type
173  /// comparison.
174  bool isEquivalentOperation(const Instruction *I1,
175                             const Instruction *I2) const;
176
177  /// Compare two GEPs for equivalent pointer arithmetic.
178  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
179  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
180                       const GetElementPtrInst *GEP2) {
181    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
182  }
183
184  /// Compare two Types, treating all pointer types as equal.
185  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
186
187  // The two functions undergoing comparison.
188  const Function *F1, *F2;
189
190  const TargetData *TD;
191
192  typedef DenseMap<const Value *, unsigned long> IDMap;
193  IDMap Map1, Map2;
194  unsigned long IDMap1Count, IDMap2Count;
195};
196
197}
198
199// Any two pointers in the same address space are equivalent, intptr_t and
200// pointers are equivalent. Otherwise, standard type equivalence rules apply.
201bool FunctionComparator::isEquivalentType(const Type *Ty1,
202                                          const Type *Ty2) const {
203  if (Ty1 == Ty2)
204    return true;
205  if (Ty1->getTypeID() != Ty2->getTypeID()) {
206    if (TD) {
207      LLVMContext &Ctx = Ty1->getContext();
208      if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
209      if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
210    }
211    return false;
212  }
213
214  switch(Ty1->getTypeID()) {
215  default:
216    llvm_unreachable("Unknown type!");
217    // Fall through in Release mode.
218  case Type::IntegerTyID:
219  case Type::OpaqueTyID:
220  case Type::VectorTyID:
221    // Ty1 == Ty2 would have returned true earlier.
222    return false;
223
224  case Type::VoidTyID:
225  case Type::FloatTyID:
226  case Type::DoubleTyID:
227  case Type::X86_FP80TyID:
228  case Type::FP128TyID:
229  case Type::PPC_FP128TyID:
230  case Type::LabelTyID:
231  case Type::MetadataTyID:
232    return true;
233
234  case Type::PointerTyID: {
235    const PointerType *PTy1 = cast<PointerType>(Ty1);
236    const PointerType *PTy2 = cast<PointerType>(Ty2);
237    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
238  }
239
240  case Type::StructTyID: {
241    const StructType *STy1 = cast<StructType>(Ty1);
242    const StructType *STy2 = cast<StructType>(Ty2);
243    if (STy1->getNumElements() != STy2->getNumElements())
244      return false;
245
246    if (STy1->isPacked() != STy2->isPacked())
247      return false;
248
249    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
250      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
251        return false;
252    }
253    return true;
254  }
255
256  case Type::FunctionTyID: {
257    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
258    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
259    if (FTy1->getNumParams() != FTy2->getNumParams() ||
260        FTy1->isVarArg() != FTy2->isVarArg())
261      return false;
262
263    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
264      return false;
265
266    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
267      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
268        return false;
269    }
270    return true;
271  }
272
273  case Type::ArrayTyID: {
274    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
275    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
276    return ATy1->getNumElements() == ATy2->getNumElements() &&
277           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
278  }
279  }
280}
281
282// Determine whether the two operations are the same except that pointer-to-A
283// and pointer-to-B are equivalent. This should be kept in sync with
284// Instruction::isSameOperationAs.
285bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
286                                               const Instruction *I2) const {
287  if (I1->getOpcode() != I2->getOpcode() ||
288      I1->getNumOperands() != I2->getNumOperands() ||
289      !isEquivalentType(I1->getType(), I2->getType()) ||
290      !I1->hasSameSubclassOptionalData(I2))
291    return false;
292
293  // We have two instructions of identical opcode and #operands.  Check to see
294  // if all operands are the same type
295  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
296    if (!isEquivalentType(I1->getOperand(i)->getType(),
297                          I2->getOperand(i)->getType()))
298      return false;
299
300  // Check special state that is a part of some instructions.
301  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
302    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
303           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
304  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
305    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
306           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
307  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
308    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
309  if (const CallInst *CI = dyn_cast<CallInst>(I1))
310    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
311           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
312           CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
313  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
314    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
315           CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
316  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
317    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
318      return false;
319    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
320      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
321        return false;
322    return true;
323  }
324  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
325    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
326      return false;
327    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
328      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
329        return false;
330    return true;
331  }
332
333  return true;
334}
335
336// Determine whether two GEP operations perform the same underlying arithmetic.
337bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
338                                         const GEPOperator *GEP2) {
339  // When we have target data, we can reduce the GEP down to the value in bytes
340  // added to the address.
341  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
342    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
343    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
344    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
345                                            Indices1.data(), Indices1.size());
346    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
347                                            Indices2.data(), Indices2.size());
348    return Offset1 == Offset2;
349  }
350
351  if (GEP1->getPointerOperand()->getType() !=
352      GEP2->getPointerOperand()->getType())
353    return false;
354
355  if (GEP1->getNumOperands() != GEP2->getNumOperands())
356    return false;
357
358  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
359    if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
360      return false;
361  }
362
363  return true;
364}
365
366// Compare two values used by the two functions under pair-wise comparison. If
367// this is the first time the values are seen, they're added to the mapping so
368// that we will detect mismatches on next use.
369bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
370  // Check for function @f1 referring to itself and function @f2 referring to
371  // itself, or referring to each other, or both referring to either of them.
372  // They're all equivalent if the two functions are otherwise equivalent.
373  if (V1 == F1 && V2 == F2)
374    return true;
375  if (V1 == F2 && V2 == F1)
376    return true;
377
378  if (const Constant *C1 = dyn_cast<Constant>(V1)) {
379    if (V1 == V2) return true;
380    const Constant *C2 = dyn_cast<Constant>(V2);
381    if (!C2) return false;
382    // TODO: constant expressions with GEP or references to F1 or F2.
383    if (C1->isNullValue() && C2->isNullValue() &&
384	isEquivalentType(C1->getType(), C2->getType()))
385      return true;
386    // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
387    // then they must have equal bit patterns.
388    return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
389      C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
390  }
391
392  if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
393    return V1 == V2;
394
395  unsigned long &ID1 = Map1[V1];
396  if (!ID1)
397    ID1 = ++IDMap1Count;
398
399  unsigned long &ID2 = Map2[V2];
400  if (!ID2)
401    ID2 = ++IDMap2Count;
402
403  return ID1 == ID2;
404}
405
406// Test whether two basic blocks have equivalent behaviour.
407bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
408  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
409  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
410
411  do {
412    if (!enumerate(F1I, F2I))
413      return false;
414
415    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
416      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
417      if (!GEP2)
418        return false;
419
420      if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
421        return false;
422
423      if (!isEquivalentGEP(GEP1, GEP2))
424        return false;
425    } else {
426      if (!isEquivalentOperation(F1I, F2I))
427        return false;
428
429      assert(F1I->getNumOperands() == F2I->getNumOperands());
430      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
431        Value *OpF1 = F1I->getOperand(i);
432        Value *OpF2 = F2I->getOperand(i);
433
434        if (!enumerate(OpF1, OpF2))
435          return false;
436
437        if (OpF1->getValueID() != OpF2->getValueID() ||
438            !isEquivalentType(OpF1->getType(), OpF2->getType()))
439          return false;
440      }
441    }
442
443    ++F1I, ++F2I;
444  } while (F1I != F1E && F2I != F2E);
445
446  return F1I == F1E && F2I == F2E;
447}
448
449// Test whether the two functions have equivalent behaviour.
450bool FunctionComparator::compare() {
451  // We need to recheck everything, but check the things that weren't included
452  // in the hash first.
453
454  if (F1->getAttributes() != F2->getAttributes())
455    return false;
456
457  if (F1->hasGC() != F2->hasGC())
458    return false;
459
460  if (F1->hasGC() && F1->getGC() != F2->getGC())
461    return false;
462
463  if (F1->hasSection() != F2->hasSection())
464    return false;
465
466  if (F1->hasSection() && F1->getSection() != F2->getSection())
467    return false;
468
469  if (F1->isVarArg() != F2->isVarArg())
470    return false;
471
472  // TODO: if it's internal and only used in direct calls, we could handle this
473  // case too.
474  if (F1->getCallingConv() != F2->getCallingConv())
475    return false;
476
477  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
478    return false;
479
480  assert(F1->arg_size() == F2->arg_size() &&
481         "Identically typed functions have different numbers of args!");
482
483  // Visit the arguments so that they get enumerated in the order they're
484  // passed in.
485  for (Function::const_arg_iterator f1i = F1->arg_begin(),
486         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
487    if (!enumerate(f1i, f2i))
488      llvm_unreachable("Arguments repeat!");
489  }
490
491  // We do a CFG-ordered walk since the actual ordering of the blocks in the
492  // linked list is immaterial. Our walk starts at the entry block for both
493  // functions, then takes each block from each terminator in order. As an
494  // artifact, this also means that unreachable blocks are ignored.
495  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
496  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
497
498  F1BBs.push_back(&F1->getEntryBlock());
499  F2BBs.push_back(&F2->getEntryBlock());
500
501  VisitedBBs.insert(F1BBs[0]);
502  while (!F1BBs.empty()) {
503    const BasicBlock *F1BB = F1BBs.pop_back_val();
504    const BasicBlock *F2BB = F2BBs.pop_back_val();
505
506    if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
507      return false;
508
509    const TerminatorInst *F1TI = F1BB->getTerminator();
510    const TerminatorInst *F2TI = F2BB->getTerminator();
511
512    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
513    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
514      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
515        continue;
516
517      F1BBs.push_back(F1TI->getSuccessor(i));
518      F2BBs.push_back(F2TI->getSuccessor(i));
519    }
520  }
521  return true;
522}
523
524namespace {
525
526/// MergeFunctions finds functions which will generate identical machine code,
527/// by considering all pointer types to be equivalent. Once identified,
528/// MergeFunctions will fold them by replacing a call to one to a call to a
529/// bitcast of the other.
530///
531class MergeFunctions : public ModulePass {
532public:
533  static char ID;
534  MergeFunctions()
535    : ModulePass(ID), HasGlobalAliases(false) {
536    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
537  }
538
539  bool runOnModule(Module &M);
540
541private:
542  typedef DenseSet<ComparableFunction> FnSetType;
543
544  /// A work queue of functions that may have been modified and should be
545  /// analyzed again.
546  std::vector<WeakVH> Deferred;
547
548  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
549  /// equal to one that's already present.
550  bool insert(ComparableFunction &NewF);
551
552  /// Remove a Function from the FnSet and queue it up for a second sweep of
553  /// analysis.
554  void remove(Function *F);
555
556  /// Find the functions that use this Value and remove them from FnSet and
557  /// queue the functions.
558  void removeUsers(Value *V);
559
560  /// Replace all direct calls of Old with calls of New. Will bitcast New if
561  /// necessary to make types match.
562  void replaceDirectCallers(Function *Old, Function *New);
563
564  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
565  /// be converted into a thunk. In either case, it should never be visited
566  /// again.
567  void mergeTwoFunctions(Function *F, Function *G);
568
569  /// Replace G with a thunk or an alias to F. Deletes G.
570  void writeThunkOrAlias(Function *F, Function *G);
571
572  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
573  /// of G with bitcast(F). Deletes G.
574  void writeThunk(Function *F, Function *G);
575
576  /// Replace G with an alias to F. Deletes G.
577  void writeAlias(Function *F, Function *G);
578
579  /// The set of all distinct functions. Use the insert() and remove() methods
580  /// to modify it.
581  FnSetType FnSet;
582
583  /// TargetData for more accurate GEP comparisons. May be NULL.
584  TargetData *TD;
585
586  /// Whether or not the target supports global aliases.
587  bool HasGlobalAliases;
588};
589
590}  // end anonymous namespace
591
592char MergeFunctions::ID = 0;
593INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
594
595ModulePass *llvm::createMergeFunctionsPass() {
596  return new MergeFunctions();
597}
598
599bool MergeFunctions::runOnModule(Module &M) {
600  bool Changed = false;
601  TD = getAnalysisIfAvailable<TargetData>();
602
603  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
604    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
605      Deferred.push_back(WeakVH(I));
606  }
607  FnSet.resize(Deferred.size());
608
609  do {
610    std::vector<WeakVH> Worklist;
611    Deferred.swap(Worklist);
612
613    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
614    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
615
616    // Insert only strong functions and merge them. Strong function merging
617    // always deletes one of them.
618    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
619           E = Worklist.end(); I != E; ++I) {
620      if (!*I) continue;
621      Function *F = cast<Function>(*I);
622      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
623          !F->mayBeOverridden()) {
624        ComparableFunction CF = ComparableFunction(F, TD);
625        Changed |= insert(CF);
626      }
627    }
628
629    // Insert only weak functions and merge them. By doing these second we
630    // create thunks to the strong function when possible. When two weak
631    // functions are identical, we create a new strong function with two weak
632    // weak thunks to it which are identical but not mergable.
633    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
634           E = Worklist.end(); I != E; ++I) {
635      if (!*I) continue;
636      Function *F = cast<Function>(*I);
637      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
638          F->mayBeOverridden()) {
639        ComparableFunction CF = ComparableFunction(F, TD);
640        Changed |= insert(CF);
641      }
642    }
643    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
644  } while (!Deferred.empty());
645
646  FnSet.clear();
647
648  return Changed;
649}
650
651bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
652                                               const ComparableFunction &RHS) {
653  if (LHS.getFunc() == RHS.getFunc() &&
654      LHS.getHash() == RHS.getHash())
655    return true;
656  if (!LHS.getFunc() || !RHS.getFunc())
657    return false;
658  assert(LHS.getTD() == RHS.getTD() &&
659         "Comparing functions for different targets");
660
661  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
662                            RHS.getFunc()).compare();
663}
664
665// Replace direct callers of Old with New.
666void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
667  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
668  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
669       UI != UE;) {
670    Value::use_iterator TheIter = UI;
671    ++UI;
672    CallSite CS(*TheIter);
673    if (CS && CS.isCallee(TheIter)) {
674      remove(CS.getInstruction()->getParent()->getParent());
675      TheIter.getUse().set(BitcastNew);
676    }
677  }
678}
679
680// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
681void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
682  if (HasGlobalAliases && G->hasUnnamedAddr()) {
683    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
684        G->hasWeakLinkage()) {
685      writeAlias(F, G);
686      return;
687    }
688  }
689
690  writeThunk(F, G);
691}
692
693// Replace G with a simple tail call to bitcast(F). Also replace direct uses
694// of G with bitcast(F). Deletes G.
695void MergeFunctions::writeThunk(Function *F, Function *G) {
696  if (!G->mayBeOverridden()) {
697    // Redirect direct callers of G to F.
698    replaceDirectCallers(G, F);
699  }
700
701  // If G was internal then we may have replaced all uses of G with F. If so,
702  // stop here and delete G. There's no need for a thunk.
703  if (G->hasLocalLinkage() && G->use_empty()) {
704    G->eraseFromParent();
705    return;
706  }
707
708  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
709                                    G->getParent());
710  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
711  IRBuilder<false> Builder(BB);
712
713  SmallVector<Value *, 16> Args;
714  unsigned i = 0;
715  const FunctionType *FFTy = F->getFunctionType();
716  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
717       AI != AE; ++AI) {
718    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
719    ++i;
720  }
721
722  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
723  CI->setTailCall();
724  CI->setCallingConv(F->getCallingConv());
725  if (NewG->getReturnType()->isVoidTy()) {
726    Builder.CreateRetVoid();
727  } else {
728    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
729  }
730
731  NewG->copyAttributesFrom(G);
732  NewG->takeName(G);
733  removeUsers(G);
734  G->replaceAllUsesWith(NewG);
735  G->eraseFromParent();
736
737  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
738  ++NumThunksWritten;
739}
740
741// Replace G with an alias to F and delete G.
742void MergeFunctions::writeAlias(Function *F, Function *G) {
743  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
744  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
745                                    BitcastF, G->getParent());
746  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
747  GA->takeName(G);
748  GA->setVisibility(G->getVisibility());
749  removeUsers(G);
750  G->replaceAllUsesWith(GA);
751  G->eraseFromParent();
752
753  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
754  ++NumAliasesWritten;
755}
756
757// Merge two equivalent functions. Upon completion, Function G is deleted.
758void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
759  if (F->mayBeOverridden()) {
760    assert(G->mayBeOverridden());
761
762    if (HasGlobalAliases) {
763      // Make them both thunks to the same internal function.
764      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
765                                     F->getParent());
766      H->copyAttributesFrom(F);
767      H->takeName(F);
768      removeUsers(F);
769      F->replaceAllUsesWith(H);
770
771      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
772
773      writeAlias(F, G);
774      writeAlias(F, H);
775
776      F->setAlignment(MaxAlignment);
777      F->setLinkage(GlobalValue::PrivateLinkage);
778    } else {
779      // We can't merge them. Instead, pick one and update all direct callers
780      // to call it and hope that we improve the instruction cache hit rate.
781      replaceDirectCallers(G, F);
782    }
783
784    ++NumDoubleWeak;
785  } else {
786    writeThunkOrAlias(F, G);
787  }
788
789  ++NumFunctionsMerged;
790}
791
792// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
793// that was already inserted.
794bool MergeFunctions::insert(ComparableFunction &NewF) {
795  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
796  if (Result.second)
797    return false;
798
799  const ComparableFunction &OldF = *Result.first;
800
801  // Never thunk a strong function to a weak function.
802  assert(!OldF.getFunc()->mayBeOverridden() ||
803         NewF.getFunc()->mayBeOverridden());
804
805  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
806               << NewF.getFunc()->getName() << '\n');
807
808  Function *DeleteF = NewF.getFunc();
809  NewF.release();
810  mergeTwoFunctions(OldF.getFunc(), DeleteF);
811  return true;
812}
813
814// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
815// so that we'll look at it in the next round.
816void MergeFunctions::remove(Function *F) {
817  ComparableFunction CF = ComparableFunction(F, TD);
818  if (FnSet.erase(CF)) {
819    Deferred.push_back(F);
820  }
821}
822
823// For each instruction used by the value, remove() the function that contains
824// the instruction. This should happen right before a call to RAUW.
825void MergeFunctions::removeUsers(Value *V) {
826  std::vector<Value *> Worklist;
827  Worklist.push_back(V);
828  while (!Worklist.empty()) {
829    Value *V = Worklist.back();
830    Worklist.pop_back();
831
832    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
833         UI != UE; ++UI) {
834      Use &U = UI.getUse();
835      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
836        remove(I->getParent()->getParent());
837      } else if (isa<GlobalValue>(U.getUser())) {
838        // do nothing
839      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
840        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
841             CUI != CUE; ++CUI)
842          Worklist.push_back(*CUI);
843      }
844    }
845  }
846}
847