InstCombineCasts.cpp revision 3ecfc861b4365f341c5c969b40e1afccde676e6f
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        uint64_t &Offset) {
26  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27    Offset = CI->getZExtValue();
28    Scale  = 0;
29    return ConstantInt::get(Val->getType(), 0);
30  }
31
32  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
33    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
34      if (I->getOpcode() == Instruction::Shl) {
35        // This is a value scaled by '1 << the shift amt'.
36        Scale = UINT64_C(1) << RHS->getZExtValue();
37        Offset = 0;
38        return I->getOperand(0);
39      }
40
41      if (I->getOpcode() == Instruction::Mul) {
42        // This value is scaled by 'RHS'.
43        Scale = RHS->getZExtValue();
44        Offset = 0;
45        return I->getOperand(0);
46      }
47
48      if (I->getOpcode() == Instruction::Add) {
49        // We have X+C.  Check to see if we really have (X*C2)+C1,
50        // where C1 is divisible by C2.
51        unsigned SubScale;
52        Value *SubVal =
53          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
54        Offset += RHS->getZExtValue();
55        Scale = SubScale;
56        return SubVal;
57      }
58    }
59  }
60
61  // Otherwise, we can't look past this.
62  Scale = 1;
63  Offset = 0;
64  return Val;
65}
66
67/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
68/// try to eliminate the cast by moving the type information into the alloc.
69Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
70                                                   AllocaInst &AI) {
71  // This requires TargetData to get the alloca alignment and size information.
72  if (!TD) return 0;
73
74  const PointerType *PTy = cast<PointerType>(CI.getType());
75
76  BuilderTy AllocaBuilder(*Builder);
77  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
78
79  // Get the type really allocated and the type casted to.
80  const Type *AllocElTy = AI.getAllocatedType();
81  const Type *CastElTy = PTy->getElementType();
82  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
83
84  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
85  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
86  if (CastElTyAlign < AllocElTyAlign) return 0;
87
88  // If the allocation has multiple uses, only promote it if we are strictly
89  // increasing the alignment of the resultant allocation.  If we keep it the
90  // same, we open the door to infinite loops of various kinds.
91  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
92
93  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
94  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
95  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
96
97  // See if we can satisfy the modulus by pulling a scale out of the array
98  // size argument.
99  unsigned ArraySizeScale;
100  uint64_t ArrayOffset;
101  Value *NumElements = // See if the array size is a decomposable linear expr.
102    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
103
104  // If we can now satisfy the modulus, by using a non-1 scale, we really can
105  // do the xform.
106  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
107      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
108
109  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
110  Value *Amt = 0;
111  if (Scale == 1) {
112    Amt = NumElements;
113  } else {
114    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
115    // Insert before the alloca, not before the cast.
116    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
117  }
118
119  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
120    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
121                                  Offset, true);
122    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
123  }
124
125  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
126  New->setAlignment(AI.getAlignment());
127  New->takeName(&AI);
128
129  // If the allocation has multiple real uses, insert a cast and change all
130  // things that used it to use the new cast.  This will also hack on CI, but it
131  // will die soon.
132  if (!AI.hasOneUse()) {
133    // New is the allocation instruction, pointer typed. AI is the original
134    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
135    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
136    AI.replaceAllUsesWith(NewCast);
137  }
138  return ReplaceInstUsesWith(CI, New);
139}
140
141
142
143/// EvaluateInDifferentType - Given an expression that
144/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
145/// insert the code to evaluate the expression.
146Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
147                                             bool isSigned) {
148  if (Constant *C = dyn_cast<Constant>(V)) {
149    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
150    // If we got a constantexpr back, try to simplify it with TD info.
151    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
152      C = ConstantFoldConstantExpression(CE, TD);
153    return C;
154  }
155
156  // Otherwise, it must be an instruction.
157  Instruction *I = cast<Instruction>(V);
158  Instruction *Res = 0;
159  unsigned Opc = I->getOpcode();
160  switch (Opc) {
161  case Instruction::Add:
162  case Instruction::Sub:
163  case Instruction::Mul:
164  case Instruction::And:
165  case Instruction::Or:
166  case Instruction::Xor:
167  case Instruction::AShr:
168  case Instruction::LShr:
169  case Instruction::Shl:
170  case Instruction::UDiv:
171  case Instruction::URem: {
172    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
173    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
174    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
175    break;
176  }
177  case Instruction::Trunc:
178  case Instruction::ZExt:
179  case Instruction::SExt:
180    // If the source type of the cast is the type we're trying for then we can
181    // just return the source.  There's no need to insert it because it is not
182    // new.
183    if (I->getOperand(0)->getType() == Ty)
184      return I->getOperand(0);
185
186    // Otherwise, must be the same type of cast, so just reinsert a new one.
187    // This also handles the case of zext(trunc(x)) -> zext(x).
188    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
189                                      Opc == Instruction::SExt);
190    break;
191  case Instruction::Select: {
192    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
193    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
194    Res = SelectInst::Create(I->getOperand(0), True, False);
195    break;
196  }
197  case Instruction::PHI: {
198    PHINode *OPN = cast<PHINode>(I);
199    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
200    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
201      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
202      NPN->addIncoming(V, OPN->getIncomingBlock(i));
203    }
204    Res = NPN;
205    break;
206  }
207  default:
208    // TODO: Can handle more cases here.
209    llvm_unreachable("Unreachable!");
210    break;
211  }
212
213  Res->takeName(I);
214  return InsertNewInstBefore(Res, *I);
215}
216
217
218/// This function is a wrapper around CastInst::isEliminableCastPair. It
219/// simply extracts arguments and returns what that function returns.
220static Instruction::CastOps
221isEliminableCastPair(
222  const CastInst *CI, ///< The first cast instruction
223  unsigned opcode,       ///< The opcode of the second cast instruction
224  const Type *DstTy,     ///< The target type for the second cast instruction
225  TargetData *TD         ///< The target data for pointer size
226) {
227
228  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
229  const Type *MidTy = CI->getType();                  // B from above
230
231  // Get the opcodes of the two Cast instructions
232  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
233  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
234
235  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
236                                                DstTy,
237                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
238
239  // We don't want to form an inttoptr or ptrtoint that converts to an integer
240  // type that differs from the pointer size.
241  if ((Res == Instruction::IntToPtr &&
242          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
243      (Res == Instruction::PtrToInt &&
244          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
245    Res = 0;
246
247  return Instruction::CastOps(Res);
248}
249
250/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
251/// results in any code being generated and is interesting to optimize out. If
252/// the cast can be eliminated by some other simple transformation, we prefer
253/// to do the simplification first.
254bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
255                                      const Type *Ty) {
256  // Noop casts and casts of constants should be eliminated trivially.
257  if (V->getType() == Ty || isa<Constant>(V)) return false;
258
259  // If this is another cast that can be eliminated, we prefer to have it
260  // eliminated.
261  if (const CastInst *CI = dyn_cast<CastInst>(V))
262    if (isEliminableCastPair(CI, opc, Ty, TD))
263      return false;
264
265  // If this is a vector sext from a compare, then we don't want to break the
266  // idiom where each element of the extended vector is either zero or all ones.
267  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
268    return false;
269
270  return true;
271}
272
273
274/// @brief Implement the transforms common to all CastInst visitors.
275Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
276  Value *Src = CI.getOperand(0);
277
278  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
279  // eliminate it now.
280  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
281    if (Instruction::CastOps opc =
282        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
283      // The first cast (CSrc) is eliminable so we need to fix up or replace
284      // the second cast (CI). CSrc will then have a good chance of being dead.
285      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
286    }
287  }
288
289  // If we are casting a select then fold the cast into the select
290  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
291    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
292      return NV;
293
294  // If we are casting a PHI then fold the cast into the PHI
295  if (isa<PHINode>(Src)) {
296    // We don't do this if this would create a PHI node with an illegal type if
297    // it is currently legal.
298    if (!Src->getType()->isIntegerTy() ||
299        !CI.getType()->isIntegerTy() ||
300        ShouldChangeType(CI.getType(), Src->getType()))
301      if (Instruction *NV = FoldOpIntoPhi(CI))
302        return NV;
303  }
304
305  return 0;
306}
307
308/// CanEvaluateTruncated - Return true if we can evaluate the specified
309/// expression tree as type Ty instead of its larger type, and arrive with the
310/// same value.  This is used by code that tries to eliminate truncates.
311///
312/// Ty will always be a type smaller than V.  We should return true if trunc(V)
313/// can be computed by computing V in the smaller type.  If V is an instruction,
314/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
315/// makes sense if x and y can be efficiently truncated.
316///
317/// This function works on both vectors and scalars.
318///
319static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
320  // We can always evaluate constants in another type.
321  if (isa<Constant>(V))
322    return true;
323
324  Instruction *I = dyn_cast<Instruction>(V);
325  if (!I) return false;
326
327  const Type *OrigTy = V->getType();
328
329  // If this is an extension from the dest type, we can eliminate it, even if it
330  // has multiple uses.
331  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
332      I->getOperand(0)->getType() == Ty)
333    return true;
334
335  // We can't extend or shrink something that has multiple uses: doing so would
336  // require duplicating the instruction in general, which isn't profitable.
337  if (!I->hasOneUse()) return false;
338
339  unsigned Opc = I->getOpcode();
340  switch (Opc) {
341  case Instruction::Add:
342  case Instruction::Sub:
343  case Instruction::Mul:
344  case Instruction::And:
345  case Instruction::Or:
346  case Instruction::Xor:
347    // These operators can all arbitrarily be extended or truncated.
348    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
349           CanEvaluateTruncated(I->getOperand(1), Ty);
350
351  case Instruction::UDiv:
352  case Instruction::URem: {
353    // UDiv and URem can be truncated if all the truncated bits are zero.
354    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
355    uint32_t BitWidth = Ty->getScalarSizeInBits();
356    if (BitWidth < OrigBitWidth) {
357      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
358      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
359          MaskedValueIsZero(I->getOperand(1), Mask)) {
360        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
361               CanEvaluateTruncated(I->getOperand(1), Ty);
362      }
363    }
364    break;
365  }
366  case Instruction::Shl:
367    // If we are truncating the result of this SHL, and if it's a shift of a
368    // constant amount, we can always perform a SHL in a smaller type.
369    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
370      uint32_t BitWidth = Ty->getScalarSizeInBits();
371      if (CI->getLimitedValue(BitWidth) < BitWidth)
372        return CanEvaluateTruncated(I->getOperand(0), Ty);
373    }
374    break;
375  case Instruction::LShr:
376    // If this is a truncate of a logical shr, we can truncate it to a smaller
377    // lshr iff we know that the bits we would otherwise be shifting in are
378    // already zeros.
379    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
380      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
381      uint32_t BitWidth = Ty->getScalarSizeInBits();
382      if (MaskedValueIsZero(I->getOperand(0),
383            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
384          CI->getLimitedValue(BitWidth) < BitWidth) {
385        return CanEvaluateTruncated(I->getOperand(0), Ty);
386      }
387    }
388    break;
389  case Instruction::Trunc:
390    // trunc(trunc(x)) -> trunc(x)
391    return true;
392  case Instruction::ZExt:
393  case Instruction::SExt:
394    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
395    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
396    return true;
397  case Instruction::Select: {
398    SelectInst *SI = cast<SelectInst>(I);
399    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
400           CanEvaluateTruncated(SI->getFalseValue(), Ty);
401  }
402  case Instruction::PHI: {
403    // We can change a phi if we can change all operands.  Note that we never
404    // get into trouble with cyclic PHIs here because we only consider
405    // instructions with a single use.
406    PHINode *PN = cast<PHINode>(I);
407    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
408      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
409        return false;
410    return true;
411  }
412  default:
413    // TODO: Can handle more cases here.
414    break;
415  }
416
417  return false;
418}
419
420Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
421  if (Instruction *Result = commonCastTransforms(CI))
422    return Result;
423
424  // See if we can simplify any instructions used by the input whose sole
425  // purpose is to compute bits we don't care about.
426  if (SimplifyDemandedInstructionBits(CI))
427    return &CI;
428
429  Value *Src = CI.getOperand(0);
430  const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
431
432  // Attempt to truncate the entire input expression tree to the destination
433  // type.   Only do this if the dest type is a simple type, don't convert the
434  // expression tree to something weird like i93 unless the source is also
435  // strange.
436  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
437      CanEvaluateTruncated(Src, DestTy)) {
438
439    // If this cast is a truncate, evaluting in a different type always
440    // eliminates the cast, so it is always a win.
441    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
442          " to avoid cast: " << CI << '\n');
443    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
444    assert(Res->getType() == DestTy);
445    return ReplaceInstUsesWith(CI, Res);
446  }
447
448  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
449  if (DestTy->getScalarSizeInBits() == 1) {
450    Constant *One = ConstantInt::get(Src->getType(), 1);
451    Src = Builder->CreateAnd(Src, One, "tmp");
452    Value *Zero = Constant::getNullValue(Src->getType());
453    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
454  }
455
456  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
457  Value *A = 0; ConstantInt *Cst = 0;
458  if (Src->hasOneUse() &&
459      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
460    // We have three types to worry about here, the type of A, the source of
461    // the truncate (MidSize), and the destination of the truncate. We know that
462    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
463    // between ASize and ResultSize.
464    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
465
466    // If the shift amount is larger than the size of A, then the result is
467    // known to be zero because all the input bits got shifted out.
468    if (Cst->getZExtValue() >= ASize)
469      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
470
471    // Since we're doing an lshr and a zero extend, and know that the shift
472    // amount is smaller than ASize, it is always safe to do the shift in A's
473    // type, then zero extend or truncate to the result.
474    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
475    Shift->takeName(Src);
476    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
477  }
478
479  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
480  // type isn't non-native.
481  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
482      ShouldChangeType(Src->getType(), CI.getType()) &&
483      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
484    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
485    return BinaryOperator::CreateAnd(NewTrunc,
486                                     ConstantExpr::getTrunc(Cst, CI.getType()));
487  }
488
489  return 0;
490}
491
492/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
493/// in order to eliminate the icmp.
494Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
495                                             bool DoXform) {
496  // If we are just checking for a icmp eq of a single bit and zext'ing it
497  // to an integer, then shift the bit to the appropriate place and then
498  // cast to integer to avoid the comparison.
499  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
500    const APInt &Op1CV = Op1C->getValue();
501
502    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
503    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
504    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
505        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
506      if (!DoXform) return ICI;
507
508      Value *In = ICI->getOperand(0);
509      Value *Sh = ConstantInt::get(In->getType(),
510                                   In->getType()->getScalarSizeInBits()-1);
511      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
512      if (In->getType() != CI.getType())
513        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
514
515      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
516        Constant *One = ConstantInt::get(In->getType(), 1);
517        In = Builder->CreateXor(In, One, In->getName()+".not");
518      }
519
520      return ReplaceInstUsesWith(CI, In);
521    }
522
523
524
525    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
526    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
527    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
528    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
529    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
530    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
531    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
532    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
533    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
534        // This only works for EQ and NE
535        ICI->isEquality()) {
536      // If Op1C some other power of two, convert:
537      uint32_t BitWidth = Op1C->getType()->getBitWidth();
538      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
539      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
540      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
541
542      APInt KnownZeroMask(~KnownZero);
543      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
544        if (!DoXform) return ICI;
545
546        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
547        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
548          // (X&4) == 2 --> false
549          // (X&4) != 2 --> true
550          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
551                                           isNE);
552          Res = ConstantExpr::getZExt(Res, CI.getType());
553          return ReplaceInstUsesWith(CI, Res);
554        }
555
556        uint32_t ShiftAmt = KnownZeroMask.logBase2();
557        Value *In = ICI->getOperand(0);
558        if (ShiftAmt) {
559          // Perform a logical shr by shiftamt.
560          // Insert the shift to put the result in the low bit.
561          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
562                                   In->getName()+".lobit");
563        }
564
565        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
566          Constant *One = ConstantInt::get(In->getType(), 1);
567          In = Builder->CreateXor(In, One, "tmp");
568        }
569
570        if (CI.getType() == In->getType())
571          return ReplaceInstUsesWith(CI, In);
572        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
573      }
574    }
575  }
576
577  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
578  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
579  // may lead to additional simplifications.
580  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
581    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
582      uint32_t BitWidth = ITy->getBitWidth();
583      Value *LHS = ICI->getOperand(0);
584      Value *RHS = ICI->getOperand(1);
585
586      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
587      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
588      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
589      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
590      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
591
592      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
593        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
594        APInt UnknownBit = ~KnownBits;
595        if (UnknownBit.countPopulation() == 1) {
596          if (!DoXform) return ICI;
597
598          Value *Result = Builder->CreateXor(LHS, RHS);
599
600          // Mask off any bits that are set and won't be shifted away.
601          if (KnownOneLHS.uge(UnknownBit))
602            Result = Builder->CreateAnd(Result,
603                                        ConstantInt::get(ITy, UnknownBit));
604
605          // Shift the bit we're testing down to the lsb.
606          Result = Builder->CreateLShr(
607               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
608
609          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
610            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
611          Result->takeName(ICI);
612          return ReplaceInstUsesWith(CI, Result);
613        }
614      }
615    }
616  }
617
618  return 0;
619}
620
621/// CanEvaluateZExtd - Determine if the specified value can be computed in the
622/// specified wider type and produce the same low bits.  If not, return false.
623///
624/// If this function returns true, it can also return a non-zero number of bits
625/// (in BitsToClear) which indicates that the value it computes is correct for
626/// the zero extend, but that the additional BitsToClear bits need to be zero'd
627/// out.  For example, to promote something like:
628///
629///   %B = trunc i64 %A to i32
630///   %C = lshr i32 %B, 8
631///   %E = zext i32 %C to i64
632///
633/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
634/// set to 8 to indicate that the promoted value needs to have bits 24-31
635/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
636/// clear the top bits anyway, doing this has no extra cost.
637///
638/// This function works on both vectors and scalars.
639static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
640  BitsToClear = 0;
641  if (isa<Constant>(V))
642    return true;
643
644  Instruction *I = dyn_cast<Instruction>(V);
645  if (!I) return false;
646
647  // If the input is a truncate from the destination type, we can trivially
648  // eliminate it, even if it has multiple uses.
649  // FIXME: This is currently disabled until codegen can handle this without
650  // pessimizing code, PR5997.
651  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
652    return true;
653
654  // We can't extend or shrink something that has multiple uses: doing so would
655  // require duplicating the instruction in general, which isn't profitable.
656  if (!I->hasOneUse()) return false;
657
658  unsigned Opc = I->getOpcode(), Tmp;
659  switch (Opc) {
660  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
661  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
662  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
663    return true;
664  case Instruction::And:
665  case Instruction::Or:
666  case Instruction::Xor:
667  case Instruction::Add:
668  case Instruction::Sub:
669  case Instruction::Mul:
670  case Instruction::Shl:
671    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
672        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
673      return false;
674    // These can all be promoted if neither operand has 'bits to clear'.
675    if (BitsToClear == 0 && Tmp == 0)
676      return true;
677
678    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
679    // other side, BitsToClear is ok.
680    if (Tmp == 0 &&
681        (Opc == Instruction::And || Opc == Instruction::Or ||
682         Opc == Instruction::Xor)) {
683      // We use MaskedValueIsZero here for generality, but the case we care
684      // about the most is constant RHS.
685      unsigned VSize = V->getType()->getScalarSizeInBits();
686      if (MaskedValueIsZero(I->getOperand(1),
687                            APInt::getHighBitsSet(VSize, BitsToClear)))
688        return true;
689    }
690
691    // Otherwise, we don't know how to analyze this BitsToClear case yet.
692    return false;
693
694  case Instruction::LShr:
695    // We can promote lshr(x, cst) if we can promote x.  This requires the
696    // ultimate 'and' to clear out the high zero bits we're clearing out though.
697    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
698      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
699        return false;
700      BitsToClear += Amt->getZExtValue();
701      if (BitsToClear > V->getType()->getScalarSizeInBits())
702        BitsToClear = V->getType()->getScalarSizeInBits();
703      return true;
704    }
705    // Cannot promote variable LSHR.
706    return false;
707  case Instruction::Select:
708    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
709        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
710        // TODO: If important, we could handle the case when the BitsToClear are
711        // known zero in the disagreeing side.
712        Tmp != BitsToClear)
713      return false;
714    return true;
715
716  case Instruction::PHI: {
717    // We can change a phi if we can change all operands.  Note that we never
718    // get into trouble with cyclic PHIs here because we only consider
719    // instructions with a single use.
720    PHINode *PN = cast<PHINode>(I);
721    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
722      return false;
723    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
724      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
725          // TODO: If important, we could handle the case when the BitsToClear
726          // are known zero in the disagreeing input.
727          Tmp != BitsToClear)
728        return false;
729    return true;
730  }
731  default:
732    // TODO: Can handle more cases here.
733    return false;
734  }
735}
736
737Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
738  // If this zero extend is only used by a truncate, let the truncate by
739  // eliminated before we try to optimize this zext.
740  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
741    return 0;
742
743  // If one of the common conversion will work, do it.
744  if (Instruction *Result = commonCastTransforms(CI))
745    return Result;
746
747  // See if we can simplify any instructions used by the input whose sole
748  // purpose is to compute bits we don't care about.
749  if (SimplifyDemandedInstructionBits(CI))
750    return &CI;
751
752  Value *Src = CI.getOperand(0);
753  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
754
755  // Attempt to extend the entire input expression tree to the destination
756  // type.   Only do this if the dest type is a simple type, don't convert the
757  // expression tree to something weird like i93 unless the source is also
758  // strange.
759  unsigned BitsToClear;
760  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
761      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
762    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
763           "Unreasonable BitsToClear");
764
765    // Okay, we can transform this!  Insert the new expression now.
766    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
767          " to avoid zero extend: " << CI);
768    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
769    assert(Res->getType() == DestTy);
770
771    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
772    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
773
774    // If the high bits are already filled with zeros, just replace this
775    // cast with the result.
776    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
777                                                     DestBitSize-SrcBitsKept)))
778      return ReplaceInstUsesWith(CI, Res);
779
780    // We need to emit an AND to clear the high bits.
781    Constant *C = ConstantInt::get(Res->getType(),
782                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
783    return BinaryOperator::CreateAnd(Res, C);
784  }
785
786  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
787  // types and if the sizes are just right we can convert this into a logical
788  // 'and' which will be much cheaper than the pair of casts.
789  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
790    // TODO: Subsume this into EvaluateInDifferentType.
791
792    // Get the sizes of the types involved.  We know that the intermediate type
793    // will be smaller than A or C, but don't know the relation between A and C.
794    Value *A = CSrc->getOperand(0);
795    unsigned SrcSize = A->getType()->getScalarSizeInBits();
796    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
797    unsigned DstSize = CI.getType()->getScalarSizeInBits();
798    // If we're actually extending zero bits, then if
799    // SrcSize <  DstSize: zext(a & mask)
800    // SrcSize == DstSize: a & mask
801    // SrcSize  > DstSize: trunc(a) & mask
802    if (SrcSize < DstSize) {
803      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
804      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
805      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
806      return new ZExtInst(And, CI.getType());
807    }
808
809    if (SrcSize == DstSize) {
810      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
811      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
812                                                           AndValue));
813    }
814    if (SrcSize > DstSize) {
815      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
816      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
817      return BinaryOperator::CreateAnd(Trunc,
818                                       ConstantInt::get(Trunc->getType(),
819                                                        AndValue));
820    }
821  }
822
823  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
824    return transformZExtICmp(ICI, CI);
825
826  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
827  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
828    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
829    // of the (zext icmp) will be transformed.
830    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
831    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
832    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
833        (transformZExtICmp(LHS, CI, false) ||
834         transformZExtICmp(RHS, CI, false))) {
835      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
836      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
837      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
838    }
839  }
840
841  // zext(trunc(t) & C) -> (t & zext(C)).
842  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
843    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
844      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
845        Value *TI0 = TI->getOperand(0);
846        if (TI0->getType() == CI.getType())
847          return
848            BinaryOperator::CreateAnd(TI0,
849                                ConstantExpr::getZExt(C, CI.getType()));
850      }
851
852  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
853  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
854    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
855      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
856        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
857            And->getOperand(1) == C)
858          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
859            Value *TI0 = TI->getOperand(0);
860            if (TI0->getType() == CI.getType()) {
861              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
862              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
863              return BinaryOperator::CreateXor(NewAnd, ZC);
864            }
865          }
866
867  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
868  Value *X;
869  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
870      match(SrcI, m_Not(m_Value(X))) &&
871      (!X->hasOneUse() || !isa<CmpInst>(X))) {
872    Value *New = Builder->CreateZExt(X, CI.getType());
873    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
874  }
875
876  return 0;
877}
878
879/// CanEvaluateSExtd - Return true if we can take the specified value
880/// and return it as type Ty without inserting any new casts and without
881/// changing the value of the common low bits.  This is used by code that tries
882/// to promote integer operations to a wider types will allow us to eliminate
883/// the extension.
884///
885/// This function works on both vectors and scalars.
886///
887static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
888  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
889         "Can't sign extend type to a smaller type");
890  // If this is a constant, it can be trivially promoted.
891  if (isa<Constant>(V))
892    return true;
893
894  Instruction *I = dyn_cast<Instruction>(V);
895  if (!I) return false;
896
897  // If this is a truncate from the dest type, we can trivially eliminate it,
898  // even if it has multiple uses.
899  // FIXME: This is currently disabled until codegen can handle this without
900  // pessimizing code, PR5997.
901  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
902    return true;
903
904  // We can't extend or shrink something that has multiple uses: doing so would
905  // require duplicating the instruction in general, which isn't profitable.
906  if (!I->hasOneUse()) return false;
907
908  switch (I->getOpcode()) {
909  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
910  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
911  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
912    return true;
913  case Instruction::And:
914  case Instruction::Or:
915  case Instruction::Xor:
916  case Instruction::Add:
917  case Instruction::Sub:
918  case Instruction::Mul:
919    // These operators can all arbitrarily be extended if their inputs can.
920    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
921           CanEvaluateSExtd(I->getOperand(1), Ty);
922
923  //case Instruction::Shl:   TODO
924  //case Instruction::LShr:  TODO
925
926  case Instruction::Select:
927    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
928           CanEvaluateSExtd(I->getOperand(2), Ty);
929
930  case Instruction::PHI: {
931    // We can change a phi if we can change all operands.  Note that we never
932    // get into trouble with cyclic PHIs here because we only consider
933    // instructions with a single use.
934    PHINode *PN = cast<PHINode>(I);
935    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
936      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
937    return true;
938  }
939  default:
940    // TODO: Can handle more cases here.
941    break;
942  }
943
944  return false;
945}
946
947Instruction *InstCombiner::visitSExt(SExtInst &CI) {
948  // If this sign extend is only used by a truncate, let the truncate by
949  // eliminated before we try to optimize this zext.
950  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
951    return 0;
952
953  if (Instruction *I = commonCastTransforms(CI))
954    return I;
955
956  // See if we can simplify any instructions used by the input whose sole
957  // purpose is to compute bits we don't care about.
958  if (SimplifyDemandedInstructionBits(CI))
959    return &CI;
960
961  Value *Src = CI.getOperand(0);
962  const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
963
964  // Attempt to extend the entire input expression tree to the destination
965  // type.   Only do this if the dest type is a simple type, don't convert the
966  // expression tree to something weird like i93 unless the source is also
967  // strange.
968  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
969      CanEvaluateSExtd(Src, DestTy)) {
970    // Okay, we can transform this!  Insert the new expression now.
971    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
972          " to avoid sign extend: " << CI);
973    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
974    assert(Res->getType() == DestTy);
975
976    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
977    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
978
979    // If the high bits are already filled with sign bit, just replace this
980    // cast with the result.
981    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
982      return ReplaceInstUsesWith(CI, Res);
983
984    // We need to emit a shl + ashr to do the sign extend.
985    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
986    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
987                                      ShAmt);
988  }
989
990  // If this input is a trunc from our destination, then turn sext(trunc(x))
991  // into shifts.
992  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
993    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
994      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
995      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
996
997      // We need to emit a shl + ashr to do the sign extend.
998      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
999      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1000      return BinaryOperator::CreateAShr(Res, ShAmt);
1001    }
1002
1003
1004  // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
1005  // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
1006  {
1007  ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
1008  if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
1009    // sext (x <s  0) to i32 --> x>>s31       true if signbit set.
1010    // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
1011    if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
1012        (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
1013      Value *Sh = ConstantInt::get(CmpLHS->getType(),
1014                                   CmpLHS->getType()->getScalarSizeInBits()-1);
1015      Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
1016      if (In->getType() != CI.getType())
1017        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
1018
1019      if (Pred == ICmpInst::ICMP_SGT)
1020        In = Builder->CreateNot(In, In->getName()+".not");
1021      return ReplaceInstUsesWith(CI, In);
1022    }
1023  }
1024  }
1025
1026  // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
1027  if (const VectorType *VTy = dyn_cast<VectorType>(DestTy)) {
1028    ICmpInst::Predicate Pred; Value *CmpLHS;
1029    if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_Zero()))) {
1030      if (Pred == ICmpInst::ICMP_SLT && CmpLHS->getType() == DestTy) {
1031        const Type *EltTy = VTy->getElementType();
1032
1033        // splat the shift constant to a constant vector.
1034        Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
1035        Value *In = Builder->CreateAShr(CmpLHS, VSh,CmpLHS->getName()+".lobit");
1036        return ReplaceInstUsesWith(CI, In);
1037      }
1038    }
1039  }
1040
1041  // If the input is a shl/ashr pair of a same constant, then this is a sign
1042  // extension from a smaller value.  If we could trust arbitrary bitwidth
1043  // integers, we could turn this into a truncate to the smaller bit and then
1044  // use a sext for the whole extension.  Since we don't, look deeper and check
1045  // for a truncate.  If the source and dest are the same type, eliminate the
1046  // trunc and extend and just do shifts.  For example, turn:
1047  //   %a = trunc i32 %i to i8
1048  //   %b = shl i8 %a, 6
1049  //   %c = ashr i8 %b, 6
1050  //   %d = sext i8 %c to i32
1051  // into:
1052  //   %a = shl i32 %i, 30
1053  //   %d = ashr i32 %a, 30
1054  Value *A = 0;
1055  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1056  ConstantInt *BA = 0, *CA = 0;
1057  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1058                        m_ConstantInt(CA))) &&
1059      BA == CA && A->getType() == CI.getType()) {
1060    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1061    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1062    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1063    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1064    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1065    return BinaryOperator::CreateAShr(A, ShAmtV);
1066  }
1067
1068  return 0;
1069}
1070
1071
1072/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1073/// in the specified FP type without changing its value.
1074static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1075  bool losesInfo;
1076  APFloat F = CFP->getValueAPF();
1077  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1078  if (!losesInfo)
1079    return ConstantFP::get(CFP->getContext(), F);
1080  return 0;
1081}
1082
1083/// LookThroughFPExtensions - If this is an fp extension instruction, look
1084/// through it until we get the source value.
1085static Value *LookThroughFPExtensions(Value *V) {
1086  if (Instruction *I = dyn_cast<Instruction>(V))
1087    if (I->getOpcode() == Instruction::FPExt)
1088      return LookThroughFPExtensions(I->getOperand(0));
1089
1090  // If this value is a constant, return the constant in the smallest FP type
1091  // that can accurately represent it.  This allows us to turn
1092  // (float)((double)X+2.0) into x+2.0f.
1093  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1094    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1095      return V;  // No constant folding of this.
1096    // See if the value can be truncated to float and then reextended.
1097    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1098      return V;
1099    if (CFP->getType()->isDoubleTy())
1100      return V;  // Won't shrink.
1101    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1102      return V;
1103    // Don't try to shrink to various long double types.
1104  }
1105
1106  return V;
1107}
1108
1109Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1110  if (Instruction *I = commonCastTransforms(CI))
1111    return I;
1112
1113  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1114  // smaller than the destination type, we can eliminate the truncate by doing
1115  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1116  // as many builtins (sqrt, etc).
1117  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1118  if (OpI && OpI->hasOneUse()) {
1119    switch (OpI->getOpcode()) {
1120    default: break;
1121    case Instruction::FAdd:
1122    case Instruction::FSub:
1123    case Instruction::FMul:
1124    case Instruction::FDiv:
1125    case Instruction::FRem:
1126      const Type *SrcTy = OpI->getType();
1127      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1128      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1129      if (LHSTrunc->getType() != SrcTy &&
1130          RHSTrunc->getType() != SrcTy) {
1131        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1132        // If the source types were both smaller than the destination type of
1133        // the cast, do this xform.
1134        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1135            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1136          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1137          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1138          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1139        }
1140      }
1141      break;
1142    }
1143  }
1144
1145  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1146  // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1147  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1148  if (Call && Call->getCalledFunction() &&
1149      Call->getCalledFunction()->getName() == "sqrt" &&
1150      Call->getNumArgOperands() == 1) {
1151    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1152    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1153        CI.getType()->isFloatTy() &&
1154        Call->getType()->isDoubleTy() &&
1155        Arg->getType()->isDoubleTy() &&
1156        Arg->getOperand(0)->getType()->isFloatTy()) {
1157      Function *Callee = Call->getCalledFunction();
1158      Module *M = CI.getParent()->getParent()->getParent();
1159      Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
1160                                                   Callee->getAttributes(),
1161                                                   Builder->getFloatTy(),
1162                                                   Builder->getFloatTy(),
1163                                                   NULL);
1164      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1165                                       "sqrtfcall");
1166      ret->setAttributes(Callee->getAttributes());
1167
1168
1169      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1170      Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
1171      EraseInstFromFunction(*Call);
1172      return ret;
1173    }
1174  }
1175
1176  return 0;
1177}
1178
1179Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1180  return commonCastTransforms(CI);
1181}
1182
1183Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1184  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1185  if (OpI == 0)
1186    return commonCastTransforms(FI);
1187
1188  // fptoui(uitofp(X)) --> X
1189  // fptoui(sitofp(X)) --> X
1190  // This is safe if the intermediate type has enough bits in its mantissa to
1191  // accurately represent all values of X.  For example, do not do this with
1192  // i64->float->i64.  This is also safe for sitofp case, because any negative
1193  // 'X' value would cause an undefined result for the fptoui.
1194  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1195      OpI->getOperand(0)->getType() == FI.getType() &&
1196      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1197                    OpI->getType()->getFPMantissaWidth())
1198    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1199
1200  return commonCastTransforms(FI);
1201}
1202
1203Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1204  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1205  if (OpI == 0)
1206    return commonCastTransforms(FI);
1207
1208  // fptosi(sitofp(X)) --> X
1209  // fptosi(uitofp(X)) --> X
1210  // This is safe if the intermediate type has enough bits in its mantissa to
1211  // accurately represent all values of X.  For example, do not do this with
1212  // i64->float->i64.  This is also safe for sitofp case, because any negative
1213  // 'X' value would cause an undefined result for the fptoui.
1214  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1215      OpI->getOperand(0)->getType() == FI.getType() &&
1216      (int)FI.getType()->getScalarSizeInBits() <=
1217                    OpI->getType()->getFPMantissaWidth())
1218    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1219
1220  return commonCastTransforms(FI);
1221}
1222
1223Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1224  return commonCastTransforms(CI);
1225}
1226
1227Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1228  return commonCastTransforms(CI);
1229}
1230
1231Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1232  // If the source integer type is not the intptr_t type for this target, do a
1233  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1234  // cast to be exposed to other transforms.
1235  if (TD) {
1236    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1237        TD->getPointerSizeInBits()) {
1238      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1239                                      TD->getIntPtrType(CI.getContext()), "tmp");
1240      return new IntToPtrInst(P, CI.getType());
1241    }
1242    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1243        TD->getPointerSizeInBits()) {
1244      Value *P = Builder->CreateZExt(CI.getOperand(0),
1245                                     TD->getIntPtrType(CI.getContext()), "tmp");
1246      return new IntToPtrInst(P, CI.getType());
1247    }
1248  }
1249
1250  if (Instruction *I = commonCastTransforms(CI))
1251    return I;
1252
1253  return 0;
1254}
1255
1256/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1257Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1258  Value *Src = CI.getOperand(0);
1259
1260  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1261    // If casting the result of a getelementptr instruction with no offset, turn
1262    // this into a cast of the original pointer!
1263    if (GEP->hasAllZeroIndices()) {
1264      // Changing the cast operand is usually not a good idea but it is safe
1265      // here because the pointer operand is being replaced with another
1266      // pointer operand so the opcode doesn't need to change.
1267      Worklist.Add(GEP);
1268      CI.setOperand(0, GEP->getOperand(0));
1269      return &CI;
1270    }
1271
1272    // If the GEP has a single use, and the base pointer is a bitcast, and the
1273    // GEP computes a constant offset, see if we can convert these three
1274    // instructions into fewer.  This typically happens with unions and other
1275    // non-type-safe code.
1276    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1277        GEP->hasAllConstantIndices()) {
1278      // We are guaranteed to get a constant from EmitGEPOffset.
1279      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1280      int64_t Offset = OffsetV->getSExtValue();
1281
1282      // Get the base pointer input of the bitcast, and the type it points to.
1283      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1284      const Type *GEPIdxTy =
1285      cast<PointerType>(OrigBase->getType())->getElementType();
1286      SmallVector<Value*, 8> NewIndices;
1287      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1288        // If we were able to index down into an element, create the GEP
1289        // and bitcast the result.  This eliminates one bitcast, potentially
1290        // two.
1291        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1292        Builder->CreateInBoundsGEP(OrigBase,
1293                                   NewIndices.begin(), NewIndices.end()) :
1294        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1295        NGEP->takeName(GEP);
1296
1297        if (isa<BitCastInst>(CI))
1298          return new BitCastInst(NGEP, CI.getType());
1299        assert(isa<PtrToIntInst>(CI));
1300        return new PtrToIntInst(NGEP, CI.getType());
1301      }
1302    }
1303  }
1304
1305  return commonCastTransforms(CI);
1306}
1307
1308Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1309  // If the destination integer type is not the intptr_t type for this target,
1310  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1311  // to be exposed to other transforms.
1312  if (TD) {
1313    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1314      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1315                                         TD->getIntPtrType(CI.getContext()),
1316                                         "tmp");
1317      return new TruncInst(P, CI.getType());
1318    }
1319    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1320      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1321                                         TD->getIntPtrType(CI.getContext()),
1322                                         "tmp");
1323      return new ZExtInst(P, CI.getType());
1324    }
1325  }
1326
1327  return commonPointerCastTransforms(CI);
1328}
1329
1330/// OptimizeVectorResize - This input value (which is known to have vector type)
1331/// is being zero extended or truncated to the specified vector type.  Try to
1332/// replace it with a shuffle (and vector/vector bitcast) if possible.
1333///
1334/// The source and destination vector types may have different element types.
1335static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1336                                         InstCombiner &IC) {
1337  // We can only do this optimization if the output is a multiple of the input
1338  // element size, or the input is a multiple of the output element size.
1339  // Convert the input type to have the same element type as the output.
1340  const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1341
1342  if (SrcTy->getElementType() != DestTy->getElementType()) {
1343    // The input types don't need to be identical, but for now they must be the
1344    // same size.  There is no specific reason we couldn't handle things like
1345    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1346    // there yet.
1347    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1348        DestTy->getElementType()->getPrimitiveSizeInBits())
1349      return 0;
1350
1351    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1352    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1353  }
1354
1355  // Now that the element types match, get the shuffle mask and RHS of the
1356  // shuffle to use, which depends on whether we're increasing or decreasing the
1357  // size of the input.
1358  SmallVector<Constant*, 16> ShuffleMask;
1359  Value *V2;
1360  const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1361
1362  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1363    // If we're shrinking the number of elements, just shuffle in the low
1364    // elements from the input and use undef as the second shuffle input.
1365    V2 = UndefValue::get(SrcTy);
1366    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1367      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1368
1369  } else {
1370    // If we're increasing the number of elements, shuffle in all of the
1371    // elements from InVal and fill the rest of the result elements with zeros
1372    // from a constant zero.
1373    V2 = Constant::getNullValue(SrcTy);
1374    unsigned SrcElts = SrcTy->getNumElements();
1375    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1376      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1377
1378    // The excess elements reference the first element of the zero input.
1379    ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1380                       ConstantInt::get(Int32Ty, SrcElts));
1381  }
1382
1383  return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
1384}
1385
1386static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
1387  return Value % Ty->getPrimitiveSizeInBits() == 0;
1388}
1389
1390static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
1391  return Value / Ty->getPrimitiveSizeInBits();
1392}
1393
1394/// CollectInsertionElements - V is a value which is inserted into a vector of
1395/// VecEltTy.  Look through the value to see if we can decompose it into
1396/// insertions into the vector.  See the example in the comment for
1397/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1398/// The type of V is always a non-zero multiple of VecEltTy's size.
1399///
1400/// This returns false if the pattern can't be matched or true if it can,
1401/// filling in Elements with the elements found here.
1402static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1403                                     SmallVectorImpl<Value*> &Elements,
1404                                     const Type *VecEltTy) {
1405  // Undef values never contribute useful bits to the result.
1406  if (isa<UndefValue>(V)) return true;
1407
1408  // If we got down to a value of the right type, we win, try inserting into the
1409  // right element.
1410  if (V->getType() == VecEltTy) {
1411    // Inserting null doesn't actually insert any elements.
1412    if (Constant *C = dyn_cast<Constant>(V))
1413      if (C->isNullValue())
1414        return true;
1415
1416    // Fail if multiple elements are inserted into this slot.
1417    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1418      return false;
1419
1420    Elements[ElementIndex] = V;
1421    return true;
1422  }
1423
1424  if (Constant *C = dyn_cast<Constant>(V)) {
1425    // Figure out the # elements this provides, and bitcast it or slice it up
1426    // as required.
1427    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1428                                        VecEltTy);
1429    // If the constant is the size of a vector element, we just need to bitcast
1430    // it to the right type so it gets properly inserted.
1431    if (NumElts == 1)
1432      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1433                                      ElementIndex, Elements, VecEltTy);
1434
1435    // Okay, this is a constant that covers multiple elements.  Slice it up into
1436    // pieces and insert each element-sized piece into the vector.
1437    if (!isa<IntegerType>(C->getType()))
1438      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1439                                       C->getType()->getPrimitiveSizeInBits()));
1440    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1441    const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1442
1443    for (unsigned i = 0; i != NumElts; ++i) {
1444      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1445                                                               i*ElementSize));
1446      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1447      if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1448        return false;
1449    }
1450    return true;
1451  }
1452
1453  if (!V->hasOneUse()) return false;
1454
1455  Instruction *I = dyn_cast<Instruction>(V);
1456  if (I == 0) return false;
1457  switch (I->getOpcode()) {
1458  default: return false; // Unhandled case.
1459  case Instruction::BitCast:
1460    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1461                                    Elements, VecEltTy);
1462  case Instruction::ZExt:
1463    if (!isMultipleOfTypeSize(
1464                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1465                              VecEltTy))
1466      return false;
1467    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1468                                    Elements, VecEltTy);
1469  case Instruction::Or:
1470    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1471                                    Elements, VecEltTy) &&
1472           CollectInsertionElements(I->getOperand(1), ElementIndex,
1473                                    Elements, VecEltTy);
1474  case Instruction::Shl: {
1475    // Must be shifting by a constant that is a multiple of the element size.
1476    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1477    if (CI == 0) return false;
1478    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1479    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1480
1481    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1482                                    Elements, VecEltTy);
1483  }
1484
1485  }
1486}
1487
1488
1489/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1490/// may be doing shifts and ors to assemble the elements of the vector manually.
1491/// Try to rip the code out and replace it with insertelements.  This is to
1492/// optimize code like this:
1493///
1494///    %tmp37 = bitcast float %inc to i32
1495///    %tmp38 = zext i32 %tmp37 to i64
1496///    %tmp31 = bitcast float %inc5 to i32
1497///    %tmp32 = zext i32 %tmp31 to i64
1498///    %tmp33 = shl i64 %tmp32, 32
1499///    %ins35 = or i64 %tmp33, %tmp38
1500///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1501///
1502/// Into two insertelements that do "buildvector{%inc, %inc5}".
1503static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1504                                                InstCombiner &IC) {
1505  const VectorType *DestVecTy = cast<VectorType>(CI.getType());
1506  Value *IntInput = CI.getOperand(0);
1507
1508  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1509  if (!CollectInsertionElements(IntInput, 0, Elements,
1510                                DestVecTy->getElementType()))
1511    return 0;
1512
1513  // If we succeeded, we know that all of the element are specified by Elements
1514  // or are zero if Elements has a null entry.  Recast this as a set of
1515  // insertions.
1516  Value *Result = Constant::getNullValue(CI.getType());
1517  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1518    if (Elements[i] == 0) continue;  // Unset element.
1519
1520    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1521                                             IC.Builder->getInt32(i));
1522  }
1523
1524  return Result;
1525}
1526
1527
1528/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1529/// bitcast.  The various long double bitcasts can't get in here.
1530static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1531  Value *Src = CI.getOperand(0);
1532  const Type *DestTy = CI.getType();
1533
1534  // If this is a bitcast from int to float, check to see if the int is an
1535  // extraction from a vector.
1536  Value *VecInput = 0;
1537  // bitcast(trunc(bitcast(somevector)))
1538  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1539      isa<VectorType>(VecInput->getType())) {
1540    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1541    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1542
1543    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1544      // If the element type of the vector doesn't match the result type,
1545      // bitcast it to be a vector type we can extract from.
1546      if (VecTy->getElementType() != DestTy) {
1547        VecTy = VectorType::get(DestTy,
1548                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1549        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1550      }
1551
1552      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1553    }
1554  }
1555
1556  // bitcast(trunc(lshr(bitcast(somevector), cst))
1557  ConstantInt *ShAmt = 0;
1558  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1559                                m_ConstantInt(ShAmt)))) &&
1560      isa<VectorType>(VecInput->getType())) {
1561    const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1562    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1563    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1564        ShAmt->getZExtValue() % DestWidth == 0) {
1565      // If the element type of the vector doesn't match the result type,
1566      // bitcast it to be a vector type we can extract from.
1567      if (VecTy->getElementType() != DestTy) {
1568        VecTy = VectorType::get(DestTy,
1569                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1570        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1571      }
1572
1573      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1574      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1575    }
1576  }
1577  return 0;
1578}
1579
1580Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1581  // If the operands are integer typed then apply the integer transforms,
1582  // otherwise just apply the common ones.
1583  Value *Src = CI.getOperand(0);
1584  const Type *SrcTy = Src->getType();
1585  const Type *DestTy = CI.getType();
1586
1587  // Get rid of casts from one type to the same type. These are useless and can
1588  // be replaced by the operand.
1589  if (DestTy == Src->getType())
1590    return ReplaceInstUsesWith(CI, Src);
1591
1592  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1593    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1594    const Type *DstElTy = DstPTy->getElementType();
1595    const Type *SrcElTy = SrcPTy->getElementType();
1596
1597    // If the address spaces don't match, don't eliminate the bitcast, which is
1598    // required for changing types.
1599    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1600      return 0;
1601
1602    // If we are casting a alloca to a pointer to a type of the same
1603    // size, rewrite the allocation instruction to allocate the "right" type.
1604    // There is no need to modify malloc calls because it is their bitcast that
1605    // needs to be cleaned up.
1606    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1607      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1608        return V;
1609
1610    // If the source and destination are pointers, and this cast is equivalent
1611    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1612    // This can enhance SROA and other transforms that want type-safe pointers.
1613    Constant *ZeroUInt =
1614      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1615    unsigned NumZeros = 0;
1616    while (SrcElTy != DstElTy &&
1617           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1618           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1619      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1620      ++NumZeros;
1621    }
1622
1623    // If we found a path from the src to dest, create the getelementptr now.
1624    if (SrcElTy == DstElTy) {
1625      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1626      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1627                                               ((Instruction*)NULL));
1628    }
1629  }
1630
1631  // Try to optimize int -> float bitcasts.
1632  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1633    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1634      return I;
1635
1636  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1637    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1638      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1639      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1640                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1641      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1642    }
1643
1644    if (isa<IntegerType>(SrcTy)) {
1645      // If this is a cast from an integer to vector, check to see if the input
1646      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1647      // the casts with a shuffle and (potentially) a bitcast.
1648      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1649        CastInst *SrcCast = cast<CastInst>(Src);
1650        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1651          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1652            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1653                                               cast<VectorType>(DestTy), *this))
1654              return I;
1655      }
1656
1657      // If the input is an 'or' instruction, we may be doing shifts and ors to
1658      // assemble the elements of the vector manually.  Try to rip the code out
1659      // and replace it with insertelements.
1660      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1661        return ReplaceInstUsesWith(CI, V);
1662    }
1663  }
1664
1665  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1666    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1667      Value *Elem =
1668        Builder->CreateExtractElement(Src,
1669                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1670      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1671    }
1672  }
1673
1674  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1675    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1676    // a bitcast to a vector with the same # elts.
1677    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1678        cast<VectorType>(DestTy)->getNumElements() ==
1679              SVI->getType()->getNumElements() &&
1680        SVI->getType()->getNumElements() ==
1681          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1682      BitCastInst *Tmp;
1683      // If either of the operands is a cast from CI.getType(), then
1684      // evaluating the shuffle in the casted destination's type will allow
1685      // us to eliminate at least one cast.
1686      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1687           Tmp->getOperand(0)->getType() == DestTy) ||
1688          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1689           Tmp->getOperand(0)->getType() == DestTy)) {
1690        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1691        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1692        // Return a new shuffle vector.  Use the same element ID's, as we
1693        // know the vector types match #elts.
1694        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1695      }
1696    }
1697  }
1698
1699  if (SrcTy->isPointerTy())
1700    return commonPointerCastTransforms(CI);
1701  return commonCastTransforms(CI);
1702}
1703