MergeFunctions.cpp revision f53de86cba33b63ecd54e16dcea735939c5b0e4a
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found the functions are folded. If both functions are
21// overridable, we move the functionality into a new internal function and
22// leave two overridable thunks to it.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * virtual functions.
29//
30// Many functions have their address taken by the virtual function table for
31// the object they belong to. However, as long as it's only used for a lookup
32// and call, this is irrelevant, and we'd like to fold such functions.
33//
34// * switch from n^2 pair-wise comparisons to an n-way comparison for each
35// bucket.
36//
37// * be smarter about bitcasts.
38//
39// In order to fold functions, we will sometimes add either bitcast instructions
40// or bitcast constant expressions. Unfortunately, this can confound further
41// analysis since the two functions differ where one has a bitcast and the
42// other doesn't. We should learn to look through bitcasts.
43//
44//===----------------------------------------------------------------------===//
45
46#define DEBUG_TYPE "mergefunc"
47#include "llvm/Transforms/IPO.h"
48#include "llvm/ADT/DenseSet.h"
49#include "llvm/ADT/FoldingSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/ADT/STLExtras.h"
53#include "llvm/Constants.h"
54#include "llvm/InlineAsm.h"
55#include "llvm/Instructions.h"
56#include "llvm/LLVMContext.h"
57#include "llvm/Module.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/CallSite.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/IRBuilder.h"
63#include "llvm/Support/ValueHandle.h"
64#include "llvm/Support/raw_ostream.h"
65#include "llvm/Target/TargetData.h"
66using namespace llvm;
67
68STATISTIC(NumFunctionsMerged, "Number of functions merged");
69
70namespace {
71  /// MergeFunctions finds functions which will generate identical machine code,
72  /// by considering all pointer types to be equivalent. Once identified,
73  /// MergeFunctions will fold them by replacing a call to one to a call to a
74  /// bitcast of the other.
75  ///
76  class MergeFunctions : public ModulePass {
77  public:
78    static char ID;
79    MergeFunctions() : ModulePass(ID) {}
80
81    bool runOnModule(Module &M);
82
83  private:
84    /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G
85    /// is deleted.
86    void MergeTwoFunctions(Function *F, Function *G) const;
87
88    /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also
89    /// replace direct uses of G with bitcast(F).
90    void WriteThunk(Function *F, Function *G) const;
91
92    TargetData *TD;
93  };
94}
95
96char MergeFunctions::ID = 0;
97INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false);
98
99ModulePass *llvm::createMergeFunctionsPass() {
100  return new MergeFunctions();
101}
102
103namespace {
104/// FunctionComparator - Compares two functions to determine whether or not
105/// they will generate machine code with the same behaviour. TargetData is
106/// used if available. The comparator always fails conservatively (erring on the
107/// side of claiming that two functions are different).
108class FunctionComparator {
109public:
110  FunctionComparator(const TargetData *TD, const Function *F1,
111                     const Function *F2)
112    : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {}
113
114  /// Compare - test whether the two functions have equivalent behaviour.
115  bool Compare();
116
117private:
118  /// Compare - test whether two basic blocks have equivalent behaviour.
119  bool Compare(const BasicBlock *BB1, const BasicBlock *BB2);
120
121  /// Enumerate - Assign or look up previously assigned numbers for the two
122  /// values, and return whether the numbers are equal. Numbers are assigned in
123  /// the order visited.
124  bool Enumerate(const Value *V1, const Value *V2);
125
126  /// isEquivalentOperation - Compare two Instructions for equivalence, similar
127  /// to Instruction::isSameOperationAs but with modifications to the type
128  /// comparison.
129  bool isEquivalentOperation(const Instruction *I1,
130                             const Instruction *I2) const;
131
132  /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic.
133  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
134  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
135                       const GetElementPtrInst *GEP2) {
136    return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
137  }
138
139  /// isEquivalentType - Compare two Types, treating all pointer types as equal.
140  bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
141
142  // The two functions undergoing comparison.
143  const Function *F1, *F2;
144
145  const TargetData *TD;
146
147  typedef DenseMap<const Value *, unsigned long> IDMap;
148  IDMap Map1, Map2;
149  unsigned long IDMap1Count, IDMap2Count;
150};
151}
152
153/// isEquivalentType - any two pointers in the same address space are
154/// equivalent. Otherwise, standard type equivalence rules apply.
155bool FunctionComparator::isEquivalentType(const Type *Ty1,
156                                          const Type *Ty2) const {
157  if (Ty1 == Ty2)
158    return true;
159  if (Ty1->getTypeID() != Ty2->getTypeID())
160    return false;
161
162  switch(Ty1->getTypeID()) {
163  default:
164    llvm_unreachable("Unknown type!");
165    // Fall through in Release mode.
166  case Type::IntegerTyID:
167  case Type::OpaqueTyID:
168    // Ty1 == Ty2 would have returned true earlier.
169    return false;
170
171  case Type::VoidTyID:
172  case Type::FloatTyID:
173  case Type::DoubleTyID:
174  case Type::X86_FP80TyID:
175  case Type::FP128TyID:
176  case Type::PPC_FP128TyID:
177  case Type::LabelTyID:
178  case Type::MetadataTyID:
179    return true;
180
181  case Type::PointerTyID: {
182    const PointerType *PTy1 = cast<PointerType>(Ty1);
183    const PointerType *PTy2 = cast<PointerType>(Ty2);
184    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
185  }
186
187  case Type::StructTyID: {
188    const StructType *STy1 = cast<StructType>(Ty1);
189    const StructType *STy2 = cast<StructType>(Ty2);
190    if (STy1->getNumElements() != STy2->getNumElements())
191      return false;
192
193    if (STy1->isPacked() != STy2->isPacked())
194      return false;
195
196    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
197      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
198        return false;
199    }
200    return true;
201  }
202
203  case Type::FunctionTyID: {
204    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
205    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
206    if (FTy1->getNumParams() != FTy2->getNumParams() ||
207        FTy1->isVarArg() != FTy2->isVarArg())
208      return false;
209
210    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
211      return false;
212
213    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
214      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
215        return false;
216    }
217    return true;
218  }
219
220  case Type::ArrayTyID: {
221    const ArrayType *ATy1 = cast<ArrayType>(Ty1);
222    const ArrayType *ATy2 = cast<ArrayType>(Ty2);
223    return ATy1->getNumElements() == ATy2->getNumElements() &&
224           isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
225  }
226
227  case Type::VectorTyID: {
228    const VectorType *VTy1 = cast<VectorType>(Ty1);
229    const VectorType *VTy2 = cast<VectorType>(Ty2);
230    return VTy1->getNumElements() == VTy2->getNumElements() &&
231           isEquivalentType(VTy1->getElementType(), VTy2->getElementType());
232  }
233  }
234}
235
236/// isEquivalentOperation - determine whether the two operations are the same
237/// except that pointer-to-A and pointer-to-B are equivalent. This should be
238/// kept in sync with Instruction::isSameOperationAs.
239bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
240                                               const Instruction *I2) const {
241  if (I1->getOpcode() != I2->getOpcode() ||
242      I1->getNumOperands() != I2->getNumOperands() ||
243      !isEquivalentType(I1->getType(), I2->getType()) ||
244      !I1->hasSameSubclassOptionalData(I2))
245    return false;
246
247  // We have two instructions of identical opcode and #operands.  Check to see
248  // if all operands are the same type
249  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
250    if (!isEquivalentType(I1->getOperand(i)->getType(),
251                          I2->getOperand(i)->getType()))
252      return false;
253
254  // Check special state that is a part of some instructions.
255  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
256    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
257           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
258  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
259    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
260           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
261  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
262    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
263  if (const CallInst *CI = dyn_cast<CallInst>(I1))
264    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
265           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
266           CI->getAttributes().getRawPointer() ==
267             cast<CallInst>(I2)->getAttributes().getRawPointer();
268  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
269    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
270           CI->getAttributes().getRawPointer() ==
271             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
272  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
273    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
274      return false;
275    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
276      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
277        return false;
278    return true;
279  }
280  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
281    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
282      return false;
283    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
284      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
285        return false;
286    return true;
287  }
288
289  return true;
290}
291
292/// isEquivalentGEP - determine whether two GEP operations perform the same
293/// underlying arithmetic.
294bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
295                                         const GEPOperator *GEP2) {
296  // When we have target data, we can reduce the GEP down to the value in bytes
297  // added to the address.
298  if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
299    SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
300    SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
301    uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
302                                            Indices1.data(), Indices1.size());
303    uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
304                                            Indices2.data(), Indices2.size());
305    return Offset1 == Offset2;
306  }
307
308  if (GEP1->getPointerOperand()->getType() !=
309      GEP2->getPointerOperand()->getType())
310    return false;
311
312  if (GEP1->getNumOperands() != GEP2->getNumOperands())
313    return false;
314
315  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
316    if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
317      return false;
318  }
319
320  return true;
321}
322
323/// Enumerate - Compare two values used by the two functions under pair-wise
324/// comparison. If this is the first time the values are seen, they're added to
325/// the mapping so that we will detect mismatches on next use.
326bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) {
327  // Check for function @f1 referring to itself and function @f2 referring to
328  // itself, or referring to each other, or both referring to either of them.
329  // They're all equivalent if the two functions are otherwise equivalent.
330  if (V1 == F1 && V2 == F2)
331    return true;
332  if (V1 == F2 && V2 == F1)
333    return true;
334
335  // TODO: constant expressions with GEP or references to F1 or F2.
336  if (isa<Constant>(V1))
337    return V1 == V2;
338
339  if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) {
340    const InlineAsm *IA1 = cast<InlineAsm>(V1);
341    const InlineAsm *IA2 = cast<InlineAsm>(V2);
342    return IA1->getAsmString() == IA2->getAsmString() &&
343           IA1->getConstraintString() == IA2->getConstraintString();
344  }
345
346  unsigned long &ID1 = Map1[V1];
347  if (!ID1)
348    ID1 = ++IDMap1Count;
349
350  unsigned long &ID2 = Map2[V2];
351  if (!ID2)
352    ID2 = ++IDMap2Count;
353
354  return ID1 == ID2;
355}
356
357/// Compare - test whether two basic blocks have equivalent behaviour.
358bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) {
359  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
360  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
361
362  do {
363    if (!Enumerate(F1I, F2I))
364      return false;
365
366    if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
367      const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
368      if (!GEP2)
369        return false;
370
371      if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
372        return false;
373
374      if (!isEquivalentGEP(GEP1, GEP2))
375        return false;
376    } else {
377      if (!isEquivalentOperation(F1I, F2I))
378        return false;
379
380      assert(F1I->getNumOperands() == F2I->getNumOperands());
381      for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
382        Value *OpF1 = F1I->getOperand(i);
383        Value *OpF2 = F2I->getOperand(i);
384
385        if (!Enumerate(OpF1, OpF2))
386          return false;
387
388        if (OpF1->getValueID() != OpF2->getValueID() ||
389            !isEquivalentType(OpF1->getType(), OpF2->getType()))
390          return false;
391      }
392    }
393
394    ++F1I, ++F2I;
395  } while (F1I != F1E && F2I != F2E);
396
397  return F1I == F1E && F2I == F2E;
398}
399
400/// Compare - test whether the two functions have equivalent behaviour.
401bool FunctionComparator::Compare() {
402  // We need to recheck everything, but check the things that weren't included
403  // in the hash first.
404
405  if (F1->getAttributes() != F2->getAttributes())
406    return false;
407
408  if (F1->hasGC() != F2->hasGC())
409    return false;
410
411  if (F1->hasGC() && F1->getGC() != F2->getGC())
412    return false;
413
414  if (F1->hasSection() != F2->hasSection())
415    return false;
416
417  if (F1->hasSection() && F1->getSection() != F2->getSection())
418    return false;
419
420  if (F1->isVarArg() != F2->isVarArg())
421    return false;
422
423  // TODO: if it's internal and only used in direct calls, we could handle this
424  // case too.
425  if (F1->getCallingConv() != F2->getCallingConv())
426    return false;
427
428  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
429    return false;
430
431  assert(F1->arg_size() == F2->arg_size() &&
432         "Identical functions have a different number of args.");
433
434  // Visit the arguments so that they get enumerated in the order they're
435  // passed in.
436  for (Function::const_arg_iterator f1i = F1->arg_begin(),
437         f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
438    if (!Enumerate(f1i, f2i))
439      llvm_unreachable("Arguments repeat");
440  }
441
442  // We do a CFG-ordered walk since the actual ordering of the blocks in the
443  // linked list is immaterial. Our walk starts at the entry block for both
444  // functions, then takes each block from each terminator in order. As an
445  // artifact, this also means that unreachable blocks are ignored.
446  SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
447  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
448
449  F1BBs.push_back(&F1->getEntryBlock());
450  F2BBs.push_back(&F2->getEntryBlock());
451
452  VisitedBBs.insert(F1BBs[0]);
453  while (!F1BBs.empty()) {
454    const BasicBlock *F1BB = F1BBs.pop_back_val();
455    const BasicBlock *F2BB = F2BBs.pop_back_val();
456
457    if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB))
458      return false;
459
460    const TerminatorInst *F1TI = F1BB->getTerminator();
461    const TerminatorInst *F2TI = F2BB->getTerminator();
462
463    assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
464    for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
465      if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
466        continue;
467
468      F1BBs.push_back(F1TI->getSuccessor(i));
469      F2BBs.push_back(F2TI->getSuccessor(i));
470    }
471  }
472  return true;
473}
474
475/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace
476/// direct uses of G with bitcast(F).
477void MergeFunctions::WriteThunk(Function *F, Function *G) const {
478  if (!G->mayBeOverridden()) {
479    // Redirect direct callers of G to F.
480    Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
481    for (Value::use_iterator UI = G->use_begin(), UE = G->use_end();
482         UI != UE;) {
483      Value::use_iterator TheIter = UI;
484      ++UI;
485      CallSite CS(*TheIter);
486      if (CS && CS.isCallee(TheIter))
487        TheIter.getUse().set(BitcastF);
488    }
489  }
490
491  // If G was internal then we may have replaced all uses if G with F. If so,
492  // stop here and delete G. There's no need for a thunk.
493  if (G->hasLocalLinkage() && G->use_empty()) {
494    G->eraseFromParent();
495    return;
496  }
497
498  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
499                                    G->getParent());
500  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
501  IRBuilder<false> Builder(BB);
502
503  SmallVector<Value *, 16> Args;
504  unsigned i = 0;
505  const FunctionType *FFTy = F->getFunctionType();
506  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
507       AI != AE; ++AI) {
508    Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
509    ++i;
510  }
511
512  CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
513  CI->setTailCall();
514  CI->setCallingConv(F->getCallingConv());
515  if (NewG->getReturnType()->isVoidTy()) {
516    Builder.CreateRetVoid();
517  } else {
518    Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
519  }
520
521  NewG->copyAttributesFrom(G);
522  NewG->takeName(G);
523  G->replaceAllUsesWith(NewG);
524  G->eraseFromParent();
525}
526
527/// MergeTwoFunctions - Merge two equivalent functions. Upon completion,
528/// Function G is deleted.
529void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const {
530  if (F->isWeakForLinker()) {
531    assert(G->isWeakForLinker());
532
533    // Make them both thunks to the same internal function.
534    Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
535                                   F->getParent());
536    H->copyAttributesFrom(F);
537    H->takeName(F);
538    F->replaceAllUsesWith(H);
539
540    unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
541
542    WriteThunk(F, G);
543    WriteThunk(F, H);
544
545    F->setAlignment(MaxAlignment);
546    F->setLinkage(GlobalValue::InternalLinkage);
547  } else {
548    WriteThunk(F, G);
549  }
550
551  ++NumFunctionsMerged;
552}
553
554static unsigned ProfileFunction(const Function *F) {
555  const FunctionType *FTy = F->getFunctionType();
556
557  FoldingSetNodeID ID;
558  ID.AddInteger(F->size());
559  ID.AddInteger(F->getCallingConv());
560  ID.AddBoolean(F->hasGC());
561  ID.AddBoolean(FTy->isVarArg());
562  ID.AddInteger(FTy->getReturnType()->getTypeID());
563  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
564    ID.AddInteger(FTy->getParamType(i)->getTypeID());
565  return ID.ComputeHash();
566}
567
568class ComparableFunction {
569public:
570  ComparableFunction(Function *Func, TargetData *TD)
571    : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {}
572
573  AssertingVH<Function> const Func;
574  const unsigned Hash;
575  TargetData * const TD;
576};
577
578struct MergeFunctionsEqualityInfo {
579  static ComparableFunction *getEmptyKey() {
580    return reinterpret_cast<ComparableFunction*>(0);
581  }
582  static ComparableFunction *getTombstoneKey() {
583    return reinterpret_cast<ComparableFunction*>(-1);
584  }
585  static unsigned getHashValue(const ComparableFunction *CF) {
586    return CF->Hash;
587  }
588  static bool isEqual(const ComparableFunction *LHS,
589                      const ComparableFunction *RHS) {
590    if (LHS == RHS)
591      return true;
592    if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
593        RHS == getEmptyKey() || RHS == getTombstoneKey())
594      return false;
595    assert(LHS->TD == RHS->TD && "Comparing functions for different targets");
596    return FunctionComparator(LHS->TD, LHS->Func, RHS->Func).Compare();
597  }
598};
599
600bool MergeFunctions::runOnModule(Module &M) {
601  bool Changed = false;
602
603  TD = getAnalysisIfAvailable<TargetData>();
604
605  typedef DenseSet<ComparableFunction *, MergeFunctionsEqualityInfo> FnSetType;
606  FnSetType FnSet;
607  for (Module::iterator F = M.begin(), E = M.end(); F != E;) {
608    if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
609      ++F;
610      continue;
611    }
612
613    ComparableFunction *NewF = new ComparableFunction(F, TD);
614    ++F;
615    std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
616    if (!Result.second) {
617      ComparableFunction *&OldF = *Result.first;
618      assert(OldF && "Expected a hash collision");
619
620      // NewF will be deleted in favour of OldF unless NewF is strong and OldF
621      // is weak in which case swap them to keep the strong definition.
622
623      if (OldF->Func->isWeakForLinker() && !NewF->Func->isWeakForLinker())
624        std::swap(OldF, NewF);
625
626      DEBUG(dbgs() << "  " << OldF->Func->getName() << " == "
627                   << NewF->Func->getName() << '\n');
628
629      Changed = true;
630      Function *DeleteF = NewF->Func;
631      delete NewF;
632      MergeTwoFunctions(OldF->Func, DeleteF);
633    }
634  }
635
636  DeleteContainerPointers(FnSet);
637  return Changed;
638}
639