1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/IR/ConstantRange.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/GetElementPtrTypeIterator.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/Target/TargetLibraryInfo.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27#define DEBUG_TYPE "instcombine"
28
29static ConstantInt *getOne(Constant *C) {
30  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
31}
32
33static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
34  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
35}
36
37static bool HasAddOverflow(ConstantInt *Result,
38                           ConstantInt *In1, ConstantInt *In2,
39                           bool IsSigned) {
40  if (!IsSigned)
41    return Result->getValue().ult(In1->getValue());
42
43  if (In2->isNegative())
44    return Result->getValue().sgt(In1->getValue());
45  return Result->getValue().slt(In1->getValue());
46}
47
48/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
49/// overflowed for this type.
50static bool AddWithOverflow(Constant *&Result, Constant *In1,
51                            Constant *In2, bool IsSigned = false) {
52  Result = ConstantExpr::getAdd(In1, In2);
53
54  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
55    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
56      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
57      if (HasAddOverflow(ExtractElement(Result, Idx),
58                         ExtractElement(In1, Idx),
59                         ExtractElement(In2, Idx),
60                         IsSigned))
61        return true;
62    }
63    return false;
64  }
65
66  return HasAddOverflow(cast<ConstantInt>(Result),
67                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
68                        IsSigned);
69}
70
71static bool HasSubOverflow(ConstantInt *Result,
72                           ConstantInt *In1, ConstantInt *In2,
73                           bool IsSigned) {
74  if (!IsSigned)
75    return Result->getValue().ugt(In1->getValue());
76
77  if (In2->isNegative())
78    return Result->getValue().slt(In1->getValue());
79
80  return Result->getValue().sgt(In1->getValue());
81}
82
83/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
84/// overflowed for this type.
85static bool SubWithOverflow(Constant *&Result, Constant *In1,
86                            Constant *In2, bool IsSigned = false) {
87  Result = ConstantExpr::getSub(In1, In2);
88
89  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
90    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
91      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
92      if (HasSubOverflow(ExtractElement(Result, Idx),
93                         ExtractElement(In1, Idx),
94                         ExtractElement(In2, Idx),
95                         IsSigned))
96        return true;
97    }
98    return false;
99  }
100
101  return HasSubOverflow(cast<ConstantInt>(Result),
102                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
103                        IsSigned);
104}
105
106/// isSignBitCheck - Given an exploded icmp instruction, return true if the
107/// comparison only checks the sign bit.  If it only checks the sign bit, set
108/// TrueIfSigned if the result of the comparison is true when the input value is
109/// signed.
110static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
111                           bool &TrueIfSigned) {
112  switch (pred) {
113  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
114    TrueIfSigned = true;
115    return RHS->isZero();
116  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
117    TrueIfSigned = true;
118    return RHS->isAllOnesValue();
119  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
120    TrueIfSigned = false;
121    return RHS->isAllOnesValue();
122  case ICmpInst::ICMP_UGT:
123    // True if LHS u> RHS and RHS == high-bit-mask - 1
124    TrueIfSigned = true;
125    return RHS->isMaxValue(true);
126  case ICmpInst::ICMP_UGE:
127    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
128    TrueIfSigned = true;
129    return RHS->getValue().isSignBit();
130  default:
131    return false;
132  }
133}
134
135/// Returns true if the exploded icmp can be expressed as a signed comparison
136/// to zero and updates the predicate accordingly.
137/// The signedness of the comparison is preserved.
138static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
139  if (!ICmpInst::isSigned(pred))
140    return false;
141
142  if (RHS->isZero())
143    return ICmpInst::isRelational(pred);
144
145  if (RHS->isOne()) {
146    if (pred == ICmpInst::ICMP_SLT) {
147      pred = ICmpInst::ICMP_SLE;
148      return true;
149    }
150  } else if (RHS->isAllOnesValue()) {
151    if (pred == ICmpInst::ICMP_SGT) {
152      pred = ICmpInst::ICMP_SGE;
153      return true;
154    }
155  }
156
157  return false;
158}
159
160// isHighOnes - Return true if the constant is of the form 1+0+.
161// This is the same as lowones(~X).
162static bool isHighOnes(const ConstantInt *CI) {
163  return (~CI->getValue() + 1).isPowerOf2();
164}
165
166/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
167/// set of known zero and one bits, compute the maximum and minimum values that
168/// could have the specified known zero and known one bits, returning them in
169/// min/max.
170static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
171                                                   const APInt& KnownOne,
172                                                   APInt& Min, APInt& Max) {
173  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
174         KnownZero.getBitWidth() == Min.getBitWidth() &&
175         KnownZero.getBitWidth() == Max.getBitWidth() &&
176         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
177  APInt UnknownBits = ~(KnownZero|KnownOne);
178
179  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
180  // bit if it is unknown.
181  Min = KnownOne;
182  Max = KnownOne|UnknownBits;
183
184  if (UnknownBits.isNegative()) { // Sign bit is unknown
185    Min.setBit(Min.getBitWidth()-1);
186    Max.clearBit(Max.getBitWidth()-1);
187  }
188}
189
190// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
191// a set of known zero and one bits, compute the maximum and minimum values that
192// could have the specified known zero and known one bits, returning them in
193// min/max.
194static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
195                                                     const APInt &KnownOne,
196                                                     APInt &Min, APInt &Max) {
197  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
198         KnownZero.getBitWidth() == Min.getBitWidth() &&
199         KnownZero.getBitWidth() == Max.getBitWidth() &&
200         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
201  APInt UnknownBits = ~(KnownZero|KnownOne);
202
203  // The minimum value is when the unknown bits are all zeros.
204  Min = KnownOne;
205  // The maximum value is when the unknown bits are all ones.
206  Max = KnownOne|UnknownBits;
207}
208
209
210
211/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
212///   cmp pred (load (gep GV, ...)), cmpcst
213/// where GV is a global variable with a constant initializer.  Try to simplify
214/// this into some simple computation that does not need the load.  For example
215/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
216///
217/// If AndCst is non-null, then the loaded value is masked with that constant
218/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
219Instruction *InstCombiner::
220FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
221                             CmpInst &ICI, ConstantInt *AndCst) {
222  // We need TD information to know the pointer size unless this is inbounds.
223  if (!GEP->isInBounds() && !DL)
224    return nullptr;
225
226  Constant *Init = GV->getInitializer();
227  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
228    return nullptr;
229
230  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
231  if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
232
233  // There are many forms of this optimization we can handle, for now, just do
234  // the simple index into a single-dimensional array.
235  //
236  // Require: GEP GV, 0, i {{, constant indices}}
237  if (GEP->getNumOperands() < 3 ||
238      !isa<ConstantInt>(GEP->getOperand(1)) ||
239      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
240      isa<Constant>(GEP->getOperand(2)))
241    return nullptr;
242
243  // Check that indices after the variable are constants and in-range for the
244  // type they index.  Collect the indices.  This is typically for arrays of
245  // structs.
246  SmallVector<unsigned, 4> LaterIndices;
247
248  Type *EltTy = Init->getType()->getArrayElementType();
249  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
250    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
251    if (!Idx) return nullptr;  // Variable index.
252
253    uint64_t IdxVal = Idx->getZExtValue();
254    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
255
256    if (StructType *STy = dyn_cast<StructType>(EltTy))
257      EltTy = STy->getElementType(IdxVal);
258    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
259      if (IdxVal >= ATy->getNumElements()) return nullptr;
260      EltTy = ATy->getElementType();
261    } else {
262      return nullptr; // Unknown type.
263    }
264
265    LaterIndices.push_back(IdxVal);
266  }
267
268  enum { Overdefined = -3, Undefined = -2 };
269
270  // Variables for our state machines.
271
272  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
273  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
274  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
275  // undefined, otherwise set to the first true element.  SecondTrueElement is
276  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
277  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
278
279  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
280  // form "i != 47 & i != 87".  Same state transitions as for true elements.
281  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
282
283  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
284  /// define a state machine that triggers for ranges of values that the index
285  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
286  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
287  /// index in the range (inclusive).  We use -2 for undefined here because we
288  /// use relative comparisons and don't want 0-1 to match -1.
289  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
290
291  // MagicBitvector - This is a magic bitvector where we set a bit if the
292  // comparison is true for element 'i'.  If there are 64 elements or less in
293  // the array, this will fully represent all the comparison results.
294  uint64_t MagicBitvector = 0;
295
296
297  // Scan the array and see if one of our patterns matches.
298  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
299  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
300    Constant *Elt = Init->getAggregateElement(i);
301    if (!Elt) return nullptr;
302
303    // If this is indexing an array of structures, get the structure element.
304    if (!LaterIndices.empty())
305      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
306
307    // If the element is masked, handle it.
308    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
309
310    // Find out if the comparison would be true or false for the i'th element.
311    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
312                                                  CompareRHS, DL, TLI);
313    // If the result is undef for this element, ignore it.
314    if (isa<UndefValue>(C)) {
315      // Extend range state machines to cover this element in case there is an
316      // undef in the middle of the range.
317      if (TrueRangeEnd == (int)i-1)
318        TrueRangeEnd = i;
319      if (FalseRangeEnd == (int)i-1)
320        FalseRangeEnd = i;
321      continue;
322    }
323
324    // If we can't compute the result for any of the elements, we have to give
325    // up evaluating the entire conditional.
326    if (!isa<ConstantInt>(C)) return nullptr;
327
328    // Otherwise, we know if the comparison is true or false for this element,
329    // update our state machines.
330    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
331
332    // State machine for single/double/range index comparison.
333    if (IsTrueForElt) {
334      // Update the TrueElement state machine.
335      if (FirstTrueElement == Undefined)
336        FirstTrueElement = TrueRangeEnd = i;  // First true element.
337      else {
338        // Update double-compare state machine.
339        if (SecondTrueElement == Undefined)
340          SecondTrueElement = i;
341        else
342          SecondTrueElement = Overdefined;
343
344        // Update range state machine.
345        if (TrueRangeEnd == (int)i-1)
346          TrueRangeEnd = i;
347        else
348          TrueRangeEnd = Overdefined;
349      }
350    } else {
351      // Update the FalseElement state machine.
352      if (FirstFalseElement == Undefined)
353        FirstFalseElement = FalseRangeEnd = i; // First false element.
354      else {
355        // Update double-compare state machine.
356        if (SecondFalseElement == Undefined)
357          SecondFalseElement = i;
358        else
359          SecondFalseElement = Overdefined;
360
361        // Update range state machine.
362        if (FalseRangeEnd == (int)i-1)
363          FalseRangeEnd = i;
364        else
365          FalseRangeEnd = Overdefined;
366      }
367    }
368
369
370    // If this element is in range, update our magic bitvector.
371    if (i < 64 && IsTrueForElt)
372      MagicBitvector |= 1ULL << i;
373
374    // If all of our states become overdefined, bail out early.  Since the
375    // predicate is expensive, only check it every 8 elements.  This is only
376    // really useful for really huge arrays.
377    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379        FalseRangeEnd == Overdefined)
380      return nullptr;
381  }
382
383  // Now that we've scanned the entire array, emit our new comparison(s).  We
384  // order the state machines in complexity of the generated code.
385  Value *Idx = GEP->getOperand(2);
386
387  // If the index is larger than the pointer size of the target, truncate the
388  // index down like the GEP would do implicitly.  We don't have to do this for
389  // an inbounds GEP because the index can't be out of range.
390  if (!GEP->isInBounds()) {
391    Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
392    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394      Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395  }
396
397  // If the comparison is only true for one or two elements, emit direct
398  // comparisons.
399  if (SecondTrueElement != Overdefined) {
400    // None true -> false.
401    if (FirstTrueElement == Undefined)
402      return ReplaceInstUsesWith(ICI, Builder->getFalse());
403
404    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
405
406    // True for one element -> 'i == 47'.
407    if (SecondTrueElement == Undefined)
408      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
409
410    // True for two elements -> 'i == 47 | i == 72'.
411    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414    return BinaryOperator::CreateOr(C1, C2);
415  }
416
417  // If the comparison is only false for one or two elements, emit direct
418  // comparisons.
419  if (SecondFalseElement != Overdefined) {
420    // None false -> true.
421    if (FirstFalseElement == Undefined)
422      return ReplaceInstUsesWith(ICI, Builder->getTrue());
423
424    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425
426    // False for one element -> 'i != 47'.
427    if (SecondFalseElement == Undefined)
428      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
429
430    // False for two elements -> 'i != 47 & i != 72'.
431    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434    return BinaryOperator::CreateAnd(C1, C2);
435  }
436
437  // If the comparison can be replaced with a range comparison for the elements
438  // where it is true, emit the range check.
439  if (TrueRangeEnd != Overdefined) {
440    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
441
442    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443    if (FirstTrueElement) {
444      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445      Idx = Builder->CreateAdd(Idx, Offs);
446    }
447
448    Value *End = ConstantInt::get(Idx->getType(),
449                                  TrueRangeEnd-FirstTrueElement+1);
450    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451  }
452
453  // False range check.
454  if (FalseRangeEnd != Overdefined) {
455    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457    if (FirstFalseElement) {
458      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459      Idx = Builder->CreateAdd(Idx, Offs);
460    }
461
462    Value *End = ConstantInt::get(Idx->getType(),
463                                  FalseRangeEnd-FirstFalseElement);
464    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465  }
466
467
468  // If a magic bitvector captures the entire comparison state
469  // of this load, replace it with computation that does:
470  //   ((magic_cst >> i) & 1) != 0
471  {
472    Type *Ty = nullptr;
473
474    // Look for an appropriate type:
475    // - The type of Idx if the magic fits
476    // - The smallest fitting legal type if we have a DataLayout
477    // - Default to i32
478    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
479      Ty = Idx->getType();
480    else if (DL)
481      Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
482    else if (ArrayElementCount <= 32)
483      Ty = Type::getInt32Ty(Init->getContext());
484
485    if (Ty) {
486      Value *V = Builder->CreateIntCast(Idx, Ty, false);
487      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
488      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
489      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
490    }
491  }
492
493  return nullptr;
494}
495
496
497/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
498/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
499/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
500/// be complex, and scales are involved.  The above expression would also be
501/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
502/// This later form is less amenable to optimization though, and we are allowed
503/// to generate the first by knowing that pointer arithmetic doesn't overflow.
504///
505/// If we can't emit an optimized form for this expression, this returns null.
506///
507static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
508  const DataLayout &DL = *IC.getDataLayout();
509  gep_type_iterator GTI = gep_type_begin(GEP);
510
511  // Check to see if this gep only has a single variable index.  If so, and if
512  // any constant indices are a multiple of its scale, then we can compute this
513  // in terms of the scale of the variable index.  For example, if the GEP
514  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
515  // because the expression will cross zero at the same point.
516  unsigned i, e = GEP->getNumOperands();
517  int64_t Offset = 0;
518  for (i = 1; i != e; ++i, ++GTI) {
519    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
520      // Compute the aggregate offset of constant indices.
521      if (CI->isZero()) continue;
522
523      // Handle a struct index, which adds its field offset to the pointer.
524      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
525        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
526      } else {
527        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
528        Offset += Size*CI->getSExtValue();
529      }
530    } else {
531      // Found our variable index.
532      break;
533    }
534  }
535
536  // If there are no variable indices, we must have a constant offset, just
537  // evaluate it the general way.
538  if (i == e) return nullptr;
539
540  Value *VariableIdx = GEP->getOperand(i);
541  // Determine the scale factor of the variable element.  For example, this is
542  // 4 if the variable index is into an array of i32.
543  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
544
545  // Verify that there are no other variable indices.  If so, emit the hard way.
546  for (++i, ++GTI; i != e; ++i, ++GTI) {
547    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
548    if (!CI) return nullptr;
549
550    // Compute the aggregate offset of constant indices.
551    if (CI->isZero()) continue;
552
553    // Handle a struct index, which adds its field offset to the pointer.
554    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
555      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
556    } else {
557      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
558      Offset += Size*CI->getSExtValue();
559    }
560  }
561
562
563
564  // Okay, we know we have a single variable index, which must be a
565  // pointer/array/vector index.  If there is no offset, life is simple, return
566  // the index.
567  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
568  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
569  if (Offset == 0) {
570    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
571    // we don't need to bother extending: the extension won't affect where the
572    // computation crosses zero.
573    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
574      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
575    }
576    return VariableIdx;
577  }
578
579  // Otherwise, there is an index.  The computation we will do will be modulo
580  // the pointer size, so get it.
581  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
582
583  Offset &= PtrSizeMask;
584  VariableScale &= PtrSizeMask;
585
586  // To do this transformation, any constant index must be a multiple of the
587  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
588  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
589  // multiple of the variable scale.
590  int64_t NewOffs = Offset / (int64_t)VariableScale;
591  if (Offset != NewOffs*(int64_t)VariableScale)
592    return nullptr;
593
594  // Okay, we can do this evaluation.  Start by converting the index to intptr.
595  if (VariableIdx->getType() != IntPtrTy)
596    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
597                                            true /*Signed*/);
598  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
599  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
600}
601
602/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
603/// else.  At this point we know that the GEP is on the LHS of the comparison.
604Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
605                                       ICmpInst::Predicate Cond,
606                                       Instruction &I) {
607  // Don't transform signed compares of GEPs into index compares. Even if the
608  // GEP is inbounds, the final add of the base pointer can have signed overflow
609  // and would change the result of the icmp.
610  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
611  // the maximum signed value for the pointer type.
612  if (ICmpInst::isSigned(Cond))
613    return nullptr;
614
615  // Look through bitcasts and addrspacecasts. We do not however want to remove
616  // 0 GEPs.
617  if (!isa<GetElementPtrInst>(RHS))
618    RHS = RHS->stripPointerCasts();
619
620  Value *PtrBase = GEPLHS->getOperand(0);
621  if (DL && PtrBase == RHS && GEPLHS->isInBounds()) {
622    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
623    // This transformation (ignoring the base and scales) is valid because we
624    // know pointers can't overflow since the gep is inbounds.  See if we can
625    // output an optimized form.
626    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
627
628    // If not, synthesize the offset the hard way.
629    if (!Offset)
630      Offset = EmitGEPOffset(GEPLHS);
631    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
632                        Constant::getNullValue(Offset->getType()));
633  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
634    // If the base pointers are different, but the indices are the same, just
635    // compare the base pointer.
636    if (PtrBase != GEPRHS->getOperand(0)) {
637      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
638      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
639                        GEPRHS->getOperand(0)->getType();
640      if (IndicesTheSame)
641        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
642          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643            IndicesTheSame = false;
644            break;
645          }
646
647      // If all indices are the same, just compare the base pointers.
648      if (IndicesTheSame)
649        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
650
651      // If we're comparing GEPs with two base pointers that only differ in type
652      // and both GEPs have only constant indices or just one use, then fold
653      // the compare with the adjusted indices.
654      if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
655          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
656          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
657          PtrBase->stripPointerCasts() ==
658            GEPRHS->getOperand(0)->stripPointerCasts()) {
659        Value *LOffset = EmitGEPOffset(GEPLHS);
660        Value *ROffset = EmitGEPOffset(GEPRHS);
661
662        // If we looked through an addrspacecast between different sized address
663        // spaces, the LHS and RHS pointers are different sized
664        // integers. Truncate to the smaller one.
665        Type *LHSIndexTy = LOffset->getType();
666        Type *RHSIndexTy = ROffset->getType();
667        if (LHSIndexTy != RHSIndexTy) {
668          if (LHSIndexTy->getPrimitiveSizeInBits() <
669              RHSIndexTy->getPrimitiveSizeInBits()) {
670            ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
671          } else
672            LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
673        }
674
675        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
676                                         LOffset, ROffset);
677        return ReplaceInstUsesWith(I, Cmp);
678      }
679
680      // Otherwise, the base pointers are different and the indices are
681      // different, bail out.
682      return nullptr;
683    }
684
685    // If one of the GEPs has all zero indices, recurse.
686    if (GEPLHS->hasAllZeroIndices())
687      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
688                         ICmpInst::getSwappedPredicate(Cond), I);
689
690    // If the other GEP has all zero indices, recurse.
691    if (GEPRHS->hasAllZeroIndices())
692      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
693
694    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
695    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
696      // If the GEPs only differ by one index, compare it.
697      unsigned NumDifferences = 0;  // Keep track of # differences.
698      unsigned DiffOperand = 0;     // The operand that differs.
699      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
700        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
701          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
702                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
703            // Irreconcilable differences.
704            NumDifferences = 2;
705            break;
706          } else {
707            if (NumDifferences++) break;
708            DiffOperand = i;
709          }
710        }
711
712      if (NumDifferences == 0)   // SAME GEP?
713        return ReplaceInstUsesWith(I, // No comparison is needed here.
714                             Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
715
716      else if (NumDifferences == 1 && GEPsInBounds) {
717        Value *LHSV = GEPLHS->getOperand(DiffOperand);
718        Value *RHSV = GEPRHS->getOperand(DiffOperand);
719        // Make sure we do a signed comparison here.
720        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
721      }
722    }
723
724    // Only lower this if the icmp is the only user of the GEP or if we expect
725    // the result to fold to a constant!
726    if (DL &&
727        GEPsInBounds &&
728        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
729        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
730      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
731      Value *L = EmitGEPOffset(GEPLHS);
732      Value *R = EmitGEPOffset(GEPRHS);
733      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
734    }
735  }
736  return nullptr;
737}
738
739/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
740Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
741                                            Value *X, ConstantInt *CI,
742                                            ICmpInst::Predicate Pred) {
743  // If we have X+0, exit early (simplifying logic below) and let it get folded
744  // elsewhere.   icmp X+0, X  -> icmp X, X
745  if (CI->isZero()) {
746    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
747    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
748  }
749
750  // (X+4) == X -> false.
751  if (Pred == ICmpInst::ICMP_EQ)
752    return ReplaceInstUsesWith(ICI, Builder->getFalse());
753
754  // (X+4) != X -> true.
755  if (Pred == ICmpInst::ICMP_NE)
756    return ReplaceInstUsesWith(ICI, Builder->getTrue());
757
758  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
759  // so the values can never be equal.  Similarly for all other "or equals"
760  // operators.
761
762  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
763  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
764  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
765  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
766    Value *R =
767      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
768    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
769  }
770
771  // (X+1) >u X        --> X <u (0-1)        --> X != 255
772  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
773  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
774  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
775    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
776
777  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
778  ConstantInt *SMax = ConstantInt::get(X->getContext(),
779                                       APInt::getSignedMaxValue(BitWidth));
780
781  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
782  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
783  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
784  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
785  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
786  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
787  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
788    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
789
790  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
791  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
792  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
793  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
794  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
795  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
796
797  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
798  Constant *C = Builder->getInt(CI->getValue()-1);
799  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
800}
801
802/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
803/// and CmpRHS are both known to be integer constants.
804Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
805                                          ConstantInt *DivRHS) {
806  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
807  const APInt &CmpRHSV = CmpRHS->getValue();
808
809  // FIXME: If the operand types don't match the type of the divide
810  // then don't attempt this transform. The code below doesn't have the
811  // logic to deal with a signed divide and an unsigned compare (and
812  // vice versa). This is because (x /s C1) <s C2  produces different
813  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
814  // (x /u C1) <u C2.  Simply casting the operands and result won't
815  // work. :(  The if statement below tests that condition and bails
816  // if it finds it.
817  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
818  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
819    return nullptr;
820  if (DivRHS->isZero())
821    return nullptr; // The ProdOV computation fails on divide by zero.
822  if (DivIsSigned && DivRHS->isAllOnesValue())
823    return nullptr; // The overflow computation also screws up here
824  if (DivRHS->isOne()) {
825    // This eliminates some funny cases with INT_MIN.
826    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
827    return &ICI;
828  }
829
830  // Compute Prod = CI * DivRHS. We are essentially solving an equation
831  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
832  // C2 (CI). By solving for X we can turn this into a range check
833  // instead of computing a divide.
834  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
835
836  // Determine if the product overflows by seeing if the product is
837  // not equal to the divide. Make sure we do the same kind of divide
838  // as in the LHS instruction that we're folding.
839  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
840                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
841
842  // Get the ICmp opcode
843  ICmpInst::Predicate Pred = ICI.getPredicate();
844
845  /// If the division is known to be exact, then there is no remainder from the
846  /// divide, so the covered range size is unit, otherwise it is the divisor.
847  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
848
849  // Figure out the interval that is being checked.  For example, a comparison
850  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
851  // Compute this interval based on the constants involved and the signedness of
852  // the compare/divide.  This computes a half-open interval, keeping track of
853  // whether either value in the interval overflows.  After analysis each
854  // overflow variable is set to 0 if it's corresponding bound variable is valid
855  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
856  int LoOverflow = 0, HiOverflow = 0;
857  Constant *LoBound = nullptr, *HiBound = nullptr;
858
859  if (!DivIsSigned) {  // udiv
860    // e.g. X/5 op 3  --> [15, 20)
861    LoBound = Prod;
862    HiOverflow = LoOverflow = ProdOV;
863    if (!HiOverflow) {
864      // If this is not an exact divide, then many values in the range collapse
865      // to the same result value.
866      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
867    }
868
869  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
870    if (CmpRHSV == 0) {       // (X / pos) op 0
871      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
872      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
873      HiBound = RangeSize;
874    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
875      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
876      HiOverflow = LoOverflow = ProdOV;
877      if (!HiOverflow)
878        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
879    } else {                       // (X / pos) op neg
880      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
881      HiBound = AddOne(Prod);
882      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
883      if (!LoOverflow) {
884        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
885        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
886      }
887    }
888  } else if (DivRHS->isNegative()) { // Divisor is < 0.
889    if (DivI->isExact())
890      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
891    if (CmpRHSV == 0) {       // (X / neg) op 0
892      // e.g. X/-5 op 0  --> [-4, 5)
893      LoBound = AddOne(RangeSize);
894      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
895      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
896        HiOverflow = 1;            // [INTMIN+1, overflow)
897        HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
898      }
899    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
900      // e.g. X/-5 op 3  --> [-19, -14)
901      HiBound = AddOne(Prod);
902      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
903      if (!LoOverflow)
904        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
905    } else {                       // (X / neg) op neg
906      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
907      LoOverflow = HiOverflow = ProdOV;
908      if (!HiOverflow)
909        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
910    }
911
912    // Dividing by a negative swaps the condition.  LT <-> GT
913    Pred = ICmpInst::getSwappedPredicate(Pred);
914  }
915
916  Value *X = DivI->getOperand(0);
917  switch (Pred) {
918  default: llvm_unreachable("Unhandled icmp opcode!");
919  case ICmpInst::ICMP_EQ:
920    if (LoOverflow && HiOverflow)
921      return ReplaceInstUsesWith(ICI, Builder->getFalse());
922    if (HiOverflow)
923      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
924                          ICmpInst::ICMP_UGE, X, LoBound);
925    if (LoOverflow)
926      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
927                          ICmpInst::ICMP_ULT, X, HiBound);
928    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
929                                                    DivIsSigned, true));
930  case ICmpInst::ICMP_NE:
931    if (LoOverflow && HiOverflow)
932      return ReplaceInstUsesWith(ICI, Builder->getTrue());
933    if (HiOverflow)
934      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
935                          ICmpInst::ICMP_ULT, X, LoBound);
936    if (LoOverflow)
937      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
938                          ICmpInst::ICMP_UGE, X, HiBound);
939    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
940                                                    DivIsSigned, false));
941  case ICmpInst::ICMP_ULT:
942  case ICmpInst::ICMP_SLT:
943    if (LoOverflow == +1)   // Low bound is greater than input range.
944      return ReplaceInstUsesWith(ICI, Builder->getTrue());
945    if (LoOverflow == -1)   // Low bound is less than input range.
946      return ReplaceInstUsesWith(ICI, Builder->getFalse());
947    return new ICmpInst(Pred, X, LoBound);
948  case ICmpInst::ICMP_UGT:
949  case ICmpInst::ICMP_SGT:
950    if (HiOverflow == +1)       // High bound greater than input range.
951      return ReplaceInstUsesWith(ICI, Builder->getFalse());
952    if (HiOverflow == -1)       // High bound less than input range.
953      return ReplaceInstUsesWith(ICI, Builder->getTrue());
954    if (Pred == ICmpInst::ICMP_UGT)
955      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
956    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
957  }
958}
959
960/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
961Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
962                                          ConstantInt *ShAmt) {
963  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
964
965  // Check that the shift amount is in range.  If not, don't perform
966  // undefined shifts.  When the shift is visited it will be
967  // simplified.
968  uint32_t TypeBits = CmpRHSV.getBitWidth();
969  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
970  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
971    return nullptr;
972
973  if (!ICI.isEquality()) {
974    // If we have an unsigned comparison and an ashr, we can't simplify this.
975    // Similarly for signed comparisons with lshr.
976    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
977      return nullptr;
978
979    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
980    // by a power of 2.  Since we already have logic to simplify these,
981    // transform to div and then simplify the resultant comparison.
982    if (Shr->getOpcode() == Instruction::AShr &&
983        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
984      return nullptr;
985
986    // Revisit the shift (to delete it).
987    Worklist.Add(Shr);
988
989    Constant *DivCst =
990      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
991
992    Value *Tmp =
993      Shr->getOpcode() == Instruction::AShr ?
994      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
995      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
996
997    ICI.setOperand(0, Tmp);
998
999    // If the builder folded the binop, just return it.
1000    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1001    if (!TheDiv)
1002      return &ICI;
1003
1004    // Otherwise, fold this div/compare.
1005    assert(TheDiv->getOpcode() == Instruction::SDiv ||
1006           TheDiv->getOpcode() == Instruction::UDiv);
1007
1008    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1009    assert(Res && "This div/cst should have folded!");
1010    return Res;
1011  }
1012
1013
1014  // If we are comparing against bits always shifted out, the
1015  // comparison cannot succeed.
1016  APInt Comp = CmpRHSV << ShAmtVal;
1017  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1018  if (Shr->getOpcode() == Instruction::LShr)
1019    Comp = Comp.lshr(ShAmtVal);
1020  else
1021    Comp = Comp.ashr(ShAmtVal);
1022
1023  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1024    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1025    Constant *Cst = Builder->getInt1(IsICMP_NE);
1026    return ReplaceInstUsesWith(ICI, Cst);
1027  }
1028
1029  // Otherwise, check to see if the bits shifted out are known to be zero.
1030  // If so, we can compare against the unshifted value:
1031  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1032  if (Shr->hasOneUse() && Shr->isExact())
1033    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1034
1035  if (Shr->hasOneUse()) {
1036    // Otherwise strength reduce the shift into an and.
1037    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1038    Constant *Mask = Builder->getInt(Val);
1039
1040    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1041                                    Mask, Shr->getName()+".mask");
1042    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1043  }
1044  return nullptr;
1045}
1046
1047
1048/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1049///
1050Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1051                                                          Instruction *LHSI,
1052                                                          ConstantInt *RHS) {
1053  const APInt &RHSV = RHS->getValue();
1054
1055  switch (LHSI->getOpcode()) {
1056  case Instruction::Trunc:
1057    if (ICI.isEquality() && LHSI->hasOneUse()) {
1058      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1059      // of the high bits truncated out of x are known.
1060      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1061             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1062      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1063      computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne);
1064
1065      // If all the high bits are known, we can do this xform.
1066      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1067        // Pull in the high bits from known-ones set.
1068        APInt NewRHS = RHS->getValue().zext(SrcBits);
1069        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1070        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1071                            Builder->getInt(NewRHS));
1072      }
1073    }
1074    break;
1075
1076  case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1077    if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1078      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1079      // fold the xor.
1080      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1081          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1082        Value *CompareVal = LHSI->getOperand(0);
1083
1084        // If the sign bit of the XorCst is not set, there is no change to
1085        // the operation, just stop using the Xor.
1086        if (!XorCst->isNegative()) {
1087          ICI.setOperand(0, CompareVal);
1088          Worklist.Add(LHSI);
1089          return &ICI;
1090        }
1091
1092        // Was the old condition true if the operand is positive?
1093        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1094
1095        // If so, the new one isn't.
1096        isTrueIfPositive ^= true;
1097
1098        if (isTrueIfPositive)
1099          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1100                              SubOne(RHS));
1101        else
1102          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1103                              AddOne(RHS));
1104      }
1105
1106      if (LHSI->hasOneUse()) {
1107        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1108        if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1109          const APInt &SignBit = XorCst->getValue();
1110          ICmpInst::Predicate Pred = ICI.isSigned()
1111                                         ? ICI.getUnsignedPredicate()
1112                                         : ICI.getSignedPredicate();
1113          return new ICmpInst(Pred, LHSI->getOperand(0),
1114                              Builder->getInt(RHSV ^ SignBit));
1115        }
1116
1117        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1118        if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1119          const APInt &NotSignBit = XorCst->getValue();
1120          ICmpInst::Predicate Pred = ICI.isSigned()
1121                                         ? ICI.getUnsignedPredicate()
1122                                         : ICI.getSignedPredicate();
1123          Pred = ICI.getSwappedPredicate(Pred);
1124          return new ICmpInst(Pred, LHSI->getOperand(0),
1125                              Builder->getInt(RHSV ^ NotSignBit));
1126        }
1127      }
1128
1129      // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1130      //   iff -C is a power of 2
1131      if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1132          XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1133        return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1134
1135      // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1136      //   iff -C is a power of 2
1137      if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1138          XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1139        return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1140    }
1141    break;
1142  case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1143    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1144        LHSI->getOperand(0)->hasOneUse()) {
1145      ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1146
1147      // If the LHS is an AND of a truncating cast, we can widen the
1148      // and/compare to be the input width without changing the value
1149      // produced, eliminating a cast.
1150      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1151        // We can do this transformation if either the AND constant does not
1152        // have its sign bit set or if it is an equality comparison.
1153        // Extending a relational comparison when we're checking the sign
1154        // bit would not work.
1155        if (ICI.isEquality() ||
1156            (!AndCst->isNegative() && RHSV.isNonNegative())) {
1157          Value *NewAnd =
1158            Builder->CreateAnd(Cast->getOperand(0),
1159                               ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1160          NewAnd->takeName(LHSI);
1161          return new ICmpInst(ICI.getPredicate(), NewAnd,
1162                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1163        }
1164      }
1165
1166      // If the LHS is an AND of a zext, and we have an equality compare, we can
1167      // shrink the and/compare to the smaller type, eliminating the cast.
1168      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1169        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1170        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1171        // should fold the icmp to true/false in that case.
1172        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1173          Value *NewAnd =
1174            Builder->CreateAnd(Cast->getOperand(0),
1175                               ConstantExpr::getTrunc(AndCst, Ty));
1176          NewAnd->takeName(LHSI);
1177          return new ICmpInst(ICI.getPredicate(), NewAnd,
1178                              ConstantExpr::getTrunc(RHS, Ty));
1179        }
1180      }
1181
1182      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1183      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1184      // happens a LOT in code produced by the C front-end, for bitfield
1185      // access.
1186      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1187      if (Shift && !Shift->isShift())
1188        Shift = nullptr;
1189
1190      ConstantInt *ShAmt;
1191      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1192
1193      // This seemingly simple opportunity to fold away a shift turns out to
1194      // be rather complicated. See PR17827
1195      // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1196      if (ShAmt) {
1197        bool CanFold = false;
1198        unsigned ShiftOpcode = Shift->getOpcode();
1199        if (ShiftOpcode == Instruction::AShr) {
1200          // There may be some constraints that make this possible,
1201          // but nothing simple has been discovered yet.
1202          CanFold = false;
1203        } else if (ShiftOpcode == Instruction::Shl) {
1204          // For a left shift, we can fold if the comparison is not signed.
1205          // We can also fold a signed comparison if the mask value and
1206          // comparison value are not negative. These constraints may not be
1207          // obvious, but we can prove that they are correct using an SMT
1208          // solver.
1209          if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1210            CanFold = true;
1211        } else if (ShiftOpcode == Instruction::LShr) {
1212          // For a logical right shift, we can fold if the comparison is not
1213          // signed. We can also fold a signed comparison if the shifted mask
1214          // value and the shifted comparison value are not negative.
1215          // These constraints may not be obvious, but we can prove that they
1216          // are correct using an SMT solver.
1217          if (!ICI.isSigned())
1218            CanFold = true;
1219          else {
1220            ConstantInt *ShiftedAndCst =
1221              cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1222            ConstantInt *ShiftedRHSCst =
1223              cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1224
1225            if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1226              CanFold = true;
1227          }
1228        }
1229
1230        if (CanFold) {
1231          Constant *NewCst;
1232          if (ShiftOpcode == Instruction::Shl)
1233            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1234          else
1235            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1236
1237          // Check to see if we are shifting out any of the bits being
1238          // compared.
1239          if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1240            // If we shifted bits out, the fold is not going to work out.
1241            // As a special case, check to see if this means that the
1242            // result is always true or false now.
1243            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1244              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1245            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1246              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1247          } else {
1248            ICI.setOperand(1, NewCst);
1249            Constant *NewAndCst;
1250            if (ShiftOpcode == Instruction::Shl)
1251              NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1252            else
1253              NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1254            LHSI->setOperand(1, NewAndCst);
1255            LHSI->setOperand(0, Shift->getOperand(0));
1256            Worklist.Add(Shift); // Shift is dead.
1257            return &ICI;
1258          }
1259        }
1260      }
1261
1262      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1263      // preferable because it allows the C<<Y expression to be hoisted out
1264      // of a loop if Y is invariant and X is not.
1265      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1266          ICI.isEquality() && !Shift->isArithmeticShift() &&
1267          !isa<Constant>(Shift->getOperand(0))) {
1268        // Compute C << Y.
1269        Value *NS;
1270        if (Shift->getOpcode() == Instruction::LShr) {
1271          NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1272        } else {
1273          // Insert a logical shift.
1274          NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1275        }
1276
1277        // Compute X & (C << Y).
1278        Value *NewAnd =
1279          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1280
1281        ICI.setOperand(0, NewAnd);
1282        return &ICI;
1283      }
1284
1285      // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1286      // bit set in (X & AndCst) will produce a result greater than RHSV.
1287      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1288        unsigned NTZ = AndCst->getValue().countTrailingZeros();
1289        if ((NTZ < AndCst->getBitWidth()) &&
1290            APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1291          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1292                              Constant::getNullValue(RHS->getType()));
1293      }
1294    }
1295
1296    // Try to optimize things like "A[i]&42 == 0" to index computations.
1297    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1298      if (GetElementPtrInst *GEP =
1299          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1300        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1301          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1302              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1303            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1304            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1305              return Res;
1306          }
1307    }
1308
1309    // X & -C == -C -> X >  u ~C
1310    // X & -C != -C -> X <= u ~C
1311    //   iff C is a power of 2
1312    if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1313      return new ICmpInst(
1314          ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1315                                                  : ICmpInst::ICMP_ULE,
1316          LHSI->getOperand(0), SubOne(RHS));
1317    break;
1318
1319  case Instruction::Or: {
1320    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1321      break;
1322    Value *P, *Q;
1323    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1324      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1325      // -> and (icmp eq P, null), (icmp eq Q, null).
1326      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1327                                        Constant::getNullValue(P->getType()));
1328      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1329                                        Constant::getNullValue(Q->getType()));
1330      Instruction *Op;
1331      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1332        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1333      else
1334        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1335      return Op;
1336    }
1337    break;
1338  }
1339
1340  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1341    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1342    if (!Val) break;
1343
1344    // If this is a signed comparison to 0 and the mul is sign preserving,
1345    // use the mul LHS operand instead.
1346    ICmpInst::Predicate pred = ICI.getPredicate();
1347    if (isSignTest(pred, RHS) && !Val->isZero() &&
1348        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1349      return new ICmpInst(Val->isNegative() ?
1350                          ICmpInst::getSwappedPredicate(pred) : pred,
1351                          LHSI->getOperand(0),
1352                          Constant::getNullValue(RHS->getType()));
1353
1354    break;
1355  }
1356
1357  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1358    uint32_t TypeBits = RHSV.getBitWidth();
1359    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1360    if (!ShAmt) {
1361      Value *X;
1362      // (1 << X) pred P2 -> X pred Log2(P2)
1363      if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1364        bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1365        ICmpInst::Predicate Pred = ICI.getPredicate();
1366        if (ICI.isUnsigned()) {
1367          if (!RHSVIsPowerOf2) {
1368            // (1 << X) <  30 -> X <= 4
1369            // (1 << X) <= 30 -> X <= 4
1370            // (1 << X) >= 30 -> X >  4
1371            // (1 << X) >  30 -> X >  4
1372            if (Pred == ICmpInst::ICMP_ULT)
1373              Pred = ICmpInst::ICMP_ULE;
1374            else if (Pred == ICmpInst::ICMP_UGE)
1375              Pred = ICmpInst::ICMP_UGT;
1376          }
1377          unsigned RHSLog2 = RHSV.logBase2();
1378
1379          // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1380          // (1 << X) >  2147483648 -> X >  31 -> false
1381          // (1 << X) <= 2147483648 -> X <= 31 -> true
1382          // (1 << X) <  2147483648 -> X <  31 -> X != 31
1383          if (RHSLog2 == TypeBits-1) {
1384            if (Pred == ICmpInst::ICMP_UGE)
1385              Pred = ICmpInst::ICMP_EQ;
1386            else if (Pred == ICmpInst::ICMP_UGT)
1387              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1388            else if (Pred == ICmpInst::ICMP_ULE)
1389              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1390            else if (Pred == ICmpInst::ICMP_ULT)
1391              Pred = ICmpInst::ICMP_NE;
1392          }
1393
1394          return new ICmpInst(Pred, X,
1395                              ConstantInt::get(RHS->getType(), RHSLog2));
1396        } else if (ICI.isSigned()) {
1397          if (RHSV.isAllOnesValue()) {
1398            // (1 << X) <= -1 -> X == 31
1399            if (Pred == ICmpInst::ICMP_SLE)
1400              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1401                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1402
1403            // (1 << X) >  -1 -> X != 31
1404            if (Pred == ICmpInst::ICMP_SGT)
1405              return new ICmpInst(ICmpInst::ICMP_NE, X,
1406                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1407          } else if (!RHSV) {
1408            // (1 << X) <  0 -> X == 31
1409            // (1 << X) <= 0 -> X == 31
1410            if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1411              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1412                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1413
1414            // (1 << X) >= 0 -> X != 31
1415            // (1 << X) >  0 -> X != 31
1416            if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1417              return new ICmpInst(ICmpInst::ICMP_NE, X,
1418                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1419          }
1420        } else if (ICI.isEquality()) {
1421          if (RHSVIsPowerOf2)
1422            return new ICmpInst(
1423                Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1424
1425          return ReplaceInstUsesWith(
1426              ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
1427                                             : Builder->getTrue());
1428        }
1429      }
1430      break;
1431    }
1432
1433    // Check that the shift amount is in range.  If not, don't perform
1434    // undefined shifts.  When the shift is visited it will be
1435    // simplified.
1436    if (ShAmt->uge(TypeBits))
1437      break;
1438
1439    if (ICI.isEquality()) {
1440      // If we are comparing against bits always shifted out, the
1441      // comparison cannot succeed.
1442      Constant *Comp =
1443        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1444                                                                 ShAmt);
1445      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1446        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1447        Constant *Cst = Builder->getInt1(IsICMP_NE);
1448        return ReplaceInstUsesWith(ICI, Cst);
1449      }
1450
1451      // If the shift is NUW, then it is just shifting out zeros, no need for an
1452      // AND.
1453      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1454        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1455                            ConstantExpr::getLShr(RHS, ShAmt));
1456
1457      // If the shift is NSW and we compare to 0, then it is just shifting out
1458      // sign bits, no need for an AND either.
1459      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1460        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1461                            ConstantExpr::getLShr(RHS, ShAmt));
1462
1463      if (LHSI->hasOneUse()) {
1464        // Otherwise strength reduce the shift into an and.
1465        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1466        Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1467                                                          TypeBits - ShAmtVal));
1468
1469        Value *And =
1470          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1471        return new ICmpInst(ICI.getPredicate(), And,
1472                            ConstantExpr::getLShr(RHS, ShAmt));
1473      }
1474    }
1475
1476    // If this is a signed comparison to 0 and the shift is sign preserving,
1477    // use the shift LHS operand instead.
1478    ICmpInst::Predicate pred = ICI.getPredicate();
1479    if (isSignTest(pred, RHS) &&
1480        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1481      return new ICmpInst(pred,
1482                          LHSI->getOperand(0),
1483                          Constant::getNullValue(RHS->getType()));
1484
1485    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1486    bool TrueIfSigned = false;
1487    if (LHSI->hasOneUse() &&
1488        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1489      // (X << 31) <s 0  --> (X&1) != 0
1490      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1491                                        APInt::getOneBitSet(TypeBits,
1492                                            TypeBits-ShAmt->getZExtValue()-1));
1493      Value *And =
1494        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1495      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1496                          And, Constant::getNullValue(And->getType()));
1497    }
1498
1499    // Transform (icmp pred iM (shl iM %v, N), CI)
1500    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1501    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1502    // This enables to get rid of the shift in favor of a trunc which can be
1503    // free on the target. It has the additional benefit of comparing to a
1504    // smaller constant, which will be target friendly.
1505    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1506    if (LHSI->hasOneUse() &&
1507        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1508      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1509      Constant *NCI = ConstantExpr::getTrunc(
1510                        ConstantExpr::getAShr(RHS,
1511                          ConstantInt::get(RHS->getType(), Amt)),
1512                        NTy);
1513      return new ICmpInst(ICI.getPredicate(),
1514                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1515                          NCI);
1516    }
1517
1518    break;
1519  }
1520
1521  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1522  case Instruction::AShr: {
1523    // Handle equality comparisons of shift-by-constant.
1524    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1525    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1526      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1527        return Res;
1528    }
1529
1530    // Handle exact shr's.
1531    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1532      if (RHSV.isMinValue())
1533        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1534    }
1535    break;
1536  }
1537
1538  case Instruction::SDiv:
1539  case Instruction::UDiv:
1540    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1541    // Fold this div into the comparison, producing a range check.
1542    // Determine, based on the divide type, what the range is being
1543    // checked.  If there is an overflow on the low or high side, remember
1544    // it, otherwise compute the range [low, hi) bounding the new value.
1545    // See: InsertRangeTest above for the kinds of replacements possible.
1546    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1547      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1548                                          DivRHS))
1549        return R;
1550    break;
1551
1552  case Instruction::Sub: {
1553    ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1554    if (!LHSC) break;
1555    const APInt &LHSV = LHSC->getValue();
1556
1557    // C1-X <u C2 -> (X|(C2-1)) == C1
1558    //   iff C1 & (C2-1) == C2-1
1559    //       C2 is a power of 2
1560    if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1561        RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1562      return new ICmpInst(ICmpInst::ICMP_EQ,
1563                          Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1564                          LHSC);
1565
1566    // C1-X >u C2 -> (X|C2) != C1
1567    //   iff C1 & C2 == C2
1568    //       C2+1 is a power of 2
1569    if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1570        (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1571      return new ICmpInst(ICmpInst::ICMP_NE,
1572                          Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1573    break;
1574  }
1575
1576  case Instruction::Add:
1577    // Fold: icmp pred (add X, C1), C2
1578    if (!ICI.isEquality()) {
1579      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1580      if (!LHSC) break;
1581      const APInt &LHSV = LHSC->getValue();
1582
1583      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1584                            .subtract(LHSV);
1585
1586      if (ICI.isSigned()) {
1587        if (CR.getLower().isSignBit()) {
1588          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1589                              Builder->getInt(CR.getUpper()));
1590        } else if (CR.getUpper().isSignBit()) {
1591          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1592                              Builder->getInt(CR.getLower()));
1593        }
1594      } else {
1595        if (CR.getLower().isMinValue()) {
1596          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1597                              Builder->getInt(CR.getUpper()));
1598        } else if (CR.getUpper().isMinValue()) {
1599          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1600                              Builder->getInt(CR.getLower()));
1601        }
1602      }
1603
1604      // X-C1 <u C2 -> (X & -C2) == C1
1605      //   iff C1 & (C2-1) == 0
1606      //       C2 is a power of 2
1607      if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1608          RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1609        return new ICmpInst(ICmpInst::ICMP_EQ,
1610                            Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1611                            ConstantExpr::getNeg(LHSC));
1612
1613      // X-C1 >u C2 -> (X & ~C2) != C1
1614      //   iff C1 & C2 == 0
1615      //       C2+1 is a power of 2
1616      if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1617          (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1618        return new ICmpInst(ICmpInst::ICMP_NE,
1619                            Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1620                            ConstantExpr::getNeg(LHSC));
1621    }
1622    break;
1623  }
1624
1625  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1626  if (ICI.isEquality()) {
1627    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1628
1629    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1630    // the second operand is a constant, simplify a bit.
1631    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1632      switch (BO->getOpcode()) {
1633      case Instruction::SRem:
1634        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1635        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1636          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1637          if (V.sgt(1) && V.isPowerOf2()) {
1638            Value *NewRem =
1639              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1640                                  BO->getName());
1641            return new ICmpInst(ICI.getPredicate(), NewRem,
1642                                Constant::getNullValue(BO->getType()));
1643          }
1644        }
1645        break;
1646      case Instruction::Add:
1647        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1648        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1649          if (BO->hasOneUse())
1650            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1651                                ConstantExpr::getSub(RHS, BOp1C));
1652        } else if (RHSV == 0) {
1653          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1654          // efficiently invertible, or if the add has just this one use.
1655          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1656
1657          if (Value *NegVal = dyn_castNegVal(BOp1))
1658            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1659          if (Value *NegVal = dyn_castNegVal(BOp0))
1660            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1661          if (BO->hasOneUse()) {
1662            Value *Neg = Builder->CreateNeg(BOp1);
1663            Neg->takeName(BO);
1664            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1665          }
1666        }
1667        break;
1668      case Instruction::Xor:
1669        // For the xor case, we can xor two constants together, eliminating
1670        // the explicit xor.
1671        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1672          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1673                              ConstantExpr::getXor(RHS, BOC));
1674        } else if (RHSV == 0) {
1675          // Replace ((xor A, B) != 0) with (A != B)
1676          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1677                              BO->getOperand(1));
1678        }
1679        break;
1680      case Instruction::Sub:
1681        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1682        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1683          if (BO->hasOneUse())
1684            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1685                                ConstantExpr::getSub(BOp0C, RHS));
1686        } else if (RHSV == 0) {
1687          // Replace ((sub A, B) != 0) with (A != B)
1688          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1689                              BO->getOperand(1));
1690        }
1691        break;
1692      case Instruction::Or:
1693        // If bits are being or'd in that are not present in the constant we
1694        // are comparing against, then the comparison could never succeed!
1695        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1696          Constant *NotCI = ConstantExpr::getNot(RHS);
1697          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1698            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1699        }
1700        break;
1701
1702      case Instruction::And:
1703        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1704          // If bits are being compared against that are and'd out, then the
1705          // comparison can never succeed!
1706          if ((RHSV & ~BOC->getValue()) != 0)
1707            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1708
1709          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1710          if (RHS == BOC && RHSV.isPowerOf2())
1711            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1712                                ICmpInst::ICMP_NE, LHSI,
1713                                Constant::getNullValue(RHS->getType()));
1714
1715          // Don't perform the following transforms if the AND has multiple uses
1716          if (!BO->hasOneUse())
1717            break;
1718
1719          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1720          if (BOC->getValue().isSignBit()) {
1721            Value *X = BO->getOperand(0);
1722            Constant *Zero = Constant::getNullValue(X->getType());
1723            ICmpInst::Predicate pred = isICMP_NE ?
1724              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1725            return new ICmpInst(pred, X, Zero);
1726          }
1727
1728          // ((X & ~7) == 0) --> X < 8
1729          if (RHSV == 0 && isHighOnes(BOC)) {
1730            Value *X = BO->getOperand(0);
1731            Constant *NegX = ConstantExpr::getNeg(BOC);
1732            ICmpInst::Predicate pred = isICMP_NE ?
1733              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1734            return new ICmpInst(pred, X, NegX);
1735          }
1736        }
1737        break;
1738      case Instruction::Mul:
1739        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1740          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1741            // The trivial case (mul X, 0) is handled by InstSimplify
1742            // General case : (mul X, C) != 0 iff X != 0
1743            //                (mul X, C) == 0 iff X == 0
1744            if (!BOC->isZero())
1745              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1746                                  Constant::getNullValue(RHS->getType()));
1747          }
1748        }
1749        break;
1750      default: break;
1751      }
1752    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1753      // Handle icmp {eq|ne} <intrinsic>, intcst.
1754      switch (II->getIntrinsicID()) {
1755      case Intrinsic::bswap:
1756        Worklist.Add(II);
1757        ICI.setOperand(0, II->getArgOperand(0));
1758        ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1759        return &ICI;
1760      case Intrinsic::ctlz:
1761      case Intrinsic::cttz:
1762        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1763        if (RHSV == RHS->getType()->getBitWidth()) {
1764          Worklist.Add(II);
1765          ICI.setOperand(0, II->getArgOperand(0));
1766          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1767          return &ICI;
1768        }
1769        break;
1770      case Intrinsic::ctpop:
1771        // popcount(A) == 0  ->  A == 0 and likewise for !=
1772        if (RHS->isZero()) {
1773          Worklist.Add(II);
1774          ICI.setOperand(0, II->getArgOperand(0));
1775          ICI.setOperand(1, RHS);
1776          return &ICI;
1777        }
1778        break;
1779      default:
1780        break;
1781      }
1782    }
1783  }
1784  return nullptr;
1785}
1786
1787/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1788/// We only handle extending casts so far.
1789///
1790Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1791  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1792  Value *LHSCIOp        = LHSCI->getOperand(0);
1793  Type *SrcTy     = LHSCIOp->getType();
1794  Type *DestTy    = LHSCI->getType();
1795  Value *RHSCIOp;
1796
1797  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1798  // integer type is the same size as the pointer type.
1799  if (DL && LHSCI->getOpcode() == Instruction::PtrToInt &&
1800      DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1801    Value *RHSOp = nullptr;
1802    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1803      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1804    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1805      RHSOp = RHSC->getOperand(0);
1806      // If the pointer types don't match, insert a bitcast.
1807      if (LHSCIOp->getType() != RHSOp->getType())
1808        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1809    }
1810
1811    if (RHSOp)
1812      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1813  }
1814
1815  // The code below only handles extension cast instructions, so far.
1816  // Enforce this.
1817  if (LHSCI->getOpcode() != Instruction::ZExt &&
1818      LHSCI->getOpcode() != Instruction::SExt)
1819    return nullptr;
1820
1821  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1822  bool isSignedCmp = ICI.isSigned();
1823
1824  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1825    // Not an extension from the same type?
1826    RHSCIOp = CI->getOperand(0);
1827    if (RHSCIOp->getType() != LHSCIOp->getType())
1828      return nullptr;
1829
1830    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1831    // and the other is a zext), then we can't handle this.
1832    if (CI->getOpcode() != LHSCI->getOpcode())
1833      return nullptr;
1834
1835    // Deal with equality cases early.
1836    if (ICI.isEquality())
1837      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1838
1839    // A signed comparison of sign extended values simplifies into a
1840    // signed comparison.
1841    if (isSignedCmp && isSignedExt)
1842      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1843
1844    // The other three cases all fold into an unsigned comparison.
1845    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1846  }
1847
1848  // If we aren't dealing with a constant on the RHS, exit early
1849  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1850  if (!CI)
1851    return nullptr;
1852
1853  // Compute the constant that would happen if we truncated to SrcTy then
1854  // reextended to DestTy.
1855  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1856  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1857                                                Res1, DestTy);
1858
1859  // If the re-extended constant didn't change...
1860  if (Res2 == CI) {
1861    // Deal with equality cases early.
1862    if (ICI.isEquality())
1863      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1864
1865    // A signed comparison of sign extended values simplifies into a
1866    // signed comparison.
1867    if (isSignedExt && isSignedCmp)
1868      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1869
1870    // The other three cases all fold into an unsigned comparison.
1871    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1872  }
1873
1874  // The re-extended constant changed so the constant cannot be represented
1875  // in the shorter type. Consequently, we cannot emit a simple comparison.
1876  // All the cases that fold to true or false will have already been handled
1877  // by SimplifyICmpInst, so only deal with the tricky case.
1878
1879  if (isSignedCmp || !isSignedExt)
1880    return nullptr;
1881
1882  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1883  // should have been folded away previously and not enter in here.
1884
1885  // We're performing an unsigned comp with a sign extended value.
1886  // This is true if the input is >= 0. [aka >s -1]
1887  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1888  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1889
1890  // Finally, return the value computed.
1891  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1892    return ReplaceInstUsesWith(ICI, Result);
1893
1894  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1895  return BinaryOperator::CreateNot(Result);
1896}
1897
1898/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1899///   I = icmp ugt (add (add A, B), CI2), CI1
1900/// If this is of the form:
1901///   sum = a + b
1902///   if (sum+128 >u 255)
1903/// Then replace it with llvm.sadd.with.overflow.i8.
1904///
1905static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1906                                          ConstantInt *CI2, ConstantInt *CI1,
1907                                          InstCombiner &IC) {
1908  // The transformation we're trying to do here is to transform this into an
1909  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1910  // with a narrower add, and discard the add-with-constant that is part of the
1911  // range check (if we can't eliminate it, this isn't profitable).
1912
1913  // In order to eliminate the add-with-constant, the compare can be its only
1914  // use.
1915  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1916  if (!AddWithCst->hasOneUse()) return nullptr;
1917
1918  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1919  if (!CI2->getValue().isPowerOf2()) return nullptr;
1920  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1921  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
1922
1923  // The width of the new add formed is 1 more than the bias.
1924  ++NewWidth;
1925
1926  // Check to see that CI1 is an all-ones value with NewWidth bits.
1927  if (CI1->getBitWidth() == NewWidth ||
1928      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1929    return nullptr;
1930
1931  // This is only really a signed overflow check if the inputs have been
1932  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1933  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1934  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1935  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1936      IC.ComputeNumSignBits(B) < NeededSignBits)
1937    return nullptr;
1938
1939  // In order to replace the original add with a narrower
1940  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1941  // and truncates that discard the high bits of the add.  Verify that this is
1942  // the case.
1943  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1944  for (User *U : OrigAdd->users()) {
1945    if (U == AddWithCst) continue;
1946
1947    // Only accept truncates for now.  We would really like a nice recursive
1948    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1949    // chain to see which bits of a value are actually demanded.  If the
1950    // original add had another add which was then immediately truncated, we
1951    // could still do the transformation.
1952    TruncInst *TI = dyn_cast<TruncInst>(U);
1953    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1954      return nullptr;
1955  }
1956
1957  // If the pattern matches, truncate the inputs to the narrower type and
1958  // use the sadd_with_overflow intrinsic to efficiently compute both the
1959  // result and the overflow bit.
1960  Module *M = I.getParent()->getParent()->getParent();
1961
1962  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1963  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1964                                       NewType);
1965
1966  InstCombiner::BuilderTy *Builder = IC.Builder;
1967
1968  // Put the new code above the original add, in case there are any uses of the
1969  // add between the add and the compare.
1970  Builder->SetInsertPoint(OrigAdd);
1971
1972  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1973  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1974  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1975  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1976  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1977
1978  // The inner add was the result of the narrow add, zero extended to the
1979  // wider type.  Replace it with the result computed by the intrinsic.
1980  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1981
1982  // The original icmp gets replaced with the overflow value.
1983  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1984}
1985
1986static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1987                                     InstCombiner &IC) {
1988  // Don't bother doing this transformation for pointers, don't do it for
1989  // vectors.
1990  if (!isa<IntegerType>(OrigAddV->getType())) return nullptr;
1991
1992  // If the add is a constant expr, then we don't bother transforming it.
1993  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1994  if (!OrigAdd) return nullptr;
1995
1996  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1997
1998  // Put the new code above the original add, in case there are any uses of the
1999  // add between the add and the compare.
2000  InstCombiner::BuilderTy *Builder = IC.Builder;
2001  Builder->SetInsertPoint(OrigAdd);
2002
2003  Module *M = I.getParent()->getParent()->getParent();
2004  Type *Ty = LHS->getType();
2005  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
2006  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
2007  Value *Add = Builder->CreateExtractValue(Call, 0);
2008
2009  IC.ReplaceInstUsesWith(*OrigAdd, Add);
2010
2011  // The original icmp gets replaced with the overflow value.
2012  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
2013}
2014
2015/// \brief Recognize and process idiom involving test for multiplication
2016/// overflow.
2017///
2018/// The caller has matched a pattern of the form:
2019///   I = cmp u (mul(zext A, zext B), V
2020/// The function checks if this is a test for overflow and if so replaces
2021/// multiplication with call to 'mul.with.overflow' intrinsic.
2022///
2023/// \param I Compare instruction.
2024/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2025///               the compare instruction.  Must be of integer type.
2026/// \param OtherVal The other argument of compare instruction.
2027/// \returns Instruction which must replace the compare instruction, NULL if no
2028///          replacement required.
2029static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2030                                         Value *OtherVal, InstCombiner &IC) {
2031  // Don't bother doing this transformation for pointers, don't do it for
2032  // vectors.
2033  if (!isa<IntegerType>(MulVal->getType()))
2034    return nullptr;
2035
2036  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2037  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2038  Instruction *MulInstr = cast<Instruction>(MulVal);
2039  assert(MulInstr->getOpcode() == Instruction::Mul);
2040
2041  Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)),
2042              *RHS = cast<Instruction>(MulInstr->getOperand(1));
2043  assert(LHS->getOpcode() == Instruction::ZExt);
2044  assert(RHS->getOpcode() == Instruction::ZExt);
2045  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2046
2047  // Calculate type and width of the result produced by mul.with.overflow.
2048  Type *TyA = A->getType(), *TyB = B->getType();
2049  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2050           WidthB = TyB->getPrimitiveSizeInBits();
2051  unsigned MulWidth;
2052  Type *MulType;
2053  if (WidthB > WidthA) {
2054    MulWidth = WidthB;
2055    MulType = TyB;
2056  } else {
2057    MulWidth = WidthA;
2058    MulType = TyA;
2059  }
2060
2061  // In order to replace the original mul with a narrower mul.with.overflow,
2062  // all uses must ignore upper bits of the product.  The number of used low
2063  // bits must be not greater than the width of mul.with.overflow.
2064  if (MulVal->hasNUsesOrMore(2))
2065    for (User *U : MulVal->users()) {
2066      if (U == &I)
2067        continue;
2068      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2069        // Check if truncation ignores bits above MulWidth.
2070        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2071        if (TruncWidth > MulWidth)
2072          return nullptr;
2073      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2074        // Check if AND ignores bits above MulWidth.
2075        if (BO->getOpcode() != Instruction::And)
2076          return nullptr;
2077        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2078          const APInt &CVal = CI->getValue();
2079          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2080            return nullptr;
2081        }
2082      } else {
2083        // Other uses prohibit this transformation.
2084        return nullptr;
2085      }
2086    }
2087
2088  // Recognize patterns
2089  switch (I.getPredicate()) {
2090  case ICmpInst::ICMP_EQ:
2091  case ICmpInst::ICMP_NE:
2092    // Recognize pattern:
2093    //   mulval = mul(zext A, zext B)
2094    //   cmp eq/neq mulval, zext trunc mulval
2095    if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2096      if (Zext->hasOneUse()) {
2097        Value *ZextArg = Zext->getOperand(0);
2098        if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2099          if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2100            break; //Recognized
2101      }
2102
2103    // Recognize pattern:
2104    //   mulval = mul(zext A, zext B)
2105    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2106    ConstantInt *CI;
2107    Value *ValToMask;
2108    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2109      if (ValToMask != MulVal)
2110        return nullptr;
2111      const APInt &CVal = CI->getValue() + 1;
2112      if (CVal.isPowerOf2()) {
2113        unsigned MaskWidth = CVal.logBase2();
2114        if (MaskWidth == MulWidth)
2115          break; // Recognized
2116      }
2117    }
2118    return nullptr;
2119
2120  case ICmpInst::ICMP_UGT:
2121    // Recognize pattern:
2122    //   mulval = mul(zext A, zext B)
2123    //   cmp ugt mulval, max
2124    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2125      APInt MaxVal = APInt::getMaxValue(MulWidth);
2126      MaxVal = MaxVal.zext(CI->getBitWidth());
2127      if (MaxVal.eq(CI->getValue()))
2128        break; // Recognized
2129    }
2130    return nullptr;
2131
2132  case ICmpInst::ICMP_UGE:
2133    // Recognize pattern:
2134    //   mulval = mul(zext A, zext B)
2135    //   cmp uge mulval, max+1
2136    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2137      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2138      if (MaxVal.eq(CI->getValue()))
2139        break; // Recognized
2140    }
2141    return nullptr;
2142
2143  case ICmpInst::ICMP_ULE:
2144    // Recognize pattern:
2145    //   mulval = mul(zext A, zext B)
2146    //   cmp ule mulval, max
2147    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2148      APInt MaxVal = APInt::getMaxValue(MulWidth);
2149      MaxVal = MaxVal.zext(CI->getBitWidth());
2150      if (MaxVal.eq(CI->getValue()))
2151        break; // Recognized
2152    }
2153    return nullptr;
2154
2155  case ICmpInst::ICMP_ULT:
2156    // Recognize pattern:
2157    //   mulval = mul(zext A, zext B)
2158    //   cmp ule mulval, max + 1
2159    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2160      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2161      if (MaxVal.eq(CI->getValue()))
2162        break; // Recognized
2163    }
2164    return nullptr;
2165
2166  default:
2167    return nullptr;
2168  }
2169
2170  InstCombiner::BuilderTy *Builder = IC.Builder;
2171  Builder->SetInsertPoint(MulInstr);
2172  Module *M = I.getParent()->getParent()->getParent();
2173
2174  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2175  Value *MulA = A, *MulB = B;
2176  if (WidthA < MulWidth)
2177    MulA = Builder->CreateZExt(A, MulType);
2178  if (WidthB < MulWidth)
2179    MulB = Builder->CreateZExt(B, MulType);
2180  Value *F =
2181      Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
2182  CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul");
2183  IC.Worklist.Add(MulInstr);
2184
2185  // If there are uses of mul result other than the comparison, we know that
2186  // they are truncation or binary AND. Change them to use result of
2187  // mul.with.overflow and adjust properly mask/size.
2188  if (MulVal->hasNUsesOrMore(2)) {
2189    Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2190    for (User *U : MulVal->users()) {
2191      if (U == &I || U == OtherVal)
2192        continue;
2193      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2194        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2195          IC.ReplaceInstUsesWith(*TI, Mul);
2196        else
2197          TI->setOperand(0, Mul);
2198      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2199        assert(BO->getOpcode() == Instruction::And);
2200        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2201        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2202        APInt ShortMask = CI->getValue().trunc(MulWidth);
2203        Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2204        Instruction *Zext =
2205            cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2206        IC.Worklist.Add(Zext);
2207        IC.ReplaceInstUsesWith(*BO, Zext);
2208      } else {
2209        llvm_unreachable("Unexpected Binary operation");
2210      }
2211      IC.Worklist.Add(cast<Instruction>(U));
2212    }
2213  }
2214  if (isa<Instruction>(OtherVal))
2215    IC.Worklist.Add(cast<Instruction>(OtherVal));
2216
2217  // The original icmp gets replaced with the overflow value, maybe inverted
2218  // depending on predicate.
2219  bool Inverse = false;
2220  switch (I.getPredicate()) {
2221  case ICmpInst::ICMP_NE:
2222    break;
2223  case ICmpInst::ICMP_EQ:
2224    Inverse = true;
2225    break;
2226  case ICmpInst::ICMP_UGT:
2227  case ICmpInst::ICMP_UGE:
2228    if (I.getOperand(0) == MulVal)
2229      break;
2230    Inverse = true;
2231    break;
2232  case ICmpInst::ICMP_ULT:
2233  case ICmpInst::ICMP_ULE:
2234    if (I.getOperand(1) == MulVal)
2235      break;
2236    Inverse = true;
2237    break;
2238  default:
2239    llvm_unreachable("Unexpected predicate");
2240  }
2241  if (Inverse) {
2242    Value *Res = Builder->CreateExtractValue(Call, 1);
2243    return BinaryOperator::CreateNot(Res);
2244  }
2245
2246  return ExtractValueInst::Create(Call, 1);
2247}
2248
2249// DemandedBitsLHSMask - When performing a comparison against a constant,
2250// it is possible that not all the bits in the LHS are demanded.  This helper
2251// method computes the mask that IS demanded.
2252static APInt DemandedBitsLHSMask(ICmpInst &I,
2253                                 unsigned BitWidth, bool isSignCheck) {
2254  if (isSignCheck)
2255    return APInt::getSignBit(BitWidth);
2256
2257  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2258  if (!CI) return APInt::getAllOnesValue(BitWidth);
2259  const APInt &RHS = CI->getValue();
2260
2261  switch (I.getPredicate()) {
2262  // For a UGT comparison, we don't care about any bits that
2263  // correspond to the trailing ones of the comparand.  The value of these
2264  // bits doesn't impact the outcome of the comparison, because any value
2265  // greater than the RHS must differ in a bit higher than these due to carry.
2266  case ICmpInst::ICMP_UGT: {
2267    unsigned trailingOnes = RHS.countTrailingOnes();
2268    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2269    return ~lowBitsSet;
2270  }
2271
2272  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2273  // Any value less than the RHS must differ in a higher bit because of carries.
2274  case ICmpInst::ICMP_ULT: {
2275    unsigned trailingZeros = RHS.countTrailingZeros();
2276    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2277    return ~lowBitsSet;
2278  }
2279
2280  default:
2281    return APInt::getAllOnesValue(BitWidth);
2282  }
2283
2284}
2285
2286/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2287/// should be swapped.
2288/// The decision is based on how many times these two operands are reused
2289/// as subtract operands and their positions in those instructions.
2290/// The rational is that several architectures use the same instruction for
2291/// both subtract and cmp, thus it is better if the order of those operands
2292/// match.
2293/// \return true if Op0 and Op1 should be swapped.
2294static bool swapMayExposeCSEOpportunities(const Value * Op0,
2295                                          const Value * Op1) {
2296  // Filter out pointer value as those cannot appears directly in subtract.
2297  // FIXME: we may want to go through inttoptrs or bitcasts.
2298  if (Op0->getType()->isPointerTy())
2299    return false;
2300  // Count every uses of both Op0 and Op1 in a subtract.
2301  // Each time Op0 is the first operand, count -1: swapping is bad, the
2302  // subtract has already the same layout as the compare.
2303  // Each time Op0 is the second operand, count +1: swapping is good, the
2304  // subtract has a different layout as the compare.
2305  // At the end, if the benefit is greater than 0, Op0 should come second to
2306  // expose more CSE opportunities.
2307  int GlobalSwapBenefits = 0;
2308  for (const User *U : Op0->users()) {
2309    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2310    if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2311      continue;
2312    // If Op0 is the first argument, this is not beneficial to swap the
2313    // arguments.
2314    int LocalSwapBenefits = -1;
2315    unsigned Op1Idx = 1;
2316    if (BinOp->getOperand(Op1Idx) == Op0) {
2317      Op1Idx = 0;
2318      LocalSwapBenefits = 1;
2319    }
2320    if (BinOp->getOperand(Op1Idx) != Op1)
2321      continue;
2322    GlobalSwapBenefits += LocalSwapBenefits;
2323  }
2324  return GlobalSwapBenefits > 0;
2325}
2326
2327Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2328  bool Changed = false;
2329  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2330  unsigned Op0Cplxity = getComplexity(Op0);
2331  unsigned Op1Cplxity = getComplexity(Op1);
2332
2333  /// Orders the operands of the compare so that they are listed from most
2334  /// complex to least complex.  This puts constants before unary operators,
2335  /// before binary operators.
2336  if (Op0Cplxity < Op1Cplxity ||
2337        (Op0Cplxity == Op1Cplxity &&
2338         swapMayExposeCSEOpportunities(Op0, Op1))) {
2339    I.swapOperands();
2340    std::swap(Op0, Op1);
2341    Changed = true;
2342  }
2343
2344  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL))
2345    return ReplaceInstUsesWith(I, V);
2346
2347  // comparing -val or val with non-zero is the same as just comparing val
2348  // ie, abs(val) != 0 -> val != 0
2349  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2350  {
2351    Value *Cond, *SelectTrue, *SelectFalse;
2352    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2353                            m_Value(SelectFalse)))) {
2354      if (Value *V = dyn_castNegVal(SelectTrue)) {
2355        if (V == SelectFalse)
2356          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2357      }
2358      else if (Value *V = dyn_castNegVal(SelectFalse)) {
2359        if (V == SelectTrue)
2360          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2361      }
2362    }
2363  }
2364
2365  Type *Ty = Op0->getType();
2366
2367  // icmp's with boolean values can always be turned into bitwise operations
2368  if (Ty->isIntegerTy(1)) {
2369    switch (I.getPredicate()) {
2370    default: llvm_unreachable("Invalid icmp instruction!");
2371    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2372      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2373      return BinaryOperator::CreateNot(Xor);
2374    }
2375    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2376      return BinaryOperator::CreateXor(Op0, Op1);
2377
2378    case ICmpInst::ICMP_UGT:
2379      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2380      // FALL THROUGH
2381    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2382      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2383      return BinaryOperator::CreateAnd(Not, Op1);
2384    }
2385    case ICmpInst::ICMP_SGT:
2386      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2387      // FALL THROUGH
2388    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2389      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2390      return BinaryOperator::CreateAnd(Not, Op0);
2391    }
2392    case ICmpInst::ICMP_UGE:
2393      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2394      // FALL THROUGH
2395    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2396      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2397      return BinaryOperator::CreateOr(Not, Op1);
2398    }
2399    case ICmpInst::ICMP_SGE:
2400      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2401      // FALL THROUGH
2402    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2403      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2404      return BinaryOperator::CreateOr(Not, Op0);
2405    }
2406    }
2407  }
2408
2409  unsigned BitWidth = 0;
2410  if (Ty->isIntOrIntVectorTy())
2411    BitWidth = Ty->getScalarSizeInBits();
2412  else if (DL)  // Pointers require DL info to get their size.
2413    BitWidth = DL->getTypeSizeInBits(Ty->getScalarType());
2414
2415  bool isSignBit = false;
2416
2417  // See if we are doing a comparison with a constant.
2418  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2419    Value *A = nullptr, *B = nullptr;
2420
2421    // Match the following pattern, which is a common idiom when writing
2422    // overflow-safe integer arithmetic function.  The source performs an
2423    // addition in wider type, and explicitly checks for overflow using
2424    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2425    // sadd_with_overflow intrinsic.
2426    //
2427    // TODO: This could probably be generalized to handle other overflow-safe
2428    // operations if we worked out the formulas to compute the appropriate
2429    // magic constants.
2430    //
2431    // sum = a + b
2432    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2433    {
2434    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2435    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2436        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2437      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2438        return Res;
2439    }
2440
2441    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2442    if (I.isEquality() && CI->isZero() &&
2443        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2444      // (icmp cond A B) if cond is equality
2445      return new ICmpInst(I.getPredicate(), A, B);
2446    }
2447
2448    // If we have an icmp le or icmp ge instruction, turn it into the
2449    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2450    // them being folded in the code below.  The SimplifyICmpInst code has
2451    // already handled the edge cases for us, so we just assert on them.
2452    switch (I.getPredicate()) {
2453    default: break;
2454    case ICmpInst::ICMP_ULE:
2455      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2456      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2457                          Builder->getInt(CI->getValue()+1));
2458    case ICmpInst::ICMP_SLE:
2459      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2460      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2461                          Builder->getInt(CI->getValue()+1));
2462    case ICmpInst::ICMP_UGE:
2463      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2464      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2465                          Builder->getInt(CI->getValue()-1));
2466    case ICmpInst::ICMP_SGE:
2467      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2468      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2469                          Builder->getInt(CI->getValue()-1));
2470    }
2471
2472    // If this comparison is a normal comparison, it demands all
2473    // bits, if it is a sign bit comparison, it only demands the sign bit.
2474    bool UnusedBit;
2475    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2476  }
2477
2478  // See if we can fold the comparison based on range information we can get
2479  // by checking whether bits are known to be zero or one in the input.
2480  if (BitWidth != 0) {
2481    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2482    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2483
2484    if (SimplifyDemandedBits(I.getOperandUse(0),
2485                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2486                             Op0KnownZero, Op0KnownOne, 0))
2487      return &I;
2488    if (SimplifyDemandedBits(I.getOperandUse(1),
2489                             APInt::getAllOnesValue(BitWidth),
2490                             Op1KnownZero, Op1KnownOne, 0))
2491      return &I;
2492
2493    // Given the known and unknown bits, compute a range that the LHS could be
2494    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2495    // EQ and NE we use unsigned values.
2496    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2497    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2498    if (I.isSigned()) {
2499      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2500                                             Op0Min, Op0Max);
2501      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2502                                             Op1Min, Op1Max);
2503    } else {
2504      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2505                                               Op0Min, Op0Max);
2506      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2507                                               Op1Min, Op1Max);
2508    }
2509
2510    // If Min and Max are known to be the same, then SimplifyDemandedBits
2511    // figured out that the LHS is a constant.  Just constant fold this now so
2512    // that code below can assume that Min != Max.
2513    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2514      return new ICmpInst(I.getPredicate(),
2515                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2516    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2517      return new ICmpInst(I.getPredicate(), Op0,
2518                          ConstantInt::get(Op1->getType(), Op1Min));
2519
2520    // Based on the range information we know about the LHS, see if we can
2521    // simplify this comparison.  For example, (x&4) < 8 is always true.
2522    switch (I.getPredicate()) {
2523    default: llvm_unreachable("Unknown icmp opcode!");
2524    case ICmpInst::ICMP_EQ: {
2525      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2526        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2527
2528      // If all bits are known zero except for one, then we know at most one
2529      // bit is set.   If the comparison is against zero, then this is a check
2530      // to see if *that* bit is set.
2531      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2532      if (~Op1KnownZero == 0) {
2533        // If the LHS is an AND with the same constant, look through it.
2534        Value *LHS = nullptr;
2535        ConstantInt *LHSC = nullptr;
2536        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2537            LHSC->getValue() != Op0KnownZeroInverted)
2538          LHS = Op0;
2539
2540        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2541        // then turn "((1 << x)&8) == 0" into "x != 3".
2542        // or turn "((1 << x)&7) == 0" into "x > 2".
2543        Value *X = nullptr;
2544        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2545          APInt ValToCheck = Op0KnownZeroInverted;
2546          if (ValToCheck.isPowerOf2()) {
2547            unsigned CmpVal = ValToCheck.countTrailingZeros();
2548            return new ICmpInst(ICmpInst::ICMP_NE, X,
2549                                ConstantInt::get(X->getType(), CmpVal));
2550          } else if ((++ValToCheck).isPowerOf2()) {
2551            unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
2552            return new ICmpInst(ICmpInst::ICMP_UGT, X,
2553                                ConstantInt::get(X->getType(), CmpVal));
2554          }
2555        }
2556
2557        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2558        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2559        const APInt *CI;
2560        if (Op0KnownZeroInverted == 1 &&
2561            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2562          return new ICmpInst(ICmpInst::ICMP_NE, X,
2563                              ConstantInt::get(X->getType(),
2564                                               CI->countTrailingZeros()));
2565      }
2566
2567      break;
2568    }
2569    case ICmpInst::ICMP_NE: {
2570      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2571        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2572
2573      // If all bits are known zero except for one, then we know at most one
2574      // bit is set.   If the comparison is against zero, then this is a check
2575      // to see if *that* bit is set.
2576      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2577      if (~Op1KnownZero == 0) {
2578        // If the LHS is an AND with the same constant, look through it.
2579        Value *LHS = nullptr;
2580        ConstantInt *LHSC = nullptr;
2581        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2582            LHSC->getValue() != Op0KnownZeroInverted)
2583          LHS = Op0;
2584
2585        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2586        // then turn "((1 << x)&8) != 0" into "x == 3".
2587        // or turn "((1 << x)&7) != 0" into "x < 3".
2588        Value *X = nullptr;
2589        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2590          APInt ValToCheck = Op0KnownZeroInverted;
2591          if (ValToCheck.isPowerOf2()) {
2592            unsigned CmpVal = ValToCheck.countTrailingZeros();
2593            return new ICmpInst(ICmpInst::ICMP_EQ, X,
2594                                ConstantInt::get(X->getType(), CmpVal));
2595          } else if ((++ValToCheck).isPowerOf2()) {
2596            unsigned CmpVal = ValToCheck.countTrailingZeros();
2597            return new ICmpInst(ICmpInst::ICMP_ULT, X,
2598                                ConstantInt::get(X->getType(), CmpVal));
2599          }
2600        }
2601
2602        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2603        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2604        const APInt *CI;
2605        if (Op0KnownZeroInverted == 1 &&
2606            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2607          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2608                              ConstantInt::get(X->getType(),
2609                                               CI->countTrailingZeros()));
2610      }
2611
2612      break;
2613    }
2614    case ICmpInst::ICMP_ULT:
2615      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2616        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2617      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2618        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2619      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2620        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2621      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2622        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2623          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2624                              Builder->getInt(CI->getValue()-1));
2625
2626        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2627        if (CI->isMinValue(true))
2628          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2629                           Constant::getAllOnesValue(Op0->getType()));
2630      }
2631      break;
2632    case ICmpInst::ICMP_UGT:
2633      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2634        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2635      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2636        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2637
2638      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2639        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2640      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2641        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2642          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2643                              Builder->getInt(CI->getValue()+1));
2644
2645        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2646        if (CI->isMaxValue(true))
2647          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2648                              Constant::getNullValue(Op0->getType()));
2649      }
2650      break;
2651    case ICmpInst::ICMP_SLT:
2652      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2653        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2654      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2655        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2656      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2657        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2658      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2659        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2660          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2661                              Builder->getInt(CI->getValue()-1));
2662      }
2663      break;
2664    case ICmpInst::ICMP_SGT:
2665      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2666        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2667      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2668        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2669
2670      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2671        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2672      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2673        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2674          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2675                              Builder->getInt(CI->getValue()+1));
2676      }
2677      break;
2678    case ICmpInst::ICMP_SGE:
2679      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2680      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2681        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2682      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2683        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2684      break;
2685    case ICmpInst::ICMP_SLE:
2686      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2687      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2688        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2689      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2690        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2691      break;
2692    case ICmpInst::ICMP_UGE:
2693      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2694      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2695        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2696      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2697        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2698      break;
2699    case ICmpInst::ICMP_ULE:
2700      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2701      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2702        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2703      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2704        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2705      break;
2706    }
2707
2708    // Turn a signed comparison into an unsigned one if both operands
2709    // are known to have the same sign.
2710    if (I.isSigned() &&
2711        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2712         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2713      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2714  }
2715
2716  // Test if the ICmpInst instruction is used exclusively by a select as
2717  // part of a minimum or maximum operation. If so, refrain from doing
2718  // any other folding. This helps out other analyses which understand
2719  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2720  // and CodeGen. And in this case, at least one of the comparison
2721  // operands has at least one user besides the compare (the select),
2722  // which would often largely negate the benefit of folding anyway.
2723  if (I.hasOneUse())
2724    if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
2725      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2726          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2727        return nullptr;
2728
2729  // See if we are doing a comparison between a constant and an instruction that
2730  // can be folded into the comparison.
2731  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2732    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2733    // instruction, see if that instruction also has constants so that the
2734    // instruction can be folded into the icmp
2735    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2736      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2737        return Res;
2738  }
2739
2740  // Handle icmp with constant (but not simple integer constant) RHS
2741  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2742    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2743      switch (LHSI->getOpcode()) {
2744      case Instruction::GetElementPtr:
2745          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2746        if (RHSC->isNullValue() &&
2747            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2748          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2749                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2750        break;
2751      case Instruction::PHI:
2752        // Only fold icmp into the PHI if the phi and icmp are in the same
2753        // block.  If in the same block, we're encouraging jump threading.  If
2754        // not, we are just pessimizing the code by making an i1 phi.
2755        if (LHSI->getParent() == I.getParent())
2756          if (Instruction *NV = FoldOpIntoPhi(I))
2757            return NV;
2758        break;
2759      case Instruction::Select: {
2760        // If either operand of the select is a constant, we can fold the
2761        // comparison into the select arms, which will cause one to be
2762        // constant folded and the select turned into a bitwise or.
2763        Value *Op1 = nullptr, *Op2 = nullptr;
2764        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2765          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2766        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2767          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2768
2769        // We only want to perform this transformation if it will not lead to
2770        // additional code. This is true if either both sides of the select
2771        // fold to a constant (in which case the icmp is replaced with a select
2772        // which will usually simplify) or this is the only user of the
2773        // select (in which case we are trading a select+icmp for a simpler
2774        // select+icmp).
2775        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2776          if (!Op1)
2777            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2778                                      RHSC, I.getName());
2779          if (!Op2)
2780            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2781                                      RHSC, I.getName());
2782          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2783        }
2784        break;
2785      }
2786      case Instruction::IntToPtr:
2787        // icmp pred inttoptr(X), null -> icmp pred X, 0
2788        if (RHSC->isNullValue() && DL &&
2789            DL->getIntPtrType(RHSC->getType()) ==
2790               LHSI->getOperand(0)->getType())
2791          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2792                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2793        break;
2794
2795      case Instruction::Load:
2796        // Try to optimize things like "A[i] > 4" to index computations.
2797        if (GetElementPtrInst *GEP =
2798              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2799          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2800            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2801                !cast<LoadInst>(LHSI)->isVolatile())
2802              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2803                return Res;
2804        }
2805        break;
2806      }
2807  }
2808
2809  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2810  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2811    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2812      return NI;
2813  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2814    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2815                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2816      return NI;
2817
2818  // Test to see if the operands of the icmp are casted versions of other
2819  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2820  // now.
2821  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2822    if (Op0->getType()->isPointerTy() &&
2823        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2824      // We keep moving the cast from the left operand over to the right
2825      // operand, where it can often be eliminated completely.
2826      Op0 = CI->getOperand(0);
2827
2828      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2829      // so eliminate it as well.
2830      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2831        Op1 = CI2->getOperand(0);
2832
2833      // If Op1 is a constant, we can fold the cast into the constant.
2834      if (Op0->getType() != Op1->getType()) {
2835        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2836          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2837        } else {
2838          // Otherwise, cast the RHS right before the icmp
2839          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2840        }
2841      }
2842      return new ICmpInst(I.getPredicate(), Op0, Op1);
2843    }
2844  }
2845
2846  if (isa<CastInst>(Op0)) {
2847    // Handle the special case of: icmp (cast bool to X), <cst>
2848    // This comes up when you have code like
2849    //   int X = A < B;
2850    //   if (X) ...
2851    // For generality, we handle any zero-extension of any operand comparison
2852    // with a constant or another cast from the same type.
2853    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2854      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2855        return R;
2856  }
2857
2858  // Special logic for binary operators.
2859  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2860  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2861  if (BO0 || BO1) {
2862    CmpInst::Predicate Pred = I.getPredicate();
2863    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2864    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2865      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2866        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2867        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2868    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2869      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2870        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2871        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2872
2873    // Analyze the case when either Op0 or Op1 is an add instruction.
2874    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2875    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2876    if (BO0 && BO0->getOpcode() == Instruction::Add)
2877      A = BO0->getOperand(0), B = BO0->getOperand(1);
2878    if (BO1 && BO1->getOpcode() == Instruction::Add)
2879      C = BO1->getOperand(0), D = BO1->getOperand(1);
2880
2881    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2882    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2883      return new ICmpInst(Pred, A == Op1 ? B : A,
2884                          Constant::getNullValue(Op1->getType()));
2885
2886    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2887    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2888      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2889                          C == Op0 ? D : C);
2890
2891    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2892    if (A && C && (A == C || A == D || B == C || B == D) &&
2893        NoOp0WrapProblem && NoOp1WrapProblem &&
2894        // Try not to increase register pressure.
2895        BO0->hasOneUse() && BO1->hasOneUse()) {
2896      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2897      Value *Y, *Z;
2898      if (A == C) {
2899        // C + B == C + D  ->  B == D
2900        Y = B;
2901        Z = D;
2902      } else if (A == D) {
2903        // D + B == C + D  ->  B == C
2904        Y = B;
2905        Z = C;
2906      } else if (B == C) {
2907        // A + C == C + D  ->  A == D
2908        Y = A;
2909        Z = D;
2910      } else {
2911        assert(B == D);
2912        // A + D == C + D  ->  A == C
2913        Y = A;
2914        Z = C;
2915      }
2916      return new ICmpInst(Pred, Y, Z);
2917    }
2918
2919    // icmp slt (X + -1), Y -> icmp sle X, Y
2920    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2921        match(B, m_AllOnes()))
2922      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2923
2924    // icmp sge (X + -1), Y -> icmp sgt X, Y
2925    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2926        match(B, m_AllOnes()))
2927      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2928
2929    // icmp sle (X + 1), Y -> icmp slt X, Y
2930    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2931        match(B, m_One()))
2932      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2933
2934    // icmp sgt (X + 1), Y -> icmp sge X, Y
2935    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2936        match(B, m_One()))
2937      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2938
2939    // if C1 has greater magnitude than C2:
2940    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2941    //  s.t. C3 = C1 - C2
2942    //
2943    // if C2 has greater magnitude than C1:
2944    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2945    //  s.t. C3 = C2 - C1
2946    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2947        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2948      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2949        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2950          const APInt &AP1 = C1->getValue();
2951          const APInt &AP2 = C2->getValue();
2952          if (AP1.isNegative() == AP2.isNegative()) {
2953            APInt AP1Abs = C1->getValue().abs();
2954            APInt AP2Abs = C2->getValue().abs();
2955            if (AP1Abs.uge(AP2Abs)) {
2956              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2957              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2958              return new ICmpInst(Pred, NewAdd, C);
2959            } else {
2960              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2961              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2962              return new ICmpInst(Pred, A, NewAdd);
2963            }
2964          }
2965        }
2966
2967
2968    // Analyze the case when either Op0 or Op1 is a sub instruction.
2969    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2970    A = nullptr; B = nullptr; C = nullptr; D = nullptr;
2971    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2972      A = BO0->getOperand(0), B = BO0->getOperand(1);
2973    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2974      C = BO1->getOperand(0), D = BO1->getOperand(1);
2975
2976    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2977    if (A == Op1 && NoOp0WrapProblem)
2978      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2979
2980    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2981    if (C == Op0 && NoOp1WrapProblem)
2982      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2983
2984    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2985    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2986        // Try not to increase register pressure.
2987        BO0->hasOneUse() && BO1->hasOneUse())
2988      return new ICmpInst(Pred, A, C);
2989
2990    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2991    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2992        // Try not to increase register pressure.
2993        BO0->hasOneUse() && BO1->hasOneUse())
2994      return new ICmpInst(Pred, D, B);
2995
2996    // icmp (0-X) < cst --> x > -cst
2997    if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2998      Value *X;
2999      if (match(BO0, m_Neg(m_Value(X))))
3000        if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3001          if (!RHSC->isMinValue(/*isSigned=*/true))
3002            return new ICmpInst(I.getSwappedPredicate(), X,
3003                                ConstantExpr::getNeg(RHSC));
3004    }
3005
3006    BinaryOperator *SRem = nullptr;
3007    // icmp (srem X, Y), Y
3008    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
3009        Op1 == BO0->getOperand(1))
3010      SRem = BO0;
3011    // icmp Y, (srem X, Y)
3012    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3013             Op0 == BO1->getOperand(1))
3014      SRem = BO1;
3015    if (SRem) {
3016      // We don't check hasOneUse to avoid increasing register pressure because
3017      // the value we use is the same value this instruction was already using.
3018      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3019        default: break;
3020        case ICmpInst::ICMP_EQ:
3021          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3022        case ICmpInst::ICMP_NE:
3023          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3024        case ICmpInst::ICMP_SGT:
3025        case ICmpInst::ICMP_SGE:
3026          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3027                              Constant::getAllOnesValue(SRem->getType()));
3028        case ICmpInst::ICMP_SLT:
3029        case ICmpInst::ICMP_SLE:
3030          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3031                              Constant::getNullValue(SRem->getType()));
3032      }
3033    }
3034
3035    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3036        BO0->hasOneUse() && BO1->hasOneUse() &&
3037        BO0->getOperand(1) == BO1->getOperand(1)) {
3038      switch (BO0->getOpcode()) {
3039      default: break;
3040      case Instruction::Add:
3041      case Instruction::Sub:
3042      case Instruction::Xor:
3043        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
3044          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3045                              BO1->getOperand(0));
3046        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3047        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3048          if (CI->getValue().isSignBit()) {
3049            ICmpInst::Predicate Pred = I.isSigned()
3050                                           ? I.getUnsignedPredicate()
3051                                           : I.getSignedPredicate();
3052            return new ICmpInst(Pred, BO0->getOperand(0),
3053                                BO1->getOperand(0));
3054          }
3055
3056          if (CI->isMaxValue(true)) {
3057            ICmpInst::Predicate Pred = I.isSigned()
3058                                           ? I.getUnsignedPredicate()
3059                                           : I.getSignedPredicate();
3060            Pred = I.getSwappedPredicate(Pred);
3061            return new ICmpInst(Pred, BO0->getOperand(0),
3062                                BO1->getOperand(0));
3063          }
3064        }
3065        break;
3066      case Instruction::Mul:
3067        if (!I.isEquality())
3068          break;
3069
3070        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3071          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3072          // Mask = -1 >> count-trailing-zeros(Cst).
3073          if (!CI->isZero() && !CI->isOne()) {
3074            const APInt &AP = CI->getValue();
3075            ConstantInt *Mask = ConstantInt::get(I.getContext(),
3076                                    APInt::getLowBitsSet(AP.getBitWidth(),
3077                                                         AP.getBitWidth() -
3078                                                    AP.countTrailingZeros()));
3079            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3080            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3081            return new ICmpInst(I.getPredicate(), And1, And2);
3082          }
3083        }
3084        break;
3085      case Instruction::UDiv:
3086      case Instruction::LShr:
3087        if (I.isSigned())
3088          break;
3089        // fall-through
3090      case Instruction::SDiv:
3091      case Instruction::AShr:
3092        if (!BO0->isExact() || !BO1->isExact())
3093          break;
3094        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3095                            BO1->getOperand(0));
3096      case Instruction::Shl: {
3097        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3098        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3099        if (!NUW && !NSW)
3100          break;
3101        if (!NSW && I.isSigned())
3102          break;
3103        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3104                            BO1->getOperand(0));
3105      }
3106      }
3107    }
3108  }
3109
3110  { Value *A, *B;
3111    // Transform (A & ~B) == 0 --> (A & B) != 0
3112    // and       (A & ~B) != 0 --> (A & B) == 0
3113    // if A is a power of 2.
3114    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3115        match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
3116      return new ICmpInst(I.getInversePredicate(),
3117                          Builder->CreateAnd(A, B),
3118                          Op1);
3119
3120    // ~x < ~y --> y < x
3121    // ~x < cst --> ~cst < x
3122    if (match(Op0, m_Not(m_Value(A)))) {
3123      if (match(Op1, m_Not(m_Value(B))))
3124        return new ICmpInst(I.getPredicate(), B, A);
3125      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3126        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3127    }
3128
3129    // (a+b) <u a  --> llvm.uadd.with.overflow.
3130    // (a+b) <u b  --> llvm.uadd.with.overflow.
3131    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
3132        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
3133        (Op1 == A || Op1 == B))
3134      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
3135        return R;
3136
3137    // a >u (a+b)  --> llvm.uadd.with.overflow.
3138    // b >u (a+b)  --> llvm.uadd.with.overflow.
3139    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
3140        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
3141        (Op0 == A || Op0 == B))
3142      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
3143        return R;
3144
3145    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
3146    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3147      if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3148        return R;
3149    }
3150    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3151      if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3152        return R;
3153    }
3154  }
3155
3156  if (I.isEquality()) {
3157    Value *A, *B, *C, *D;
3158
3159    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3160      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
3161        Value *OtherVal = A == Op1 ? B : A;
3162        return new ICmpInst(I.getPredicate(), OtherVal,
3163                            Constant::getNullValue(A->getType()));
3164      }
3165
3166      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3167        // A^c1 == C^c2 --> A == C^(c1^c2)
3168        ConstantInt *C1, *C2;
3169        if (match(B, m_ConstantInt(C1)) &&
3170            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
3171          Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3172          Value *Xor = Builder->CreateXor(C, NC);
3173          return new ICmpInst(I.getPredicate(), A, Xor);
3174        }
3175
3176        // A^B == A^D -> B == D
3177        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3178        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3179        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3180        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3181      }
3182    }
3183
3184    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3185        (A == Op0 || B == Op0)) {
3186      // A == (A^B)  ->  B == 0
3187      Value *OtherVal = A == Op0 ? B : A;
3188      return new ICmpInst(I.getPredicate(), OtherVal,
3189                          Constant::getNullValue(A->getType()));
3190    }
3191
3192    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3193    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3194        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3195      Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3196
3197      if (A == C) {
3198        X = B; Y = D; Z = A;
3199      } else if (A == D) {
3200        X = B; Y = C; Z = A;
3201      } else if (B == C) {
3202        X = A; Y = D; Z = B;
3203      } else if (B == D) {
3204        X = A; Y = C; Z = B;
3205      }
3206
3207      if (X) {   // Build (X^Y) & Z
3208        Op1 = Builder->CreateXor(X, Y);
3209        Op1 = Builder->CreateAnd(Op1, Z);
3210        I.setOperand(0, Op1);
3211        I.setOperand(1, Constant::getNullValue(Op1->getType()));
3212        return &I;
3213      }
3214    }
3215
3216    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3217    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3218    ConstantInt *Cst1;
3219    if ((Op0->hasOneUse() &&
3220         match(Op0, m_ZExt(m_Value(A))) &&
3221         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3222        (Op1->hasOneUse() &&
3223         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3224         match(Op1, m_ZExt(m_Value(A))))) {
3225      APInt Pow2 = Cst1->getValue() + 1;
3226      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3227          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3228        return new ICmpInst(I.getPredicate(), A,
3229                            Builder->CreateTrunc(B, A->getType()));
3230    }
3231
3232    // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3233    // For lshr and ashr pairs.
3234    if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3235         match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3236        (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3237         match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3238      unsigned TypeBits = Cst1->getBitWidth();
3239      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3240      if (ShAmt < TypeBits && ShAmt != 0) {
3241        ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3242                                       ? ICmpInst::ICMP_UGE
3243                                       : ICmpInst::ICMP_ULT;
3244        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3245        APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3246        return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3247      }
3248    }
3249
3250    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3251    // "icmp (and X, mask), cst"
3252    uint64_t ShAmt = 0;
3253    if (Op0->hasOneUse() &&
3254        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3255                                           m_ConstantInt(ShAmt))))) &&
3256        match(Op1, m_ConstantInt(Cst1)) &&
3257        // Only do this when A has multiple uses.  This is most important to do
3258        // when it exposes other optimizations.
3259        !A->hasOneUse()) {
3260      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3261
3262      if (ShAmt < ASize) {
3263        APInt MaskV =
3264          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3265        MaskV <<= ShAmt;
3266
3267        APInt CmpV = Cst1->getValue().zext(ASize);
3268        CmpV <<= ShAmt;
3269
3270        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3271        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3272      }
3273    }
3274  }
3275
3276  {
3277    Value *X; ConstantInt *Cst;
3278    // icmp X+Cst, X
3279    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3280      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3281
3282    // icmp X, X+Cst
3283    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3284      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3285  }
3286  return Changed ? &I : nullptr;
3287}
3288
3289/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3290///
3291Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3292                                                Instruction *LHSI,
3293                                                Constant *RHSC) {
3294  if (!isa<ConstantFP>(RHSC)) return nullptr;
3295  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3296
3297  // Get the width of the mantissa.  We don't want to hack on conversions that
3298  // might lose information from the integer, e.g. "i64 -> float"
3299  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3300  if (MantissaWidth == -1) return nullptr;  // Unknown.
3301
3302  // Check to see that the input is converted from an integer type that is small
3303  // enough that preserves all bits.  TODO: check here for "known" sign bits.
3304  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3305  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
3306
3307  // If this is a uitofp instruction, we need an extra bit to hold the sign.
3308  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3309  if (LHSUnsigned)
3310    ++InputSize;
3311
3312  // If the conversion would lose info, don't hack on this.
3313  if ((int)InputSize > MantissaWidth)
3314    return nullptr;
3315
3316  // Otherwise, we can potentially simplify the comparison.  We know that it
3317  // will always come through as an integer value and we know the constant is
3318  // not a NAN (it would have been previously simplified).
3319  assert(!RHS.isNaN() && "NaN comparison not already folded!");
3320
3321  ICmpInst::Predicate Pred;
3322  switch (I.getPredicate()) {
3323  default: llvm_unreachable("Unexpected predicate!");
3324  case FCmpInst::FCMP_UEQ:
3325  case FCmpInst::FCMP_OEQ:
3326    Pred = ICmpInst::ICMP_EQ;
3327    break;
3328  case FCmpInst::FCMP_UGT:
3329  case FCmpInst::FCMP_OGT:
3330    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3331    break;
3332  case FCmpInst::FCMP_UGE:
3333  case FCmpInst::FCMP_OGE:
3334    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3335    break;
3336  case FCmpInst::FCMP_ULT:
3337  case FCmpInst::FCMP_OLT:
3338    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3339    break;
3340  case FCmpInst::FCMP_ULE:
3341  case FCmpInst::FCMP_OLE:
3342    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3343    break;
3344  case FCmpInst::FCMP_UNE:
3345  case FCmpInst::FCMP_ONE:
3346    Pred = ICmpInst::ICMP_NE;
3347    break;
3348  case FCmpInst::FCMP_ORD:
3349    return ReplaceInstUsesWith(I, Builder->getTrue());
3350  case FCmpInst::FCMP_UNO:
3351    return ReplaceInstUsesWith(I, Builder->getFalse());
3352  }
3353
3354  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3355
3356  // Now we know that the APFloat is a normal number, zero or inf.
3357
3358  // See if the FP constant is too large for the integer.  For example,
3359  // comparing an i8 to 300.0.
3360  unsigned IntWidth = IntTy->getScalarSizeInBits();
3361
3362  if (!LHSUnsigned) {
3363    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3364    // and large values.
3365    APFloat SMax(RHS.getSemantics());
3366    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3367                          APFloat::rmNearestTiesToEven);
3368    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3369      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3370          Pred == ICmpInst::ICMP_SLE)
3371        return ReplaceInstUsesWith(I, Builder->getTrue());
3372      return ReplaceInstUsesWith(I, Builder->getFalse());
3373    }
3374  } else {
3375    // If the RHS value is > UnsignedMax, fold the comparison. This handles
3376    // +INF and large values.
3377    APFloat UMax(RHS.getSemantics());
3378    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3379                          APFloat::rmNearestTiesToEven);
3380    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3381      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3382          Pred == ICmpInst::ICMP_ULE)
3383        return ReplaceInstUsesWith(I, Builder->getTrue());
3384      return ReplaceInstUsesWith(I, Builder->getFalse());
3385    }
3386  }
3387
3388  if (!LHSUnsigned) {
3389    // See if the RHS value is < SignedMin.
3390    APFloat SMin(RHS.getSemantics());
3391    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3392                          APFloat::rmNearestTiesToEven);
3393    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3394      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3395          Pred == ICmpInst::ICMP_SGE)
3396        return ReplaceInstUsesWith(I, Builder->getTrue());
3397      return ReplaceInstUsesWith(I, Builder->getFalse());
3398    }
3399  } else {
3400    // See if the RHS value is < UnsignedMin.
3401    APFloat SMin(RHS.getSemantics());
3402    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3403                          APFloat::rmNearestTiesToEven);
3404    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3405      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3406          Pred == ICmpInst::ICMP_UGE)
3407        return ReplaceInstUsesWith(I, Builder->getTrue());
3408      return ReplaceInstUsesWith(I, Builder->getFalse());
3409    }
3410  }
3411
3412  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3413  // [0, UMAX], but it may still be fractional.  See if it is fractional by
3414  // casting the FP value to the integer value and back, checking for equality.
3415  // Don't do this for zero, because -0.0 is not fractional.
3416  Constant *RHSInt = LHSUnsigned
3417    ? ConstantExpr::getFPToUI(RHSC, IntTy)
3418    : ConstantExpr::getFPToSI(RHSC, IntTy);
3419  if (!RHS.isZero()) {
3420    bool Equal = LHSUnsigned
3421      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3422      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3423    if (!Equal) {
3424      // If we had a comparison against a fractional value, we have to adjust
3425      // the compare predicate and sometimes the value.  RHSC is rounded towards
3426      // zero at this point.
3427      switch (Pred) {
3428      default: llvm_unreachable("Unexpected integer comparison!");
3429      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
3430        return ReplaceInstUsesWith(I, Builder->getTrue());
3431      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
3432        return ReplaceInstUsesWith(I, Builder->getFalse());
3433      case ICmpInst::ICMP_ULE:
3434        // (float)int <= 4.4   --> int <= 4
3435        // (float)int <= -4.4  --> false
3436        if (RHS.isNegative())
3437          return ReplaceInstUsesWith(I, Builder->getFalse());
3438        break;
3439      case ICmpInst::ICMP_SLE:
3440        // (float)int <= 4.4   --> int <= 4
3441        // (float)int <= -4.4  --> int < -4
3442        if (RHS.isNegative())
3443          Pred = ICmpInst::ICMP_SLT;
3444        break;
3445      case ICmpInst::ICMP_ULT:
3446        // (float)int < -4.4   --> false
3447        // (float)int < 4.4    --> int <= 4
3448        if (RHS.isNegative())
3449          return ReplaceInstUsesWith(I, Builder->getFalse());
3450        Pred = ICmpInst::ICMP_ULE;
3451        break;
3452      case ICmpInst::ICMP_SLT:
3453        // (float)int < -4.4   --> int < -4
3454        // (float)int < 4.4    --> int <= 4
3455        if (!RHS.isNegative())
3456          Pred = ICmpInst::ICMP_SLE;
3457        break;
3458      case ICmpInst::ICMP_UGT:
3459        // (float)int > 4.4    --> int > 4
3460        // (float)int > -4.4   --> true
3461        if (RHS.isNegative())
3462          return ReplaceInstUsesWith(I, Builder->getTrue());
3463        break;
3464      case ICmpInst::ICMP_SGT:
3465        // (float)int > 4.4    --> int > 4
3466        // (float)int > -4.4   --> int >= -4
3467        if (RHS.isNegative())
3468          Pred = ICmpInst::ICMP_SGE;
3469        break;
3470      case ICmpInst::ICMP_UGE:
3471        // (float)int >= -4.4   --> true
3472        // (float)int >= 4.4    --> int > 4
3473        if (RHS.isNegative())
3474          return ReplaceInstUsesWith(I, Builder->getTrue());
3475        Pred = ICmpInst::ICMP_UGT;
3476        break;
3477      case ICmpInst::ICMP_SGE:
3478        // (float)int >= -4.4   --> int >= -4
3479        // (float)int >= 4.4    --> int > 4
3480        if (!RHS.isNegative())
3481          Pred = ICmpInst::ICMP_SGT;
3482        break;
3483      }
3484    }
3485  }
3486
3487  // Lower this FP comparison into an appropriate integer version of the
3488  // comparison.
3489  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3490}
3491
3492Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3493  bool Changed = false;
3494
3495  /// Orders the operands of the compare so that they are listed from most
3496  /// complex to least complex.  This puts constants before unary operators,
3497  /// before binary operators.
3498  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3499    I.swapOperands();
3500    Changed = true;
3501  }
3502
3503  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3504
3505  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL))
3506    return ReplaceInstUsesWith(I, V);
3507
3508  // Simplify 'fcmp pred X, X'
3509  if (Op0 == Op1) {
3510    switch (I.getPredicate()) {
3511    default: llvm_unreachable("Unknown predicate!");
3512    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3513    case FCmpInst::FCMP_ULT:    // True if unordered or less than
3514    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3515    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3516      // Canonicalize these to be 'fcmp uno %X, 0.0'.
3517      I.setPredicate(FCmpInst::FCMP_UNO);
3518      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3519      return &I;
3520
3521    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3522    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3523    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3524    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3525      // Canonicalize these to be 'fcmp ord %X, 0.0'.
3526      I.setPredicate(FCmpInst::FCMP_ORD);
3527      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3528      return &I;
3529    }
3530  }
3531
3532  // Handle fcmp with constant RHS
3533  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3534    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3535      switch (LHSI->getOpcode()) {
3536      case Instruction::FPExt: {
3537        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3538        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3539        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3540        if (!RHSF)
3541          break;
3542
3543        const fltSemantics *Sem;
3544        // FIXME: This shouldn't be here.
3545        if (LHSExt->getSrcTy()->isHalfTy())
3546          Sem = &APFloat::IEEEhalf;
3547        else if (LHSExt->getSrcTy()->isFloatTy())
3548          Sem = &APFloat::IEEEsingle;
3549        else if (LHSExt->getSrcTy()->isDoubleTy())
3550          Sem = &APFloat::IEEEdouble;
3551        else if (LHSExt->getSrcTy()->isFP128Ty())
3552          Sem = &APFloat::IEEEquad;
3553        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3554          Sem = &APFloat::x87DoubleExtended;
3555        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3556          Sem = &APFloat::PPCDoubleDouble;
3557        else
3558          break;
3559
3560        bool Lossy;
3561        APFloat F = RHSF->getValueAPF();
3562        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3563
3564        // Avoid lossy conversions and denormals. Zero is a special case
3565        // that's OK to convert.
3566        APFloat Fabs = F;
3567        Fabs.clearSign();
3568        if (!Lossy &&
3569            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3570                 APFloat::cmpLessThan) || Fabs.isZero()))
3571
3572          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3573                              ConstantFP::get(RHSC->getContext(), F));
3574        break;
3575      }
3576      case Instruction::PHI:
3577        // Only fold fcmp into the PHI if the phi and fcmp are in the same
3578        // block.  If in the same block, we're encouraging jump threading.  If
3579        // not, we are just pessimizing the code by making an i1 phi.
3580        if (LHSI->getParent() == I.getParent())
3581          if (Instruction *NV = FoldOpIntoPhi(I))
3582            return NV;
3583        break;
3584      case Instruction::SIToFP:
3585      case Instruction::UIToFP:
3586        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3587          return NV;
3588        break;
3589      case Instruction::FSub: {
3590        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3591        Value *Op;
3592        if (match(LHSI, m_FNeg(m_Value(Op))))
3593          return new FCmpInst(I.getSwappedPredicate(), Op,
3594                              ConstantExpr::getFNeg(RHSC));
3595        break;
3596      }
3597      case Instruction::Load:
3598        if (GetElementPtrInst *GEP =
3599            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3600          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3601            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3602                !cast<LoadInst>(LHSI)->isVolatile())
3603              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3604                return Res;
3605        }
3606        break;
3607      case Instruction::Call: {
3608        CallInst *CI = cast<CallInst>(LHSI);
3609        LibFunc::Func Func;
3610        // Various optimization for fabs compared with zero.
3611        if (RHSC->isNullValue() && CI->getCalledFunction() &&
3612            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3613            TLI->has(Func)) {
3614          if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3615              Func == LibFunc::fabsl) {
3616            switch (I.getPredicate()) {
3617            default: break;
3618            // fabs(x) < 0 --> false
3619            case FCmpInst::FCMP_OLT:
3620              return ReplaceInstUsesWith(I, Builder->getFalse());
3621            // fabs(x) > 0 --> x != 0
3622            case FCmpInst::FCMP_OGT:
3623              return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3624                                  RHSC);
3625            // fabs(x) <= 0 --> x == 0
3626            case FCmpInst::FCMP_OLE:
3627              return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3628                                  RHSC);
3629            // fabs(x) >= 0 --> !isnan(x)
3630            case FCmpInst::FCMP_OGE:
3631              return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3632                                  RHSC);
3633            // fabs(x) == 0 --> x == 0
3634            // fabs(x) != 0 --> x != 0
3635            case FCmpInst::FCMP_OEQ:
3636            case FCmpInst::FCMP_UEQ:
3637            case FCmpInst::FCMP_ONE:
3638            case FCmpInst::FCMP_UNE:
3639              return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3640                                  RHSC);
3641            }
3642          }
3643        }
3644      }
3645      }
3646  }
3647
3648  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3649  Value *X, *Y;
3650  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3651    return new FCmpInst(I.getSwappedPredicate(), X, Y);
3652
3653  // fcmp (fpext x), (fpext y) -> fcmp x, y
3654  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3655    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3656      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3657        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3658                            RHSExt->getOperand(0));
3659
3660  return Changed ? &I : nullptr;
3661}
3662