InstCombineCompares.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/IR/ConstantRange.h"
19#include "llvm/IR/DataLayout.h"
20#include "llvm/IR/GetElementPtrTypeIterator.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/PatternMatch.h"
23#include "llvm/Target/TargetLibraryInfo.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27#define DEBUG_TYPE "instcombine"
28
29static ConstantInt *getOne(Constant *C) {
30  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
31}
32
33static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
34  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
35}
36
37static bool HasAddOverflow(ConstantInt *Result,
38                           ConstantInt *In1, ConstantInt *In2,
39                           bool IsSigned) {
40  if (!IsSigned)
41    return Result->getValue().ult(In1->getValue());
42
43  if (In2->isNegative())
44    return Result->getValue().sgt(In1->getValue());
45  return Result->getValue().slt(In1->getValue());
46}
47
48/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
49/// overflowed for this type.
50static bool AddWithOverflow(Constant *&Result, Constant *In1,
51                            Constant *In2, bool IsSigned = false) {
52  Result = ConstantExpr::getAdd(In1, In2);
53
54  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
55    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
56      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
57      if (HasAddOverflow(ExtractElement(Result, Idx),
58                         ExtractElement(In1, Idx),
59                         ExtractElement(In2, Idx),
60                         IsSigned))
61        return true;
62    }
63    return false;
64  }
65
66  return HasAddOverflow(cast<ConstantInt>(Result),
67                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
68                        IsSigned);
69}
70
71static bool HasSubOverflow(ConstantInt *Result,
72                           ConstantInt *In1, ConstantInt *In2,
73                           bool IsSigned) {
74  if (!IsSigned)
75    return Result->getValue().ugt(In1->getValue());
76
77  if (In2->isNegative())
78    return Result->getValue().slt(In1->getValue());
79
80  return Result->getValue().sgt(In1->getValue());
81}
82
83/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
84/// overflowed for this type.
85static bool SubWithOverflow(Constant *&Result, Constant *In1,
86                            Constant *In2, bool IsSigned = false) {
87  Result = ConstantExpr::getSub(In1, In2);
88
89  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
90    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
91      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
92      if (HasSubOverflow(ExtractElement(Result, Idx),
93                         ExtractElement(In1, Idx),
94                         ExtractElement(In2, Idx),
95                         IsSigned))
96        return true;
97    }
98    return false;
99  }
100
101  return HasSubOverflow(cast<ConstantInt>(Result),
102                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
103                        IsSigned);
104}
105
106/// isSignBitCheck - Given an exploded icmp instruction, return true if the
107/// comparison only checks the sign bit.  If it only checks the sign bit, set
108/// TrueIfSigned if the result of the comparison is true when the input value is
109/// signed.
110static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
111                           bool &TrueIfSigned) {
112  switch (pred) {
113  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
114    TrueIfSigned = true;
115    return RHS->isZero();
116  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
117    TrueIfSigned = true;
118    return RHS->isAllOnesValue();
119  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
120    TrueIfSigned = false;
121    return RHS->isAllOnesValue();
122  case ICmpInst::ICMP_UGT:
123    // True if LHS u> RHS and RHS == high-bit-mask - 1
124    TrueIfSigned = true;
125    return RHS->isMaxValue(true);
126  case ICmpInst::ICMP_UGE:
127    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
128    TrueIfSigned = true;
129    return RHS->getValue().isSignBit();
130  default:
131    return false;
132  }
133}
134
135/// Returns true if the exploded icmp can be expressed as a signed comparison
136/// to zero and updates the predicate accordingly.
137/// The signedness of the comparison is preserved.
138static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
139  if (!ICmpInst::isSigned(pred))
140    return false;
141
142  if (RHS->isZero())
143    return ICmpInst::isRelational(pred);
144
145  if (RHS->isOne()) {
146    if (pred == ICmpInst::ICMP_SLT) {
147      pred = ICmpInst::ICMP_SLE;
148      return true;
149    }
150  } else if (RHS->isAllOnesValue()) {
151    if (pred == ICmpInst::ICMP_SGT) {
152      pred = ICmpInst::ICMP_SGE;
153      return true;
154    }
155  }
156
157  return false;
158}
159
160// isHighOnes - Return true if the constant is of the form 1+0+.
161// This is the same as lowones(~X).
162static bool isHighOnes(const ConstantInt *CI) {
163  return (~CI->getValue() + 1).isPowerOf2();
164}
165
166/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
167/// set of known zero and one bits, compute the maximum and minimum values that
168/// could have the specified known zero and known one bits, returning them in
169/// min/max.
170static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
171                                                   const APInt& KnownOne,
172                                                   APInt& Min, APInt& Max) {
173  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
174         KnownZero.getBitWidth() == Min.getBitWidth() &&
175         KnownZero.getBitWidth() == Max.getBitWidth() &&
176         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
177  APInt UnknownBits = ~(KnownZero|KnownOne);
178
179  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
180  // bit if it is unknown.
181  Min = KnownOne;
182  Max = KnownOne|UnknownBits;
183
184  if (UnknownBits.isNegative()) { // Sign bit is unknown
185    Min.setBit(Min.getBitWidth()-1);
186    Max.clearBit(Max.getBitWidth()-1);
187  }
188}
189
190// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
191// a set of known zero and one bits, compute the maximum and minimum values that
192// could have the specified known zero and known one bits, returning them in
193// min/max.
194static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
195                                                     const APInt &KnownOne,
196                                                     APInt &Min, APInt &Max) {
197  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
198         KnownZero.getBitWidth() == Min.getBitWidth() &&
199         KnownZero.getBitWidth() == Max.getBitWidth() &&
200         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
201  APInt UnknownBits = ~(KnownZero|KnownOne);
202
203  // The minimum value is when the unknown bits are all zeros.
204  Min = KnownOne;
205  // The maximum value is when the unknown bits are all ones.
206  Max = KnownOne|UnknownBits;
207}
208
209
210
211/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
212///   cmp pred (load (gep GV, ...)), cmpcst
213/// where GV is a global variable with a constant initializer.  Try to simplify
214/// this into some simple computation that does not need the load.  For example
215/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
216///
217/// If AndCst is non-null, then the loaded value is masked with that constant
218/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
219Instruction *InstCombiner::
220FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
221                             CmpInst &ICI, ConstantInt *AndCst) {
222  // We need TD information to know the pointer size unless this is inbounds.
223  if (!GEP->isInBounds() && !DL)
224    return nullptr;
225
226  Constant *Init = GV->getInitializer();
227  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
228    return nullptr;
229
230  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
231  if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
232
233  // There are many forms of this optimization we can handle, for now, just do
234  // the simple index into a single-dimensional array.
235  //
236  // Require: GEP GV, 0, i {{, constant indices}}
237  if (GEP->getNumOperands() < 3 ||
238      !isa<ConstantInt>(GEP->getOperand(1)) ||
239      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
240      isa<Constant>(GEP->getOperand(2)))
241    return nullptr;
242
243  // Check that indices after the variable are constants and in-range for the
244  // type they index.  Collect the indices.  This is typically for arrays of
245  // structs.
246  SmallVector<unsigned, 4> LaterIndices;
247
248  Type *EltTy = Init->getType()->getArrayElementType();
249  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
250    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
251    if (!Idx) return nullptr;  // Variable index.
252
253    uint64_t IdxVal = Idx->getZExtValue();
254    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
255
256    if (StructType *STy = dyn_cast<StructType>(EltTy))
257      EltTy = STy->getElementType(IdxVal);
258    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
259      if (IdxVal >= ATy->getNumElements()) return nullptr;
260      EltTy = ATy->getElementType();
261    } else {
262      return nullptr; // Unknown type.
263    }
264
265    LaterIndices.push_back(IdxVal);
266  }
267
268  enum { Overdefined = -3, Undefined = -2 };
269
270  // Variables for our state machines.
271
272  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
273  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
274  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
275  // undefined, otherwise set to the first true element.  SecondTrueElement is
276  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
277  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
278
279  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
280  // form "i != 47 & i != 87".  Same state transitions as for true elements.
281  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
282
283  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
284  /// define a state machine that triggers for ranges of values that the index
285  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
286  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
287  /// index in the range (inclusive).  We use -2 for undefined here because we
288  /// use relative comparisons and don't want 0-1 to match -1.
289  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
290
291  // MagicBitvector - This is a magic bitvector where we set a bit if the
292  // comparison is true for element 'i'.  If there are 64 elements or less in
293  // the array, this will fully represent all the comparison results.
294  uint64_t MagicBitvector = 0;
295
296
297  // Scan the array and see if one of our patterns matches.
298  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
299  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
300    Constant *Elt = Init->getAggregateElement(i);
301    if (!Elt) return nullptr;
302
303    // If this is indexing an array of structures, get the structure element.
304    if (!LaterIndices.empty())
305      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
306
307    // If the element is masked, handle it.
308    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
309
310    // Find out if the comparison would be true or false for the i'th element.
311    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
312                                                  CompareRHS, DL, TLI);
313    // If the result is undef for this element, ignore it.
314    if (isa<UndefValue>(C)) {
315      // Extend range state machines to cover this element in case there is an
316      // undef in the middle of the range.
317      if (TrueRangeEnd == (int)i-1)
318        TrueRangeEnd = i;
319      if (FalseRangeEnd == (int)i-1)
320        FalseRangeEnd = i;
321      continue;
322    }
323
324    // If we can't compute the result for any of the elements, we have to give
325    // up evaluating the entire conditional.
326    if (!isa<ConstantInt>(C)) return nullptr;
327
328    // Otherwise, we know if the comparison is true or false for this element,
329    // update our state machines.
330    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
331
332    // State machine for single/double/range index comparison.
333    if (IsTrueForElt) {
334      // Update the TrueElement state machine.
335      if (FirstTrueElement == Undefined)
336        FirstTrueElement = TrueRangeEnd = i;  // First true element.
337      else {
338        // Update double-compare state machine.
339        if (SecondTrueElement == Undefined)
340          SecondTrueElement = i;
341        else
342          SecondTrueElement = Overdefined;
343
344        // Update range state machine.
345        if (TrueRangeEnd == (int)i-1)
346          TrueRangeEnd = i;
347        else
348          TrueRangeEnd = Overdefined;
349      }
350    } else {
351      // Update the FalseElement state machine.
352      if (FirstFalseElement == Undefined)
353        FirstFalseElement = FalseRangeEnd = i; // First false element.
354      else {
355        // Update double-compare state machine.
356        if (SecondFalseElement == Undefined)
357          SecondFalseElement = i;
358        else
359          SecondFalseElement = Overdefined;
360
361        // Update range state machine.
362        if (FalseRangeEnd == (int)i-1)
363          FalseRangeEnd = i;
364        else
365          FalseRangeEnd = Overdefined;
366      }
367    }
368
369
370    // If this element is in range, update our magic bitvector.
371    if (i < 64 && IsTrueForElt)
372      MagicBitvector |= 1ULL << i;
373
374    // If all of our states become overdefined, bail out early.  Since the
375    // predicate is expensive, only check it every 8 elements.  This is only
376    // really useful for really huge arrays.
377    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
378        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
379        FalseRangeEnd == Overdefined)
380      return nullptr;
381  }
382
383  // Now that we've scanned the entire array, emit our new comparison(s).  We
384  // order the state machines in complexity of the generated code.
385  Value *Idx = GEP->getOperand(2);
386
387  // If the index is larger than the pointer size of the target, truncate the
388  // index down like the GEP would do implicitly.  We don't have to do this for
389  // an inbounds GEP because the index can't be out of range.
390  if (!GEP->isInBounds()) {
391    Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
392    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
393    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
394      Idx = Builder->CreateTrunc(Idx, IntPtrTy);
395  }
396
397  // If the comparison is only true for one or two elements, emit direct
398  // comparisons.
399  if (SecondTrueElement != Overdefined) {
400    // None true -> false.
401    if (FirstTrueElement == Undefined)
402      return ReplaceInstUsesWith(ICI, Builder->getFalse());
403
404    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
405
406    // True for one element -> 'i == 47'.
407    if (SecondTrueElement == Undefined)
408      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
409
410    // True for two elements -> 'i == 47 | i == 72'.
411    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
412    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
413    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
414    return BinaryOperator::CreateOr(C1, C2);
415  }
416
417  // If the comparison is only false for one or two elements, emit direct
418  // comparisons.
419  if (SecondFalseElement != Overdefined) {
420    // None false -> true.
421    if (FirstFalseElement == Undefined)
422      return ReplaceInstUsesWith(ICI, Builder->getTrue());
423
424    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
425
426    // False for one element -> 'i != 47'.
427    if (SecondFalseElement == Undefined)
428      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
429
430    // False for two elements -> 'i != 47 & i != 72'.
431    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
432    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
433    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
434    return BinaryOperator::CreateAnd(C1, C2);
435  }
436
437  // If the comparison can be replaced with a range comparison for the elements
438  // where it is true, emit the range check.
439  if (TrueRangeEnd != Overdefined) {
440    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
441
442    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
443    if (FirstTrueElement) {
444      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
445      Idx = Builder->CreateAdd(Idx, Offs);
446    }
447
448    Value *End = ConstantInt::get(Idx->getType(),
449                                  TrueRangeEnd-FirstTrueElement+1);
450    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
451  }
452
453  // False range check.
454  if (FalseRangeEnd != Overdefined) {
455    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
456    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
457    if (FirstFalseElement) {
458      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
459      Idx = Builder->CreateAdd(Idx, Offs);
460    }
461
462    Value *End = ConstantInt::get(Idx->getType(),
463                                  FalseRangeEnd-FirstFalseElement);
464    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
465  }
466
467
468  // If a magic bitvector captures the entire comparison state
469  // of this load, replace it with computation that does:
470  //   ((magic_cst >> i) & 1) != 0
471  {
472    Type *Ty = nullptr;
473
474    // Look for an appropriate type:
475    // - The type of Idx if the magic fits
476    // - The smallest fitting legal type if we have a DataLayout
477    // - Default to i32
478    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
479      Ty = Idx->getType();
480    else if (DL)
481      Ty = DL->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
482    else if (ArrayElementCount <= 32)
483      Ty = Type::getInt32Ty(Init->getContext());
484
485    if (Ty) {
486      Value *V = Builder->CreateIntCast(Idx, Ty, false);
487      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
488      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
489      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
490    }
491  }
492
493  return nullptr;
494}
495
496
497/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
498/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
499/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
500/// be complex, and scales are involved.  The above expression would also be
501/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
502/// This later form is less amenable to optimization though, and we are allowed
503/// to generate the first by knowing that pointer arithmetic doesn't overflow.
504///
505/// If we can't emit an optimized form for this expression, this returns null.
506///
507static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
508  const DataLayout &DL = *IC.getDataLayout();
509  gep_type_iterator GTI = gep_type_begin(GEP);
510
511  // Check to see if this gep only has a single variable index.  If so, and if
512  // any constant indices are a multiple of its scale, then we can compute this
513  // in terms of the scale of the variable index.  For example, if the GEP
514  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
515  // because the expression will cross zero at the same point.
516  unsigned i, e = GEP->getNumOperands();
517  int64_t Offset = 0;
518  for (i = 1; i != e; ++i, ++GTI) {
519    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
520      // Compute the aggregate offset of constant indices.
521      if (CI->isZero()) continue;
522
523      // Handle a struct index, which adds its field offset to the pointer.
524      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
525        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
526      } else {
527        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
528        Offset += Size*CI->getSExtValue();
529      }
530    } else {
531      // Found our variable index.
532      break;
533    }
534  }
535
536  // If there are no variable indices, we must have a constant offset, just
537  // evaluate it the general way.
538  if (i == e) return nullptr;
539
540  Value *VariableIdx = GEP->getOperand(i);
541  // Determine the scale factor of the variable element.  For example, this is
542  // 4 if the variable index is into an array of i32.
543  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
544
545  // Verify that there are no other variable indices.  If so, emit the hard way.
546  for (++i, ++GTI; i != e; ++i, ++GTI) {
547    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
548    if (!CI) return nullptr;
549
550    // Compute the aggregate offset of constant indices.
551    if (CI->isZero()) continue;
552
553    // Handle a struct index, which adds its field offset to the pointer.
554    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
555      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
556    } else {
557      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
558      Offset += Size*CI->getSExtValue();
559    }
560  }
561
562
563
564  // Okay, we know we have a single variable index, which must be a
565  // pointer/array/vector index.  If there is no offset, life is simple, return
566  // the index.
567  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
568  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
569  if (Offset == 0) {
570    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
571    // we don't need to bother extending: the extension won't affect where the
572    // computation crosses zero.
573    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
574      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
575    }
576    return VariableIdx;
577  }
578
579  // Otherwise, there is an index.  The computation we will do will be modulo
580  // the pointer size, so get it.
581  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
582
583  Offset &= PtrSizeMask;
584  VariableScale &= PtrSizeMask;
585
586  // To do this transformation, any constant index must be a multiple of the
587  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
588  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
589  // multiple of the variable scale.
590  int64_t NewOffs = Offset / (int64_t)VariableScale;
591  if (Offset != NewOffs*(int64_t)VariableScale)
592    return nullptr;
593
594  // Okay, we can do this evaluation.  Start by converting the index to intptr.
595  if (VariableIdx->getType() != IntPtrTy)
596    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
597                                            true /*Signed*/);
598  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
599  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
600}
601
602/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
603/// else.  At this point we know that the GEP is on the LHS of the comparison.
604Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
605                                       ICmpInst::Predicate Cond,
606                                       Instruction &I) {
607  // Don't transform signed compares of GEPs into index compares. Even if the
608  // GEP is inbounds, the final add of the base pointer can have signed overflow
609  // and would change the result of the icmp.
610  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
611  // the maximum signed value for the pointer type.
612  if (ICmpInst::isSigned(Cond))
613    return nullptr;
614
615  // Look through bitcasts.
616  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
617    RHS = BCI->getOperand(0);
618
619  Value *PtrBase = GEPLHS->getOperand(0);
620  if (DL && PtrBase == RHS && GEPLHS->isInBounds()) {
621    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
622    // This transformation (ignoring the base and scales) is valid because we
623    // know pointers can't overflow since the gep is inbounds.  See if we can
624    // output an optimized form.
625    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
626
627    // If not, synthesize the offset the hard way.
628    if (!Offset)
629      Offset = EmitGEPOffset(GEPLHS);
630    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
631                        Constant::getNullValue(Offset->getType()));
632  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
633    // If the base pointers are different, but the indices are the same, just
634    // compare the base pointer.
635    if (PtrBase != GEPRHS->getOperand(0)) {
636      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
637      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
638                        GEPRHS->getOperand(0)->getType();
639      if (IndicesTheSame)
640        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
641          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
642            IndicesTheSame = false;
643            break;
644          }
645
646      // If all indices are the same, just compare the base pointers.
647      if (IndicesTheSame)
648        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
649
650      // If we're comparing GEPs with two base pointers that only differ in type
651      // and both GEPs have only constant indices or just one use, then fold
652      // the compare with the adjusted indices.
653      if (DL && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
654          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
655          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
656          PtrBase->stripPointerCasts() ==
657            GEPRHS->getOperand(0)->stripPointerCasts()) {
658        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
659                                         EmitGEPOffset(GEPLHS),
660                                         EmitGEPOffset(GEPRHS));
661        return ReplaceInstUsesWith(I, Cmp);
662      }
663
664      // Otherwise, the base pointers are different and the indices are
665      // different, bail out.
666      return nullptr;
667    }
668
669    // If one of the GEPs has all zero indices, recurse.
670    bool AllZeros = true;
671    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
672      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
673          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
674        AllZeros = false;
675        break;
676      }
677    if (AllZeros)
678      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
679                         ICmpInst::getSwappedPredicate(Cond), I);
680
681    // If the other GEP has all zero indices, recurse.
682    AllZeros = true;
683    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
684      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
685          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
686        AllZeros = false;
687        break;
688      }
689    if (AllZeros)
690      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
691
692    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
693    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
694      // If the GEPs only differ by one index, compare it.
695      unsigned NumDifferences = 0;  // Keep track of # differences.
696      unsigned DiffOperand = 0;     // The operand that differs.
697      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
698        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
699          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
700                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
701            // Irreconcilable differences.
702            NumDifferences = 2;
703            break;
704          } else {
705            if (NumDifferences++) break;
706            DiffOperand = i;
707          }
708        }
709
710      if (NumDifferences == 0)   // SAME GEP?
711        return ReplaceInstUsesWith(I, // No comparison is needed here.
712                             Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
713
714      else if (NumDifferences == 1 && GEPsInBounds) {
715        Value *LHSV = GEPLHS->getOperand(DiffOperand);
716        Value *RHSV = GEPRHS->getOperand(DiffOperand);
717        // Make sure we do a signed comparison here.
718        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
719      }
720    }
721
722    // Only lower this if the icmp is the only user of the GEP or if we expect
723    // the result to fold to a constant!
724    if (DL &&
725        GEPsInBounds &&
726        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
727        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
728      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
729      Value *L = EmitGEPOffset(GEPLHS);
730      Value *R = EmitGEPOffset(GEPRHS);
731      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
732    }
733  }
734  return nullptr;
735}
736
737/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
738Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
739                                            Value *X, ConstantInt *CI,
740                                            ICmpInst::Predicate Pred) {
741  // If we have X+0, exit early (simplifying logic below) and let it get folded
742  // elsewhere.   icmp X+0, X  -> icmp X, X
743  if (CI->isZero()) {
744    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
745    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
746  }
747
748  // (X+4) == X -> false.
749  if (Pred == ICmpInst::ICMP_EQ)
750    return ReplaceInstUsesWith(ICI, Builder->getFalse());
751
752  // (X+4) != X -> true.
753  if (Pred == ICmpInst::ICMP_NE)
754    return ReplaceInstUsesWith(ICI, Builder->getTrue());
755
756  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
757  // so the values can never be equal.  Similarly for all other "or equals"
758  // operators.
759
760  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
761  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
762  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
763  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
764    Value *R =
765      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
766    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
767  }
768
769  // (X+1) >u X        --> X <u (0-1)        --> X != 255
770  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
771  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
772  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
773    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
774
775  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
776  ConstantInt *SMax = ConstantInt::get(X->getContext(),
777                                       APInt::getSignedMaxValue(BitWidth));
778
779  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
780  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
781  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
782  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
783  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
784  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
785  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
786    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
787
788  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
789  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
790  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
791  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
792  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
793  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
794
795  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
796  Constant *C = Builder->getInt(CI->getValue()-1);
797  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
798}
799
800/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
801/// and CmpRHS are both known to be integer constants.
802Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
803                                          ConstantInt *DivRHS) {
804  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
805  const APInt &CmpRHSV = CmpRHS->getValue();
806
807  // FIXME: If the operand types don't match the type of the divide
808  // then don't attempt this transform. The code below doesn't have the
809  // logic to deal with a signed divide and an unsigned compare (and
810  // vice versa). This is because (x /s C1) <s C2  produces different
811  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
812  // (x /u C1) <u C2.  Simply casting the operands and result won't
813  // work. :(  The if statement below tests that condition and bails
814  // if it finds it.
815  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
816  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
817    return nullptr;
818  if (DivRHS->isZero())
819    return nullptr; // The ProdOV computation fails on divide by zero.
820  if (DivIsSigned && DivRHS->isAllOnesValue())
821    return nullptr; // The overflow computation also screws up here
822  if (DivRHS->isOne()) {
823    // This eliminates some funny cases with INT_MIN.
824    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
825    return &ICI;
826  }
827
828  // Compute Prod = CI * DivRHS. We are essentially solving an equation
829  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
830  // C2 (CI). By solving for X we can turn this into a range check
831  // instead of computing a divide.
832  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
833
834  // Determine if the product overflows by seeing if the product is
835  // not equal to the divide. Make sure we do the same kind of divide
836  // as in the LHS instruction that we're folding.
837  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
838                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
839
840  // Get the ICmp opcode
841  ICmpInst::Predicate Pred = ICI.getPredicate();
842
843  /// If the division is known to be exact, then there is no remainder from the
844  /// divide, so the covered range size is unit, otherwise it is the divisor.
845  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
846
847  // Figure out the interval that is being checked.  For example, a comparison
848  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
849  // Compute this interval based on the constants involved and the signedness of
850  // the compare/divide.  This computes a half-open interval, keeping track of
851  // whether either value in the interval overflows.  After analysis each
852  // overflow variable is set to 0 if it's corresponding bound variable is valid
853  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
854  int LoOverflow = 0, HiOverflow = 0;
855  Constant *LoBound = nullptr, *HiBound = nullptr;
856
857  if (!DivIsSigned) {  // udiv
858    // e.g. X/5 op 3  --> [15, 20)
859    LoBound = Prod;
860    HiOverflow = LoOverflow = ProdOV;
861    if (!HiOverflow) {
862      // If this is not an exact divide, then many values in the range collapse
863      // to the same result value.
864      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
865    }
866
867  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
868    if (CmpRHSV == 0) {       // (X / pos) op 0
869      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
870      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
871      HiBound = RangeSize;
872    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
873      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
874      HiOverflow = LoOverflow = ProdOV;
875      if (!HiOverflow)
876        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
877    } else {                       // (X / pos) op neg
878      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
879      HiBound = AddOne(Prod);
880      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
881      if (!LoOverflow) {
882        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
883        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
884      }
885    }
886  } else if (DivRHS->isNegative()) { // Divisor is < 0.
887    if (DivI->isExact())
888      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
889    if (CmpRHSV == 0) {       // (X / neg) op 0
890      // e.g. X/-5 op 0  --> [-4, 5)
891      LoBound = AddOne(RangeSize);
892      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
893      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
894        HiOverflow = 1;            // [INTMIN+1, overflow)
895        HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
896      }
897    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
898      // e.g. X/-5 op 3  --> [-19, -14)
899      HiBound = AddOne(Prod);
900      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
901      if (!LoOverflow)
902        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
903    } else {                       // (X / neg) op neg
904      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
905      LoOverflow = HiOverflow = ProdOV;
906      if (!HiOverflow)
907        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
908    }
909
910    // Dividing by a negative swaps the condition.  LT <-> GT
911    Pred = ICmpInst::getSwappedPredicate(Pred);
912  }
913
914  Value *X = DivI->getOperand(0);
915  switch (Pred) {
916  default: llvm_unreachable("Unhandled icmp opcode!");
917  case ICmpInst::ICMP_EQ:
918    if (LoOverflow && HiOverflow)
919      return ReplaceInstUsesWith(ICI, Builder->getFalse());
920    if (HiOverflow)
921      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
922                          ICmpInst::ICMP_UGE, X, LoBound);
923    if (LoOverflow)
924      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
925                          ICmpInst::ICMP_ULT, X, HiBound);
926    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
927                                                    DivIsSigned, true));
928  case ICmpInst::ICMP_NE:
929    if (LoOverflow && HiOverflow)
930      return ReplaceInstUsesWith(ICI, Builder->getTrue());
931    if (HiOverflow)
932      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
933                          ICmpInst::ICMP_ULT, X, LoBound);
934    if (LoOverflow)
935      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
936                          ICmpInst::ICMP_UGE, X, HiBound);
937    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
938                                                    DivIsSigned, false));
939  case ICmpInst::ICMP_ULT:
940  case ICmpInst::ICMP_SLT:
941    if (LoOverflow == +1)   // Low bound is greater than input range.
942      return ReplaceInstUsesWith(ICI, Builder->getTrue());
943    if (LoOverflow == -1)   // Low bound is less than input range.
944      return ReplaceInstUsesWith(ICI, Builder->getFalse());
945    return new ICmpInst(Pred, X, LoBound);
946  case ICmpInst::ICMP_UGT:
947  case ICmpInst::ICMP_SGT:
948    if (HiOverflow == +1)       // High bound greater than input range.
949      return ReplaceInstUsesWith(ICI, Builder->getFalse());
950    if (HiOverflow == -1)       // High bound less than input range.
951      return ReplaceInstUsesWith(ICI, Builder->getTrue());
952    if (Pred == ICmpInst::ICMP_UGT)
953      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
954    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
955  }
956}
957
958/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
959Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
960                                          ConstantInt *ShAmt) {
961  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
962
963  // Check that the shift amount is in range.  If not, don't perform
964  // undefined shifts.  When the shift is visited it will be
965  // simplified.
966  uint32_t TypeBits = CmpRHSV.getBitWidth();
967  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
968  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
969    return nullptr;
970
971  if (!ICI.isEquality()) {
972    // If we have an unsigned comparison and an ashr, we can't simplify this.
973    // Similarly for signed comparisons with lshr.
974    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
975      return nullptr;
976
977    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
978    // by a power of 2.  Since we already have logic to simplify these,
979    // transform to div and then simplify the resultant comparison.
980    if (Shr->getOpcode() == Instruction::AShr &&
981        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
982      return nullptr;
983
984    // Revisit the shift (to delete it).
985    Worklist.Add(Shr);
986
987    Constant *DivCst =
988      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
989
990    Value *Tmp =
991      Shr->getOpcode() == Instruction::AShr ?
992      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
993      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
994
995    ICI.setOperand(0, Tmp);
996
997    // If the builder folded the binop, just return it.
998    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
999    if (!TheDiv)
1000      return &ICI;
1001
1002    // Otherwise, fold this div/compare.
1003    assert(TheDiv->getOpcode() == Instruction::SDiv ||
1004           TheDiv->getOpcode() == Instruction::UDiv);
1005
1006    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1007    assert(Res && "This div/cst should have folded!");
1008    return Res;
1009  }
1010
1011
1012  // If we are comparing against bits always shifted out, the
1013  // comparison cannot succeed.
1014  APInt Comp = CmpRHSV << ShAmtVal;
1015  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1016  if (Shr->getOpcode() == Instruction::LShr)
1017    Comp = Comp.lshr(ShAmtVal);
1018  else
1019    Comp = Comp.ashr(ShAmtVal);
1020
1021  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1022    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1023    Constant *Cst = Builder->getInt1(IsICMP_NE);
1024    return ReplaceInstUsesWith(ICI, Cst);
1025  }
1026
1027  // Otherwise, check to see if the bits shifted out are known to be zero.
1028  // If so, we can compare against the unshifted value:
1029  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1030  if (Shr->hasOneUse() && Shr->isExact())
1031    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1032
1033  if (Shr->hasOneUse()) {
1034    // Otherwise strength reduce the shift into an and.
1035    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1036    Constant *Mask = Builder->getInt(Val);
1037
1038    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1039                                    Mask, Shr->getName()+".mask");
1040    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1041  }
1042  return nullptr;
1043}
1044
1045
1046/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1047///
1048Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1049                                                          Instruction *LHSI,
1050                                                          ConstantInt *RHS) {
1051  const APInt &RHSV = RHS->getValue();
1052
1053  switch (LHSI->getOpcode()) {
1054  case Instruction::Trunc:
1055    if (ICI.isEquality() && LHSI->hasOneUse()) {
1056      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1057      // of the high bits truncated out of x are known.
1058      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1059             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1060      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1061      computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne);
1062
1063      // If all the high bits are known, we can do this xform.
1064      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1065        // Pull in the high bits from known-ones set.
1066        APInt NewRHS = RHS->getValue().zext(SrcBits);
1067        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1068        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1069                            Builder->getInt(NewRHS));
1070      }
1071    }
1072    break;
1073
1074  case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
1075    if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1076      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1077      // fold the xor.
1078      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1079          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1080        Value *CompareVal = LHSI->getOperand(0);
1081
1082        // If the sign bit of the XorCst is not set, there is no change to
1083        // the operation, just stop using the Xor.
1084        if (!XorCst->isNegative()) {
1085          ICI.setOperand(0, CompareVal);
1086          Worklist.Add(LHSI);
1087          return &ICI;
1088        }
1089
1090        // Was the old condition true if the operand is positive?
1091        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1092
1093        // If so, the new one isn't.
1094        isTrueIfPositive ^= true;
1095
1096        if (isTrueIfPositive)
1097          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1098                              SubOne(RHS));
1099        else
1100          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1101                              AddOne(RHS));
1102      }
1103
1104      if (LHSI->hasOneUse()) {
1105        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1106        if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
1107          const APInt &SignBit = XorCst->getValue();
1108          ICmpInst::Predicate Pred = ICI.isSigned()
1109                                         ? ICI.getUnsignedPredicate()
1110                                         : ICI.getSignedPredicate();
1111          return new ICmpInst(Pred, LHSI->getOperand(0),
1112                              Builder->getInt(RHSV ^ SignBit));
1113        }
1114
1115        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1116        if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
1117          const APInt &NotSignBit = XorCst->getValue();
1118          ICmpInst::Predicate Pred = ICI.isSigned()
1119                                         ? ICI.getUnsignedPredicate()
1120                                         : ICI.getSignedPredicate();
1121          Pred = ICI.getSwappedPredicate(Pred);
1122          return new ICmpInst(Pred, LHSI->getOperand(0),
1123                              Builder->getInt(RHSV ^ NotSignBit));
1124        }
1125      }
1126
1127      // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1128      //   iff -C is a power of 2
1129      if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1130          XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1131        return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
1132
1133      // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1134      //   iff -C is a power of 2
1135      if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1136          XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
1137        return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
1138    }
1139    break;
1140  case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
1141    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1142        LHSI->getOperand(0)->hasOneUse()) {
1143      ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
1144
1145      // If the LHS is an AND of a truncating cast, we can widen the
1146      // and/compare to be the input width without changing the value
1147      // produced, eliminating a cast.
1148      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1149        // We can do this transformation if either the AND constant does not
1150        // have its sign bit set or if it is an equality comparison.
1151        // Extending a relational comparison when we're checking the sign
1152        // bit would not work.
1153        if (ICI.isEquality() ||
1154            (!AndCst->isNegative() && RHSV.isNonNegative())) {
1155          Value *NewAnd =
1156            Builder->CreateAnd(Cast->getOperand(0),
1157                               ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
1158          NewAnd->takeName(LHSI);
1159          return new ICmpInst(ICI.getPredicate(), NewAnd,
1160                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1161        }
1162      }
1163
1164      // If the LHS is an AND of a zext, and we have an equality compare, we can
1165      // shrink the and/compare to the smaller type, eliminating the cast.
1166      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1167        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1168        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1169        // should fold the icmp to true/false in that case.
1170        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1171          Value *NewAnd =
1172            Builder->CreateAnd(Cast->getOperand(0),
1173                               ConstantExpr::getTrunc(AndCst, Ty));
1174          NewAnd->takeName(LHSI);
1175          return new ICmpInst(ICI.getPredicate(), NewAnd,
1176                              ConstantExpr::getTrunc(RHS, Ty));
1177        }
1178      }
1179
1180      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1181      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1182      // happens a LOT in code produced by the C front-end, for bitfield
1183      // access.
1184      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1185      if (Shift && !Shift->isShift())
1186        Shift = nullptr;
1187
1188      ConstantInt *ShAmt;
1189      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
1190
1191      // This seemingly simple opportunity to fold away a shift turns out to
1192      // be rather complicated. See PR17827
1193      // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
1194      if (ShAmt) {
1195        bool CanFold = false;
1196        unsigned ShiftOpcode = Shift->getOpcode();
1197        if (ShiftOpcode == Instruction::AShr) {
1198          // There may be some constraints that make this possible,
1199          // but nothing simple has been discovered yet.
1200          CanFold = false;
1201        } else if (ShiftOpcode == Instruction::Shl) {
1202          // For a left shift, we can fold if the comparison is not signed.
1203          // We can also fold a signed comparison if the mask value and
1204          // comparison value are not negative. These constraints may not be
1205          // obvious, but we can prove that they are correct using an SMT
1206          // solver.
1207          if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
1208            CanFold = true;
1209        } else if (ShiftOpcode == Instruction::LShr) {
1210          // For a logical right shift, we can fold if the comparison is not
1211          // signed. We can also fold a signed comparison if the shifted mask
1212          // value and the shifted comparison value are not negative.
1213          // These constraints may not be obvious, but we can prove that they
1214          // are correct using an SMT solver.
1215          if (!ICI.isSigned())
1216            CanFold = true;
1217          else {
1218            ConstantInt *ShiftedAndCst =
1219              cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
1220            ConstantInt *ShiftedRHSCst =
1221              cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
1222
1223            if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
1224              CanFold = true;
1225          }
1226        }
1227
1228        if (CanFold) {
1229          Constant *NewCst;
1230          if (ShiftOpcode == Instruction::Shl)
1231            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1232          else
1233            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1234
1235          // Check to see if we are shifting out any of the bits being
1236          // compared.
1237          if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
1238            // If we shifted bits out, the fold is not going to work out.
1239            // As a special case, check to see if this means that the
1240            // result is always true or false now.
1241            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1242              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1243            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1244              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1245          } else {
1246            ICI.setOperand(1, NewCst);
1247            Constant *NewAndCst;
1248            if (ShiftOpcode == Instruction::Shl)
1249              NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
1250            else
1251              NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
1252            LHSI->setOperand(1, NewAndCst);
1253            LHSI->setOperand(0, Shift->getOperand(0));
1254            Worklist.Add(Shift); // Shift is dead.
1255            return &ICI;
1256          }
1257        }
1258      }
1259
1260      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1261      // preferable because it allows the C<<Y expression to be hoisted out
1262      // of a loop if Y is invariant and X is not.
1263      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1264          ICI.isEquality() && !Shift->isArithmeticShift() &&
1265          !isa<Constant>(Shift->getOperand(0))) {
1266        // Compute C << Y.
1267        Value *NS;
1268        if (Shift->getOpcode() == Instruction::LShr) {
1269          NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
1270        } else {
1271          // Insert a logical shift.
1272          NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
1273        }
1274
1275        // Compute X & (C << Y).
1276        Value *NewAnd =
1277          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1278
1279        ICI.setOperand(0, NewAnd);
1280        return &ICI;
1281      }
1282
1283      // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
1284      // bit set in (X & AndCst) will produce a result greater than RHSV.
1285      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1286        unsigned NTZ = AndCst->getValue().countTrailingZeros();
1287        if ((NTZ < AndCst->getBitWidth()) &&
1288            APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
1289          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1290                              Constant::getNullValue(RHS->getType()));
1291      }
1292    }
1293
1294    // Try to optimize things like "A[i]&42 == 0" to index computations.
1295    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1296      if (GetElementPtrInst *GEP =
1297          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1298        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1299          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1300              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1301            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1302            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1303              return Res;
1304          }
1305    }
1306
1307    // X & -C == -C -> X >  u ~C
1308    // X & -C != -C -> X <= u ~C
1309    //   iff C is a power of 2
1310    if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1311      return new ICmpInst(
1312          ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1313                                                  : ICmpInst::ICMP_ULE,
1314          LHSI->getOperand(0), SubOne(RHS));
1315    break;
1316
1317  case Instruction::Or: {
1318    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1319      break;
1320    Value *P, *Q;
1321    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1322      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1323      // -> and (icmp eq P, null), (icmp eq Q, null).
1324      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1325                                        Constant::getNullValue(P->getType()));
1326      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1327                                        Constant::getNullValue(Q->getType()));
1328      Instruction *Op;
1329      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1330        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1331      else
1332        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1333      return Op;
1334    }
1335    break;
1336  }
1337
1338  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1339    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1340    if (!Val) break;
1341
1342    // If this is a signed comparison to 0 and the mul is sign preserving,
1343    // use the mul LHS operand instead.
1344    ICmpInst::Predicate pred = ICI.getPredicate();
1345    if (isSignTest(pred, RHS) && !Val->isZero() &&
1346        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1347      return new ICmpInst(Val->isNegative() ?
1348                          ICmpInst::getSwappedPredicate(pred) : pred,
1349                          LHSI->getOperand(0),
1350                          Constant::getNullValue(RHS->getType()));
1351
1352    break;
1353  }
1354
1355  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1356    uint32_t TypeBits = RHSV.getBitWidth();
1357    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1358    if (!ShAmt) {
1359      Value *X;
1360      // (1 << X) pred P2 -> X pred Log2(P2)
1361      if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1362        bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1363        ICmpInst::Predicate Pred = ICI.getPredicate();
1364        if (ICI.isUnsigned()) {
1365          if (!RHSVIsPowerOf2) {
1366            // (1 << X) <  30 -> X <= 4
1367            // (1 << X) <= 30 -> X <= 4
1368            // (1 << X) >= 30 -> X >  4
1369            // (1 << X) >  30 -> X >  4
1370            if (Pred == ICmpInst::ICMP_ULT)
1371              Pred = ICmpInst::ICMP_ULE;
1372            else if (Pred == ICmpInst::ICMP_UGE)
1373              Pred = ICmpInst::ICMP_UGT;
1374          }
1375          unsigned RHSLog2 = RHSV.logBase2();
1376
1377          // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1378          // (1 << X) >  2147483648 -> X >  31 -> false
1379          // (1 << X) <= 2147483648 -> X <= 31 -> true
1380          // (1 << X) <  2147483648 -> X <  31 -> X != 31
1381          if (RHSLog2 == TypeBits-1) {
1382            if (Pred == ICmpInst::ICMP_UGE)
1383              Pred = ICmpInst::ICMP_EQ;
1384            else if (Pred == ICmpInst::ICMP_UGT)
1385              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1386            else if (Pred == ICmpInst::ICMP_ULE)
1387              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1388            else if (Pred == ICmpInst::ICMP_ULT)
1389              Pred = ICmpInst::ICMP_NE;
1390          }
1391
1392          return new ICmpInst(Pred, X,
1393                              ConstantInt::get(RHS->getType(), RHSLog2));
1394        } else if (ICI.isSigned()) {
1395          if (RHSV.isAllOnesValue()) {
1396            // (1 << X) <= -1 -> X == 31
1397            if (Pred == ICmpInst::ICMP_SLE)
1398              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1399                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1400
1401            // (1 << X) >  -1 -> X != 31
1402            if (Pred == ICmpInst::ICMP_SGT)
1403              return new ICmpInst(ICmpInst::ICMP_NE, X,
1404                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1405          } else if (!RHSV) {
1406            // (1 << X) <  0 -> X == 31
1407            // (1 << X) <= 0 -> X == 31
1408            if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1409              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1410                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1411
1412            // (1 << X) >= 0 -> X != 31
1413            // (1 << X) >  0 -> X != 31
1414            if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1415              return new ICmpInst(ICmpInst::ICMP_NE, X,
1416                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1417          }
1418        } else if (ICI.isEquality()) {
1419          if (RHSVIsPowerOf2)
1420            return new ICmpInst(
1421                Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1422
1423          return ReplaceInstUsesWith(
1424              ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
1425                                             : Builder->getTrue());
1426        }
1427      }
1428      break;
1429    }
1430
1431    // Check that the shift amount is in range.  If not, don't perform
1432    // undefined shifts.  When the shift is visited it will be
1433    // simplified.
1434    if (ShAmt->uge(TypeBits))
1435      break;
1436
1437    if (ICI.isEquality()) {
1438      // If we are comparing against bits always shifted out, the
1439      // comparison cannot succeed.
1440      Constant *Comp =
1441        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1442                                                                 ShAmt);
1443      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1444        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1445        Constant *Cst = Builder->getInt1(IsICMP_NE);
1446        return ReplaceInstUsesWith(ICI, Cst);
1447      }
1448
1449      // If the shift is NUW, then it is just shifting out zeros, no need for an
1450      // AND.
1451      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1452        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1453                            ConstantExpr::getLShr(RHS, ShAmt));
1454
1455      // If the shift is NSW and we compare to 0, then it is just shifting out
1456      // sign bits, no need for an AND either.
1457      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1458        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1459                            ConstantExpr::getLShr(RHS, ShAmt));
1460
1461      if (LHSI->hasOneUse()) {
1462        // Otherwise strength reduce the shift into an and.
1463        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1464        Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1465                                                          TypeBits - ShAmtVal));
1466
1467        Value *And =
1468          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1469        return new ICmpInst(ICI.getPredicate(), And,
1470                            ConstantExpr::getLShr(RHS, ShAmt));
1471      }
1472    }
1473
1474    // If this is a signed comparison to 0 and the shift is sign preserving,
1475    // use the shift LHS operand instead.
1476    ICmpInst::Predicate pred = ICI.getPredicate();
1477    if (isSignTest(pred, RHS) &&
1478        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1479      return new ICmpInst(pred,
1480                          LHSI->getOperand(0),
1481                          Constant::getNullValue(RHS->getType()));
1482
1483    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1484    bool TrueIfSigned = false;
1485    if (LHSI->hasOneUse() &&
1486        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1487      // (X << 31) <s 0  --> (X&1) != 0
1488      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1489                                        APInt::getOneBitSet(TypeBits,
1490                                            TypeBits-ShAmt->getZExtValue()-1));
1491      Value *And =
1492        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1493      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1494                          And, Constant::getNullValue(And->getType()));
1495    }
1496
1497    // Transform (icmp pred iM (shl iM %v, N), CI)
1498    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1499    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1500    // This enables to get rid of the shift in favor of a trunc which can be
1501    // free on the target. It has the additional benefit of comparing to a
1502    // smaller constant, which will be target friendly.
1503    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1504    if (LHSI->hasOneUse() &&
1505        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1506      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1507      Constant *NCI = ConstantExpr::getTrunc(
1508                        ConstantExpr::getAShr(RHS,
1509                          ConstantInt::get(RHS->getType(), Amt)),
1510                        NTy);
1511      return new ICmpInst(ICI.getPredicate(),
1512                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1513                          NCI);
1514    }
1515
1516    break;
1517  }
1518
1519  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1520  case Instruction::AShr: {
1521    // Handle equality comparisons of shift-by-constant.
1522    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1523    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1524      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1525        return Res;
1526    }
1527
1528    // Handle exact shr's.
1529    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1530      if (RHSV.isMinValue())
1531        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1532    }
1533    break;
1534  }
1535
1536  case Instruction::SDiv:
1537  case Instruction::UDiv:
1538    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1539    // Fold this div into the comparison, producing a range check.
1540    // Determine, based on the divide type, what the range is being
1541    // checked.  If there is an overflow on the low or high side, remember
1542    // it, otherwise compute the range [low, hi) bounding the new value.
1543    // See: InsertRangeTest above for the kinds of replacements possible.
1544    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1545      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1546                                          DivRHS))
1547        return R;
1548    break;
1549
1550  case Instruction::Sub: {
1551    ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1552    if (!LHSC) break;
1553    const APInt &LHSV = LHSC->getValue();
1554
1555    // C1-X <u C2 -> (X|(C2-1)) == C1
1556    //   iff C1 & (C2-1) == C2-1
1557    //       C2 is a power of 2
1558    if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1559        RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1560      return new ICmpInst(ICmpInst::ICMP_EQ,
1561                          Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1562                          LHSC);
1563
1564    // C1-X >u C2 -> (X|C2) != C1
1565    //   iff C1 & C2 == C2
1566    //       C2+1 is a power of 2
1567    if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1568        (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1569      return new ICmpInst(ICmpInst::ICMP_NE,
1570                          Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1571    break;
1572  }
1573
1574  case Instruction::Add:
1575    // Fold: icmp pred (add X, C1), C2
1576    if (!ICI.isEquality()) {
1577      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1578      if (!LHSC) break;
1579      const APInt &LHSV = LHSC->getValue();
1580
1581      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1582                            .subtract(LHSV);
1583
1584      if (ICI.isSigned()) {
1585        if (CR.getLower().isSignBit()) {
1586          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1587                              Builder->getInt(CR.getUpper()));
1588        } else if (CR.getUpper().isSignBit()) {
1589          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1590                              Builder->getInt(CR.getLower()));
1591        }
1592      } else {
1593        if (CR.getLower().isMinValue()) {
1594          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1595                              Builder->getInt(CR.getUpper()));
1596        } else if (CR.getUpper().isMinValue()) {
1597          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1598                              Builder->getInt(CR.getLower()));
1599        }
1600      }
1601
1602      // X-C1 <u C2 -> (X & -C2) == C1
1603      //   iff C1 & (C2-1) == 0
1604      //       C2 is a power of 2
1605      if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1606          RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1607        return new ICmpInst(ICmpInst::ICMP_EQ,
1608                            Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1609                            ConstantExpr::getNeg(LHSC));
1610
1611      // X-C1 >u C2 -> (X & ~C2) != C1
1612      //   iff C1 & C2 == 0
1613      //       C2+1 is a power of 2
1614      if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1615          (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1616        return new ICmpInst(ICmpInst::ICMP_NE,
1617                            Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1618                            ConstantExpr::getNeg(LHSC));
1619    }
1620    break;
1621  }
1622
1623  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1624  if (ICI.isEquality()) {
1625    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1626
1627    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1628    // the second operand is a constant, simplify a bit.
1629    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1630      switch (BO->getOpcode()) {
1631      case Instruction::SRem:
1632        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1633        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1634          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1635          if (V.sgt(1) && V.isPowerOf2()) {
1636            Value *NewRem =
1637              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1638                                  BO->getName());
1639            return new ICmpInst(ICI.getPredicate(), NewRem,
1640                                Constant::getNullValue(BO->getType()));
1641          }
1642        }
1643        break;
1644      case Instruction::Add:
1645        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1646        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1647          if (BO->hasOneUse())
1648            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1649                                ConstantExpr::getSub(RHS, BOp1C));
1650        } else if (RHSV == 0) {
1651          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1652          // efficiently invertible, or if the add has just this one use.
1653          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1654
1655          if (Value *NegVal = dyn_castNegVal(BOp1))
1656            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1657          if (Value *NegVal = dyn_castNegVal(BOp0))
1658            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1659          if (BO->hasOneUse()) {
1660            Value *Neg = Builder->CreateNeg(BOp1);
1661            Neg->takeName(BO);
1662            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1663          }
1664        }
1665        break;
1666      case Instruction::Xor:
1667        // For the xor case, we can xor two constants together, eliminating
1668        // the explicit xor.
1669        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1670          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1671                              ConstantExpr::getXor(RHS, BOC));
1672        } else if (RHSV == 0) {
1673          // Replace ((xor A, B) != 0) with (A != B)
1674          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1675                              BO->getOperand(1));
1676        }
1677        break;
1678      case Instruction::Sub:
1679        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1680        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1681          if (BO->hasOneUse())
1682            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1683                                ConstantExpr::getSub(BOp0C, RHS));
1684        } else if (RHSV == 0) {
1685          // Replace ((sub A, B) != 0) with (A != B)
1686          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1687                              BO->getOperand(1));
1688        }
1689        break;
1690      case Instruction::Or:
1691        // If bits are being or'd in that are not present in the constant we
1692        // are comparing against, then the comparison could never succeed!
1693        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1694          Constant *NotCI = ConstantExpr::getNot(RHS);
1695          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1696            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1697        }
1698        break;
1699
1700      case Instruction::And:
1701        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1702          // If bits are being compared against that are and'd out, then the
1703          // comparison can never succeed!
1704          if ((RHSV & ~BOC->getValue()) != 0)
1705            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1706
1707          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1708          if (RHS == BOC && RHSV.isPowerOf2())
1709            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1710                                ICmpInst::ICMP_NE, LHSI,
1711                                Constant::getNullValue(RHS->getType()));
1712
1713          // Don't perform the following transforms if the AND has multiple uses
1714          if (!BO->hasOneUse())
1715            break;
1716
1717          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1718          if (BOC->getValue().isSignBit()) {
1719            Value *X = BO->getOperand(0);
1720            Constant *Zero = Constant::getNullValue(X->getType());
1721            ICmpInst::Predicate pred = isICMP_NE ?
1722              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1723            return new ICmpInst(pred, X, Zero);
1724          }
1725
1726          // ((X & ~7) == 0) --> X < 8
1727          if (RHSV == 0 && isHighOnes(BOC)) {
1728            Value *X = BO->getOperand(0);
1729            Constant *NegX = ConstantExpr::getNeg(BOC);
1730            ICmpInst::Predicate pred = isICMP_NE ?
1731              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1732            return new ICmpInst(pred, X, NegX);
1733          }
1734        }
1735        break;
1736      case Instruction::Mul:
1737        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1738          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1739            // The trivial case (mul X, 0) is handled by InstSimplify
1740            // General case : (mul X, C) != 0 iff X != 0
1741            //                (mul X, C) == 0 iff X == 0
1742            if (!BOC->isZero())
1743              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1744                                  Constant::getNullValue(RHS->getType()));
1745          }
1746        }
1747        break;
1748      default: break;
1749      }
1750    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1751      // Handle icmp {eq|ne} <intrinsic>, intcst.
1752      switch (II->getIntrinsicID()) {
1753      case Intrinsic::bswap:
1754        Worklist.Add(II);
1755        ICI.setOperand(0, II->getArgOperand(0));
1756        ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1757        return &ICI;
1758      case Intrinsic::ctlz:
1759      case Intrinsic::cttz:
1760        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1761        if (RHSV == RHS->getType()->getBitWidth()) {
1762          Worklist.Add(II);
1763          ICI.setOperand(0, II->getArgOperand(0));
1764          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1765          return &ICI;
1766        }
1767        break;
1768      case Intrinsic::ctpop:
1769        // popcount(A) == 0  ->  A == 0 and likewise for !=
1770        if (RHS->isZero()) {
1771          Worklist.Add(II);
1772          ICI.setOperand(0, II->getArgOperand(0));
1773          ICI.setOperand(1, RHS);
1774          return &ICI;
1775        }
1776        break;
1777      default:
1778        break;
1779      }
1780    }
1781  }
1782  return nullptr;
1783}
1784
1785/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1786/// We only handle extending casts so far.
1787///
1788Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1789  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1790  Value *LHSCIOp        = LHSCI->getOperand(0);
1791  Type *SrcTy     = LHSCIOp->getType();
1792  Type *DestTy    = LHSCI->getType();
1793  Value *RHSCIOp;
1794
1795  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1796  // integer type is the same size as the pointer type.
1797  if (DL && LHSCI->getOpcode() == Instruction::PtrToInt &&
1798      DL->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1799    Value *RHSOp = nullptr;
1800    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1801      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1802    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1803      RHSOp = RHSC->getOperand(0);
1804      // If the pointer types don't match, insert a bitcast.
1805      if (LHSCIOp->getType() != RHSOp->getType())
1806        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1807    }
1808
1809    if (RHSOp)
1810      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1811  }
1812
1813  // The code below only handles extension cast instructions, so far.
1814  // Enforce this.
1815  if (LHSCI->getOpcode() != Instruction::ZExt &&
1816      LHSCI->getOpcode() != Instruction::SExt)
1817    return nullptr;
1818
1819  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1820  bool isSignedCmp = ICI.isSigned();
1821
1822  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1823    // Not an extension from the same type?
1824    RHSCIOp = CI->getOperand(0);
1825    if (RHSCIOp->getType() != LHSCIOp->getType())
1826      return nullptr;
1827
1828    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1829    // and the other is a zext), then we can't handle this.
1830    if (CI->getOpcode() != LHSCI->getOpcode())
1831      return nullptr;
1832
1833    // Deal with equality cases early.
1834    if (ICI.isEquality())
1835      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1836
1837    // A signed comparison of sign extended values simplifies into a
1838    // signed comparison.
1839    if (isSignedCmp && isSignedExt)
1840      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1841
1842    // The other three cases all fold into an unsigned comparison.
1843    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1844  }
1845
1846  // If we aren't dealing with a constant on the RHS, exit early
1847  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1848  if (!CI)
1849    return nullptr;
1850
1851  // Compute the constant that would happen if we truncated to SrcTy then
1852  // reextended to DestTy.
1853  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1854  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1855                                                Res1, DestTy);
1856
1857  // If the re-extended constant didn't change...
1858  if (Res2 == CI) {
1859    // Deal with equality cases early.
1860    if (ICI.isEquality())
1861      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1862
1863    // A signed comparison of sign extended values simplifies into a
1864    // signed comparison.
1865    if (isSignedExt && isSignedCmp)
1866      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1867
1868    // The other three cases all fold into an unsigned comparison.
1869    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1870  }
1871
1872  // The re-extended constant changed so the constant cannot be represented
1873  // in the shorter type. Consequently, we cannot emit a simple comparison.
1874  // All the cases that fold to true or false will have already been handled
1875  // by SimplifyICmpInst, so only deal with the tricky case.
1876
1877  if (isSignedCmp || !isSignedExt)
1878    return nullptr;
1879
1880  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1881  // should have been folded away previously and not enter in here.
1882
1883  // We're performing an unsigned comp with a sign extended value.
1884  // This is true if the input is >= 0. [aka >s -1]
1885  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1886  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1887
1888  // Finally, return the value computed.
1889  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1890    return ReplaceInstUsesWith(ICI, Result);
1891
1892  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1893  return BinaryOperator::CreateNot(Result);
1894}
1895
1896/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1897///   I = icmp ugt (add (add A, B), CI2), CI1
1898/// If this is of the form:
1899///   sum = a + b
1900///   if (sum+128 >u 255)
1901/// Then replace it with llvm.sadd.with.overflow.i8.
1902///
1903static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1904                                          ConstantInt *CI2, ConstantInt *CI1,
1905                                          InstCombiner &IC) {
1906  // The transformation we're trying to do here is to transform this into an
1907  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1908  // with a narrower add, and discard the add-with-constant that is part of the
1909  // range check (if we can't eliminate it, this isn't profitable).
1910
1911  // In order to eliminate the add-with-constant, the compare can be its only
1912  // use.
1913  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1914  if (!AddWithCst->hasOneUse()) return nullptr;
1915
1916  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1917  if (!CI2->getValue().isPowerOf2()) return nullptr;
1918  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1919  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
1920
1921  // The width of the new add formed is 1 more than the bias.
1922  ++NewWidth;
1923
1924  // Check to see that CI1 is an all-ones value with NewWidth bits.
1925  if (CI1->getBitWidth() == NewWidth ||
1926      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1927    return nullptr;
1928
1929  // This is only really a signed overflow check if the inputs have been
1930  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1931  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1932  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1933  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1934      IC.ComputeNumSignBits(B) < NeededSignBits)
1935    return nullptr;
1936
1937  // In order to replace the original add with a narrower
1938  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1939  // and truncates that discard the high bits of the add.  Verify that this is
1940  // the case.
1941  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1942  for (User *U : OrigAdd->users()) {
1943    if (U == AddWithCst) continue;
1944
1945    // Only accept truncates for now.  We would really like a nice recursive
1946    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1947    // chain to see which bits of a value are actually demanded.  If the
1948    // original add had another add which was then immediately truncated, we
1949    // could still do the transformation.
1950    TruncInst *TI = dyn_cast<TruncInst>(U);
1951    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1952      return nullptr;
1953  }
1954
1955  // If the pattern matches, truncate the inputs to the narrower type and
1956  // use the sadd_with_overflow intrinsic to efficiently compute both the
1957  // result and the overflow bit.
1958  Module *M = I.getParent()->getParent()->getParent();
1959
1960  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1961  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1962                                       NewType);
1963
1964  InstCombiner::BuilderTy *Builder = IC.Builder;
1965
1966  // Put the new code above the original add, in case there are any uses of the
1967  // add between the add and the compare.
1968  Builder->SetInsertPoint(OrigAdd);
1969
1970  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1971  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1972  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1973  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1974  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1975
1976  // The inner add was the result of the narrow add, zero extended to the
1977  // wider type.  Replace it with the result computed by the intrinsic.
1978  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1979
1980  // The original icmp gets replaced with the overflow value.
1981  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1982}
1983
1984static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1985                                     InstCombiner &IC) {
1986  // Don't bother doing this transformation for pointers, don't do it for
1987  // vectors.
1988  if (!isa<IntegerType>(OrigAddV->getType())) return nullptr;
1989
1990  // If the add is a constant expr, then we don't bother transforming it.
1991  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1992  if (!OrigAdd) return nullptr;
1993
1994  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1995
1996  // Put the new code above the original add, in case there are any uses of the
1997  // add between the add and the compare.
1998  InstCombiner::BuilderTy *Builder = IC.Builder;
1999  Builder->SetInsertPoint(OrigAdd);
2000
2001  Module *M = I.getParent()->getParent()->getParent();
2002  Type *Ty = LHS->getType();
2003  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
2004  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
2005  Value *Add = Builder->CreateExtractValue(Call, 0);
2006
2007  IC.ReplaceInstUsesWith(*OrigAdd, Add);
2008
2009  // The original icmp gets replaced with the overflow value.
2010  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
2011}
2012
2013/// \brief Recognize and process idiom involving test for multiplication
2014/// overflow.
2015///
2016/// The caller has matched a pattern of the form:
2017///   I = cmp u (mul(zext A, zext B), V
2018/// The function checks if this is a test for overflow and if so replaces
2019/// multiplication with call to 'mul.with.overflow' intrinsic.
2020///
2021/// \param I Compare instruction.
2022/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
2023///               the compare instruction.  Must be of integer type.
2024/// \param OtherVal The other argument of compare instruction.
2025/// \returns Instruction which must replace the compare instruction, NULL if no
2026///          replacement required.
2027static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
2028                                         Value *OtherVal, InstCombiner &IC) {
2029  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
2030  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
2031  assert(isa<IntegerType>(MulVal->getType()));
2032  Instruction *MulInstr = cast<Instruction>(MulVal);
2033  assert(MulInstr->getOpcode() == Instruction::Mul);
2034
2035  Instruction *LHS = cast<Instruction>(MulInstr->getOperand(0)),
2036              *RHS = cast<Instruction>(MulInstr->getOperand(1));
2037  assert(LHS->getOpcode() == Instruction::ZExt);
2038  assert(RHS->getOpcode() == Instruction::ZExt);
2039  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
2040
2041  // Calculate type and width of the result produced by mul.with.overflow.
2042  Type *TyA = A->getType(), *TyB = B->getType();
2043  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
2044           WidthB = TyB->getPrimitiveSizeInBits();
2045  unsigned MulWidth;
2046  Type *MulType;
2047  if (WidthB > WidthA) {
2048    MulWidth = WidthB;
2049    MulType = TyB;
2050  } else {
2051    MulWidth = WidthA;
2052    MulType = TyA;
2053  }
2054
2055  // In order to replace the original mul with a narrower mul.with.overflow,
2056  // all uses must ignore upper bits of the product.  The number of used low
2057  // bits must be not greater than the width of mul.with.overflow.
2058  if (MulVal->hasNUsesOrMore(2))
2059    for (User *U : MulVal->users()) {
2060      if (U == &I)
2061        continue;
2062      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2063        // Check if truncation ignores bits above MulWidth.
2064        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
2065        if (TruncWidth > MulWidth)
2066          return nullptr;
2067      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2068        // Check if AND ignores bits above MulWidth.
2069        if (BO->getOpcode() != Instruction::And)
2070          return nullptr;
2071        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
2072          const APInt &CVal = CI->getValue();
2073          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
2074            return nullptr;
2075        }
2076      } else {
2077        // Other uses prohibit this transformation.
2078        return nullptr;
2079      }
2080    }
2081
2082  // Recognize patterns
2083  switch (I.getPredicate()) {
2084  case ICmpInst::ICMP_EQ:
2085  case ICmpInst::ICMP_NE:
2086    // Recognize pattern:
2087    //   mulval = mul(zext A, zext B)
2088    //   cmp eq/neq mulval, zext trunc mulval
2089    if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
2090      if (Zext->hasOneUse()) {
2091        Value *ZextArg = Zext->getOperand(0);
2092        if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
2093          if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
2094            break; //Recognized
2095      }
2096
2097    // Recognize pattern:
2098    //   mulval = mul(zext A, zext B)
2099    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
2100    ConstantInt *CI;
2101    Value *ValToMask;
2102    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
2103      if (ValToMask != MulVal)
2104        return nullptr;
2105      const APInt &CVal = CI->getValue() + 1;
2106      if (CVal.isPowerOf2()) {
2107        unsigned MaskWidth = CVal.logBase2();
2108        if (MaskWidth == MulWidth)
2109          break; // Recognized
2110      }
2111    }
2112    return nullptr;
2113
2114  case ICmpInst::ICMP_UGT:
2115    // Recognize pattern:
2116    //   mulval = mul(zext A, zext B)
2117    //   cmp ugt mulval, max
2118    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2119      APInt MaxVal = APInt::getMaxValue(MulWidth);
2120      MaxVal = MaxVal.zext(CI->getBitWidth());
2121      if (MaxVal.eq(CI->getValue()))
2122        break; // Recognized
2123    }
2124    return nullptr;
2125
2126  case ICmpInst::ICMP_UGE:
2127    // Recognize pattern:
2128    //   mulval = mul(zext A, zext B)
2129    //   cmp uge mulval, max+1
2130    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2131      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2132      if (MaxVal.eq(CI->getValue()))
2133        break; // Recognized
2134    }
2135    return nullptr;
2136
2137  case ICmpInst::ICMP_ULE:
2138    // Recognize pattern:
2139    //   mulval = mul(zext A, zext B)
2140    //   cmp ule mulval, max
2141    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2142      APInt MaxVal = APInt::getMaxValue(MulWidth);
2143      MaxVal = MaxVal.zext(CI->getBitWidth());
2144      if (MaxVal.eq(CI->getValue()))
2145        break; // Recognized
2146    }
2147    return nullptr;
2148
2149  case ICmpInst::ICMP_ULT:
2150    // Recognize pattern:
2151    //   mulval = mul(zext A, zext B)
2152    //   cmp ule mulval, max + 1
2153    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
2154      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
2155      if (MaxVal.eq(CI->getValue()))
2156        break; // Recognized
2157    }
2158    return nullptr;
2159
2160  default:
2161    return nullptr;
2162  }
2163
2164  InstCombiner::BuilderTy *Builder = IC.Builder;
2165  Builder->SetInsertPoint(MulInstr);
2166  Module *M = I.getParent()->getParent()->getParent();
2167
2168  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
2169  Value *MulA = A, *MulB = B;
2170  if (WidthA < MulWidth)
2171    MulA = Builder->CreateZExt(A, MulType);
2172  if (WidthB < MulWidth)
2173    MulB = Builder->CreateZExt(B, MulType);
2174  Value *F =
2175      Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
2176  CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul");
2177  IC.Worklist.Add(MulInstr);
2178
2179  // If there are uses of mul result other than the comparison, we know that
2180  // they are truncation or binary AND. Change them to use result of
2181  // mul.with.overflow and adjust properly mask/size.
2182  if (MulVal->hasNUsesOrMore(2)) {
2183    Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
2184    for (User *U : MulVal->users()) {
2185      if (U == &I || U == OtherVal)
2186        continue;
2187      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
2188        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
2189          IC.ReplaceInstUsesWith(*TI, Mul);
2190        else
2191          TI->setOperand(0, Mul);
2192      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
2193        assert(BO->getOpcode() == Instruction::And);
2194        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
2195        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
2196        APInt ShortMask = CI->getValue().trunc(MulWidth);
2197        Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
2198        Instruction *Zext =
2199            cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
2200        IC.Worklist.Add(Zext);
2201        IC.ReplaceInstUsesWith(*BO, Zext);
2202      } else {
2203        llvm_unreachable("Unexpected Binary operation");
2204      }
2205      IC.Worklist.Add(cast<Instruction>(U));
2206    }
2207  }
2208  if (isa<Instruction>(OtherVal))
2209    IC.Worklist.Add(cast<Instruction>(OtherVal));
2210
2211  // The original icmp gets replaced with the overflow value, maybe inverted
2212  // depending on predicate.
2213  bool Inverse = false;
2214  switch (I.getPredicate()) {
2215  case ICmpInst::ICMP_NE:
2216    break;
2217  case ICmpInst::ICMP_EQ:
2218    Inverse = true;
2219    break;
2220  case ICmpInst::ICMP_UGT:
2221  case ICmpInst::ICMP_UGE:
2222    if (I.getOperand(0) == MulVal)
2223      break;
2224    Inverse = true;
2225    break;
2226  case ICmpInst::ICMP_ULT:
2227  case ICmpInst::ICMP_ULE:
2228    if (I.getOperand(1) == MulVal)
2229      break;
2230    Inverse = true;
2231    break;
2232  default:
2233    llvm_unreachable("Unexpected predicate");
2234  }
2235  if (Inverse) {
2236    Value *Res = Builder->CreateExtractValue(Call, 1);
2237    return BinaryOperator::CreateNot(Res);
2238  }
2239
2240  return ExtractValueInst::Create(Call, 1);
2241}
2242
2243// DemandedBitsLHSMask - When performing a comparison against a constant,
2244// it is possible that not all the bits in the LHS are demanded.  This helper
2245// method computes the mask that IS demanded.
2246static APInt DemandedBitsLHSMask(ICmpInst &I,
2247                                 unsigned BitWidth, bool isSignCheck) {
2248  if (isSignCheck)
2249    return APInt::getSignBit(BitWidth);
2250
2251  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2252  if (!CI) return APInt::getAllOnesValue(BitWidth);
2253  const APInt &RHS = CI->getValue();
2254
2255  switch (I.getPredicate()) {
2256  // For a UGT comparison, we don't care about any bits that
2257  // correspond to the trailing ones of the comparand.  The value of these
2258  // bits doesn't impact the outcome of the comparison, because any value
2259  // greater than the RHS must differ in a bit higher than these due to carry.
2260  case ICmpInst::ICMP_UGT: {
2261    unsigned trailingOnes = RHS.countTrailingOnes();
2262    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2263    return ~lowBitsSet;
2264  }
2265
2266  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2267  // Any value less than the RHS must differ in a higher bit because of carries.
2268  case ICmpInst::ICMP_ULT: {
2269    unsigned trailingZeros = RHS.countTrailingZeros();
2270    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2271    return ~lowBitsSet;
2272  }
2273
2274  default:
2275    return APInt::getAllOnesValue(BitWidth);
2276  }
2277
2278}
2279
2280/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2281/// should be swapped.
2282/// The decision is based on how many times these two operands are reused
2283/// as subtract operands and their positions in those instructions.
2284/// The rational is that several architectures use the same instruction for
2285/// both subtract and cmp, thus it is better if the order of those operands
2286/// match.
2287/// \return true if Op0 and Op1 should be swapped.
2288static bool swapMayExposeCSEOpportunities(const Value * Op0,
2289                                          const Value * Op1) {
2290  // Filter out pointer value as those cannot appears directly in subtract.
2291  // FIXME: we may want to go through inttoptrs or bitcasts.
2292  if (Op0->getType()->isPointerTy())
2293    return false;
2294  // Count every uses of both Op0 and Op1 in a subtract.
2295  // Each time Op0 is the first operand, count -1: swapping is bad, the
2296  // subtract has already the same layout as the compare.
2297  // Each time Op0 is the second operand, count +1: swapping is good, the
2298  // subtract has a different layout as the compare.
2299  // At the end, if the benefit is greater than 0, Op0 should come second to
2300  // expose more CSE opportunities.
2301  int GlobalSwapBenefits = 0;
2302  for (const User *U : Op0->users()) {
2303    const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
2304    if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2305      continue;
2306    // If Op0 is the first argument, this is not beneficial to swap the
2307    // arguments.
2308    int LocalSwapBenefits = -1;
2309    unsigned Op1Idx = 1;
2310    if (BinOp->getOperand(Op1Idx) == Op0) {
2311      Op1Idx = 0;
2312      LocalSwapBenefits = 1;
2313    }
2314    if (BinOp->getOperand(Op1Idx) != Op1)
2315      continue;
2316    GlobalSwapBenefits += LocalSwapBenefits;
2317  }
2318  return GlobalSwapBenefits > 0;
2319}
2320
2321Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2322  bool Changed = false;
2323  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2324  unsigned Op0Cplxity = getComplexity(Op0);
2325  unsigned Op1Cplxity = getComplexity(Op1);
2326
2327  /// Orders the operands of the compare so that they are listed from most
2328  /// complex to least complex.  This puts constants before unary operators,
2329  /// before binary operators.
2330  if (Op0Cplxity < Op1Cplxity ||
2331        (Op0Cplxity == Op1Cplxity &&
2332         swapMayExposeCSEOpportunities(Op0, Op1))) {
2333    I.swapOperands();
2334    std::swap(Op0, Op1);
2335    Changed = true;
2336  }
2337
2338  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL))
2339    return ReplaceInstUsesWith(I, V);
2340
2341  // comparing -val or val with non-zero is the same as just comparing val
2342  // ie, abs(val) != 0 -> val != 0
2343  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2344  {
2345    Value *Cond, *SelectTrue, *SelectFalse;
2346    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2347                            m_Value(SelectFalse)))) {
2348      if (Value *V = dyn_castNegVal(SelectTrue)) {
2349        if (V == SelectFalse)
2350          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2351      }
2352      else if (Value *V = dyn_castNegVal(SelectFalse)) {
2353        if (V == SelectTrue)
2354          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2355      }
2356    }
2357  }
2358
2359  Type *Ty = Op0->getType();
2360
2361  // icmp's with boolean values can always be turned into bitwise operations
2362  if (Ty->isIntegerTy(1)) {
2363    switch (I.getPredicate()) {
2364    default: llvm_unreachable("Invalid icmp instruction!");
2365    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2366      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2367      return BinaryOperator::CreateNot(Xor);
2368    }
2369    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2370      return BinaryOperator::CreateXor(Op0, Op1);
2371
2372    case ICmpInst::ICMP_UGT:
2373      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2374      // FALL THROUGH
2375    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2376      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2377      return BinaryOperator::CreateAnd(Not, Op1);
2378    }
2379    case ICmpInst::ICMP_SGT:
2380      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2381      // FALL THROUGH
2382    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2383      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2384      return BinaryOperator::CreateAnd(Not, Op0);
2385    }
2386    case ICmpInst::ICMP_UGE:
2387      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2388      // FALL THROUGH
2389    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2390      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2391      return BinaryOperator::CreateOr(Not, Op1);
2392    }
2393    case ICmpInst::ICMP_SGE:
2394      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2395      // FALL THROUGH
2396    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2397      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2398      return BinaryOperator::CreateOr(Not, Op0);
2399    }
2400    }
2401  }
2402
2403  unsigned BitWidth = 0;
2404  if (Ty->isIntOrIntVectorTy())
2405    BitWidth = Ty->getScalarSizeInBits();
2406  else if (DL)  // Pointers require DL info to get their size.
2407    BitWidth = DL->getTypeSizeInBits(Ty->getScalarType());
2408
2409  bool isSignBit = false;
2410
2411  // See if we are doing a comparison with a constant.
2412  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2413    Value *A = nullptr, *B = nullptr;
2414
2415    // Match the following pattern, which is a common idiom when writing
2416    // overflow-safe integer arithmetic function.  The source performs an
2417    // addition in wider type, and explicitly checks for overflow using
2418    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2419    // sadd_with_overflow intrinsic.
2420    //
2421    // TODO: This could probably be generalized to handle other overflow-safe
2422    // operations if we worked out the formulas to compute the appropriate
2423    // magic constants.
2424    //
2425    // sum = a + b
2426    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2427    {
2428    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2429    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2430        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2431      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2432        return Res;
2433    }
2434
2435    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2436    if (I.isEquality() && CI->isZero() &&
2437        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2438      // (icmp cond A B) if cond is equality
2439      return new ICmpInst(I.getPredicate(), A, B);
2440    }
2441
2442    // If we have an icmp le or icmp ge instruction, turn it into the
2443    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2444    // them being folded in the code below.  The SimplifyICmpInst code has
2445    // already handled the edge cases for us, so we just assert on them.
2446    switch (I.getPredicate()) {
2447    default: break;
2448    case ICmpInst::ICMP_ULE:
2449      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2450      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2451                          Builder->getInt(CI->getValue()+1));
2452    case ICmpInst::ICMP_SLE:
2453      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2454      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2455                          Builder->getInt(CI->getValue()+1));
2456    case ICmpInst::ICMP_UGE:
2457      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2458      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2459                          Builder->getInt(CI->getValue()-1));
2460    case ICmpInst::ICMP_SGE:
2461      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2462      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2463                          Builder->getInt(CI->getValue()-1));
2464    }
2465
2466    // If this comparison is a normal comparison, it demands all
2467    // bits, if it is a sign bit comparison, it only demands the sign bit.
2468    bool UnusedBit;
2469    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2470  }
2471
2472  // See if we can fold the comparison based on range information we can get
2473  // by checking whether bits are known to be zero or one in the input.
2474  if (BitWidth != 0) {
2475    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2476    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2477
2478    if (SimplifyDemandedBits(I.getOperandUse(0),
2479                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2480                             Op0KnownZero, Op0KnownOne, 0))
2481      return &I;
2482    if (SimplifyDemandedBits(I.getOperandUse(1),
2483                             APInt::getAllOnesValue(BitWidth),
2484                             Op1KnownZero, Op1KnownOne, 0))
2485      return &I;
2486
2487    // Given the known and unknown bits, compute a range that the LHS could be
2488    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2489    // EQ and NE we use unsigned values.
2490    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2491    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2492    if (I.isSigned()) {
2493      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2494                                             Op0Min, Op0Max);
2495      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2496                                             Op1Min, Op1Max);
2497    } else {
2498      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2499                                               Op0Min, Op0Max);
2500      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2501                                               Op1Min, Op1Max);
2502    }
2503
2504    // If Min and Max are known to be the same, then SimplifyDemandedBits
2505    // figured out that the LHS is a constant.  Just constant fold this now so
2506    // that code below can assume that Min != Max.
2507    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2508      return new ICmpInst(I.getPredicate(),
2509                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2510    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2511      return new ICmpInst(I.getPredicate(), Op0,
2512                          ConstantInt::get(Op1->getType(), Op1Min));
2513
2514    // Based on the range information we know about the LHS, see if we can
2515    // simplify this comparison.  For example, (x&4) < 8 is always true.
2516    switch (I.getPredicate()) {
2517    default: llvm_unreachable("Unknown icmp opcode!");
2518    case ICmpInst::ICMP_EQ: {
2519      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2520        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2521
2522      // If all bits are known zero except for one, then we know at most one
2523      // bit is set.   If the comparison is against zero, then this is a check
2524      // to see if *that* bit is set.
2525      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2526      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2527        // If the LHS is an AND with the same constant, look through it.
2528        Value *LHS = nullptr;
2529        ConstantInt *LHSC = nullptr;
2530        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2531            LHSC->getValue() != Op0KnownZeroInverted)
2532          LHS = Op0;
2533
2534        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2535        // then turn "((1 << x)&8) == 0" into "x != 3".
2536        Value *X = nullptr;
2537        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2538          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2539          return new ICmpInst(ICmpInst::ICMP_NE, X,
2540                              ConstantInt::get(X->getType(), CmpVal));
2541        }
2542
2543        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2544        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2545        const APInt *CI;
2546        if (Op0KnownZeroInverted == 1 &&
2547            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2548          return new ICmpInst(ICmpInst::ICMP_NE, X,
2549                              ConstantInt::get(X->getType(),
2550                                               CI->countTrailingZeros()));
2551      }
2552
2553      break;
2554    }
2555    case ICmpInst::ICMP_NE: {
2556      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2557        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2558
2559      // If all bits are known zero except for one, then we know at most one
2560      // bit is set.   If the comparison is against zero, then this is a check
2561      // to see if *that* bit is set.
2562      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2563      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2564        // If the LHS is an AND with the same constant, look through it.
2565        Value *LHS = nullptr;
2566        ConstantInt *LHSC = nullptr;
2567        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2568            LHSC->getValue() != Op0KnownZeroInverted)
2569          LHS = Op0;
2570
2571        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2572        // then turn "((1 << x)&8) != 0" into "x == 3".
2573        Value *X = nullptr;
2574        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2575          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2576          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2577                              ConstantInt::get(X->getType(), CmpVal));
2578        }
2579
2580        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2581        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2582        const APInt *CI;
2583        if (Op0KnownZeroInverted == 1 &&
2584            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2585          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2586                              ConstantInt::get(X->getType(),
2587                                               CI->countTrailingZeros()));
2588      }
2589
2590      break;
2591    }
2592    case ICmpInst::ICMP_ULT:
2593      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2594        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2595      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2596        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2597      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2598        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2599      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2600        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2601          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2602                              Builder->getInt(CI->getValue()-1));
2603
2604        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2605        if (CI->isMinValue(true))
2606          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2607                           Constant::getAllOnesValue(Op0->getType()));
2608      }
2609      break;
2610    case ICmpInst::ICMP_UGT:
2611      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2612        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2613      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2614        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2615
2616      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2617        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2618      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2619        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2620          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2621                              Builder->getInt(CI->getValue()+1));
2622
2623        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2624        if (CI->isMaxValue(true))
2625          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2626                              Constant::getNullValue(Op0->getType()));
2627      }
2628      break;
2629    case ICmpInst::ICMP_SLT:
2630      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2631        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2632      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2633        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2634      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2635        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2636      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2637        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2638          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2639                              Builder->getInt(CI->getValue()-1));
2640      }
2641      break;
2642    case ICmpInst::ICMP_SGT:
2643      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2644        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2645      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2646        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2647
2648      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2649        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2650      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2651        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2652          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2653                              Builder->getInt(CI->getValue()+1));
2654      }
2655      break;
2656    case ICmpInst::ICMP_SGE:
2657      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2658      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2659        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2660      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2661        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2662      break;
2663    case ICmpInst::ICMP_SLE:
2664      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2665      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2666        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2667      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2668        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2669      break;
2670    case ICmpInst::ICMP_UGE:
2671      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2672      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2673        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2674      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2675        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2676      break;
2677    case ICmpInst::ICMP_ULE:
2678      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2679      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2680        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2681      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2682        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2683      break;
2684    }
2685
2686    // Turn a signed comparison into an unsigned one if both operands
2687    // are known to have the same sign.
2688    if (I.isSigned() &&
2689        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2690         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2691      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2692  }
2693
2694  // Test if the ICmpInst instruction is used exclusively by a select as
2695  // part of a minimum or maximum operation. If so, refrain from doing
2696  // any other folding. This helps out other analyses which understand
2697  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2698  // and CodeGen. And in this case, at least one of the comparison
2699  // operands has at least one user besides the compare (the select),
2700  // which would often largely negate the benefit of folding anyway.
2701  if (I.hasOneUse())
2702    if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
2703      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2704          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2705        return nullptr;
2706
2707  // See if we are doing a comparison between a constant and an instruction that
2708  // can be folded into the comparison.
2709  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2710    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2711    // instruction, see if that instruction also has constants so that the
2712    // instruction can be folded into the icmp
2713    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2714      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2715        return Res;
2716  }
2717
2718  // Handle icmp with constant (but not simple integer constant) RHS
2719  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2720    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2721      switch (LHSI->getOpcode()) {
2722      case Instruction::GetElementPtr:
2723          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2724        if (RHSC->isNullValue() &&
2725            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2726          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2727                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2728        break;
2729      case Instruction::PHI:
2730        // Only fold icmp into the PHI if the phi and icmp are in the same
2731        // block.  If in the same block, we're encouraging jump threading.  If
2732        // not, we are just pessimizing the code by making an i1 phi.
2733        if (LHSI->getParent() == I.getParent())
2734          if (Instruction *NV = FoldOpIntoPhi(I))
2735            return NV;
2736        break;
2737      case Instruction::Select: {
2738        // If either operand of the select is a constant, we can fold the
2739        // comparison into the select arms, which will cause one to be
2740        // constant folded and the select turned into a bitwise or.
2741        Value *Op1 = nullptr, *Op2 = nullptr;
2742        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2743          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2744        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2745          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2746
2747        // We only want to perform this transformation if it will not lead to
2748        // additional code. This is true if either both sides of the select
2749        // fold to a constant (in which case the icmp is replaced with a select
2750        // which will usually simplify) or this is the only user of the
2751        // select (in which case we are trading a select+icmp for a simpler
2752        // select+icmp).
2753        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2754          if (!Op1)
2755            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2756                                      RHSC, I.getName());
2757          if (!Op2)
2758            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2759                                      RHSC, I.getName());
2760          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2761        }
2762        break;
2763      }
2764      case Instruction::IntToPtr:
2765        // icmp pred inttoptr(X), null -> icmp pred X, 0
2766        if (RHSC->isNullValue() && DL &&
2767            DL->getIntPtrType(RHSC->getType()) ==
2768               LHSI->getOperand(0)->getType())
2769          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2770                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2771        break;
2772
2773      case Instruction::Load:
2774        // Try to optimize things like "A[i] > 4" to index computations.
2775        if (GetElementPtrInst *GEP =
2776              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2777          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2778            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2779                !cast<LoadInst>(LHSI)->isVolatile())
2780              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2781                return Res;
2782        }
2783        break;
2784      }
2785  }
2786
2787  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2788  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2789    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2790      return NI;
2791  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2792    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2793                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2794      return NI;
2795
2796  // Test to see if the operands of the icmp are casted versions of other
2797  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2798  // now.
2799  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2800    if (Op0->getType()->isPointerTy() &&
2801        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2802      // We keep moving the cast from the left operand over to the right
2803      // operand, where it can often be eliminated completely.
2804      Op0 = CI->getOperand(0);
2805
2806      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2807      // so eliminate it as well.
2808      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2809        Op1 = CI2->getOperand(0);
2810
2811      // If Op1 is a constant, we can fold the cast into the constant.
2812      if (Op0->getType() != Op1->getType()) {
2813        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2814          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2815        } else {
2816          // Otherwise, cast the RHS right before the icmp
2817          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2818        }
2819      }
2820      return new ICmpInst(I.getPredicate(), Op0, Op1);
2821    }
2822  }
2823
2824  if (isa<CastInst>(Op0)) {
2825    // Handle the special case of: icmp (cast bool to X), <cst>
2826    // This comes up when you have code like
2827    //   int X = A < B;
2828    //   if (X) ...
2829    // For generality, we handle any zero-extension of any operand comparison
2830    // with a constant or another cast from the same type.
2831    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2832      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2833        return R;
2834  }
2835
2836  // Special logic for binary operators.
2837  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2838  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2839  if (BO0 || BO1) {
2840    CmpInst::Predicate Pred = I.getPredicate();
2841    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2842    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2843      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2844        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2845        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2846    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2847      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2848        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2849        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2850
2851    // Analyze the case when either Op0 or Op1 is an add instruction.
2852    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2853    Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2854    if (BO0 && BO0->getOpcode() == Instruction::Add)
2855      A = BO0->getOperand(0), B = BO0->getOperand(1);
2856    if (BO1 && BO1->getOpcode() == Instruction::Add)
2857      C = BO1->getOperand(0), D = BO1->getOperand(1);
2858
2859    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2860    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2861      return new ICmpInst(Pred, A == Op1 ? B : A,
2862                          Constant::getNullValue(Op1->getType()));
2863
2864    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2865    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2866      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2867                          C == Op0 ? D : C);
2868
2869    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2870    if (A && C && (A == C || A == D || B == C || B == D) &&
2871        NoOp0WrapProblem && NoOp1WrapProblem &&
2872        // Try not to increase register pressure.
2873        BO0->hasOneUse() && BO1->hasOneUse()) {
2874      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2875      Value *Y, *Z;
2876      if (A == C) {
2877        // C + B == C + D  ->  B == D
2878        Y = B;
2879        Z = D;
2880      } else if (A == D) {
2881        // D + B == C + D  ->  B == C
2882        Y = B;
2883        Z = C;
2884      } else if (B == C) {
2885        // A + C == C + D  ->  A == D
2886        Y = A;
2887        Z = D;
2888      } else {
2889        assert(B == D);
2890        // A + D == C + D  ->  A == C
2891        Y = A;
2892        Z = C;
2893      }
2894      return new ICmpInst(Pred, Y, Z);
2895    }
2896
2897    // icmp slt (X + -1), Y -> icmp sle X, Y
2898    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2899        match(B, m_AllOnes()))
2900      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2901
2902    // icmp sge (X + -1), Y -> icmp sgt X, Y
2903    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2904        match(B, m_AllOnes()))
2905      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2906
2907    // icmp sle (X + 1), Y -> icmp slt X, Y
2908    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2909        match(B, m_One()))
2910      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2911
2912    // icmp sgt (X + 1), Y -> icmp sge X, Y
2913    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2914        match(B, m_One()))
2915      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2916
2917    // if C1 has greater magnitude than C2:
2918    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2919    //  s.t. C3 = C1 - C2
2920    //
2921    // if C2 has greater magnitude than C1:
2922    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2923    //  s.t. C3 = C2 - C1
2924    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2925        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2926      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2927        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2928          const APInt &AP1 = C1->getValue();
2929          const APInt &AP2 = C2->getValue();
2930          if (AP1.isNegative() == AP2.isNegative()) {
2931            APInt AP1Abs = C1->getValue().abs();
2932            APInt AP2Abs = C2->getValue().abs();
2933            if (AP1Abs.uge(AP2Abs)) {
2934              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2935              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2936              return new ICmpInst(Pred, NewAdd, C);
2937            } else {
2938              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2939              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2940              return new ICmpInst(Pred, A, NewAdd);
2941            }
2942          }
2943        }
2944
2945
2946    // Analyze the case when either Op0 or Op1 is a sub instruction.
2947    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2948    A = nullptr; B = nullptr; C = nullptr; D = nullptr;
2949    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2950      A = BO0->getOperand(0), B = BO0->getOperand(1);
2951    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2952      C = BO1->getOperand(0), D = BO1->getOperand(1);
2953
2954    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2955    if (A == Op1 && NoOp0WrapProblem)
2956      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2957
2958    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2959    if (C == Op0 && NoOp1WrapProblem)
2960      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2961
2962    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2963    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2964        // Try not to increase register pressure.
2965        BO0->hasOneUse() && BO1->hasOneUse())
2966      return new ICmpInst(Pred, A, C);
2967
2968    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2969    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2970        // Try not to increase register pressure.
2971        BO0->hasOneUse() && BO1->hasOneUse())
2972      return new ICmpInst(Pred, D, B);
2973
2974    // icmp (0-X) < cst --> x > -cst
2975    if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
2976      Value *X;
2977      if (match(BO0, m_Neg(m_Value(X))))
2978        if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2979          if (!RHSC->isMinValue(/*isSigned=*/true))
2980            return new ICmpInst(I.getSwappedPredicate(), X,
2981                                ConstantExpr::getNeg(RHSC));
2982    }
2983
2984    BinaryOperator *SRem = nullptr;
2985    // icmp (srem X, Y), Y
2986    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2987        Op1 == BO0->getOperand(1))
2988      SRem = BO0;
2989    // icmp Y, (srem X, Y)
2990    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2991             Op0 == BO1->getOperand(1))
2992      SRem = BO1;
2993    if (SRem) {
2994      // We don't check hasOneUse to avoid increasing register pressure because
2995      // the value we use is the same value this instruction was already using.
2996      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2997        default: break;
2998        case ICmpInst::ICMP_EQ:
2999          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3000        case ICmpInst::ICMP_NE:
3001          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3002        case ICmpInst::ICMP_SGT:
3003        case ICmpInst::ICMP_SGE:
3004          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3005                              Constant::getAllOnesValue(SRem->getType()));
3006        case ICmpInst::ICMP_SLT:
3007        case ICmpInst::ICMP_SLE:
3008          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3009                              Constant::getNullValue(SRem->getType()));
3010      }
3011    }
3012
3013    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
3014        BO0->hasOneUse() && BO1->hasOneUse() &&
3015        BO0->getOperand(1) == BO1->getOperand(1)) {
3016      switch (BO0->getOpcode()) {
3017      default: break;
3018      case Instruction::Add:
3019      case Instruction::Sub:
3020      case Instruction::Xor:
3021        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
3022          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3023                              BO1->getOperand(0));
3024        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
3025        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3026          if (CI->getValue().isSignBit()) {
3027            ICmpInst::Predicate Pred = I.isSigned()
3028                                           ? I.getUnsignedPredicate()
3029                                           : I.getSignedPredicate();
3030            return new ICmpInst(Pred, BO0->getOperand(0),
3031                                BO1->getOperand(0));
3032          }
3033
3034          if (CI->isMaxValue(true)) {
3035            ICmpInst::Predicate Pred = I.isSigned()
3036                                           ? I.getUnsignedPredicate()
3037                                           : I.getSignedPredicate();
3038            Pred = I.getSwappedPredicate(Pred);
3039            return new ICmpInst(Pred, BO0->getOperand(0),
3040                                BO1->getOperand(0));
3041          }
3042        }
3043        break;
3044      case Instruction::Mul:
3045        if (!I.isEquality())
3046          break;
3047
3048        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
3049          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
3050          // Mask = -1 >> count-trailing-zeros(Cst).
3051          if (!CI->isZero() && !CI->isOne()) {
3052            const APInt &AP = CI->getValue();
3053            ConstantInt *Mask = ConstantInt::get(I.getContext(),
3054                                    APInt::getLowBitsSet(AP.getBitWidth(),
3055                                                         AP.getBitWidth() -
3056                                                    AP.countTrailingZeros()));
3057            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
3058            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
3059            return new ICmpInst(I.getPredicate(), And1, And2);
3060          }
3061        }
3062        break;
3063      case Instruction::UDiv:
3064      case Instruction::LShr:
3065        if (I.isSigned())
3066          break;
3067        // fall-through
3068      case Instruction::SDiv:
3069      case Instruction::AShr:
3070        if (!BO0->isExact() || !BO1->isExact())
3071          break;
3072        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3073                            BO1->getOperand(0));
3074      case Instruction::Shl: {
3075        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
3076        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
3077        if (!NUW && !NSW)
3078          break;
3079        if (!NSW && I.isSigned())
3080          break;
3081        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
3082                            BO1->getOperand(0));
3083      }
3084      }
3085    }
3086  }
3087
3088  { Value *A, *B;
3089    // Transform (A & ~B) == 0 --> (A & B) != 0
3090    // and       (A & ~B) != 0 --> (A & B) == 0
3091    // if A is a power of 2.
3092    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
3093        match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
3094      return new ICmpInst(I.getInversePredicate(),
3095                          Builder->CreateAnd(A, B),
3096                          Op1);
3097
3098    // ~x < ~y --> y < x
3099    // ~x < cst --> ~cst < x
3100    if (match(Op0, m_Not(m_Value(A)))) {
3101      if (match(Op1, m_Not(m_Value(B))))
3102        return new ICmpInst(I.getPredicate(), B, A);
3103      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
3104        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
3105    }
3106
3107    // (a+b) <u a  --> llvm.uadd.with.overflow.
3108    // (a+b) <u b  --> llvm.uadd.with.overflow.
3109    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
3110        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
3111        (Op1 == A || Op1 == B))
3112      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
3113        return R;
3114
3115    // a >u (a+b)  --> llvm.uadd.with.overflow.
3116    // b >u (a+b)  --> llvm.uadd.with.overflow.
3117    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
3118        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
3119        (Op0 == A || Op0 == B))
3120      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
3121        return R;
3122
3123    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
3124    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3125      if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
3126        return R;
3127    }
3128    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
3129      if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
3130        return R;
3131    }
3132  }
3133
3134  if (I.isEquality()) {
3135    Value *A, *B, *C, *D;
3136
3137    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3138      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
3139        Value *OtherVal = A == Op1 ? B : A;
3140        return new ICmpInst(I.getPredicate(), OtherVal,
3141                            Constant::getNullValue(A->getType()));
3142      }
3143
3144      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
3145        // A^c1 == C^c2 --> A == C^(c1^c2)
3146        ConstantInt *C1, *C2;
3147        if (match(B, m_ConstantInt(C1)) &&
3148            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
3149          Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
3150          Value *Xor = Builder->CreateXor(C, NC);
3151          return new ICmpInst(I.getPredicate(), A, Xor);
3152        }
3153
3154        // A^B == A^D -> B == D
3155        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
3156        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
3157        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
3158        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
3159      }
3160    }
3161
3162    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
3163        (A == Op0 || B == Op0)) {
3164      // A == (A^B)  ->  B == 0
3165      Value *OtherVal = A == Op0 ? B : A;
3166      return new ICmpInst(I.getPredicate(), OtherVal,
3167                          Constant::getNullValue(A->getType()));
3168    }
3169
3170    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
3171    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
3172        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
3173      Value *X = nullptr, *Y = nullptr, *Z = nullptr;
3174
3175      if (A == C) {
3176        X = B; Y = D; Z = A;
3177      } else if (A == D) {
3178        X = B; Y = C; Z = A;
3179      } else if (B == C) {
3180        X = A; Y = D; Z = B;
3181      } else if (B == D) {
3182        X = A; Y = C; Z = B;
3183      }
3184
3185      if (X) {   // Build (X^Y) & Z
3186        Op1 = Builder->CreateXor(X, Y);
3187        Op1 = Builder->CreateAnd(Op1, Z);
3188        I.setOperand(0, Op1);
3189        I.setOperand(1, Constant::getNullValue(Op1->getType()));
3190        return &I;
3191      }
3192    }
3193
3194    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
3195    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
3196    ConstantInt *Cst1;
3197    if ((Op0->hasOneUse() &&
3198         match(Op0, m_ZExt(m_Value(A))) &&
3199         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
3200        (Op1->hasOneUse() &&
3201         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
3202         match(Op1, m_ZExt(m_Value(A))))) {
3203      APInt Pow2 = Cst1->getValue() + 1;
3204      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
3205          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
3206        return new ICmpInst(I.getPredicate(), A,
3207                            Builder->CreateTrunc(B, A->getType()));
3208    }
3209
3210    // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
3211    // For lshr and ashr pairs.
3212    if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3213         match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
3214        (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
3215         match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
3216      unsigned TypeBits = Cst1->getBitWidth();
3217      unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
3218      if (ShAmt < TypeBits && ShAmt != 0) {
3219        ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
3220                                       ? ICmpInst::ICMP_UGE
3221                                       : ICmpInst::ICMP_ULT;
3222        Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
3223        APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
3224        return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
3225      }
3226    }
3227
3228    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
3229    // "icmp (and X, mask), cst"
3230    uint64_t ShAmt = 0;
3231    if (Op0->hasOneUse() &&
3232        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
3233                                           m_ConstantInt(ShAmt))))) &&
3234        match(Op1, m_ConstantInt(Cst1)) &&
3235        // Only do this when A has multiple uses.  This is most important to do
3236        // when it exposes other optimizations.
3237        !A->hasOneUse()) {
3238      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
3239
3240      if (ShAmt < ASize) {
3241        APInt MaskV =
3242          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
3243        MaskV <<= ShAmt;
3244
3245        APInt CmpV = Cst1->getValue().zext(ASize);
3246        CmpV <<= ShAmt;
3247
3248        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
3249        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
3250      }
3251    }
3252  }
3253
3254  {
3255    Value *X; ConstantInt *Cst;
3256    // icmp X+Cst, X
3257    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
3258      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3259
3260    // icmp X, X+Cst
3261    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3262      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3263  }
3264  return Changed ? &I : nullptr;
3265}
3266
3267/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3268///
3269Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
3270                                                Instruction *LHSI,
3271                                                Constant *RHSC) {
3272  if (!isa<ConstantFP>(RHSC)) return nullptr;
3273  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3274
3275  // Get the width of the mantissa.  We don't want to hack on conversions that
3276  // might lose information from the integer, e.g. "i64 -> float"
3277  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3278  if (MantissaWidth == -1) return nullptr;  // Unknown.
3279
3280  // Check to see that the input is converted from an integer type that is small
3281  // enough that preserves all bits.  TODO: check here for "known" sign bits.
3282  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3283  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
3284
3285  // If this is a uitofp instruction, we need an extra bit to hold the sign.
3286  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3287  if (LHSUnsigned)
3288    ++InputSize;
3289
3290  // If the conversion would lose info, don't hack on this.
3291  if ((int)InputSize > MantissaWidth)
3292    return nullptr;
3293
3294  // Otherwise, we can potentially simplify the comparison.  We know that it
3295  // will always come through as an integer value and we know the constant is
3296  // not a NAN (it would have been previously simplified).
3297  assert(!RHS.isNaN() && "NaN comparison not already folded!");
3298
3299  ICmpInst::Predicate Pred;
3300  switch (I.getPredicate()) {
3301  default: llvm_unreachable("Unexpected predicate!");
3302  case FCmpInst::FCMP_UEQ:
3303  case FCmpInst::FCMP_OEQ:
3304    Pred = ICmpInst::ICMP_EQ;
3305    break;
3306  case FCmpInst::FCMP_UGT:
3307  case FCmpInst::FCMP_OGT:
3308    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3309    break;
3310  case FCmpInst::FCMP_UGE:
3311  case FCmpInst::FCMP_OGE:
3312    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3313    break;
3314  case FCmpInst::FCMP_ULT:
3315  case FCmpInst::FCMP_OLT:
3316    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3317    break;
3318  case FCmpInst::FCMP_ULE:
3319  case FCmpInst::FCMP_OLE:
3320    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3321    break;
3322  case FCmpInst::FCMP_UNE:
3323  case FCmpInst::FCMP_ONE:
3324    Pred = ICmpInst::ICMP_NE;
3325    break;
3326  case FCmpInst::FCMP_ORD:
3327    return ReplaceInstUsesWith(I, Builder->getTrue());
3328  case FCmpInst::FCMP_UNO:
3329    return ReplaceInstUsesWith(I, Builder->getFalse());
3330  }
3331
3332  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3333
3334  // Now we know that the APFloat is a normal number, zero or inf.
3335
3336  // See if the FP constant is too large for the integer.  For example,
3337  // comparing an i8 to 300.0.
3338  unsigned IntWidth = IntTy->getScalarSizeInBits();
3339
3340  if (!LHSUnsigned) {
3341    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3342    // and large values.
3343    APFloat SMax(RHS.getSemantics());
3344    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3345                          APFloat::rmNearestTiesToEven);
3346    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3347      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3348          Pred == ICmpInst::ICMP_SLE)
3349        return ReplaceInstUsesWith(I, Builder->getTrue());
3350      return ReplaceInstUsesWith(I, Builder->getFalse());
3351    }
3352  } else {
3353    // If the RHS value is > UnsignedMax, fold the comparison. This handles
3354    // +INF and large values.
3355    APFloat UMax(RHS.getSemantics());
3356    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3357                          APFloat::rmNearestTiesToEven);
3358    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3359      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3360          Pred == ICmpInst::ICMP_ULE)
3361        return ReplaceInstUsesWith(I, Builder->getTrue());
3362      return ReplaceInstUsesWith(I, Builder->getFalse());
3363    }
3364  }
3365
3366  if (!LHSUnsigned) {
3367    // See if the RHS value is < SignedMin.
3368    APFloat SMin(RHS.getSemantics());
3369    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3370                          APFloat::rmNearestTiesToEven);
3371    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3372      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3373          Pred == ICmpInst::ICMP_SGE)
3374        return ReplaceInstUsesWith(I, Builder->getTrue());
3375      return ReplaceInstUsesWith(I, Builder->getFalse());
3376    }
3377  } else {
3378    // See if the RHS value is < UnsignedMin.
3379    APFloat SMin(RHS.getSemantics());
3380    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3381                          APFloat::rmNearestTiesToEven);
3382    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3383      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3384          Pred == ICmpInst::ICMP_UGE)
3385        return ReplaceInstUsesWith(I, Builder->getTrue());
3386      return ReplaceInstUsesWith(I, Builder->getFalse());
3387    }
3388  }
3389
3390  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3391  // [0, UMAX], but it may still be fractional.  See if it is fractional by
3392  // casting the FP value to the integer value and back, checking for equality.
3393  // Don't do this for zero, because -0.0 is not fractional.
3394  Constant *RHSInt = LHSUnsigned
3395    ? ConstantExpr::getFPToUI(RHSC, IntTy)
3396    : ConstantExpr::getFPToSI(RHSC, IntTy);
3397  if (!RHS.isZero()) {
3398    bool Equal = LHSUnsigned
3399      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3400      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3401    if (!Equal) {
3402      // If we had a comparison against a fractional value, we have to adjust
3403      // the compare predicate and sometimes the value.  RHSC is rounded towards
3404      // zero at this point.
3405      switch (Pred) {
3406      default: llvm_unreachable("Unexpected integer comparison!");
3407      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
3408        return ReplaceInstUsesWith(I, Builder->getTrue());
3409      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
3410        return ReplaceInstUsesWith(I, Builder->getFalse());
3411      case ICmpInst::ICMP_ULE:
3412        // (float)int <= 4.4   --> int <= 4
3413        // (float)int <= -4.4  --> false
3414        if (RHS.isNegative())
3415          return ReplaceInstUsesWith(I, Builder->getFalse());
3416        break;
3417      case ICmpInst::ICMP_SLE:
3418        // (float)int <= 4.4   --> int <= 4
3419        // (float)int <= -4.4  --> int < -4
3420        if (RHS.isNegative())
3421          Pred = ICmpInst::ICMP_SLT;
3422        break;
3423      case ICmpInst::ICMP_ULT:
3424        // (float)int < -4.4   --> false
3425        // (float)int < 4.4    --> int <= 4
3426        if (RHS.isNegative())
3427          return ReplaceInstUsesWith(I, Builder->getFalse());
3428        Pred = ICmpInst::ICMP_ULE;
3429        break;
3430      case ICmpInst::ICMP_SLT:
3431        // (float)int < -4.4   --> int < -4
3432        // (float)int < 4.4    --> int <= 4
3433        if (!RHS.isNegative())
3434          Pred = ICmpInst::ICMP_SLE;
3435        break;
3436      case ICmpInst::ICMP_UGT:
3437        // (float)int > 4.4    --> int > 4
3438        // (float)int > -4.4   --> true
3439        if (RHS.isNegative())
3440          return ReplaceInstUsesWith(I, Builder->getTrue());
3441        break;
3442      case ICmpInst::ICMP_SGT:
3443        // (float)int > 4.4    --> int > 4
3444        // (float)int > -4.4   --> int >= -4
3445        if (RHS.isNegative())
3446          Pred = ICmpInst::ICMP_SGE;
3447        break;
3448      case ICmpInst::ICMP_UGE:
3449        // (float)int >= -4.4   --> true
3450        // (float)int >= 4.4    --> int > 4
3451        if (RHS.isNegative())
3452          return ReplaceInstUsesWith(I, Builder->getTrue());
3453        Pred = ICmpInst::ICMP_UGT;
3454        break;
3455      case ICmpInst::ICMP_SGE:
3456        // (float)int >= -4.4   --> int >= -4
3457        // (float)int >= 4.4    --> int > 4
3458        if (!RHS.isNegative())
3459          Pred = ICmpInst::ICMP_SGT;
3460        break;
3461      }
3462    }
3463  }
3464
3465  // Lower this FP comparison into an appropriate integer version of the
3466  // comparison.
3467  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3468}
3469
3470Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3471  bool Changed = false;
3472
3473  /// Orders the operands of the compare so that they are listed from most
3474  /// complex to least complex.  This puts constants before unary operators,
3475  /// before binary operators.
3476  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3477    I.swapOperands();
3478    Changed = true;
3479  }
3480
3481  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3482
3483  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL))
3484    return ReplaceInstUsesWith(I, V);
3485
3486  // Simplify 'fcmp pred X, X'
3487  if (Op0 == Op1) {
3488    switch (I.getPredicate()) {
3489    default: llvm_unreachable("Unknown predicate!");
3490    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3491    case FCmpInst::FCMP_ULT:    // True if unordered or less than
3492    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3493    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3494      // Canonicalize these to be 'fcmp uno %X, 0.0'.
3495      I.setPredicate(FCmpInst::FCMP_UNO);
3496      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3497      return &I;
3498
3499    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3500    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3501    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3502    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3503      // Canonicalize these to be 'fcmp ord %X, 0.0'.
3504      I.setPredicate(FCmpInst::FCMP_ORD);
3505      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3506      return &I;
3507    }
3508  }
3509
3510  // Handle fcmp with constant RHS
3511  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3512    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3513      switch (LHSI->getOpcode()) {
3514      case Instruction::FPExt: {
3515        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3516        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3517        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3518        if (!RHSF)
3519          break;
3520
3521        const fltSemantics *Sem;
3522        // FIXME: This shouldn't be here.
3523        if (LHSExt->getSrcTy()->isHalfTy())
3524          Sem = &APFloat::IEEEhalf;
3525        else if (LHSExt->getSrcTy()->isFloatTy())
3526          Sem = &APFloat::IEEEsingle;
3527        else if (LHSExt->getSrcTy()->isDoubleTy())
3528          Sem = &APFloat::IEEEdouble;
3529        else if (LHSExt->getSrcTy()->isFP128Ty())
3530          Sem = &APFloat::IEEEquad;
3531        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3532          Sem = &APFloat::x87DoubleExtended;
3533        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3534          Sem = &APFloat::PPCDoubleDouble;
3535        else
3536          break;
3537
3538        bool Lossy;
3539        APFloat F = RHSF->getValueAPF();
3540        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3541
3542        // Avoid lossy conversions and denormals. Zero is a special case
3543        // that's OK to convert.
3544        APFloat Fabs = F;
3545        Fabs.clearSign();
3546        if (!Lossy &&
3547            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3548                 APFloat::cmpLessThan) || Fabs.isZero()))
3549
3550          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3551                              ConstantFP::get(RHSC->getContext(), F));
3552        break;
3553      }
3554      case Instruction::PHI:
3555        // Only fold fcmp into the PHI if the phi and fcmp are in the same
3556        // block.  If in the same block, we're encouraging jump threading.  If
3557        // not, we are just pessimizing the code by making an i1 phi.
3558        if (LHSI->getParent() == I.getParent())
3559          if (Instruction *NV = FoldOpIntoPhi(I))
3560            return NV;
3561        break;
3562      case Instruction::SIToFP:
3563      case Instruction::UIToFP:
3564        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3565          return NV;
3566        break;
3567      case Instruction::FSub: {
3568        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3569        Value *Op;
3570        if (match(LHSI, m_FNeg(m_Value(Op))))
3571          return new FCmpInst(I.getSwappedPredicate(), Op,
3572                              ConstantExpr::getFNeg(RHSC));
3573        break;
3574      }
3575      case Instruction::Load:
3576        if (GetElementPtrInst *GEP =
3577            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3578          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3579            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3580                !cast<LoadInst>(LHSI)->isVolatile())
3581              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3582                return Res;
3583        }
3584        break;
3585      case Instruction::Call: {
3586        CallInst *CI = cast<CallInst>(LHSI);
3587        LibFunc::Func Func;
3588        // Various optimization for fabs compared with zero.
3589        if (RHSC->isNullValue() && CI->getCalledFunction() &&
3590            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3591            TLI->has(Func)) {
3592          if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3593              Func == LibFunc::fabsl) {
3594            switch (I.getPredicate()) {
3595            default: break;
3596            // fabs(x) < 0 --> false
3597            case FCmpInst::FCMP_OLT:
3598              return ReplaceInstUsesWith(I, Builder->getFalse());
3599            // fabs(x) > 0 --> x != 0
3600            case FCmpInst::FCMP_OGT:
3601              return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3602                                  RHSC);
3603            // fabs(x) <= 0 --> x == 0
3604            case FCmpInst::FCMP_OLE:
3605              return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3606                                  RHSC);
3607            // fabs(x) >= 0 --> !isnan(x)
3608            case FCmpInst::FCMP_OGE:
3609              return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3610                                  RHSC);
3611            // fabs(x) == 0 --> x == 0
3612            // fabs(x) != 0 --> x != 0
3613            case FCmpInst::FCMP_OEQ:
3614            case FCmpInst::FCMP_UEQ:
3615            case FCmpInst::FCMP_ONE:
3616            case FCmpInst::FCMP_UNE:
3617              return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3618                                  RHSC);
3619            }
3620          }
3621        }
3622      }
3623      }
3624  }
3625
3626  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3627  Value *X, *Y;
3628  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3629    return new FCmpInst(I.getSwappedPredicate(), X, Y);
3630
3631  // fcmp (fpext x), (fpext y) -> fcmp x, y
3632  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3633    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3634      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3635        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3636                            RHSExt->getOperand(0));
3637
3638  return Changed ? &I : nullptr;
3639}
3640