1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitShl, visitLShr, and visitAShr functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/IR/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22#define DEBUG_TYPE "instcombine"
23
24Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
25  assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
26  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
27
28  // See if we can fold away this shift.
29  if (SimplifyDemandedInstructionBits(I))
30    return &I;
31
32  // Try to fold constant and into select arguments.
33  if (isa<Constant>(Op0))
34    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
35      if (Instruction *R = FoldOpIntoSelect(I, SI))
36        return R;
37
38  if (Constant *CUI = dyn_cast<Constant>(Op1))
39    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
40      return Res;
41
42  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
43  // Because shifts by negative values (which could occur if A were negative)
44  // are undefined.
45  Value *A; const APInt *B;
46  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
47    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
48    // demand the sign bit (and many others) here??
49    Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
50                                    Op1->getName());
51    I.setOperand(1, Rem);
52    return &I;
53  }
54
55  return nullptr;
56}
57
58/// CanEvaluateShifted - See if we can compute the specified value, but shifted
59/// logically to the left or right by some number of bits.  This should return
60/// true if the expression can be computed for the same cost as the current
61/// expression tree.  This is used to eliminate extraneous shifting from things
62/// like:
63///      %C = shl i128 %A, 64
64///      %D = shl i128 %B, 96
65///      %E = or i128 %C, %D
66///      %F = lshr i128 %E, 64
67/// where the client will ask if E can be computed shifted right by 64-bits.  If
68/// this succeeds, the GetShiftedValue function will be called to produce the
69/// value.
70static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
71                               InstCombiner &IC) {
72  // We can always evaluate constants shifted.
73  if (isa<Constant>(V))
74    return true;
75
76  Instruction *I = dyn_cast<Instruction>(V);
77  if (!I) return false;
78
79  // If this is the opposite shift, we can directly reuse the input of the shift
80  // if the needed bits are already zero in the input.  This allows us to reuse
81  // the value which means that we don't care if the shift has multiple uses.
82  //  TODO:  Handle opposite shift by exact value.
83  ConstantInt *CI = nullptr;
84  if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
85      (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
86    if (CI->getZExtValue() == NumBits) {
87      // TODO: Check that the input bits are already zero with MaskedValueIsZero
88#if 0
89      // If this is a truncate of a logical shr, we can truncate it to a smaller
90      // lshr iff we know that the bits we would otherwise be shifting in are
91      // already zeros.
92      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
93      uint32_t BitWidth = Ty->getScalarSizeInBits();
94      if (MaskedValueIsZero(I->getOperand(0),
95            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
96          CI->getLimitedValue(BitWidth) < BitWidth) {
97        return CanEvaluateTruncated(I->getOperand(0), Ty);
98      }
99#endif
100
101    }
102  }
103
104  // We can't mutate something that has multiple uses: doing so would
105  // require duplicating the instruction in general, which isn't profitable.
106  if (!I->hasOneUse()) return false;
107
108  switch (I->getOpcode()) {
109  default: return false;
110  case Instruction::And:
111  case Instruction::Or:
112  case Instruction::Xor:
113    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
114    return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
115           CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
116
117  case Instruction::Shl: {
118    // We can often fold the shift into shifts-by-a-constant.
119    CI = dyn_cast<ConstantInt>(I->getOperand(1));
120    if (!CI) return false;
121
122    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
123    if (isLeftShift) return true;
124
125    // We can always turn shl(c)+shr(c) -> and(c2).
126    if (CI->getValue() == NumBits) return true;
127
128    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
129
130    // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
131    // profitable unless we know the and'd out bits are already zero.
132    if (CI->getZExtValue() > NumBits) {
133      unsigned LowBits = TypeWidth - CI->getZExtValue();
134      if (MaskedValueIsZero(I->getOperand(0),
135                       APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
136        return true;
137    }
138
139    return false;
140  }
141  case Instruction::LShr: {
142    // We can often fold the shift into shifts-by-a-constant.
143    CI = dyn_cast<ConstantInt>(I->getOperand(1));
144    if (!CI) return false;
145
146    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
147    if (!isLeftShift) return true;
148
149    // We can always turn lshr(c)+shl(c) -> and(c2).
150    if (CI->getValue() == NumBits) return true;
151
152    unsigned TypeWidth = I->getType()->getScalarSizeInBits();
153
154    // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
155    // profitable unless we know the and'd out bits are already zero.
156    if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) {
157      unsigned LowBits = CI->getZExtValue() - NumBits;
158      if (MaskedValueIsZero(I->getOperand(0),
159                          APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
160        return true;
161    }
162
163    return false;
164  }
165  case Instruction::Select: {
166    SelectInst *SI = cast<SelectInst>(I);
167    return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
168           CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
169  }
170  case Instruction::PHI: {
171    // We can change a phi if we can change all operands.  Note that we never
172    // get into trouble with cyclic PHIs here because we only consider
173    // instructions with a single use.
174    PHINode *PN = cast<PHINode>(I);
175    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
176      if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
177        return false;
178    return true;
179  }
180  }
181}
182
183/// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
184/// this value inserts the new computation that produces the shifted value.
185static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
186                              InstCombiner &IC) {
187  // We can always evaluate constants shifted.
188  if (Constant *C = dyn_cast<Constant>(V)) {
189    if (isLeftShift)
190      V = IC.Builder->CreateShl(C, NumBits);
191    else
192      V = IC.Builder->CreateLShr(C, NumBits);
193    // If we got a constantexpr back, try to simplify it with TD info.
194    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
195      V = ConstantFoldConstantExpression(CE, IC.getDataLayout(),
196                                         IC.getTargetLibraryInfo());
197    return V;
198  }
199
200  Instruction *I = cast<Instruction>(V);
201  IC.Worklist.Add(I);
202
203  switch (I->getOpcode()) {
204  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
205  case Instruction::And:
206  case Instruction::Or:
207  case Instruction::Xor:
208    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
209    I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
210    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
211    return I;
212
213  case Instruction::Shl: {
214    BinaryOperator *BO = cast<BinaryOperator>(I);
215    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
216
217    // We only accept shifts-by-a-constant in CanEvaluateShifted.
218    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
219
220    // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
221    if (isLeftShift) {
222      // If this is oversized composite shift, then unsigned shifts get 0.
223      unsigned NewShAmt = NumBits+CI->getZExtValue();
224      if (NewShAmt >= TypeWidth)
225        return Constant::getNullValue(I->getType());
226
227      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
228      BO->setHasNoUnsignedWrap(false);
229      BO->setHasNoSignedWrap(false);
230      return I;
231    }
232
233    // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
234    // zeros.
235    if (CI->getValue() == NumBits) {
236      APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
237      V = IC.Builder->CreateAnd(BO->getOperand(0),
238                                ConstantInt::get(BO->getContext(), Mask));
239      if (Instruction *VI = dyn_cast<Instruction>(V)) {
240        VI->moveBefore(BO);
241        VI->takeName(BO);
242      }
243      return V;
244    }
245
246    // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
247    // the and won't be needed.
248    assert(CI->getZExtValue() > NumBits);
249    BO->setOperand(1, ConstantInt::get(BO->getType(),
250                                       CI->getZExtValue() - NumBits));
251    BO->setHasNoUnsignedWrap(false);
252    BO->setHasNoSignedWrap(false);
253    return BO;
254  }
255  case Instruction::LShr: {
256    BinaryOperator *BO = cast<BinaryOperator>(I);
257    unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
258    // We only accept shifts-by-a-constant in CanEvaluateShifted.
259    ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
260
261    // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
262    if (!isLeftShift) {
263      // If this is oversized composite shift, then unsigned shifts get 0.
264      unsigned NewShAmt = NumBits+CI->getZExtValue();
265      if (NewShAmt >= TypeWidth)
266        return Constant::getNullValue(BO->getType());
267
268      BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
269      BO->setIsExact(false);
270      return I;
271    }
272
273    // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
274    // zeros.
275    if (CI->getValue() == NumBits) {
276      APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
277      V = IC.Builder->CreateAnd(I->getOperand(0),
278                                ConstantInt::get(BO->getContext(), Mask));
279      if (Instruction *VI = dyn_cast<Instruction>(V)) {
280        VI->moveBefore(I);
281        VI->takeName(I);
282      }
283      return V;
284    }
285
286    // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
287    // the and won't be needed.
288    assert(CI->getZExtValue() > NumBits);
289    BO->setOperand(1, ConstantInt::get(BO->getType(),
290                                       CI->getZExtValue() - NumBits));
291    BO->setIsExact(false);
292    return BO;
293  }
294
295  case Instruction::Select:
296    I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
297    I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
298    return I;
299  case Instruction::PHI: {
300    // We can change a phi if we can change all operands.  Note that we never
301    // get into trouble with cyclic PHIs here because we only consider
302    // instructions with a single use.
303    PHINode *PN = cast<PHINode>(I);
304    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
305      PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
306                                              NumBits, isLeftShift, IC));
307    return PN;
308  }
309  }
310}
311
312
313
314Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
315                                               BinaryOperator &I) {
316  bool isLeftShift = I.getOpcode() == Instruction::Shl;
317
318  ConstantInt *COp1 = nullptr;
319  if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(Op1))
320    COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
321  else if (ConstantVector *CV = dyn_cast<ConstantVector>(Op1))
322    COp1 = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
323  else
324    COp1 = dyn_cast<ConstantInt>(Op1);
325
326  if (!COp1)
327    return nullptr;
328
329  // See if we can propagate this shift into the input, this covers the trivial
330  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
331  if (I.getOpcode() != Instruction::AShr &&
332      CanEvaluateShifted(Op0, COp1->getZExtValue(), isLeftShift, *this)) {
333    DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
334              " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
335
336    return ReplaceInstUsesWith(I,
337                 GetShiftedValue(Op0, COp1->getZExtValue(), isLeftShift, *this));
338  }
339
340  // See if we can simplify any instructions used by the instruction whose sole
341  // purpose is to compute bits we don't care about.
342  uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
343
344  assert(!COp1->uge(TypeBits) &&
345         "Shift over the type width should have been removed already");
346
347  // ((X*C1) << C2) == (X * (C1 << C2))
348  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
349    if (BO->getOpcode() == Instruction::Mul && isLeftShift)
350      if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
351        return BinaryOperator::CreateMul(BO->getOperand(0),
352                                        ConstantExpr::getShl(BOOp, Op1));
353
354  // Try to fold constant and into select arguments.
355  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
356    if (Instruction *R = FoldOpIntoSelect(I, SI))
357      return R;
358  if (isa<PHINode>(Op0))
359    if (Instruction *NV = FoldOpIntoPhi(I))
360      return NV;
361
362  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
363  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
364    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
365    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
366    // place.  Don't try to do this transformation in this case.  Also, we
367    // require that the input operand is a shift-by-constant so that we have
368    // confidence that the shifts will get folded together.  We could do this
369    // xform in more cases, but it is unlikely to be profitable.
370    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
371        isa<ConstantInt>(TrOp->getOperand(1))) {
372      // Okay, we'll do this xform.  Make the shift of shift.
373      Constant *ShAmt = ConstantExpr::getZExt(COp1, TrOp->getType());
374      // (shift2 (shift1 & 0x00FF), c2)
375      Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
376
377      // For logical shifts, the truncation has the effect of making the high
378      // part of the register be zeros.  Emulate this by inserting an AND to
379      // clear the top bits as needed.  This 'and' will usually be zapped by
380      // other xforms later if dead.
381      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
382      unsigned DstSize = TI->getType()->getScalarSizeInBits();
383      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
384
385      // The mask we constructed says what the trunc would do if occurring
386      // between the shifts.  We want to know the effect *after* the second
387      // shift.  We know that it is a logical shift by a constant, so adjust the
388      // mask as appropriate.
389      if (I.getOpcode() == Instruction::Shl)
390        MaskV <<= COp1->getZExtValue();
391      else {
392        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
393        MaskV = MaskV.lshr(COp1->getZExtValue());
394      }
395
396      // shift1 & 0x00FF
397      Value *And = Builder->CreateAnd(NSh,
398                                      ConstantInt::get(I.getContext(), MaskV),
399                                      TI->getName());
400
401      // Return the value truncated to the interesting size.
402      return new TruncInst(And, I.getType());
403    }
404  }
405
406  if (Op0->hasOneUse()) {
407    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
408      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
409      Value *V1, *V2;
410      ConstantInt *CC;
411      switch (Op0BO->getOpcode()) {
412      default: break;
413      case Instruction::Add:
414      case Instruction::And:
415      case Instruction::Or:
416      case Instruction::Xor: {
417        // These operators commute.
418        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
419        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
420            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
421                  m_Specific(Op1)))) {
422          Value *YS =         // (Y << C)
423            Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
424          // (X + (Y << C))
425          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
426                                          Op0BO->getOperand(1)->getName());
427          uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
428
429          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
430          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
431          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
432            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
433          return BinaryOperator::CreateAnd(X, Mask);
434        }
435
436        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
437        Value *Op0BOOp1 = Op0BO->getOperand(1);
438        if (isLeftShift && Op0BOOp1->hasOneUse() &&
439            match(Op0BOOp1,
440                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
441                        m_ConstantInt(CC)))) {
442          Value *YS =   // (Y << C)
443            Builder->CreateShl(Op0BO->getOperand(0), Op1,
444                                         Op0BO->getName());
445          // X & (CC << C)
446          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
447                                         V1->getName()+".mask");
448          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
449        }
450      }
451
452      // FALL THROUGH.
453      case Instruction::Sub: {
454        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
455        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
456            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
457                  m_Specific(Op1)))) {
458          Value *YS =  // (Y << C)
459            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
460          // (X + (Y << C))
461          Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
462                                          Op0BO->getOperand(0)->getName());
463          uint32_t Op1Val = COp1->getLimitedValue(TypeBits);
464
465          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
466          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
467          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
468            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
469          return BinaryOperator::CreateAnd(X, Mask);
470        }
471
472        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
473        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
474            match(Op0BO->getOperand(0),
475                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
476                        m_ConstantInt(CC))) && V2 == Op1) {
477          Value *YS = // (Y << C)
478            Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
479          // X & (CC << C)
480          Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
481                                         V1->getName()+".mask");
482
483          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
484        }
485
486        break;
487      }
488      }
489
490
491      // If the operand is an bitwise operator with a constant RHS, and the
492      // shift is the only use, we can pull it out of the shift.
493      if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
494        bool isValid = true;     // Valid only for And, Or, Xor
495        bool highBitSet = false; // Transform if high bit of constant set?
496
497        switch (Op0BO->getOpcode()) {
498        default: isValid = false; break;   // Do not perform transform!
499        case Instruction::Add:
500          isValid = isLeftShift;
501          break;
502        case Instruction::Or:
503        case Instruction::Xor:
504          highBitSet = false;
505          break;
506        case Instruction::And:
507          highBitSet = true;
508          break;
509        }
510
511        // If this is a signed shift right, and the high bit is modified
512        // by the logical operation, do not perform the transformation.
513        // The highBitSet boolean indicates the value of the high bit of
514        // the constant which would cause it to be modified for this
515        // operation.
516        //
517        if (isValid && I.getOpcode() == Instruction::AShr)
518          isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
519
520        if (isValid) {
521          Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
522
523          Value *NewShift =
524            Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
525          NewShift->takeName(Op0BO);
526
527          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
528                                        NewRHS);
529        }
530      }
531    }
532  }
533
534  // Find out if this is a shift of a shift by a constant.
535  BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
536  if (ShiftOp && !ShiftOp->isShift())
537    ShiftOp = nullptr;
538
539  if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
540
541    // This is a constant shift of a constant shift. Be careful about hiding
542    // shl instructions behind bit masks. They are used to represent multiplies
543    // by a constant, and it is important that simple arithmetic expressions
544    // are still recognizable by scalar evolution.
545    //
546    // The transforms applied to shl are very similar to the transforms applied
547    // to mul by constant. We can be more aggressive about optimizing right
548    // shifts.
549    //
550    // Combinations of right and left shifts will still be optimized in
551    // DAGCombine where scalar evolution no longer applies.
552
553    ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
554    uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
555    uint32_t ShiftAmt2 = COp1->getLimitedValue(TypeBits);
556    assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
557    if (ShiftAmt1 == 0) return nullptr;  // Will be simplified in the future.
558    Value *X = ShiftOp->getOperand(0);
559
560    IntegerType *Ty = cast<IntegerType>(I.getType());
561
562    // Check for (X << c1) << c2  and  (X >> c1) >> c2
563    if (I.getOpcode() == ShiftOp->getOpcode()) {
564      uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
565      // If this is oversized composite shift, then unsigned shifts get 0, ashr
566      // saturates.
567      if (AmtSum >= TypeBits) {
568        if (I.getOpcode() != Instruction::AShr)
569          return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
570        AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
571      }
572
573      return BinaryOperator::Create(I.getOpcode(), X,
574                                    ConstantInt::get(Ty, AmtSum));
575    }
576
577    if (ShiftAmt1 == ShiftAmt2) {
578      // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
579      if (I.getOpcode() == Instruction::LShr &&
580          ShiftOp->getOpcode() == Instruction::Shl) {
581        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
582        return BinaryOperator::CreateAnd(X,
583                                        ConstantInt::get(I.getContext(), Mask));
584      }
585    } else if (ShiftAmt1 < ShiftAmt2) {
586      uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
587
588      // (X >>?,exact C1) << C2 --> X << (C2-C1)
589      // The inexact version is deferred to DAGCombine so we don't hide shl
590      // behind a bit mask.
591      if (I.getOpcode() == Instruction::Shl &&
592          ShiftOp->getOpcode() != Instruction::Shl &&
593          ShiftOp->isExact()) {
594        assert(ShiftOp->getOpcode() == Instruction::LShr ||
595               ShiftOp->getOpcode() == Instruction::AShr);
596        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
597        BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
598                                                        X, ShiftDiffCst);
599        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
600        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
601        return NewShl;
602      }
603
604      // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
605      if (I.getOpcode() == Instruction::LShr &&
606          ShiftOp->getOpcode() == Instruction::Shl) {
607        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
608        // (X <<nuw C1) >>u C2 --> X >>u (C2-C1)
609        if (ShiftOp->hasNoUnsignedWrap()) {
610          BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr,
611                                                           X, ShiftDiffCst);
612          NewLShr->setIsExact(I.isExact());
613          return NewLShr;
614        }
615        Value *Shift = Builder->CreateLShr(X, ShiftDiffCst);
616
617        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
618        return BinaryOperator::CreateAnd(Shift,
619                                         ConstantInt::get(I.getContext(),Mask));
620      }
621
622      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
623      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
624      if (I.getOpcode() == Instruction::AShr &&
625          ShiftOp->getOpcode() == Instruction::Shl) {
626        if (ShiftOp->hasNoSignedWrap()) {
627          // (X <<nsw C1) >>s C2 --> X >>s (C2-C1)
628          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
629          BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr,
630                                                           X, ShiftDiffCst);
631          NewAShr->setIsExact(I.isExact());
632          return NewAShr;
633        }
634      }
635    } else {
636      assert(ShiftAmt2 < ShiftAmt1);
637      uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
638
639      // (X >>?exact C1) << C2 --> X >>?exact (C1-C2)
640      // The inexact version is deferred to DAGCombine so we don't hide shl
641      // behind a bit mask.
642      if (I.getOpcode() == Instruction::Shl &&
643          ShiftOp->getOpcode() != Instruction::Shl &&
644          ShiftOp->isExact()) {
645        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
646        BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(),
647                                                        X, ShiftDiffCst);
648        NewShr->setIsExact(true);
649        return NewShr;
650      }
651
652      // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
653      if (I.getOpcode() == Instruction::LShr &&
654          ShiftOp->getOpcode() == Instruction::Shl) {
655        ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
656        if (ShiftOp->hasNoUnsignedWrap()) {
657          // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2)
658          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
659                                                          X, ShiftDiffCst);
660          NewShl->setHasNoUnsignedWrap(true);
661          return NewShl;
662        }
663        Value *Shift = Builder->CreateShl(X, ShiftDiffCst);
664
665        APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
666        return BinaryOperator::CreateAnd(Shift,
667                                         ConstantInt::get(I.getContext(),Mask));
668      }
669
670      // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However,
671      // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
672      if (I.getOpcode() == Instruction::AShr &&
673          ShiftOp->getOpcode() == Instruction::Shl) {
674        if (ShiftOp->hasNoSignedWrap()) {
675          // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2)
676          ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff);
677          BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl,
678                                                          X, ShiftDiffCst);
679          NewShl->setHasNoSignedWrap(true);
680          return NewShl;
681        }
682      }
683    }
684  }
685  return nullptr;
686}
687
688Instruction *InstCombiner::visitShl(BinaryOperator &I) {
689  if (Value *V = SimplifyVectorOp(I))
690    return ReplaceInstUsesWith(I, V);
691
692  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
693                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
694                                 DL))
695    return ReplaceInstUsesWith(I, V);
696
697  if (Instruction *V = commonShiftTransforms(I))
698    return V;
699
700  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
701    unsigned ShAmt = Op1C->getZExtValue();
702
703    // If the shifted-out value is known-zero, then this is a NUW shift.
704    if (!I.hasNoUnsignedWrap() &&
705        MaskedValueIsZero(I.getOperand(0),
706                          APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
707          I.setHasNoUnsignedWrap();
708          return &I;
709        }
710
711    // If the shifted out value is all signbits, this is a NSW shift.
712    if (!I.hasNoSignedWrap() &&
713        ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
714      I.setHasNoSignedWrap();
715      return &I;
716    }
717  }
718
719  // (C1 << A) << C2 -> (C1 << C2) << A
720  Constant *C1, *C2;
721  Value *A;
722  if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
723      match(I.getOperand(1), m_Constant(C2)))
724    return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
725
726  return nullptr;
727}
728
729Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
730  if (Value *V = SimplifyVectorOp(I))
731    return ReplaceInstUsesWith(I, V);
732
733  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
734                                  I.isExact(), DL))
735    return ReplaceInstUsesWith(I, V);
736
737  if (Instruction *R = commonShiftTransforms(I))
738    return R;
739
740  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
741
742  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
743    unsigned ShAmt = Op1C->getZExtValue();
744
745    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
746      unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
747      // ctlz.i32(x)>>5  --> zext(x == 0)
748      // cttz.i32(x)>>5  --> zext(x == 0)
749      // ctpop.i32(x)>>5 --> zext(x == -1)
750      if ((II->getIntrinsicID() == Intrinsic::ctlz ||
751           II->getIntrinsicID() == Intrinsic::cttz ||
752           II->getIntrinsicID() == Intrinsic::ctpop) &&
753          isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
754        bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
755        Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
756        Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
757        return new ZExtInst(Cmp, II->getType());
758      }
759    }
760
761    // If the shifted-out value is known-zero, then this is an exact shift.
762    if (!I.isExact() &&
763        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
764      I.setIsExact();
765      return &I;
766    }
767  }
768
769  return nullptr;
770}
771
772Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
773  if (Value *V = SimplifyVectorOp(I))
774    return ReplaceInstUsesWith(I, V);
775
776  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
777                                  I.isExact(), DL))
778    return ReplaceInstUsesWith(I, V);
779
780  if (Instruction *R = commonShiftTransforms(I))
781    return R;
782
783  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
784
785  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
786    unsigned ShAmt = Op1C->getZExtValue();
787
788    // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
789    // have a sign-extend idiom.
790    Value *X;
791    if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
792      // If the input is an extension from the shifted amount value, e.g.
793      //   %x = zext i8 %A to i32
794      //   %y = shl i32 %x, 24
795      //   %z = ashr %y, 24
796      // then turn this into "z = sext i8 A to i32".
797      if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
798        uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
799        uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
800        if (Op1C->getZExtValue() == DestBits-SrcBits)
801          return new SExtInst(ZI->getOperand(0), ZI->getType());
802      }
803    }
804
805    // If the shifted-out value is known-zero, then this is an exact shift.
806    if (!I.isExact() &&
807        MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
808      I.setIsExact();
809      return &I;
810    }
811  }
812
813  // See if we can turn a signed shr into an unsigned shr.
814  if (MaskedValueIsZero(Op0,
815                        APInt::getSignBit(I.getType()->getScalarSizeInBits())))
816    return BinaryOperator::CreateLShr(Op0, Op1);
817
818  // Arithmetic shifting an all-sign-bit value is a no-op.
819  unsigned NumSignBits = ComputeNumSignBits(Op0);
820  if (NumSignBits == Op0->getType()->getScalarSizeInBits())
821    return ReplaceInstUsesWith(I, Op0);
822
823  return nullptr;
824}
825