MergeFunctions.cpp revision e8f8139429ffc41ae3a339d4a32e336a74f189c0
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/Constants.h"
54#include "llvm/InlineAsm.h"
55#include "llvm/Instructions.h"
56#include "llvm/LLVMContext.h"
57#include "llvm/Module.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CallSite.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/IRBuilder.h"
63#include "llvm/Support/ValueHandle.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/Target/TargetData.h"
66#include <vector>
67using namespace llvm;
68
69STATISTIC(NumFunctionsMerged, "Number of functions merged");
70STATISTIC(NumThunksWritten, "Number of thunks generated");
71STATISTIC(NumDoubleWeak, "Number of new functions created");
72
73/// ProfileFunction - Creates a hash-code for the function which is the same
74/// for any two functions that will compare equal, without looking at the
75/// instructions inside the function.
76static unsigned ProfileFunction(const Function *F) {
77  const FunctionType *FTy = F->getFunctionType();
78
79  FoldingSetNodeID ID;
80  ID.AddInteger(F->size());
81  ID.AddInteger(F->getCallingConv());
82  ID.AddBoolean(F->hasGC());
83  ID.AddBoolean(FTy->isVarArg());
84  ID.AddInteger(FTy->getReturnType()->getTypeID());
85  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
86    ID.AddInteger(FTy->getParamType(i)->getTypeID());
87  return ID.ComputeHash();
88}
89
90namespace {
91
92class ComparableFunction {
93public:
94  static const ComparableFunction EmptyKey;
95  static const ComparableFunction TombstoneKey;
96
97  ComparableFunction(Function *Func, TargetData *TD)
98    : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
99
100  Function *getFunc() const { return Func; }
101  unsigned getHash() const { return Hash; }
102  TargetData *getTD() const { return TD; }
103
104  // Drops AssertingVH reference to the function. Outside of debug mode, this
105  // does nothing.
106  void release() {
107    assert(Func &&
108           "Attempted to release function twice, or release empty/tombstone!");
109    Func = NULL;
110  }
111
112  bool &getOrInsertCachedComparison(const ComparableFunction &Other,
113                                    bool &inserted) const {
114    typedef DenseMap<Function *, bool>::iterator iterator;
115    std::pair<iterator, bool> p =
116        CompareResultCache.insert(std::make_pair(Other.getFunc(), false));
117    inserted = p.second;
118    return p.first->second;
119  }
120
121private:
122  explicit ComparableFunction(unsigned Hash)
123    : Func(NULL), Hash(Hash), TD(NULL) {}
124
125  // DenseMap::grow() triggers a recomparison of all keys in the map, which is
126  // wildly expensive. This cache tries to preserve known results.
127  mutable DenseMap<Function *, bool> CompareResultCache;
128
129  AssertingVH<Function> Func;
130  unsigned Hash;
131  TargetData *TD;
132};
133
134const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
135const ComparableFunction ComparableFunction::TombstoneKey =
136    ComparableFunction(1);
137
138}
139
140namespace llvm {
141  template <>
142  struct DenseMapInfo<ComparableFunction> {
143    static ComparableFunction getEmptyKey() {
144      return ComparableFunction::EmptyKey;
145    }
146    static ComparableFunction getTombstoneKey() {
147      return ComparableFunction::TombstoneKey;
148    }
149    static unsigned getHashValue(const ComparableFunction &CF) {
150      return CF.getHash();
151    }
152    static bool isEqual(const ComparableFunction &LHS,
153                        const ComparableFunction &RHS);
154  };
155}
156
157namespace {
158
159/// MergeFunctions finds functions which will generate identical machine code,
160/// by considering all pointer types to be equivalent. Once identified,
161/// MergeFunctions will fold them by replacing a call to one to a call to a
162/// bitcast of the other.
163///
164class MergeFunctions : public ModulePass {
165public:
166  static char ID;
167  MergeFunctions() : ModulePass(ID) {
168    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
169  }
170
171  bool runOnModule(Module &M);
172
173private:
174  typedef DenseSet<ComparableFunction> FnSetType;
175
176  /// A work queue of functions that may have been modified and should be
177  /// analyzed again.
178  std::vector<WeakVH> Deferred;
179
180  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
181  /// equal to one that's already present.
182  bool Insert(ComparableFunction &NewF);
183
184  /// Remove a Function from the FnSet and queue it up for a second sweep of
185  /// analysis.
186  void Remove(Function *F);
187
188  /// Find the functions that use this Value and remove them from FnSet and
189  /// queue the functions.
190  void RemoveUsers(Value *V);
191
192  /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
193  /// may be deleted, or may be converted into a thunk. In either case, it
194  /// should never be visited again.
195  void MergeTwoFunctions(Function *F, Function *G);
196
197  /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
198  /// replace direct uses of G with bitcast(F). Deletes G.
199  void WriteThunk(Function *F, Function *G);
200
201  /// The set of all distinct functions. Use the Insert and Remove methods to
202  /// modify it.
203  FnSetType FnSet;
204
205  /// TargetData for more accurate GEP comparisons. May be NULL.
206  TargetData *TD;
207};
208
209}  // end anonymous namespace
210
211char MergeFunctions::ID = 0;
212INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
213
214ModulePass *llvm::createMergeFunctionsPass() {
215  return new MergeFunctions();
216}
217
218namespace {
219/// FunctionComparator - Compares two functions to determine whether or not
220/// they will generate machine code with the same behaviour. TargetData is
221/// used if available. The comparator always fails conservatively (erring on the
222/// side of claiming that two functions are different).
223class FunctionComparator {
224public:
225  FunctionComparator(const TargetData *TD, const Function *F1,
226                     const Function *F2)
227    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
228
229  /// Compare - test whether the two functions have equivalent behaviour.
230  bool Compare();
231
232private:
233  /// Compare - test whether two basic blocks have equivalent behaviour.
234  bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
235
236  /// Enumerate - Assign or look up previously assigned numbers for the two
237  /// values, and return whether the numbers are equal. Numbers are assigned in
238  /// the order visited.
239  bool Enumerate(const Value *V1, const Value *V2);
240
241  /// isEquivalentOperation - Compare two Instructions for equivalence, similar
242  /// to Instruction::isSameOperationAs but with modifications to the type
243  /// comparison.
244  bool isEquivalentOperation(const Instruction *I1,
245                             const Instruction *I2) const;
246
247  /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
248  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
249  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
250                       const GetElementPtrInst *GEP2) {
251    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
252  }
253
254  /// isEquivalentType - Compare two Types, treating all pointer types as equal.
255  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
256
257  // The two functions undergoing comparison.
258  const Function *F1, *F2;
259
260  const TargetData *TD;
261
262  typedef DenseMap<const Value *, unsigned long> IDMap;
263  IDMap Map1, Map2;
264  unsigned long IDMap1Count, IDMap2Count;
265};
266}
267
268/// isEquivalentType - any two pointers in the same address space are
269/// equivalent. Otherwise, standard type equivalence rules apply.
270bool FunctionComparator::isEquivalentType(const Type *Ty1,
271                                          const Type *Ty2) const {
272  if (Ty1 == Ty2)
273    return true;
274  if (Ty1->getTypeID() != Ty2->getTypeID())
275    return false;
276
277  switch(Ty1->getTypeID()) {
278  default:
279    llvm_unreachable("Unknown type!");
280    // Fall through in Release mode.
281  case Type::IntegerTyID:
282  case Type::OpaqueTyID:
283    // Ty1 == Ty2 would have returned true earlier.
284    return false;
285
286  case Type::VoidTyID:
287  case Type::FloatTyID:
288  case Type::DoubleTyID:
289  case Type::X86_FP80TyID:
290  case Type::FP128TyID:
291  case Type::PPC_FP128TyID:
292  case Type::LabelTyID:
293  case Type::MetadataTyID:
294    return true;
295
296  case Type::PointerTyID: {
297    const PointerType *PTy1 = cast<PointerType>(Ty1);
298    const PointerType *PTy2 = cast<PointerType>(Ty2);
299    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
300  }
301
302  case Type::StructTyID: {
303    const StructType *STy1 = cast<StructType>(Ty1);
304    const StructType *STy2 = cast<StructType>(Ty2);
305    if (STy1->getNumElements() != STy2->getNumElements())
306      return false;
307
308    if (STy1->isPacked() != STy2->isPacked())
309      return false;
310
311    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
312      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
313        return false;
314    }
315    return true;
316  }
317
318  case Type::FunctionTyID: {
319    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
320    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
321    if (FTy1->getNumParams() != FTy2->getNumParams() ||
322        FTy1->isVarArg() != FTy2->isVarArg())
323      return false;
324
325    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
326      return false;
327
328    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
329      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
330        return false;
331    }
332    return true;
333  }
334
335  case Type::ArrayTyID: {
336    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
337    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
338    return ATy1->getNumElements() == ATy2->getNumElements() &&
339           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
340  }
341
342  case Type::VectorTyID: {
343    const VectorType *VTy1 = cast<VectorType>(Ty1);
344    const VectorType *VTy2 = cast<VectorType>(Ty2);
345    return VTy1->getNumElements() == VTy2->getNumElements() &&
346           isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
347  }
348  }
349}
350
351/// isEquivalentOperation - determine whether the two operations are the same
352/// except that pointer-to-A and pointer-to-B are equivalent. This should be
353/// kept in sync with Instruction::isSameOperationAs.
354bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
355                                               const Instruction *I2) const {
356  if (I1->getOpcode() != I2->getOpcode() ||
357      I1->getNumOperands() != I2->getNumOperands() ||
358      !isEquivalentType(I1->getType(), I2->getType()) ||
359      !I1->hasSameSubclassOptionalData(I2))
360    return false;
361
362  // We have two instructions of identical opcode and #operands.  Check to see
363  // if all operands are the same type
364  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
365    if (!isEquivalentType(I1->getOperand(i)->getType(),
366                          I2->getOperand(i)->getType()))
367      return false;
368
369  // Check special state that is a part of some instructions.
370  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
371    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
372           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
373  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
374    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
375           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
376  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
377    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
378  if (const CallInst *CI = dyn_cast<CallInst>(I1))
379    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
380           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
381           CI->getAttributes().getRawPointer() ==
382             cast<CallInst>(I2)->getAttributes().getRawPointer();
383  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
384    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
385           CI->getAttributes().getRawPointer() ==
386             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
387  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
388    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
389      return false;
390    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
391      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
392        return false;
393    return true;
394  }
395  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
396    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
397      return false;
398    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
399      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
400        return false;
401    return true;
402  }
403
404  return true;
405}
406
407/// isEquivalentGEP - determine whether two GEP operations perform the same
408/// underlying arithmetic.
409bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
410                                         const GEPOperator *GEP2) {
411  // When we have target data, we can reduce the GEP down to the value in bytes
412  // added to the address.
413  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
414    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
415    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
416    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
417                                            Indices1.data(), Indices1.size());
418    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
419                                            Indices2.data(), Indices2.size());
420    return Offset1 == Offset2;
421  }
422
423  if (GEP1->getPointerOperand()->getType() !=
424      GEP2->getPointerOperand()->getType())
425    return false;
426
427  if (GEP1->getNumOperands() != GEP2->getNumOperands())
428    return false;
429
430  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
431    if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
432      return false;
433  }
434
435  return true;
436}
437
438/// Enumerate - Compare two values used by the two functions under pair-wise
439/// comparison. If this is the first time the values are seen, they're added to
440/// the mapping so that we will detect mismatches on next use.
441bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
442  // Check for function @f1 referring to itself and function @f2 referring to
443  // itself, or referring to each other, or both referring to either of them.
444  // They're all equivalent if the two functions are otherwise equivalent.
445  if (V1 == F1 && V2 == F2)
446    return true;
447  if (V1 == F2 && V2 == F1)
448    return true;
449
450  // TODO: constant expressions with GEP or references to F1 or F2.
451  if (isa<Constant>(V1))
452    return V1 == V2;
453
454  if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
455    const InlineAsm *IA1 = cast<InlineAsm>(V1);
456    const InlineAsm *IA2 = cast<InlineAsm>(V2);
457    return IA1->getAsmString() == IA2->getAsmString() &&
458           IA1->getConstraintString() == IA2->getConstraintString();
459  }
460
461  unsigned long &ID1 = Map1[V1];
462  if (!ID1)
463    ID1 = ++IDMap1Count;
464
465  unsigned long &ID2 = Map2[V2];
466  if (!ID2)
467    ID2 = ++IDMap2Count;
468
469  return ID1 == ID2;
470}
471
472/// Compare - test whether two basic blocks have equivalent behaviour.
473bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
474  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
475  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
476
477  do {
478    if (!Enumerate(F1I, F2I))
479      return false;
480
481    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
482      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
483      if (!GEP2)
484        return false;
485
486      if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
487        return false;
488
489      if (!isEquivalentGEP(GEP1, GEP2))
490        return false;
491    } else {
492      if (!isEquivalentOperation(F1I, F2I))
493        return false;
494
495      assert(F1I->getNumOperands() == F2I->getNumOperands());
496      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
497        Value *OpF1 = F1I->getOperand(i);
498        Value *OpF2 = F2I->getOperand(i);
499
500        if (!Enumerate(OpF1, OpF2))
501          return false;
502
503        if (OpF1->getValueID() != OpF2->getValueID() ||
504            !isEquivalentType(OpF1->getType(), OpF2->getType()))
505          return false;
506      }
507    }
508
509    ++F1I, ++F2I;
510  } while (F1I != F1E && F2I != F2E);
511
512  return F1I == F1E && F2I == F2E;
513}
514
515/// Compare - test whether the two functions have equivalent behaviour.
516bool FunctionComparator::Compare() {
517  // We need to recheck everything, but check the things that weren't included
518  // in the hash first.
519
520  if (F1->getAttributes() != F2->getAttributes())
521    return false;
522
523  if (F1->hasGC() != F2->hasGC())
524    return false;
525
526  if (F1->hasGC() && F1->getGC() != F2->getGC())
527    return false;
528
529  if (F1->hasSection() != F2->hasSection())
530    return false;
531
532  if (F1->hasSection() && F1->getSection() != F2->getSection())
533    return false;
534
535  if (F1->isVarArg() != F2->isVarArg())
536    return false;
537
538  // TODO: if it's internal and only used in direct calls, we could handle this
539  // case too.
540  if (F1->getCallingConv() != F2->getCallingConv())
541    return false;
542
543  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
544    return false;
545
546  assert(F1->arg_size() == F2->arg_size() &&
547         "Identically typed functions have different numbers of args!");
548
549  // Visit the arguments so that they get enumerated in the order they're
550  // passed in.
551  for (Function::const_arg_iterator f1i = F1->arg_begin(),
552         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
553    if (!Enumerate(f1i, f2i))
554      llvm_unreachable("Arguments repeat!");
555  }
556
557  // We do a CFG-ordered walk since the actual ordering of the blocks in the
558  // linked list is immaterial. Our walk starts at the entry block for both
559  // functions, then takes each block from each terminator in order. As an
560  // artifact, this also means that unreachable blocks are ignored.
561  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
562  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
563
564  F1BBs.push_back(&F1->getEntryBlock());
565  F2BBs.push_back(&F2->getEntryBlock());
566
567  VisitedBBs.insert(F1BBs[0]);
568  while (!F1BBs.empty()) {
569    const BasicBlock *F1BB = F1BBs.pop_back_val();
570    const BasicBlock *F2BB = F2BBs.pop_back_val();
571
572    if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
573      return false;
574
575    const TerminatorInst *F1TI = F1BB->getTerminator();
576    const TerminatorInst *F2TI = F2BB->getTerminator();
577
578    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
579    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
580      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
581        continue;
582
583      F1BBs.push_back(F1TI->getSuccessor(i));
584      F2BBs.push_back(F2TI->getSuccessor(i));
585    }
586  }
587  return true;
588}
589
590/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
591/// direct uses of G with bitcast(F). Deletes G.
592void MergeFunctions::WriteThunk(Function *F, Function *G) {
593  if (!G->mayBeOverridden()) {
594    // Redirect direct callers of G to F.
595    Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
596    for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
597         UI != UE;) {
598      Value::use_iterator TheIter = UI;
599      ++UI;
600      CallSite CS(*TheIter);
601      if (CS && CS.isCallee(TheIter)) {
602        Remove(CS.getInstruction()->getParent()->getParent());
603        TheIter.getUse().set(BitcastF);
604      }
605    }
606  }
607
608  // If G was internal then we may have replaced all uses of G with F. If so,
609  // stop here and delete G. There's no need for a thunk.
610  if (G->hasLocalLinkage() && G->use_empty()) {
611    G->eraseFromParent();
612    return;
613  }
614
615  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
616                                    G->getParent());
617  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
618  IRBuilder<false> Builder(BB);
619
620  SmallVector<Value *, 16> Args;
621  unsigned i = 0;
622  const FunctionType *FFTy = F->getFunctionType();
623  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
624       AI != AE; ++AI) {
625    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
626    ++i;
627  }
628
629  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
630  CI->setTailCall();
631  CI->setCallingConv(F->getCallingConv());
632  if (NewG->getReturnType()->isVoidTy()) {
633    Builder.CreateRetVoid();
634  } else {
635    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
636  }
637
638  NewG->copyAttributesFrom(G);
639  NewG->takeName(G);
640  RemoveUsers(G);
641  G->replaceAllUsesWith(NewG);
642  G->eraseFromParent();
643
644  DEBUG(dbgs() << "WriteThunk: " << NewG->getName() << '\n');
645  ++NumThunksWritten;
646}
647
648/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
649/// Function G is deleted.
650void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) {
651  if (F->mayBeOverridden()) {
652    assert(G->mayBeOverridden());
653
654    // Make them both thunks to the same internal function.
655    Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
656                                   F->getParent());
657    H->copyAttributesFrom(F);
658    H->takeName(F);
659    RemoveUsers(F);
660    F->replaceAllUsesWith(H);
661
662    unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
663
664    WriteThunk(F, G);
665    WriteThunk(F, H);
666
667    F->setAlignment(MaxAlignment);
668    F->setLinkage(GlobalValue::PrivateLinkage);
669
670    ++NumDoubleWeak;
671  } else {
672    WriteThunk(F, G);
673  }
674
675  ++NumFunctionsMerged;
676}
677
678// Insert - Insert a ComparableFunction into the FnSet, or merge it away if
679// equal to one that's already inserted.
680bool MergeFunctions::Insert(ComparableFunction &NewF) {
681  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
682  if (Result.second)
683    return false;
684
685  const ComparableFunction &OldF = *Result.first;
686
687  // Never thunk a strong function to a weak function.
688  assert(!OldF.getFunc()->mayBeOverridden() ||
689         NewF.getFunc()->mayBeOverridden());
690
691  DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
692               << NewF.getFunc()->getName() << '\n');
693
694  Function *DeleteF = NewF.getFunc();
695  NewF.release();
696  MergeTwoFunctions(OldF.getFunc(), DeleteF);
697  return true;
698}
699
700// Remove - Remove a function from FnSet. If it was already in FnSet, add it to
701// Deferred so that we'll look at it in the next round.
702void MergeFunctions::Remove(Function *F) {
703  ComparableFunction CF = ComparableFunction(F, TD);
704  if (FnSet.erase(CF)) {
705    Deferred.push_back(F);
706  }
707}
708
709// RemoveUsers - For each instruction used by the value, Remove() the function
710// that contains the instruction. This should happen right before a call to RAUW.
711void MergeFunctions::RemoveUsers(Value *V) {
712  std::vector<Value *> Worklist;
713  Worklist.push_back(V);
714  while (!Worklist.empty()) {
715    Value *V = Worklist.back();
716    Worklist.pop_back();
717
718    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
719         UI != UE; ++UI) {
720      Use &U = UI.getUse();
721      if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
722        Remove(I->getParent()->getParent());
723      } else if (isa<GlobalValue>(U.getUser())) {
724        // do nothing
725      } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
726        for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
727             CUI != CUE; ++CUI)
728          Worklist.push_back(*CUI);
729      }
730    }
731  }
732}
733
734bool MergeFunctions::runOnModule(Module &M) {
735  bool Changed = false;
736  TD = getAnalysisIfAvailable<TargetData>();
737
738  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
739    Deferred.push_back(WeakVH(I));
740  }
741
742  do {
743    std::vector<WeakVH> Worklist;
744    Deferred.swap(Worklist);
745
746    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
747    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
748
749    // Insert only strong functions and merge them. Strong function merging
750    // always deletes one of them.
751    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
752           E = Worklist.end(); I != E; ++I) {
753      if (!*I) continue;
754      Function *F = cast<Function>(*I);
755      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
756          !F->mayBeOverridden()) {
757        ComparableFunction CF = ComparableFunction(F, TD);
758        Changed |= Insert(CF);
759      }
760    }
761
762    // Insert only weak functions and merge them. By doing these second we
763    // create thunks to the strong function when possible. When two weak
764    // functions are identical, we create a new strong function with two weak
765    // weak thunks to it which are identical but not mergable.
766    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
767           E = Worklist.end(); I != E; ++I) {
768      if (!*I) continue;
769      Function *F = cast<Function>(*I);
770      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
771          F->mayBeOverridden()) {
772        ComparableFunction CF = ComparableFunction(F, TD);
773        Changed |= Insert(CF);
774      }
775    }
776    DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
777  } while (!Deferred.empty());
778
779  FnSet.clear();
780
781  return Changed;
782}
783
784bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
785                                               const ComparableFunction &RHS) {
786  if (LHS.getFunc() == RHS.getFunc() &&
787      LHS.getHash() == RHS.getHash())
788    return true;
789  if (!LHS.getFunc() || !RHS.getFunc())
790    return false;
791  assert(LHS.getTD() == RHS.getTD() &&
792         "Comparing functions for different targets");
793
794  bool inserted;
795  bool &result1 = LHS.getOrInsertCachedComparison(RHS, inserted);
796  if (!inserted)
797    return result1;
798  bool &result2 = RHS.getOrInsertCachedComparison(LHS, inserted);
799  if (!inserted)
800    return result1 = result2;
801
802  return result1 = result2 = FunctionComparator(LHS.getTD(), LHS.getFunc(),
803                                                RHS.getFunc()).Compare();
804}
805