InstCombineCasts.cpp revision 7a34d6c450035dad9d494502c7c742137c42958e
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression.  If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25                                        int &Offset) {
26  assert(Val->getType()->isInteger(32) && "Unexpected allocation size type!");
27  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
28    Offset = CI->getZExtValue();
29    Scale  = 0;
30    return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
31  }
32
33  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
34    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
35      if (I->getOpcode() == Instruction::Shl) {
36        // This is a value scaled by '1 << the shift amt'.
37        Scale = 1U << RHS->getZExtValue();
38        Offset = 0;
39        return I->getOperand(0);
40      }
41
42      if (I->getOpcode() == Instruction::Mul) {
43        // This value is scaled by 'RHS'.
44        Scale = RHS->getZExtValue();
45        Offset = 0;
46        return I->getOperand(0);
47      }
48
49      if (I->getOpcode() == Instruction::Add) {
50        // We have X+C.  Check to see if we really have (X*C2)+C1,
51        // where C1 is divisible by C2.
52        unsigned SubScale;
53        Value *SubVal =
54          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
55        Offset += RHS->getZExtValue();
56        Scale = SubScale;
57        return SubVal;
58      }
59    }
60  }
61
62  // Otherwise, we can't look past this.
63  Scale = 1;
64  Offset = 0;
65  return Val;
66}
67
68/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
69/// try to eliminate the cast by moving the type information into the alloc.
70Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
71                                                   AllocaInst &AI) {
72  // This requires TargetData to get the alloca alignment and size information.
73  if (!TD) return 0;
74
75  const PointerType *PTy = cast<PointerType>(CI.getType());
76
77  BuilderTy AllocaBuilder(*Builder);
78  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
79
80  // Get the type really allocated and the type casted to.
81  const Type *AllocElTy = AI.getAllocatedType();
82  const Type *CastElTy = PTy->getElementType();
83  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
84
85  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
86  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
87  if (CastElTyAlign < AllocElTyAlign) return 0;
88
89  // If the allocation has multiple uses, only promote it if we are strictly
90  // increasing the alignment of the resultant allocation.  If we keep it the
91  // same, we open the door to infinite loops of various kinds.  (A reference
92  // from a dbg.declare doesn't count as a use for this purpose.)
93  if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
94      CastElTyAlign == AllocElTyAlign) return 0;
95
96  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
97  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
98  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
99
100  // See if we can satisfy the modulus by pulling a scale out of the array
101  // size argument.
102  unsigned ArraySizeScale;
103  int ArrayOffset;
104  Value *NumElements = // See if the array size is a decomposable linear expr.
105    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
106
107  // If we can now satisfy the modulus, by using a non-1 scale, we really can
108  // do the xform.
109  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
110      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
111
112  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
113  Value *Amt = 0;
114  if (Scale == 1) {
115    Amt = NumElements;
116  } else {
117    Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
118    // Insert before the alloca, not before the cast.
119    Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
120  }
121
122  if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
123    Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
124                                  Offset, true);
125    Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
126  }
127
128  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
129  New->setAlignment(AI.getAlignment());
130  New->takeName(&AI);
131
132  // If the allocation has one real use plus a dbg.declare, just remove the
133  // declare.
134  if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
135    EraseInstFromFunction(*(Instruction*)DI);
136  }
137  // If the allocation has multiple real uses, insert a cast and change all
138  // things that used it to use the new cast.  This will also hack on CI, but it
139  // will die soon.
140  else if (!AI.hasOneUse()) {
141    // New is the allocation instruction, pointer typed. AI is the original
142    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
143    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
144    AI.replaceAllUsesWith(NewCast);
145  }
146  return ReplaceInstUsesWith(CI, New);
147}
148
149
150/// CanEvaluateInDifferentType - Return true if we can take the specified value
151/// and return it as type Ty without inserting any new casts and without
152/// changing the computed value.  This is used by code that tries to decide
153/// whether promoting or shrinking integer operations to wider or smaller types
154/// will allow us to eliminate a truncate or extend.
155///
156/// This is a truncation operation if Ty is smaller than V->getType(), or an
157/// extension operation if Ty is larger.
158///
159/// If CastOpc is a truncation, then Ty will be a type smaller than V.  We
160/// should return true if trunc(V) can be computed by computing V in the smaller
161/// type.  If V is an instruction, then trunc(inst(x,y)) can be computed as
162/// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
163/// efficiently truncated.
164///
165/// If CastOpc is a sext or zext, we are asking if the low bits of the value can
166/// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
167/// the final result.
168bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
169                                              unsigned CastOpc,
170                                              int &NumCastsRemoved){
171  // We can always evaluate constants in another type.
172  if (isa<Constant>(V))
173    return true;
174
175  Instruction *I = dyn_cast<Instruction>(V);
176  if (!I) return false;
177
178  const Type *OrigTy = V->getType();
179
180  // If this is an extension or truncate, we can often eliminate it.
181  if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
182    // If this is a cast from the destination type, we can trivially eliminate
183    // it, and this will remove a cast overall.
184    if (I->getOperand(0)->getType() == Ty) {
185      // If the first operand is itself a cast, and is eliminable, do not count
186      // this as an eliminable cast.  We would prefer to eliminate those two
187      // casts first.
188      if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
189        ++NumCastsRemoved;
190      return true;
191    }
192  }
193
194  // We can't extend or shrink something that has multiple uses: doing so would
195  // require duplicating the instruction in general, which isn't profitable.
196  if (!I->hasOneUse()) return false;
197
198  unsigned Opc = I->getOpcode();
199  switch (Opc) {
200  case Instruction::Add:
201  case Instruction::Sub:
202  case Instruction::Mul:
203  case Instruction::And:
204  case Instruction::Or:
205  case Instruction::Xor:
206    // These operators can all arbitrarily be extended or truncated.
207    return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
208                                      NumCastsRemoved) &&
209           CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
210                                      NumCastsRemoved);
211
212  case Instruction::UDiv:
213  case Instruction::URem: {
214    // UDiv and URem can be truncated if all the truncated bits are zero.
215    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
216    uint32_t BitWidth = Ty->getScalarSizeInBits();
217    if (BitWidth < OrigBitWidth) {
218      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
219      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
220          MaskedValueIsZero(I->getOperand(1), Mask)) {
221        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
222                                          NumCastsRemoved) &&
223               CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
224                                          NumCastsRemoved);
225      }
226    }
227    break;
228  }
229  case Instruction::Shl:
230    // If we are truncating the result of this SHL, and if it's a shift of a
231    // constant amount, we can always perform a SHL in a smaller type.
232    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
233      uint32_t BitWidth = Ty->getScalarSizeInBits();
234      if (BitWidth < OrigTy->getScalarSizeInBits() &&
235          CI->getLimitedValue(BitWidth) < BitWidth)
236        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
237                                          NumCastsRemoved);
238    }
239    break;
240  case Instruction::LShr:
241    // If this is a truncate of a logical shr, we can truncate it to a smaller
242    // lshr iff we know that the bits we would otherwise be shifting in are
243    // already zeros.
244    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
245      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
246      uint32_t BitWidth = Ty->getScalarSizeInBits();
247      if (BitWidth < OrigBitWidth &&
248          MaskedValueIsZero(I->getOperand(0),
249            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
250          CI->getLimitedValue(BitWidth) < BitWidth) {
251        return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
252                                          NumCastsRemoved);
253      }
254    }
255    break;
256  case Instruction::ZExt:
257  case Instruction::SExt:
258  case Instruction::Trunc:
259    // If this is the same kind of case as our original (e.g. zext+zext), we
260    // can safely replace it.  Note that replacing it does not reduce the number
261    // of casts in the input.
262    if (Opc == CastOpc)
263      return true;
264
265    // sext (zext ty1), ty2 -> zext ty2
266    if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
267      return true;
268    break;
269  case Instruction::Select: {
270    SelectInst *SI = cast<SelectInst>(I);
271    return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
272                                      NumCastsRemoved) &&
273           CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
274                                      NumCastsRemoved);
275  }
276  case Instruction::PHI: {
277    // We can change a phi if we can change all operands.
278    PHINode *PN = cast<PHINode>(I);
279    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
280      if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
281                                      NumCastsRemoved))
282        return false;
283    return true;
284  }
285  default:
286    // TODO: Can handle more cases here.
287    break;
288  }
289
290  return false;
291}
292
293/// EvaluateInDifferentType - Given an expression that
294/// CanEvaluateInDifferentType returns true for, actually insert the code to
295/// evaluate the expression.
296Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
297                                             bool isSigned) {
298  if (Constant *C = dyn_cast<Constant>(V))
299    return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
300
301  // Otherwise, it must be an instruction.
302  Instruction *I = cast<Instruction>(V);
303  Instruction *Res = 0;
304  unsigned Opc = I->getOpcode();
305  switch (Opc) {
306  case Instruction::Add:
307  case Instruction::Sub:
308  case Instruction::Mul:
309  case Instruction::And:
310  case Instruction::Or:
311  case Instruction::Xor:
312  case Instruction::AShr:
313  case Instruction::LShr:
314  case Instruction::Shl:
315  case Instruction::UDiv:
316  case Instruction::URem: {
317    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
318    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
319    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
320    break;
321  }
322  case Instruction::Trunc:
323  case Instruction::ZExt:
324  case Instruction::SExt:
325    // If the source type of the cast is the type we're trying for then we can
326    // just return the source.  There's no need to insert it because it is not
327    // new.
328    if (I->getOperand(0)->getType() == Ty)
329      return I->getOperand(0);
330
331    // Otherwise, must be the same type of cast, so just reinsert a new one.
332    Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
333    break;
334  case Instruction::Select: {
335    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
336    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
337    Res = SelectInst::Create(I->getOperand(0), True, False);
338    break;
339  }
340  case Instruction::PHI: {
341    PHINode *OPN = cast<PHINode>(I);
342    PHINode *NPN = PHINode::Create(Ty);
343    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
344      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
345      NPN->addIncoming(V, OPN->getIncomingBlock(i));
346    }
347    Res = NPN;
348    break;
349  }
350  default:
351    // TODO: Can handle more cases here.
352    llvm_unreachable("Unreachable!");
353    break;
354  }
355
356  Res->takeName(I);
357  return InsertNewInstBefore(Res, *I);
358}
359
360
361/// This function is a wrapper around CastInst::isEliminableCastPair. It
362/// simply extracts arguments and returns what that function returns.
363static Instruction::CastOps
364isEliminableCastPair(
365  const CastInst *CI, ///< The first cast instruction
366  unsigned opcode,       ///< The opcode of the second cast instruction
367  const Type *DstTy,     ///< The target type for the second cast instruction
368  TargetData *TD         ///< The target data for pointer size
369) {
370
371  const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
372  const Type *MidTy = CI->getType();                  // B from above
373
374  // Get the opcodes of the two Cast instructions
375  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
376  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
377
378  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
379                                                DstTy,
380                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
381
382  // We don't want to form an inttoptr or ptrtoint that converts to an integer
383  // type that differs from the pointer size.
384  if ((Res == Instruction::IntToPtr &&
385          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
386      (Res == Instruction::PtrToInt &&
387          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
388    Res = 0;
389
390  return Instruction::CastOps(Res);
391}
392
393/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
394/// in any code being generated.  It does not require codegen if V is simple
395/// enough or if the cast can be folded into other casts.
396bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
397                                     const Type *Ty) {
398  if (V->getType() == Ty || isa<Constant>(V)) return false;
399
400  // If this is another cast that can be eliminated, it isn't codegen either.
401  if (const CastInst *CI = dyn_cast<CastInst>(V))
402    if (isEliminableCastPair(CI, opcode, Ty, TD))
403      return false;
404  return true;
405}
406
407
408/// @brief Implement the transforms common to all CastInst visitors.
409Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
410  Value *Src = CI.getOperand(0);
411
412  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
413  // eliminate it now.
414  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
415    if (Instruction::CastOps opc =
416        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
417      // The first cast (CSrc) is eliminable so we need to fix up or replace
418      // the second cast (CI). CSrc will then have a good chance of being dead.
419      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
420    }
421  }
422
423  // If we are casting a select then fold the cast into the select
424  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
425    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
426      return NV;
427
428  // If we are casting a PHI then fold the cast into the PHI
429  if (isa<PHINode>(Src)) {
430    // We don't do this if this would create a PHI node with an illegal type if
431    // it is currently legal.
432    if (!isa<IntegerType>(Src->getType()) ||
433        !isa<IntegerType>(CI.getType()) ||
434        ShouldChangeType(CI.getType(), Src->getType()))
435      if (Instruction *NV = FoldOpIntoPhi(CI))
436        return NV;
437  }
438
439  return 0;
440}
441
442/// commonIntCastTransforms - This function implements the common transforms
443/// for trunc, zext, and sext.
444Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
445  if (Instruction *Result = commonCastTransforms(CI))
446    return Result;
447
448  // See if we can simplify any instructions used by the LHS whose sole
449  // purpose is to compute bits we don't care about.
450  if (SimplifyDemandedInstructionBits(CI))
451    return &CI;
452
453  // If the source isn't an instruction or has more than one use then we
454  // can't do anything more.
455  Instruction *Src = dyn_cast<Instruction>(CI.getOperand(0));
456  if (!Src || !Src->hasOneUse())
457    return 0;
458
459  const Type *SrcTy = Src->getType();
460  const Type *DestTy = CI.getType();
461  uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
462  uint32_t DestBitSize = DestTy->getScalarSizeInBits();
463
464  // Attempt to propagate the cast into the instruction for int->int casts.
465  int NumCastsRemoved = 0;
466  // Only do this if the dest type is a simple type, don't convert the
467  // expression tree to something weird like i93 unless the source is also
468  // strange.
469  if ((isa<VectorType>(DestTy) ||
470       ShouldChangeType(Src->getType(), DestTy)) &&
471      CanEvaluateInDifferentType(Src, DestTy,
472                                 CI.getOpcode(), NumCastsRemoved)) {
473    // If this cast is a truncate, evaluting in a different type always
474    // eliminates the cast, so it is always a win.  If this is a zero-extension,
475    // we need to do an AND to maintain the clear top-part of the computation,
476    // so we require that the input have eliminated at least one cast.  If this
477    // is a sign extension, we insert two new casts (to do the extension) so we
478    // require that two casts have been eliminated.
479    bool DoXForm = false;
480    bool JustReplace = false;
481    switch (CI.getOpcode()) {
482    default:
483      // All the others use floating point so we shouldn't actually
484      // get here because of the check above.
485      llvm_unreachable("Unknown cast type");
486    case Instruction::Trunc:
487      DoXForm = true;
488      break;
489    case Instruction::ZExt: {
490      DoXForm = NumCastsRemoved >= 1;
491
492      if (!DoXForm && 0) {
493        // If it's unnecessary to issue an AND to clear the high bits, it's
494        // always profitable to do this xform.
495        Value *TryRes = EvaluateInDifferentType(Src, DestTy, false);
496        APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
497        if (MaskedValueIsZero(TryRes, Mask))
498          return ReplaceInstUsesWith(CI, TryRes);
499
500        if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
501          if (TryI->use_empty())
502            EraseInstFromFunction(*TryI);
503      }
504      break;
505    }
506    case Instruction::SExt: {
507      DoXForm = NumCastsRemoved >= 2;
508      if (!DoXForm && !isa<TruncInst>(Src) && 0) {
509        // If we do not have to emit the truncate + sext pair, then it's always
510        // profitable to do this xform.
511        //
512        // It's not safe to eliminate the trunc + sext pair if one of the
513        // eliminated cast is a truncate. e.g.
514        // t2 = trunc i32 t1 to i16
515        // t3 = sext i16 t2 to i32
516        // !=
517        // i32 t1
518        Value *TryRes = EvaluateInDifferentType(Src, DestTy, true);
519        unsigned NumSignBits = ComputeNumSignBits(TryRes);
520        if (NumSignBits > (DestBitSize - SrcBitSize))
521          return ReplaceInstUsesWith(CI, TryRes);
522
523        if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
524          if (TryI->use_empty())
525            EraseInstFromFunction(*TryI);
526      }
527      break;
528    }
529    }
530
531    if (DoXForm) {
532      DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
533            " to avoid cast: " << CI);
534      Value *Res = EvaluateInDifferentType(Src, DestTy,
535                                           CI.getOpcode() == Instruction::SExt);
536      if (JustReplace)
537        // Just replace this cast with the result.
538        return ReplaceInstUsesWith(CI, Res);
539
540      assert(Res->getType() == DestTy);
541      switch (CI.getOpcode()) {
542      default: llvm_unreachable("Unknown cast type!");
543      case Instruction::Trunc:
544        // Just replace this cast with the result.
545        return ReplaceInstUsesWith(CI, Res);
546      case Instruction::ZExt: {
547        assert(SrcBitSize < DestBitSize && "Not a zext?");
548
549        // If the high bits are already zero, just replace this cast with the
550        // result.
551        APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
552        if (MaskedValueIsZero(Res, Mask))
553          return ReplaceInstUsesWith(CI, Res);
554
555        // We need to emit an AND to clear the high bits.
556        Constant *C = ConstantInt::get(CI.getContext(),
557                                 APInt::getLowBitsSet(DestBitSize, SrcBitSize));
558        return BinaryOperator::CreateAnd(Res, C);
559      }
560      case Instruction::SExt: {
561        // If the high bits are already filled with sign bit, just replace this
562        // cast with the result.
563        unsigned NumSignBits = ComputeNumSignBits(Res);
564        if (NumSignBits > (DestBitSize - SrcBitSize))
565          return ReplaceInstUsesWith(CI, Res);
566
567        // We need to emit a cast to truncate, then a cast to sext.
568        return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
569      }
570      }
571    }
572  }
573
574  return 0;
575}
576
577Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
578  if (Instruction *Result = commonIntCastTransforms(CI))
579    return Result;
580
581  Value *Src = CI.getOperand(0);
582  const Type *DestTy = CI.getType();
583
584  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
585  if (DestTy->getScalarSizeInBits() == 1) {
586    Constant *One = ConstantInt::get(Src->getType(), 1);
587    Src = Builder->CreateAnd(Src, One, "tmp");
588    Value *Zero = Constant::getNullValue(Src->getType());
589    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
590  }
591
592  return 0;
593}
594
595/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
596/// in order to eliminate the icmp.
597Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
598                                             bool DoXform) {
599  // If we are just checking for a icmp eq of a single bit and zext'ing it
600  // to an integer, then shift the bit to the appropriate place and then
601  // cast to integer to avoid the comparison.
602  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
603    const APInt &Op1CV = Op1C->getValue();
604
605    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
606    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
607    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
608        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
609      if (!DoXform) return ICI;
610
611      Value *In = ICI->getOperand(0);
612      Value *Sh = ConstantInt::get(In->getType(),
613                                   In->getType()->getScalarSizeInBits()-1);
614      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
615      if (In->getType() != CI.getType())
616        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
617
618      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
619        Constant *One = ConstantInt::get(In->getType(), 1);
620        In = Builder->CreateXor(In, One, In->getName()+".not");
621      }
622
623      return ReplaceInstUsesWith(CI, In);
624    }
625
626
627
628    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
629    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
630    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
631    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
632    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
633    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
634    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
635    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
636    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
637        // This only works for EQ and NE
638        ICI->isEquality()) {
639      // If Op1C some other power of two, convert:
640      uint32_t BitWidth = Op1C->getType()->getBitWidth();
641      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
642      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
643      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
644
645      APInt KnownZeroMask(~KnownZero);
646      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
647        if (!DoXform) return ICI;
648
649        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
650        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
651          // (X&4) == 2 --> false
652          // (X&4) != 2 --> true
653          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
654                                           isNE);
655          Res = ConstantExpr::getZExt(Res, CI.getType());
656          return ReplaceInstUsesWith(CI, Res);
657        }
658
659        uint32_t ShiftAmt = KnownZeroMask.logBase2();
660        Value *In = ICI->getOperand(0);
661        if (ShiftAmt) {
662          // Perform a logical shr by shiftamt.
663          // Insert the shift to put the result in the low bit.
664          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
665                                   In->getName()+".lobit");
666        }
667
668        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
669          Constant *One = ConstantInt::get(In->getType(), 1);
670          In = Builder->CreateXor(In, One, "tmp");
671        }
672
673        if (CI.getType() == In->getType())
674          return ReplaceInstUsesWith(CI, In);
675        else
676          return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
677      }
678    }
679  }
680
681  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
682  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
683  // may lead to additional simplifications.
684  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
685    if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
686      uint32_t BitWidth = ITy->getBitWidth();
687      Value *LHS = ICI->getOperand(0);
688      Value *RHS = ICI->getOperand(1);
689
690      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
691      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
692      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
693      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
694      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
695
696      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
697        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
698        APInt UnknownBit = ~KnownBits;
699        if (UnknownBit.countPopulation() == 1) {
700          if (!DoXform) return ICI;
701
702          Value *Result = Builder->CreateXor(LHS, RHS);
703
704          // Mask off any bits that are set and won't be shifted away.
705          if (KnownOneLHS.uge(UnknownBit))
706            Result = Builder->CreateAnd(Result,
707                                        ConstantInt::get(ITy, UnknownBit));
708
709          // Shift the bit we're testing down to the lsb.
710          Result = Builder->CreateLShr(
711               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
712
713          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
714            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
715          Result->takeName(ICI);
716          return ReplaceInstUsesWith(CI, Result);
717        }
718      }
719    }
720  }
721
722  return 0;
723}
724
725Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
726  // If one of the common conversion will work, do it.
727  if (Instruction *Result = commonIntCastTransforms(CI))
728    return Result;
729
730  Value *Src = CI.getOperand(0);
731
732  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
733  // types and if the sizes are just right we can convert this into a logical
734  // 'and' which will be much cheaper than the pair of casts.
735  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
736    // Get the sizes of the types involved.  We know that the intermediate type
737    // will be smaller than A or C, but don't know the relation between A and C.
738    Value *A = CSrc->getOperand(0);
739    unsigned SrcSize = A->getType()->getScalarSizeInBits();
740    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
741    unsigned DstSize = CI.getType()->getScalarSizeInBits();
742    // If we're actually extending zero bits, then if
743    // SrcSize <  DstSize: zext(a & mask)
744    // SrcSize == DstSize: a & mask
745    // SrcSize  > DstSize: trunc(a) & mask
746    if (SrcSize < DstSize) {
747      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
748      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
749      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
750      return new ZExtInst(And, CI.getType());
751    }
752
753    if (SrcSize == DstSize) {
754      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
755      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
756                                                           AndValue));
757    }
758    if (SrcSize > DstSize) {
759      Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
760      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
761      return BinaryOperator::CreateAnd(Trunc,
762                                       ConstantInt::get(Trunc->getType(),
763                                                               AndValue));
764    }
765  }
766
767  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
768    return transformZExtICmp(ICI, CI);
769
770  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
771  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
772    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
773    // of the (zext icmp) will be transformed.
774    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
775    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
776    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
777        (transformZExtICmp(LHS, CI, false) ||
778         transformZExtICmp(RHS, CI, false))) {
779      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
780      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
781      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
782    }
783  }
784
785  // zext(trunc(t) & C) -> (t & zext(C)).
786  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
787    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
788      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
789        Value *TI0 = TI->getOperand(0);
790        if (TI0->getType() == CI.getType())
791          return
792            BinaryOperator::CreateAnd(TI0,
793                                ConstantExpr::getZExt(C, CI.getType()));
794      }
795
796  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
797  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
798    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
799      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
800        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
801            And->getOperand(1) == C)
802          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
803            Value *TI0 = TI->getOperand(0);
804            if (TI0->getType() == CI.getType()) {
805              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
806              Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
807              return BinaryOperator::CreateXor(NewAnd, ZC);
808            }
809          }
810
811  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
812  Value *X;
813  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isInteger(1) &&
814      match(SrcI, m_Not(m_Value(X))) &&
815      (!X->hasOneUse() || !isa<CmpInst>(X))) {
816    Value *New = Builder->CreateZExt(X, CI.getType());
817    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
818  }
819
820  return 0;
821}
822
823Instruction *InstCombiner::visitSExt(SExtInst &CI) {
824  if (Instruction *I = commonIntCastTransforms(CI))
825    return I;
826
827  Value *Src = CI.getOperand(0);
828
829  // Canonicalize sign-extend from i1 to a select.
830  if (Src->getType()->isInteger(1))
831    return SelectInst::Create(Src,
832                              Constant::getAllOnesValue(CI.getType()),
833                              Constant::getNullValue(CI.getType()));
834
835  // See if the value being truncated is already sign extended.  If so, just
836  // eliminate the trunc/sext pair.
837  if (Operator::getOpcode(Src) == Instruction::Trunc) {
838    Value *Op = cast<User>(Src)->getOperand(0);
839    unsigned OpBits   = Op->getType()->getScalarSizeInBits();
840    unsigned MidBits  = Src->getType()->getScalarSizeInBits();
841    unsigned DestBits = CI.getType()->getScalarSizeInBits();
842    unsigned NumSignBits = ComputeNumSignBits(Op);
843
844    if (OpBits == DestBits) {
845      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
846      // bits, it is already ready.
847      if (NumSignBits > DestBits-MidBits)
848        return ReplaceInstUsesWith(CI, Op);
849    } else if (OpBits < DestBits) {
850      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
851      // bits, just sext from i32.
852      if (NumSignBits > OpBits-MidBits)
853        return new SExtInst(Op, CI.getType(), "tmp");
854    } else {
855      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
856      // bits, just truncate to i32.
857      if (NumSignBits > OpBits-MidBits)
858        return new TruncInst(Op, CI.getType(), "tmp");
859    }
860  }
861
862  // If the input is a shl/ashr pair of a same constant, then this is a sign
863  // extension from a smaller value.  If we could trust arbitrary bitwidth
864  // integers, we could turn this into a truncate to the smaller bit and then
865  // use a sext for the whole extension.  Since we don't, look deeper and check
866  // for a truncate.  If the source and dest are the same type, eliminate the
867  // trunc and extend and just do shifts.  For example, turn:
868  //   %a = trunc i32 %i to i8
869  //   %b = shl i8 %a, 6
870  //   %c = ashr i8 %b, 6
871  //   %d = sext i8 %c to i32
872  // into:
873  //   %a = shl i32 %i, 30
874  //   %d = ashr i32 %a, 30
875  Value *A = 0;
876  ConstantInt *BA = 0, *CA = 0;
877  if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
878                        m_ConstantInt(CA))) &&
879      BA == CA && isa<TruncInst>(A)) {
880    Value *I = cast<TruncInst>(A)->getOperand(0);
881    if (I->getType() == CI.getType()) {
882      unsigned MidSize = Src->getType()->getScalarSizeInBits();
883      unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
884      unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
885      Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
886      I = Builder->CreateShl(I, ShAmtV, CI.getName());
887      return BinaryOperator::CreateAShr(I, ShAmtV);
888    }
889  }
890
891  return 0;
892}
893
894
895/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
896/// in the specified FP type without changing its value.
897static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
898  bool losesInfo;
899  APFloat F = CFP->getValueAPF();
900  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
901  if (!losesInfo)
902    return ConstantFP::get(CFP->getContext(), F);
903  return 0;
904}
905
906/// LookThroughFPExtensions - If this is an fp extension instruction, look
907/// through it until we get the source value.
908static Value *LookThroughFPExtensions(Value *V) {
909  if (Instruction *I = dyn_cast<Instruction>(V))
910    if (I->getOpcode() == Instruction::FPExt)
911      return LookThroughFPExtensions(I->getOperand(0));
912
913  // If this value is a constant, return the constant in the smallest FP type
914  // that can accurately represent it.  This allows us to turn
915  // (float)((double)X+2.0) into x+2.0f.
916  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
917    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
918      return V;  // No constant folding of this.
919    // See if the value can be truncated to float and then reextended.
920    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
921      return V;
922    if (CFP->getType()->isDoubleTy())
923      return V;  // Won't shrink.
924    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
925      return V;
926    // Don't try to shrink to various long double types.
927  }
928
929  return V;
930}
931
932Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
933  if (Instruction *I = commonCastTransforms(CI))
934    return I;
935
936  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
937  // smaller than the destination type, we can eliminate the truncate by doing
938  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
939  // as many builtins (sqrt, etc).
940  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
941  if (OpI && OpI->hasOneUse()) {
942    switch (OpI->getOpcode()) {
943    default: break;
944    case Instruction::FAdd:
945    case Instruction::FSub:
946    case Instruction::FMul:
947    case Instruction::FDiv:
948    case Instruction::FRem:
949      const Type *SrcTy = OpI->getType();
950      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
951      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
952      if (LHSTrunc->getType() != SrcTy &&
953          RHSTrunc->getType() != SrcTy) {
954        unsigned DstSize = CI.getType()->getScalarSizeInBits();
955        // If the source types were both smaller than the destination type of
956        // the cast, do this xform.
957        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
958            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
959          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
960          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
961          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
962        }
963      }
964      break;
965    }
966  }
967  return 0;
968}
969
970Instruction *InstCombiner::visitFPExt(CastInst &CI) {
971  return commonCastTransforms(CI);
972}
973
974Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
975  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
976  if (OpI == 0)
977    return commonCastTransforms(FI);
978
979  // fptoui(uitofp(X)) --> X
980  // fptoui(sitofp(X)) --> X
981  // This is safe if the intermediate type has enough bits in its mantissa to
982  // accurately represent all values of X.  For example, do not do this with
983  // i64->float->i64.  This is also safe for sitofp case, because any negative
984  // 'X' value would cause an undefined result for the fptoui.
985  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
986      OpI->getOperand(0)->getType() == FI.getType() &&
987      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
988                    OpI->getType()->getFPMantissaWidth())
989    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
990
991  return commonCastTransforms(FI);
992}
993
994Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
995  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
996  if (OpI == 0)
997    return commonCastTransforms(FI);
998
999  // fptosi(sitofp(X)) --> X
1000  // fptosi(uitofp(X)) --> X
1001  // This is safe if the intermediate type has enough bits in its mantissa to
1002  // accurately represent all values of X.  For example, do not do this with
1003  // i64->float->i64.  This is also safe for sitofp case, because any negative
1004  // 'X' value would cause an undefined result for the fptoui.
1005  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1006      OpI->getOperand(0)->getType() == FI.getType() &&
1007      (int)FI.getType()->getScalarSizeInBits() <=
1008                    OpI->getType()->getFPMantissaWidth())
1009    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1010
1011  return commonCastTransforms(FI);
1012}
1013
1014Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1015  return commonCastTransforms(CI);
1016}
1017
1018Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1019  return commonCastTransforms(CI);
1020}
1021
1022Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1023  // If the source integer type is larger than the intptr_t type for
1024  // this target, do a trunc to the intptr_t type, then inttoptr of it.  This
1025  // allows the trunc to be exposed to other transforms.  Don't do this for
1026  // extending inttoptr's, because we don't know if the target sign or zero
1027  // extends to pointers.
1028  if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
1029      TD->getPointerSizeInBits()) {
1030    Value *P = Builder->CreateTrunc(CI.getOperand(0),
1031                                    TD->getIntPtrType(CI.getContext()), "tmp");
1032    return new IntToPtrInst(P, CI.getType());
1033  }
1034
1035  if (Instruction *I = commonCastTransforms(CI))
1036    return I;
1037
1038  return 0;
1039}
1040
1041/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1042Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1043  Value *Src = CI.getOperand(0);
1044
1045  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1046    // If casting the result of a getelementptr instruction with no offset, turn
1047    // this into a cast of the original pointer!
1048    if (GEP->hasAllZeroIndices()) {
1049      // Changing the cast operand is usually not a good idea but it is safe
1050      // here because the pointer operand is being replaced with another
1051      // pointer operand so the opcode doesn't need to change.
1052      Worklist.Add(GEP);
1053      CI.setOperand(0, GEP->getOperand(0));
1054      return &CI;
1055    }
1056
1057    // If the GEP has a single use, and the base pointer is a bitcast, and the
1058    // GEP computes a constant offset, see if we can convert these three
1059    // instructions into fewer.  This typically happens with unions and other
1060    // non-type-safe code.
1061    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1062        GEP->hasAllConstantIndices()) {
1063      // We are guaranteed to get a constant from EmitGEPOffset.
1064      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1065      int64_t Offset = OffsetV->getSExtValue();
1066
1067      // Get the base pointer input of the bitcast, and the type it points to.
1068      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1069      const Type *GEPIdxTy =
1070      cast<PointerType>(OrigBase->getType())->getElementType();
1071      SmallVector<Value*, 8> NewIndices;
1072      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1073        // If we were able to index down into an element, create the GEP
1074        // and bitcast the result.  This eliminates one bitcast, potentially
1075        // two.
1076        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1077        Builder->CreateInBoundsGEP(OrigBase,
1078                                   NewIndices.begin(), NewIndices.end()) :
1079        Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1080        NGEP->takeName(GEP);
1081
1082        if (isa<BitCastInst>(CI))
1083          return new BitCastInst(NGEP, CI.getType());
1084        assert(isa<PtrToIntInst>(CI));
1085        return new PtrToIntInst(NGEP, CI.getType());
1086      }
1087    }
1088  }
1089
1090  return commonCastTransforms(CI);
1091}
1092
1093Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1094  // If the destination integer type is smaller than the intptr_t type for
1095  // this target, do a ptrtoint to intptr_t then do a trunc.  This allows the
1096  // trunc to be exposed to other transforms.  Don't do this for extending
1097  // ptrtoint's, because we don't know if the target sign or zero extends its
1098  // pointers.
1099  if (TD &&
1100      CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1101    Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1102                                       TD->getIntPtrType(CI.getContext()),
1103                                       "tmp");
1104    return new TruncInst(P, CI.getType());
1105  }
1106
1107  return commonPointerCastTransforms(CI);
1108}
1109
1110Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1111  // If the operands are integer typed then apply the integer transforms,
1112  // otherwise just apply the common ones.
1113  Value *Src = CI.getOperand(0);
1114  const Type *SrcTy = Src->getType();
1115  const Type *DestTy = CI.getType();
1116
1117  // Get rid of casts from one type to the same type. These are useless and can
1118  // be replaced by the operand.
1119  if (DestTy == Src->getType())
1120    return ReplaceInstUsesWith(CI, Src);
1121
1122  if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1123    const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1124    const Type *DstElTy = DstPTy->getElementType();
1125    const Type *SrcElTy = SrcPTy->getElementType();
1126
1127    // If the address spaces don't match, don't eliminate the bitcast, which is
1128    // required for changing types.
1129    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1130      return 0;
1131
1132    // If we are casting a alloca to a pointer to a type of the same
1133    // size, rewrite the allocation instruction to allocate the "right" type.
1134    // There is no need to modify malloc calls because it is their bitcast that
1135    // needs to be cleaned up.
1136    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1137      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1138        return V;
1139
1140    // If the source and destination are pointers, and this cast is equivalent
1141    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1142    // This can enhance SROA and other transforms that want type-safe pointers.
1143    Constant *ZeroUInt =
1144      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1145    unsigned NumZeros = 0;
1146    while (SrcElTy != DstElTy &&
1147           isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
1148           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1149      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1150      ++NumZeros;
1151    }
1152
1153    // If we found a path from the src to dest, create the getelementptr now.
1154    if (SrcElTy == DstElTy) {
1155      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1156      return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
1157                                               ((Instruction*)NULL));
1158    }
1159  }
1160
1161  if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1162    if (DestVTy->getNumElements() == 1 && !isa<VectorType>(SrcTy)) {
1163      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1164      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1165                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1166      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1167    }
1168  }
1169
1170  if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1171    if (SrcVTy->getNumElements() == 1 && !isa<VectorType>(DestTy)) {
1172      Value *Elem =
1173        Builder->CreateExtractElement(Src,
1174                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1175      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1176    }
1177  }
1178
1179  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1180    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1181    // a bitconvert to a vector with the same # elts.
1182    if (SVI->hasOneUse() && isa<VectorType>(DestTy) &&
1183        cast<VectorType>(DestTy)->getNumElements() ==
1184              SVI->getType()->getNumElements() &&
1185        SVI->getType()->getNumElements() ==
1186          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1187      BitCastInst *Tmp;
1188      // If either of the operands is a cast from CI.getType(), then
1189      // evaluating the shuffle in the casted destination's type will allow
1190      // us to eliminate at least one cast.
1191      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1192           Tmp->getOperand(0)->getType() == DestTy) ||
1193          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1194           Tmp->getOperand(0)->getType() == DestTy)) {
1195        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1196        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1197        // Return a new shuffle vector.  Use the same element ID's, as we
1198        // know the vector types match #elts.
1199        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1200      }
1201    }
1202  }
1203
1204  if (isa<PointerType>(SrcTy))
1205    return commonPointerCastTransforms(CI);
1206  return commonCastTransforms(CI);
1207}
1208