MergeFunctions.cpp revision fc00c4a2407c1b30a19fef9ec0a1ae00f7f7472d
1//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass looks for equivalent functions that are mergable and folds them.
11//
12// A hash is computed from the function, based on its type and number of
13// basic blocks.
14//
15// Once all hashes are computed, we perform an expensive equality comparison
16// on each function pair. This takes n^2/2 comparisons per bucket, so it's
17// important that the hash function be high quality. The equality comparison
18// iterates through each instruction in each basic block.
19//
20// When a match is found, the functions are folded. We can only fold two
21// functions when we know that the definition of one of them is not
22// overridable.
23//
24//===----------------------------------------------------------------------===//
25//
26// Future work:
27//
28// * fold vector<T*>::push_back and vector<S*>::push_back.
29//
30// These two functions have different types, but in a way that doesn't matter
31// to us. As long as we never see an S or T itself, using S* and S** is the
32// same as using a T* and T**.
33//
34// * virtual functions.
35//
36// Many functions have their address taken by the virtual function table for
37// the object they belong to. However, as long as it's only used for a lookup
38// and call, this is irrelevant, and we'd like to fold such implementations.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "mergefunc"
43#include "llvm/Transforms/IPO.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/FoldingSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Constants.h"
48#include "llvm/InlineAsm.h"
49#include "llvm/Instructions.h"
50#include "llvm/LLVMContext.h"
51#include "llvm/Module.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/CallSite.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/ErrorHandling.h"
57#include "llvm/Support/raw_ostream.h"
58#include <map>
59#include <vector>
60using namespace llvm;
61
62STATISTIC(NumFunctionsMerged, "Number of functions merged");
63
64namespace {
65  struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
66    static char ID; // Pass identification, replacement for typeid
67    MergeFunctions() : ModulePass(&ID) {}
68
69    bool runOnModule(Module &M);
70  };
71}
72
73char MergeFunctions::ID = 0;
74static RegisterPass<MergeFunctions>
75X("mergefunc", "Merge Functions");
76
77ModulePass *llvm::createMergeFunctionsPass() {
78  return new MergeFunctions();
79}
80
81// ===----------------------------------------------------------------------===
82// Comparison of functions
83// ===----------------------------------------------------------------------===
84
85static unsigned long hash(const Function *F) {
86  const FunctionType *FTy = F->getFunctionType();
87
88  FoldingSetNodeID ID;
89  ID.AddInteger(F->size());
90  ID.AddInteger(F->getCallingConv());
91  ID.AddBoolean(F->hasGC());
92  ID.AddBoolean(FTy->isVarArg());
93  ID.AddInteger(FTy->getReturnType()->getTypeID());
94  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
95    ID.AddInteger(FTy->getParamType(i)->getTypeID());
96  return ID.ComputeHash();
97}
98
99/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
100/// walking the chain of cast operands. Otherwise, returns the argument.
101static Value* IgnoreBitcasts(Value *V) {
102  while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
103    V = BC->getOperand(0);
104
105  return V;
106}
107
108/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
109/// type equivalence rules apply.
110static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
111  if (Ty1 == Ty2)
112    return true;
113  if (Ty1->getTypeID() != Ty2->getTypeID())
114    return false;
115
116  switch(Ty1->getTypeID()) {
117  case Type::VoidTyID:
118  case Type::FloatTyID:
119  case Type::DoubleTyID:
120  case Type::X86_FP80TyID:
121  case Type::FP128TyID:
122  case Type::PPC_FP128TyID:
123  case Type::LabelTyID:
124  case Type::MetadataTyID:
125    return true;
126
127  case Type::IntegerTyID:
128  case Type::OpaqueTyID:
129    // Ty1 == Ty2 would have returned true earlier.
130    return false;
131
132  default:
133    llvm_unreachable("Unknown type!");
134    return false;
135
136  case Type::PointerTyID: {
137    const PointerType *PTy1 = cast<PointerType>(Ty1);
138    const PointerType *PTy2 = cast<PointerType>(Ty2);
139    return PTy1->getAddressSpace() == PTy2->getAddressSpace();
140  }
141
142  case Type::StructTyID: {
143    const StructType *STy1 = cast<StructType>(Ty1);
144    const StructType *STy2 = cast<StructType>(Ty2);
145    if (STy1->getNumElements() != STy2->getNumElements())
146      return false;
147
148    if (STy1->isPacked() != STy2->isPacked())
149      return false;
150
151    for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
152      if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
153        return false;
154    }
155    return true;
156  }
157
158  case Type::FunctionTyID: {
159    const FunctionType *FTy1 = cast<FunctionType>(Ty1);
160    const FunctionType *FTy2 = cast<FunctionType>(Ty2);
161    if (FTy1->getNumParams() != FTy2->getNumParams() ||
162        FTy1->isVarArg() != FTy2->isVarArg())
163      return false;
164
165    if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
166      return false;
167
168    for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
169      if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
170        return false;
171    }
172    return true;
173  }
174
175  case Type::ArrayTyID:
176  case Type::VectorTyID: {
177    const SequentialType *STy1 = cast<SequentialType>(Ty1);
178    const SequentialType *STy2 = cast<SequentialType>(Ty2);
179    return isEquivalentType(STy1->getElementType(), STy2->getElementType());
180  }
181  }
182}
183
184/// isEquivalentOperation - determine whether the two operations are the same
185/// except that pointer-to-A and pointer-to-B are equivalent. This should be
186/// kept in sync with Instruction::isSameOperationAs.
187static bool
188isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
189  if (I1->getOpcode() != I2->getOpcode() ||
190      I1->getNumOperands() != I2->getNumOperands() ||
191      !isEquivalentType(I1->getType(), I2->getType()) ||
192      !I1->hasSameSubclassOptionalData(I2))
193    return false;
194
195  // We have two instructions of identical opcode and #operands.  Check to see
196  // if all operands are the same type
197  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
198    if (!isEquivalentType(I1->getOperand(i)->getType(),
199                          I2->getOperand(i)->getType()))
200      return false;
201
202  // Check special state that is a part of some instructions.
203  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
204    return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
205           LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
206  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
207    return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
208           SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
209  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
210    return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
211  if (const CallInst *CI = dyn_cast<CallInst>(I1))
212    return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
213           CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
214           CI->getAttributes().getRawPointer() ==
215             cast<CallInst>(I2)->getAttributes().getRawPointer();
216  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
217    return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
218           CI->getAttributes().getRawPointer() ==
219             cast<InvokeInst>(I2)->getAttributes().getRawPointer();
220  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
221    if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
222      return false;
223    for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
224      if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
225        return false;
226    return true;
227  }
228  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
229    if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
230      return false;
231    for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
232      if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
233        return false;
234    return true;
235  }
236
237  return true;
238}
239
240static bool compare(const Value *V, const Value *U) {
241  assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
242         "Must not compare basic blocks.");
243
244  assert(isEquivalentType(V->getType(), U->getType()) &&
245        "Two of the same operation have operands of different type.");
246
247  // TODO: If the constant is an expression of F, we should accept that it's
248  // equal to the same expression in terms of G.
249  if (isa<Constant>(V))
250    return V == U;
251
252  // The caller has ensured that ValueMap[V] != U. Since Arguments are
253  // pre-loaded into the ValueMap, and Instructions are added as we go, we know
254  // that this can only be a mis-match.
255  if (isa<Instruction>(V) || isa<Argument>(V))
256    return false;
257
258  if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
259    const InlineAsm *IAF = cast<InlineAsm>(V);
260    const InlineAsm *IAG = cast<InlineAsm>(U);
261    return IAF->getAsmString() == IAG->getAsmString() &&
262           IAF->getConstraintString() == IAG->getConstraintString();
263  }
264
265  return false;
266}
267
268static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
269                   DenseMap<const Value *, const Value *> &ValueMap,
270                   DenseMap<const Value *, const Value *> &SpeculationMap) {
271  // Speculatively add it anyways. If it's false, we'll notice a difference
272  // later, and this won't matter.
273  ValueMap[BB1] = BB2;
274
275  BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
276  BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
277
278  do {
279    if (isa<BitCastInst>(FI)) {
280      ++FI;
281      continue;
282    }
283    if (isa<BitCastInst>(GI)) {
284      ++GI;
285      continue;
286    }
287
288    if (!isEquivalentOperation(FI, GI))
289      return false;
290
291    if (isa<GetElementPtrInst>(FI)) {
292      const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
293      const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
294      if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
295        // It's effectively a bitcast.
296        ++FI, ++GI;
297        continue;
298      }
299
300      // TODO: we only really care about the elements before the index
301      if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
302        return false;
303    }
304
305    if (ValueMap[FI] == GI) {
306      ++FI, ++GI;
307      continue;
308    }
309
310    if (ValueMap[FI] != NULL)
311      return false;
312
313    for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
314      Value *OpF = IgnoreBitcasts(FI->getOperand(i));
315      Value *OpG = IgnoreBitcasts(GI->getOperand(i));
316
317      if (ValueMap[OpF] == OpG)
318        continue;
319
320      if (ValueMap[OpF] != NULL)
321        return false;
322
323      if (OpF->getValueID() != OpG->getValueID() ||
324          !isEquivalentType(OpF->getType(), OpG->getType()))
325        return false;
326
327      if (isa<PHINode>(FI)) {
328        if (SpeculationMap[OpF] == NULL)
329          SpeculationMap[OpF] = OpG;
330        else if (SpeculationMap[OpF] != OpG)
331          return false;
332        continue;
333      } else if (isa<BasicBlock>(OpF)) {
334        assert(isa<TerminatorInst>(FI) &&
335               "BasicBlock referenced by non-Terminator non-PHI");
336        // This call changes the ValueMap, hence we can't use
337        // Value *& = ValueMap[...]
338        if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
339                    SpeculationMap))
340          return false;
341      } else {
342        if (!compare(OpF, OpG))
343          return false;
344      }
345
346      ValueMap[OpF] = OpG;
347    }
348
349    ValueMap[FI] = GI;
350    ++FI, ++GI;
351  } while (FI != FE && GI != GE);
352
353  return FI == FE && GI == GE;
354}
355
356static bool equals(const Function *F, const Function *G) {
357  // We need to recheck everything, but check the things that weren't included
358  // in the hash first.
359
360  if (F->getAttributes() != G->getAttributes())
361    return false;
362
363  if (F->hasGC() != G->hasGC())
364    return false;
365
366  if (F->hasGC() && F->getGC() != G->getGC())
367    return false;
368
369  if (F->hasSection() != G->hasSection())
370    return false;
371
372  if (F->hasSection() && F->getSection() != G->getSection())
373    return false;
374
375  if (F->isVarArg() != G->isVarArg())
376    return false;
377
378  // TODO: if it's internal and only used in direct calls, we could handle this
379  // case too.
380  if (F->getCallingConv() != G->getCallingConv())
381    return false;
382
383  if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
384    return false;
385
386  DenseMap<const Value *, const Value *> ValueMap;
387  DenseMap<const Value *, const Value *> SpeculationMap;
388  ValueMap[F] = G;
389
390  assert(F->arg_size() == G->arg_size() &&
391         "Identical functions have a different number of args.");
392
393  for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
394         fe = F->arg_end(); fi != fe; ++fi, ++gi)
395    ValueMap[fi] = gi;
396
397  if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
398              SpeculationMap))
399    return false;
400
401  for (DenseMap<const Value *, const Value *>::iterator
402         I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
403    if (ValueMap[I->first] != I->second)
404      return false;
405  }
406
407  return true;
408}
409
410// ===----------------------------------------------------------------------===
411// Folding of functions
412// ===----------------------------------------------------------------------===
413
414// Cases:
415// * F is external strong, G is external strong:
416//   turn G into a thunk to F    (1)
417// * F is external strong, G is external weak:
418//   turn G into a thunk to F    (1)
419// * F is external weak, G is external weak:
420//   unfoldable
421// * F is external strong, G is internal:
422//   address of G taken:
423//     turn G into a thunk to F  (1)
424//   address of G not taken:
425//     make G an alias to F      (2)
426// * F is internal, G is external weak
427//   address of F is taken:
428//     turn G into a thunk to F  (1)
429//   address of F is not taken:
430//     make G an alias of F      (2)
431// * F is internal, G is internal:
432//   address of F and G are taken:
433//     turn G into a thunk to F  (1)
434//   address of G is not taken:
435//     make G an alias to F      (2)
436//
437// alias requires linkage == (external,local,weak) fallback to creating a thunk
438// external means 'externally visible' linkage != (internal,private)
439// internal means linkage == (internal,private)
440// weak means linkage mayBeOverridable
441// being external implies that the address is taken
442//
443// 1. turn G into a thunk to F
444// 2. make G an alias to F
445
446enum LinkageCategory {
447  ExternalStrong,
448  ExternalWeak,
449  Internal
450};
451
452static LinkageCategory categorize(const Function *F) {
453  switch (F->getLinkage()) {
454  case GlobalValue::InternalLinkage:
455  case GlobalValue::PrivateLinkage:
456  case GlobalValue::LinkerPrivateLinkage:
457    return Internal;
458
459  case GlobalValue::WeakAnyLinkage:
460  case GlobalValue::WeakODRLinkage:
461  case GlobalValue::ExternalWeakLinkage:
462    return ExternalWeak;
463
464  case GlobalValue::ExternalLinkage:
465  case GlobalValue::AvailableExternallyLinkage:
466  case GlobalValue::LinkOnceAnyLinkage:
467  case GlobalValue::LinkOnceODRLinkage:
468  case GlobalValue::AppendingLinkage:
469  case GlobalValue::DLLImportLinkage:
470  case GlobalValue::DLLExportLinkage:
471  case GlobalValue::GhostLinkage:
472  case GlobalValue::CommonLinkage:
473    return ExternalStrong;
474  }
475
476  llvm_unreachable("Unknown LinkageType.");
477  return ExternalWeak;
478}
479
480static void ThunkGToF(Function *F, Function *G) {
481  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
482                                    G->getParent());
483  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
484
485  std::vector<Value *> Args;
486  unsigned i = 0;
487  const FunctionType *FFTy = F->getFunctionType();
488  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
489       AI != AE; ++AI) {
490    if (FFTy->getParamType(i) == AI->getType())
491      Args.push_back(AI);
492    else {
493      Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
494      Args.push_back(BCI);
495    }
496    ++i;
497  }
498
499  CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
500  CI->setTailCall();
501  CI->setCallingConv(F->getCallingConv());
502  if (NewG->getReturnType() == Type::getVoidTy(F->getContext())) {
503    ReturnInst::Create(F->getContext(), BB);
504  } else if (CI->getType() != NewG->getReturnType()) {
505    Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
506    ReturnInst::Create(F->getContext(), BCI, BB);
507  } else {
508    ReturnInst::Create(F->getContext(), CI, BB);
509  }
510
511  NewG->copyAttributesFrom(G);
512  NewG->takeName(G);
513  G->replaceAllUsesWith(NewG);
514  G->eraseFromParent();
515
516  // TODO: look at direct callers to G and make them all direct callers to F.
517}
518
519static void AliasGToF(Function *F, Function *G) {
520  if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
521    return ThunkGToF(F, G);
522
523  GlobalAlias *GA = new GlobalAlias(
524    G->getType(), G->getLinkage(), "",
525    ConstantExpr::getBitCast(F, G->getType()), G->getParent());
526  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
527  GA->takeName(G);
528  GA->setVisibility(G->getVisibility());
529  G->replaceAllUsesWith(GA);
530  G->eraseFromParent();
531}
532
533static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
534  Function *F = FnVec[i];
535  Function *G = FnVec[j];
536
537  LinkageCategory catF = categorize(F);
538  LinkageCategory catG = categorize(G);
539
540  if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
541    std::swap(FnVec[i], FnVec[j]);
542    std::swap(F, G);
543    std::swap(catF, catG);
544  }
545
546  switch (catF) {
547    case ExternalStrong:
548      switch (catG) {
549        case ExternalStrong:
550        case ExternalWeak:
551          ThunkGToF(F, G);
552          break;
553        case Internal:
554          if (G->hasAddressTaken())
555            ThunkGToF(F, G);
556          else
557            AliasGToF(F, G);
558          break;
559      }
560      break;
561
562    case ExternalWeak: {
563      assert(catG == ExternalWeak);
564
565      // Make them both thunks to the same internal function.
566      F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
567      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
568                                     F->getParent());
569      H->copyAttributesFrom(F);
570      H->takeName(F);
571      F->replaceAllUsesWith(H);
572
573      ThunkGToF(F, G);
574      ThunkGToF(F, H);
575
576      F->setLinkage(GlobalValue::InternalLinkage);
577    } break;
578
579    case Internal:
580      switch (catG) {
581        case ExternalStrong:
582          llvm_unreachable(0);
583          // fall-through
584        case ExternalWeak:
585	  if (F->hasAddressTaken())
586            ThunkGToF(F, G);
587          else
588            AliasGToF(F, G);
589	  break;
590        case Internal: {
591          bool addrTakenF = F->hasAddressTaken();
592          bool addrTakenG = G->hasAddressTaken();
593          if (!addrTakenF && addrTakenG) {
594            std::swap(FnVec[i], FnVec[j]);
595            std::swap(F, G);
596	    std::swap(addrTakenF, addrTakenG);
597	  }
598
599          if (addrTakenF && addrTakenG) {
600            ThunkGToF(F, G);
601          } else {
602            assert(!addrTakenG);
603            AliasGToF(F, G);
604          }
605	} break;
606      }
607      break;
608  }
609
610  ++NumFunctionsMerged;
611  return true;
612}
613
614// ===----------------------------------------------------------------------===
615// Pass definition
616// ===----------------------------------------------------------------------===
617
618bool MergeFunctions::runOnModule(Module &M) {
619  bool Changed = false;
620
621  std::map<unsigned long, std::vector<Function *> > FnMap;
622
623  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
624    if (F->isDeclaration() || F->isIntrinsic())
625      continue;
626
627    FnMap[hash(F)].push_back(F);
628  }
629
630  // TODO: instead of running in a loop, we could also fold functions in
631  // callgraph order. Constructing the CFG probably isn't cheaper than just
632  // running in a loop, unless it happened to already be available.
633
634  bool LocalChanged;
635  do {
636    LocalChanged = false;
637    DEBUG(errs() << "size: " << FnMap.size() << "\n");
638    for (std::map<unsigned long, std::vector<Function *> >::iterator
639         I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
640      std::vector<Function *> &FnVec = I->second;
641      DEBUG(errs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
642
643      for (int i = 0, e = FnVec.size(); i != e; ++i) {
644        for (int j = i + 1; j != e; ++j) {
645          bool isEqual = equals(FnVec[i], FnVec[j]);
646
647          DEBUG(errs() << "  " << FnVec[i]->getName()
648                << (isEqual ? " == " : " != ")
649                << FnVec[j]->getName() << "\n");
650
651          if (isEqual) {
652            if (fold(FnVec, i, j)) {
653              LocalChanged = true;
654              FnVec.erase(FnVec.begin() + j);
655              --j, --e;
656            }
657          }
658        }
659      }
660
661    }
662    Changed |= LocalChanged;
663  } while (LocalChanged);
664
665  return Changed;
666}
667