InstCombineCasts.cpp revision 5f0290e0ef6225114a04517744bf20e93040d2e4
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// CanEvaluateInDifferentType - Return true if we can take the specified value
21/// and return it as type Ty without inserting any new casts and without
22/// changing the computed value.  This is used by code that tries to decide
23/// whether promoting or shrinking integer operations to wider or smaller types
24/// will allow us to eliminate a truncate or extend.
25///
26/// This is a truncation operation if Ty is smaller than V->getType(), or an
27/// extension operation if Ty is larger.
28///
29/// If CastOpc is a truncation, then Ty will be a type smaller than V.  We
30/// should return true if trunc(V) can be computed by computing V in the smaller
31/// type.  If V is an instruction, then trunc(inst(x,y)) can be computed as
32/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
33/// efficiently truncated.
34///
35/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
36/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
37/// the final result.
38bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
39                                              unsigned CastOpc,
40                                              int &NumCastsRemoved){
41  // We can always evaluate constants in another type.
42  if (isa<Constant>(V))
43    return true;
44
45  Instruction *I = dyn_cast<Instruction>(V);
46  if (!I) return false;
47
48  const Type *OrigTy = V->getType();
49
50  // If this is an extension or truncate, we can often eliminate it.
51  if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
52    // If this is a cast from the destination type, we can trivially eliminate
53    // it, and this will remove a cast overall.
54    if (I->getOperand(0)->getType() == Ty) {
55      // If the first operand is itself a cast, and is eliminable, do not count
56      // this as an eliminable cast.  We would prefer to eliminate those two
57      // casts first.
58      if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
59        ++NumCastsRemoved;
60      return true;
61    }
62  }
63
64  // We can't extend or shrink something that has multiple uses: doing so would
65  // require duplicating the instruction in general, which isn't profitable.
66  if (!I->hasOneUse()) return false;
67
68  unsigned Opc = I->getOpcode();
69  switch (Opc) {
70  case Instruction::Add:
71  case Instruction::Sub:
72  case Instruction::Mul:
73  case Instruction::And:
74  case Instruction::Or:
75  case Instruction::Xor:
76    // These operators can all arbitrarily be extended or truncated.
77    return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
78                                      NumCastsRemoved) &&
79           CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
80                                      NumCastsRemoved);
81
82  case Instruction::UDiv:
83  case Instruction::URem: {
84    // UDiv and URem can be truncated if all the truncated bits are zero.
85    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
86    uint32_t BitWidth = Ty->getScalarSizeInBits();
87    if (BitWidth < OrigBitWidth) {
88      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
89      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
90          MaskedValueIsZero(I->getOperand(1), Mask)) {
91        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
92                                          NumCastsRemoved) &&
93               CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
94                                          NumCastsRemoved);
95      }
96    }
97    break;
98  }
99  case Instruction::Shl:
100    // If we are truncating the result of this SHL, and if it's a shift of a
101    // constant amount, we can always perform a SHL in a smaller type.
102    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
103      uint32_t BitWidth = Ty->getScalarSizeInBits();
104      if (BitWidth < OrigTy->getScalarSizeInBits() &&
105          CI->getLimitedValue(BitWidth) < BitWidth)
106        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
107                                          NumCastsRemoved);
108    }
109    break;
110  case Instruction::LShr:
111    // If this is a truncate of a logical shr, we can truncate it to a smaller
112    // lshr iff we know that the bits we would otherwise be shifting in are
113    // already zeros.
114    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
115      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
116      uint32_t BitWidth = Ty->getScalarSizeInBits();
117      if (BitWidth < OrigBitWidth &&
118          MaskedValueIsZero(I->getOperand(0),
119            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
120          CI->getLimitedValue(BitWidth) < BitWidth) {
121        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
122                                          NumCastsRemoved);
123      }
124    }
125    break;
126  case Instruction::ZExt:
127  case Instruction::SExt:
128  case Instruction::Trunc:
129    // If this is the same kind of case as our original (e.g. zext+zext), we
130    // can safely replace it.  Note that replacing it does not reduce the number
131    // of casts in the input.
132    if (Opc == CastOpc)
133      return true;
134
135    // sext (zext ty1), ty2 -> zext ty2
136    if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
137      return true;
138    break;
139  case Instruction::Select: {
140    SelectInst *SI = cast<SelectInst>(I);
141    return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
142                                      NumCastsRemoved) &&
143           CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
144                                      NumCastsRemoved);
145  }
146  case Instruction::PHI: {
147    // We can change a phi if we can change all operands.
148    PHINode *PN = cast<PHINode>(I);
149    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
150      if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
151                                      NumCastsRemoved))
152        return false;
153    return true;
154  }
155  default:
156    // TODO: Can handle more cases here.
157    break;
158  }
159
160  return false;
161}
162
163/// EvaluateInDifferentType - Given an expression that
164/// CanEvaluateInDifferentType returns true for, actually insert the code to
165/// evaluate the expression.
166Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
167                                             bool isSigned) {
168  if (Constant *C = dyn_cast<Constant>(V))
169    return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
170
171  // Otherwise, it must be an instruction.
172  Instruction *I = cast<Instruction>(V);
173  Instruction *Res = 0;
174  unsigned Opc = I->getOpcode();
175  switch (Opc) {
176  case Instruction::Add:
177  case Instruction::Sub:
178  case Instruction::Mul:
179  case Instruction::And:
180  case Instruction::Or:
181  case Instruction::Xor:
182  case Instruction::AShr:
183  case Instruction::LShr:
184  case Instruction::Shl:
185  case Instruction::UDiv:
186  case Instruction::URem: {
187    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
188    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
189    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
190    break;
191  }
192  case Instruction::Trunc:
193  case Instruction::ZExt:
194  case Instruction::SExt:
195    // If the source type of the cast is the type we're trying for then we can
196    // just return the source.  There's no need to insert it because it is not
197    // new.
198    if (I->getOperand(0)->getType() == Ty)
199      return I->getOperand(0);
200
201    // Otherwise, must be the same type of cast, so just reinsert a new one.
202    Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
203    break;
204  case Instruction::Select: {
205    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
207    Res = SelectInst::Create(I->getOperand(0), True, False);
208    break;
209  }
210  case Instruction::PHI: {
211    PHINode *OPN = cast<PHINode>(I);
212    PHINode *NPN = PHINode::Create(Ty);
213    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
214      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
215      NPN->addIncoming(V, OPN->getIncomingBlock(i));
216    }
217    Res = NPN;
218    break;
219  }
220  default:
221    // TODO: Can handle more cases here.
222    llvm_unreachable("Unreachable!");
223    break;
224  }
225
226  Res->takeName(I);
227  return InsertNewInstBefore(Res, *I);
228}
229
230
231/// This function is a wrapper around CastInst::isEliminableCastPair. It
232/// simply extracts arguments and returns what that function returns.
233static Instruction::CastOps
234isEliminableCastPair(
235  const CastInst *CI, ///< The first cast instruction
236  unsigned opcode,       ///< The opcode of the second cast instruction
237  const Type *DstTy,     ///< The target type for the second cast instruction
238  TargetData *TD         ///< The target data for pointer size
239) {
240
241  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
242  const Type *MidTy = CI->getType();                  // B from above
243
244  // Get the opcodes of the two Cast instructions
245  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
246  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
247
248  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
249                                                DstTy,
250                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
251
252  // We don't want to form an inttoptr or ptrtoint that converts to an integer
253  // type that differs from the pointer size.
254  if ((Res == Instruction::IntToPtr &&
255          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
256      (Res == Instruction::PtrToInt &&
257          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
258    Res = 0;
259
260  return Instruction::CastOps(Res);
261}
262
263/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
264/// in any code being generated.  It does not require codegen if V is simple
265/// enough or if the cast can be folded into other casts.
266bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
267                                     const Type *Ty) {
268  if (V->getType() == Ty || isa<Constant>(V)) return false;
269
270  // If this is another cast that can be eliminated, it isn't codegen either.
271  if (const CastInst *CI = dyn_cast<CastInst>(V))
272    if (isEliminableCastPair(CI, opcode, Ty, TD))
273      return false;
274  return true;
275}
276
277
278/// @brief Implement the transforms common to all CastInst visitors.
279Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
280  Value *Src = CI.getOperand(0);
281
282  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
283  // eliminate it now.
284  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
285    if (Instruction::CastOps opc =
286        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
287      // The first cast (CSrc) is eliminable so we need to fix up or replace
288      // the second cast (CI). CSrc will then have a good chance of being dead.
289      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
290    }
291  }
292
293  // If we are casting a select then fold the cast into the select
294  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
295    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
296      return NV;
297
298  // If we are casting a PHI then fold the cast into the PHI
299  if (isa<PHINode>(Src)) {
300    // We don't do this if this would create a PHI node with an illegal type if
301    // it is currently legal.
302    if (!isa<IntegerType>(Src->getType()) ||
303        !isa<IntegerType>(CI.getType()) ||
304        ShouldChangeType(CI.getType(), Src->getType()))
305      if (Instruction *NV = FoldOpIntoPhi(CI))
306        return NV;
307  }
308
309  return 0;
310}
311
312/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
313Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
314  Value *Src = CI.getOperand(0);
315
316  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
317    // If casting the result of a getelementptr instruction with no offset, turn
318    // this into a cast of the original pointer!
319    if (GEP->hasAllZeroIndices()) {
320      // Changing the cast operand is usually not a good idea but it is safe
321      // here because the pointer operand is being replaced with another
322      // pointer operand so the opcode doesn't need to change.
323      Worklist.Add(GEP);
324      CI.setOperand(0, GEP->getOperand(0));
325      return &CI;
326    }
327
328    // If the GEP has a single use, and the base pointer is a bitcast, and the
329    // GEP computes a constant offset, see if we can convert these three
330    // instructions into fewer.  This typically happens with unions and other
331    // non-type-safe code.
332    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
333      if (GEP->hasAllConstantIndices()) {
334        // We are guaranteed to get a constant from EmitGEPOffset.
335        ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
336        int64_t Offset = OffsetV->getSExtValue();
337
338        // Get the base pointer input of the bitcast, and the type it points to.
339        Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
340        const Type *GEPIdxTy =
341          cast<PointerType>(OrigBase->getType())->getElementType();
342        SmallVector<Value*, 8> NewIndices;
343        if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
344          // If we were able to index down into an element, create the GEP
345          // and bitcast the result.  This eliminates one bitcast, potentially
346          // two.
347          Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
348            Builder->CreateInBoundsGEP(OrigBase,
349                                       NewIndices.begin(), NewIndices.end()) :
350            Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
351          NGEP->takeName(GEP);
352
353          if (isa<BitCastInst>(CI))
354            return new BitCastInst(NGEP, CI.getType());
355          assert(isa<PtrToIntInst>(CI));
356          return new PtrToIntInst(NGEP, CI.getType());
357        }
358      }
359    }
360  }
361
362  return commonCastTransforms(CI);
363}
364
365/// commonIntCastTransforms - This function implements the common transforms
366/// for trunc, zext, and sext.
367Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
368  if (Instruction *Result = commonCastTransforms(CI))
369    return Result;
370
371  Value *Src = CI.getOperand(0);
372  const Type *SrcTy = Src->getType();
373  const Type *DestTy = CI.getType();
374  uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
375  uint32_t DestBitSize = DestTy->getScalarSizeInBits();
376
377  // See if we can simplify any instructions used by the LHS whose sole
378  // purpose is to compute bits we don't care about.
379  if (SimplifyDemandedInstructionBits(CI))
380    return &CI;
381
382  // If the source isn't an instruction or has more than one use then we
383  // can't do anything more.
384  Instruction *SrcI = dyn_cast<Instruction>(Src);
385  if (!SrcI || !Src->hasOneUse())
386    return 0;
387
388  // Attempt to propagate the cast into the instruction for int->int casts.
389  int NumCastsRemoved = 0;
390  // Only do this if the dest type is a simple type, don't convert the
391  // expression tree to something weird like i93 unless the source is also
392  // strange.
393  if ((isa<VectorType>(DestTy) ||
394       ShouldChangeType(SrcI->getType(), DestTy)) &&
395      CanEvaluateInDifferentType(SrcI, DestTy,
396                                 CI.getOpcode(), NumCastsRemoved)) {
397    // If this cast is a truncate, evaluting in a different type always
398    // eliminates the cast, so it is always a win.  If this is a zero-extension,
399    // we need to do an AND to maintain the clear top-part of the computation,
400    // so we require that the input have eliminated at least one cast.  If this
401    // is a sign extension, we insert two new casts (to do the extension) so we
402    // require that two casts have been eliminated.
403    bool DoXForm = false;
404    bool JustReplace = false;
405    switch (CI.getOpcode()) {
406    default:
407      // All the others use floating point so we shouldn't actually
408      // get here because of the check above.
409      llvm_unreachable("Unknown cast type");
410    case Instruction::Trunc:
411      DoXForm = true;
412      break;
413    case Instruction::ZExt: {
414      DoXForm = NumCastsRemoved >= 1;
415
416      if (!DoXForm && 0) {
417        // If it's unnecessary to issue an AND to clear the high bits, it's
418        // always profitable to do this xform.
419        Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false);
420        APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
421        if (MaskedValueIsZero(TryRes, Mask))
422          return ReplaceInstUsesWith(CI, TryRes);
423
424        if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
425          if (TryI->use_empty())
426            EraseInstFromFunction(*TryI);
427      }
428      break;
429    }
430    case Instruction::SExt: {
431      DoXForm = NumCastsRemoved >= 2;
432      if (!DoXForm && !isa<TruncInst>(SrcI) && 0) {
433        // If we do not have to emit the truncate + sext pair, then it's always
434        // profitable to do this xform.
435        //
436        // It's not safe to eliminate the trunc + sext pair if one of the
437        // eliminated cast is a truncate. e.g.
438        // t2 = trunc i32 t1 to i16
439        // t3 = sext i16 t2 to i32
440        // !=
441        // i32 t1
442        Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true);
443        unsigned NumSignBits = ComputeNumSignBits(TryRes);
444        if (NumSignBits > (DestBitSize - SrcBitSize))
445          return ReplaceInstUsesWith(CI, TryRes);
446
447        if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
448          if (TryI->use_empty())
449            EraseInstFromFunction(*TryI);
450      }
451      break;
452    }
453    }
454
455    if (DoXForm) {
456      DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
457            " to avoid cast: " << CI);
458      Value *Res = EvaluateInDifferentType(SrcI, DestTy,
459                                           CI.getOpcode() == Instruction::SExt);
460      if (JustReplace)
461        // Just replace this cast with the result.
462        return ReplaceInstUsesWith(CI, Res);
463
464      assert(Res->getType() == DestTy);
465      switch (CI.getOpcode()) {
466      default: llvm_unreachable("Unknown cast type!");
467      case Instruction::Trunc:
468        // Just replace this cast with the result.
469        return ReplaceInstUsesWith(CI, Res);
470      case Instruction::ZExt: {
471        assert(SrcBitSize < DestBitSize && "Not a zext?");
472
473        // If the high bits are already zero, just replace this cast with the
474        // result.
475        APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
476        if (MaskedValueIsZero(Res, Mask))
477          return ReplaceInstUsesWith(CI, Res);
478
479        // We need to emit an AND to clear the high bits.
480        Constant *C = ConstantInt::get(CI.getContext(),
481                                 APInt::getLowBitsSet(DestBitSize, SrcBitSize));
482        return BinaryOperator::CreateAnd(Res, C);
483      }
484      case Instruction::SExt: {
485        // If the high bits are already filled with sign bit, just replace this
486        // cast with the result.
487        unsigned NumSignBits = ComputeNumSignBits(Res);
488        if (NumSignBits > (DestBitSize - SrcBitSize))
489          return ReplaceInstUsesWith(CI, Res);
490
491        // We need to emit a cast to truncate, then a cast to sext.
492        return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
493      }
494      }
495    }
496  }
497
498  Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
499  Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
500
501  switch (SrcI->getOpcode()) {
502  case Instruction::Add:
503  case Instruction::Mul:
504  case Instruction::And:
505  case Instruction::Or:
506  case Instruction::Xor:
507    // If we are discarding information, rewrite.
508    if (DestBitSize < SrcBitSize && DestBitSize != 1) {
509      // Don't insert two casts unless at least one can be eliminated.
510      if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy) ||
511          !ValueRequiresCast(CI.getOpcode(), Op0, DestTy)) {
512        Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
513        Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
514        return BinaryOperator::Create(
515            cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
516      }
517    }
518
519    // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1
520    if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
521        SrcI->getOpcode() == Instruction::Xor &&
522        Op1 == ConstantInt::getTrue(CI.getContext()) &&
523        (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
524      Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
525      return BinaryOperator::CreateXor(New,
526                                      ConstantInt::get(CI.getType(), 1));
527    }
528    break;
529
530  case Instruction::Shl: {
531    // Canonicalize trunc inside shl, if we can.
532    ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
533    if (CI && DestBitSize < SrcBitSize &&
534        CI->getLimitedValue(DestBitSize) < DestBitSize) {
535      Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
536      Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
537      return BinaryOperator::CreateShl(Op0c, Op1c);
538    }
539    break;
540  }
541  }
542  return 0;
543}
544
545
546Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
547  if (Instruction *Result = commonIntCastTransforms(CI))
548    return Result;
549
550  Value *Src = CI.getOperand(0);
551  const Type *Ty = CI.getType();
552  uint32_t DestBitWidth = Ty->getScalarSizeInBits();
553  uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
554
555  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
556  if (DestBitWidth == 1) {
557    Constant *One = ConstantInt::get(Src->getType(), 1);
558    Src = Builder->CreateAnd(Src, One, "tmp");
559    Value *Zero = Constant::getNullValue(Src->getType());
560    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
561  }
562
563  // Optimize trunc(lshr(), c) to pull the shift through the truncate.
564  ConstantInt *ShAmtV = 0;
565  Value *ShiftOp = 0;
566  if (Src->hasOneUse() &&
567      match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
568    uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
569
570    // Get a mask for the bits shifting in.
571    APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
572    if (MaskedValueIsZero(ShiftOp, Mask)) {
573      if (ShAmt >= DestBitWidth)        // All zeros.
574        return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
575
576      // Okay, we can shrink this.  Truncate the input, then return a new
577      // shift.
578      Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
579      Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
580      return BinaryOperator::CreateLShr(V1, V2);
581    }
582  }
583
584  return 0;
585}
586
587/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
588/// in order to eliminate the icmp.
589Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
590                                             bool DoXform) {
591  // If we are just checking for a icmp eq of a single bit and zext'ing it
592  // to an integer, then shift the bit to the appropriate place and then
593  // cast to integer to avoid the comparison.
594  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
595    const APInt &Op1CV = Op1C->getValue();
596
597    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
598    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
599    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
600        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
601      if (!DoXform) return ICI;
602
603      Value *In = ICI->getOperand(0);
604      Value *Sh = ConstantInt::get(In->getType(),
605                                   In->getType()->getScalarSizeInBits()-1);
606      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
607      if (In->getType() != CI.getType())
608        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
609
610      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
611        Constant *One = ConstantInt::get(In->getType(), 1);
612        In = Builder->CreateXor(In, One, In->getName()+".not");
613      }
614
615      return ReplaceInstUsesWith(CI, In);
616    }
617
618
619
620    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
621    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
622    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
623    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
624    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
625    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
626    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
627    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
628    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
629        // This only works for EQ and NE
630        ICI->isEquality()) {
631      // If Op1C some other power of two, convert:
632      uint32_t BitWidth = Op1C->getType()->getBitWidth();
633      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
634      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
635      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
636
637      APInt KnownZeroMask(~KnownZero);
638      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
639        if (!DoXform) return ICI;
640
641        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
642        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
643          // (X&4) == 2 --> false
644          // (X&4) != 2 --> true
645          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
646                                           isNE);
647          Res = ConstantExpr::getZExt(Res, CI.getType());
648          return ReplaceInstUsesWith(CI, Res);
649        }
650
651        uint32_t ShiftAmt = KnownZeroMask.logBase2();
652        Value *In = ICI->getOperand(0);
653        if (ShiftAmt) {
654          // Perform a logical shr by shiftamt.
655          // Insert the shift to put the result in the low bit.
656          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
657                                   In->getName()+".lobit");
658        }
659
660        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
661          Constant *One = ConstantInt::get(In->getType(), 1);
662          In = Builder->CreateXor(In, One, "tmp");
663        }
664
665        if (CI.getType() == In->getType())
666          return ReplaceInstUsesWith(CI, In);
667        else
668          return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
669      }
670    }
671  }
672
673  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
674  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
675  // may lead to additional simplifications.
676  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
677    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
678      uint32_t BitWidth = ITy->getBitWidth();
679      Value *LHS = ICI->getOperand(0);
680      Value *RHS = ICI->getOperand(1);
681
682      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
683      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
684      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
685      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
686      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
687
688      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
689        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
690        APInt UnknownBit = ~KnownBits;
691        if (UnknownBit.countPopulation() == 1) {
692          if (!DoXform) return ICI;
693
694          Value *Result = Builder->CreateXor(LHS, RHS);
695
696          // Mask off any bits that are set and won't be shifted away.
697          if (KnownOneLHS.uge(UnknownBit))
698            Result = Builder->CreateAnd(Result,
699                                        ConstantInt::get(ITy, UnknownBit));
700
701          // Shift the bit we're testing down to the lsb.
702          Result = Builder->CreateLShr(
703               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
704
705          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
706            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
707          Result->takeName(ICI);
708          return ReplaceInstUsesWith(CI, Result);
709        }
710      }
711    }
712  }
713
714  return 0;
715}
716
717Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
718  // If one of the common conversion will work, do it.
719  if (Instruction *Result = commonIntCastTransforms(CI))
720    return Result;
721
722  Value *Src = CI.getOperand(0);
723
724  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
725  // types and if the sizes are just right we can convert this into a logical
726  // 'and' which will be much cheaper than the pair of casts.
727  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
728    // Get the sizes of the types involved.  We know that the intermediate type
729    // will be smaller than A or C, but don't know the relation between A and C.
730    Value *A = CSrc->getOperand(0);
731    unsigned SrcSize = A->getType()->getScalarSizeInBits();
732    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
733    unsigned DstSize = CI.getType()->getScalarSizeInBits();
734    // If we're actually extending zero bits, then if
735    // SrcSize <  DstSize: zext(a & mask)
736    // SrcSize == DstSize: a & mask
737    // SrcSize  > DstSize: trunc(a) & mask
738    if (SrcSize < DstSize) {
739      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
740      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
741      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
742      return new ZExtInst(And, CI.getType());
743    }
744
745    if (SrcSize == DstSize) {
746      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
747      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
748                                                           AndValue));
749    }
750    if (SrcSize > DstSize) {
751      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
752      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
753      return BinaryOperator::CreateAnd(Trunc,
754                                       ConstantInt::get(Trunc->getType(),
755                                                               AndValue));
756    }
757  }
758
759  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
760    return transformZExtICmp(ICI, CI);
761
762  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
763  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
764    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
765    // of the (zext icmp) will be transformed.
766    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
767    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
768    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
769        (transformZExtICmp(LHS, CI, false) ||
770         transformZExtICmp(RHS, CI, false))) {
771      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
772      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
773      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
774    }
775  }
776
777  // zext(trunc(t) & C) -> (t & zext(C)).
778  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
779    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
780      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
781        Value *TI0 = TI->getOperand(0);
782        if (TI0->getType() == CI.getType())
783          return
784            BinaryOperator::CreateAnd(TI0,
785                                ConstantExpr::getZExt(C, CI.getType()));
786      }
787
788  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
789  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
790    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
791      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
792        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
793            And->getOperand(1) == C)
794          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
795            Value *TI0 = TI->getOperand(0);
796            if (TI0->getType() == CI.getType()) {
797              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
798              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
799              return BinaryOperator::CreateXor(NewAnd, ZC);
800            }
801          }
802
803  return 0;
804}
805
806Instruction *InstCombiner::visitSExt(SExtInst &CI) {
807  if (Instruction *I = commonIntCastTransforms(CI))
808    return I;
809
810  Value *Src = CI.getOperand(0);
811
812  // Canonicalize sign-extend from i1 to a select.
813  if (Src->getType() == Type::getInt1Ty(CI.getContext()))
814    return SelectInst::Create(Src,
815                              Constant::getAllOnesValue(CI.getType()),
816                              Constant::getNullValue(CI.getType()));
817
818  // See if the value being truncated is already sign extended.  If so, just
819  // eliminate the trunc/sext pair.
820  if (Operator::getOpcode(Src) == Instruction::Trunc) {
821    Value *Op = cast<User>(Src)->getOperand(0);
822    unsigned OpBits   = Op->getType()->getScalarSizeInBits();
823    unsigned MidBits  = Src->getType()->getScalarSizeInBits();
824    unsigned DestBits = CI.getType()->getScalarSizeInBits();
825    unsigned NumSignBits = ComputeNumSignBits(Op);
826
827    if (OpBits == DestBits) {
828      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
829      // bits, it is already ready.
830      if (NumSignBits > DestBits-MidBits)
831        return ReplaceInstUsesWith(CI, Op);
832    } else if (OpBits < DestBits) {
833      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
834      // bits, just sext from i32.
835      if (NumSignBits > OpBits-MidBits)
836        return new SExtInst(Op, CI.getType(), "tmp");
837    } else {
838      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
839      // bits, just truncate to i32.
840      if (NumSignBits > OpBits-MidBits)
841        return new TruncInst(Op, CI.getType(), "tmp");
842    }
843  }
844
845  // If the input is a shl/ashr pair of a same constant, then this is a sign
846  // extension from a smaller value.  If we could trust arbitrary bitwidth
847  // integers, we could turn this into a truncate to the smaller bit and then
848  // use a sext for the whole extension.  Since we don't, look deeper and check
849  // for a truncate.  If the source and dest are the same type, eliminate the
850  // trunc and extend and just do shifts.  For example, turn:
851  //   %a = trunc i32 %i to i8
852  //   %b = shl i8 %a, 6
853  //   %c = ashr i8 %b, 6
854  //   %d = sext i8 %c to i32
855  // into:
856  //   %a = shl i32 %i, 30
857  //   %d = ashr i32 %a, 30
858  Value *A = 0;
859  ConstantInt *BA = 0, *CA = 0;
860  if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
861                        m_ConstantInt(CA))) &&
862      BA == CA && isa<TruncInst>(A)) {
863    Value *I = cast<TruncInst>(A)->getOperand(0);
864    if (I->getType() == CI.getType()) {
865      unsigned MidSize = Src->getType()->getScalarSizeInBits();
866      unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
867      unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
868      Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
869      I = Builder->CreateShl(I, ShAmtV, CI.getName());
870      return BinaryOperator::CreateAShr(I, ShAmtV);
871    }
872  }
873
874  return 0;
875}
876
877
878/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
879/// in the specified FP type without changing its value.
880static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
881  bool losesInfo;
882  APFloat F = CFP->getValueAPF();
883  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
884  if (!losesInfo)
885    return ConstantFP::get(CFP->getContext(), F);
886  return 0;
887}
888
889/// LookThroughFPExtensions - If this is an fp extension instruction, look
890/// through it until we get the source value.
891static Value *LookThroughFPExtensions(Value *V) {
892  if (Instruction *I = dyn_cast<Instruction>(V))
893    if (I->getOpcode() == Instruction::FPExt)
894      return LookThroughFPExtensions(I->getOperand(0));
895
896  // If this value is a constant, return the constant in the smallest FP type
897  // that can accurately represent it.  This allows us to turn
898  // (float)((double)X+2.0) into x+2.0f.
899  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
900    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
901      return V;  // No constant folding of this.
902    // See if the value can be truncated to float and then reextended.
903    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
904      return V;
905    if (CFP->getType() == Type::getDoubleTy(V->getContext()))
906      return V;  // Won't shrink.
907    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
908      return V;
909    // Don't try to shrink to various long double types.
910  }
911
912  return V;
913}
914
915Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
916  if (Instruction *I = commonCastTransforms(CI))
917    return I;
918
919  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
920  // smaller than the destination type, we can eliminate the truncate by doing
921  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
922  // as many builtins (sqrt, etc).
923  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
924  if (OpI && OpI->hasOneUse()) {
925    switch (OpI->getOpcode()) {
926    default: break;
927    case Instruction::FAdd:
928    case Instruction::FSub:
929    case Instruction::FMul:
930    case Instruction::FDiv:
931    case Instruction::FRem:
932      const Type *SrcTy = OpI->getType();
933      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
934      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
935      if (LHSTrunc->getType() != SrcTy &&
936          RHSTrunc->getType() != SrcTy) {
937        unsigned DstSize = CI.getType()->getScalarSizeInBits();
938        // If the source types were both smaller than the destination type of
939        // the cast, do this xform.
940        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
941            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
942          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
943          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
944          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
945        }
946      }
947      break;
948    }
949  }
950  return 0;
951}
952
953Instruction *InstCombiner::visitFPExt(CastInst &CI) {
954  return commonCastTransforms(CI);
955}
956
957Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
958  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
959  if (OpI == 0)
960    return commonCastTransforms(FI);
961
962  // fptoui(uitofp(X)) --> X
963  // fptoui(sitofp(X)) --> X
964  // This is safe if the intermediate type has enough bits in its mantissa to
965  // accurately represent all values of X.  For example, do not do this with
966  // i64->float->i64.  This is also safe for sitofp case, because any negative
967  // 'X' value would cause an undefined result for the fptoui.
968  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
969      OpI->getOperand(0)->getType() == FI.getType() &&
970      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
971                    OpI->getType()->getFPMantissaWidth())
972    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
973
974  return commonCastTransforms(FI);
975}
976
977Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
978  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
979  if (OpI == 0)
980    return commonCastTransforms(FI);
981
982  // fptosi(sitofp(X)) --> X
983  // fptosi(uitofp(X)) --> X
984  // This is safe if the intermediate type has enough bits in its mantissa to
985  // accurately represent all values of X.  For example, do not do this with
986  // i64->float->i64.  This is also safe for sitofp case, because any negative
987  // 'X' value would cause an undefined result for the fptoui.
988  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
989      OpI->getOperand(0)->getType() == FI.getType() &&
990      (int)FI.getType()->getScalarSizeInBits() <=
991                    OpI->getType()->getFPMantissaWidth())
992    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
993
994  return commonCastTransforms(FI);
995}
996
997Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
998  return commonCastTransforms(CI);
999}
1000
1001Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1002  return commonCastTransforms(CI);
1003}
1004
1005Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1006  // If the destination integer type is smaller than the intptr_t type for
1007  // this target, do a ptrtoint to intptr_t then do a trunc.  This allows the
1008  // trunc to be exposed to other transforms.  Don't do this for extending
1009  // ptrtoint's, because we don't know if the target sign or zero extends its
1010  // pointers.
1011  if (TD &&
1012      CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1013    Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1014                                       TD->getIntPtrType(CI.getContext()),
1015                                       "tmp");
1016    return new TruncInst(P, CI.getType());
1017  }
1018
1019  return commonPointerCastTransforms(CI);
1020}
1021
1022
1023Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1024  // If the source integer type is larger than the intptr_t type for
1025  // this target, do a trunc to the intptr_t type, then inttoptr of it.  This
1026  // allows the trunc to be exposed to other transforms.  Don't do this for
1027  // extending inttoptr's, because we don't know if the target sign or zero
1028  // extends to pointers.
1029  if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
1030      TD->getPointerSizeInBits()) {
1031    Value *P = Builder->CreateTrunc(CI.getOperand(0),
1032                                    TD->getIntPtrType(CI.getContext()), "tmp");
1033    return new IntToPtrInst(P, CI.getType());
1034  }
1035
1036  if (Instruction *I = commonCastTransforms(CI))
1037    return I;
1038
1039  return 0;
1040}
1041
1042Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1043  // If the operands are integer typed then apply the integer transforms,
1044  // otherwise just apply the common ones.
1045  Value *Src = CI.getOperand(0);
1046  const Type *SrcTy = Src->getType();
1047  const Type *DestTy = CI.getType();
1048
1049  if (isa<PointerType>(SrcTy)) {
1050    if (Instruction *I = commonPointerCastTransforms(CI))
1051      return I;
1052  } else {
1053    if (Instruction *Result = commonCastTransforms(CI))
1054      return Result;
1055  }
1056
1057
1058  // Get rid of casts from one type to the same type. These are useless and can
1059  // be replaced by the operand.
1060  if (DestTy == Src->getType())
1061    return ReplaceInstUsesWith(CI, Src);
1062
1063  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1064    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1065    const Type *DstElTy = DstPTy->getElementType();
1066    const Type *SrcElTy = SrcPTy->getElementType();
1067
1068    // If the address spaces don't match, don't eliminate the bitcast, which is
1069    // required for changing types.
1070    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1071      return 0;
1072
1073    // If we are casting a alloca to a pointer to a type of the same
1074    // size, rewrite the allocation instruction to allocate the "right" type.
1075    // There is no need to modify malloc calls because it is their bitcast that
1076    // needs to be cleaned up.
1077    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1078      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1079        return V;
1080
1081    // If the source and destination are pointers, and this cast is equivalent
1082    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1083    // This can enhance SROA and other transforms that want type-safe pointers.
1084    Constant *ZeroUInt =
1085      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1086    unsigned NumZeros = 0;
1087    while (SrcElTy != DstElTy &&
1088           isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
1089           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1090      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1091      ++NumZeros;
1092    }
1093
1094    // If we found a path from the src to dest, create the getelementptr now.
1095    if (SrcElTy == DstElTy) {
1096      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1097      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1098                                               ((Instruction*) NULL));
1099    }
1100  }
1101
1102  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1103    if (DestVTy->getNumElements() == 1) {
1104      if (!isa<VectorType>(SrcTy)) {
1105        Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1106        return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1107                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1108      }
1109      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1110    }
1111  }
1112
1113  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1114    if (SrcVTy->getNumElements() == 1) {
1115      if (!isa<VectorType>(DestTy)) {
1116        Value *Elem =
1117          Builder->CreateExtractElement(Src,
1118                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1119        return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1120      }
1121    }
1122  }
1123
1124  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1125    if (SVI->hasOneUse()) {
1126      // Okay, we have (bitconvert (shuffle ..)).  Check to see if this is
1127      // a bitconvert to a vector with the same # elts.
1128      if (isa<VectorType>(DestTy) &&
1129          cast<VectorType>(DestTy)->getNumElements() ==
1130                SVI->getType()->getNumElements() &&
1131          SVI->getType()->getNumElements() ==
1132            cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1133        CastInst *Tmp;
1134        // If either of the operands is a cast from CI.getType(), then
1135        // evaluating the shuffle in the casted destination's type will allow
1136        // us to eliminate at least one cast.
1137        if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
1138             Tmp->getOperand(0)->getType() == DestTy) ||
1139            ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
1140             Tmp->getOperand(0)->getType() == DestTy)) {
1141          Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1142          Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1143          // Return a new shuffle vector.  Use the same element ID's, as we
1144          // know the vector types match #elts.
1145          return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1146        }
1147      }
1148    }
1149  }
1150  return 0;
1151}
1152