1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements instcombine for ExtractElement, InsertElement and
11// ShuffleVector.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/IR/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20#define DEBUG_TYPE "instcombine"
21
22/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
23/// is to leave as a vector operation.  isConstant indicates whether we're
24/// extracting one known element.  If false we're extracting a variable index.
25static bool CheapToScalarize(Value *V, bool isConstant) {
26  if (Constant *C = dyn_cast<Constant>(V)) {
27    if (isConstant) return true;
28
29    // If all elts are the same, we can extract it and use any of the values.
30    if (Constant *Op0 = C->getAggregateElement(0U)) {
31      for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e;
32           ++i)
33        if (C->getAggregateElement(i) != Op0)
34          return false;
35      return true;
36    }
37  }
38  Instruction *I = dyn_cast<Instruction>(V);
39  if (!I) return false;
40
41  // Insert element gets simplified to the inserted element or is deleted if
42  // this is constant idx extract element and its a constant idx insertelt.
43  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
44      isa<ConstantInt>(I->getOperand(2)))
45    return true;
46  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
47    return true;
48  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
49    if (BO->hasOneUse() &&
50        (CheapToScalarize(BO->getOperand(0), isConstant) ||
51         CheapToScalarize(BO->getOperand(1), isConstant)))
52      return true;
53  if (CmpInst *CI = dyn_cast<CmpInst>(I))
54    if (CI->hasOneUse() &&
55        (CheapToScalarize(CI->getOperand(0), isConstant) ||
56         CheapToScalarize(CI->getOperand(1), isConstant)))
57      return true;
58
59  return false;
60}
61
62/// FindScalarElement - Given a vector and an element number, see if the scalar
63/// value is already around as a register, for example if it were inserted then
64/// extracted from the vector.
65static Value *FindScalarElement(Value *V, unsigned EltNo) {
66  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
67  VectorType *VTy = cast<VectorType>(V->getType());
68  unsigned Width = VTy->getNumElements();
69  if (EltNo >= Width)  // Out of range access.
70    return UndefValue::get(VTy->getElementType());
71
72  if (Constant *C = dyn_cast<Constant>(V))
73    return C->getAggregateElement(EltNo);
74
75  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
76    // If this is an insert to a variable element, we don't know what it is.
77    if (!isa<ConstantInt>(III->getOperand(2)))
78      return nullptr;
79    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
80
81    // If this is an insert to the element we are looking for, return the
82    // inserted value.
83    if (EltNo == IIElt)
84      return III->getOperand(1);
85
86    // Otherwise, the insertelement doesn't modify the value, recurse on its
87    // vector input.
88    return FindScalarElement(III->getOperand(0), EltNo);
89  }
90
91  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
92    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
93    int InEl = SVI->getMaskValue(EltNo);
94    if (InEl < 0)
95      return UndefValue::get(VTy->getElementType());
96    if (InEl < (int)LHSWidth)
97      return FindScalarElement(SVI->getOperand(0), InEl);
98    return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
99  }
100
101  // Extract a value from a vector add operation with a constant zero.
102  Value *Val = nullptr; Constant *Con = nullptr;
103  if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
104    if (Con->getAggregateElement(EltNo)->isNullValue())
105      return FindScalarElement(Val, EltNo);
106  }
107
108  // Otherwise, we don't know.
109  return nullptr;
110}
111
112// If we have a PHI node with a vector type that has only 2 uses: feed
113// itself and be an operand of extractelement at a constant location,
114// try to replace the PHI of the vector type with a PHI of a scalar type.
115Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
116  // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
117  if (!PN->hasNUses(2))
118    return nullptr;
119
120  // If so, it's known at this point that one operand is PHI and the other is
121  // an extractelement node. Find the PHI user that is not the extractelement
122  // node.
123  auto iu = PN->user_begin();
124  Instruction *PHIUser = dyn_cast<Instruction>(*iu);
125  if (PHIUser == cast<Instruction>(&EI))
126    PHIUser = cast<Instruction>(*(++iu));
127
128  // Verify that this PHI user has one use, which is the PHI itself,
129  // and that it is a binary operation which is cheap to scalarize.
130  // otherwise return NULL.
131  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
132      !(isa<BinaryOperator>(PHIUser)) || !CheapToScalarize(PHIUser, true))
133    return nullptr;
134
135  // Create a scalar PHI node that will replace the vector PHI node
136  // just before the current PHI node.
137  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
138      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
139  // Scalarize each PHI operand.
140  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
141    Value *PHIInVal = PN->getIncomingValue(i);
142    BasicBlock *inBB = PN->getIncomingBlock(i);
143    Value *Elt = EI.getIndexOperand();
144    // If the operand is the PHI induction variable:
145    if (PHIInVal == PHIUser) {
146      // Scalarize the binary operation. Its first operand is the
147      // scalar PHI, and the second operand is extracted from the other
148      // vector operand.
149      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
150      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
151      Value *Op = InsertNewInstWith(
152          ExtractElementInst::Create(B0->getOperand(opId), Elt,
153                                     B0->getOperand(opId)->getName() + ".Elt"),
154          *B0);
155      Value *newPHIUser = InsertNewInstWith(
156          BinaryOperator::Create(B0->getOpcode(), scalarPHI, Op), *B0);
157      scalarPHI->addIncoming(newPHIUser, inBB);
158    } else {
159      // Scalarize PHI input:
160      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
161      // Insert the new instruction into the predecessor basic block.
162      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
163      BasicBlock::iterator InsertPos;
164      if (pos && !isa<PHINode>(pos)) {
165        InsertPos = pos;
166        ++InsertPos;
167      } else {
168        InsertPos = inBB->getFirstInsertionPt();
169      }
170
171      InsertNewInstWith(newEI, *InsertPos);
172
173      scalarPHI->addIncoming(newEI, inBB);
174    }
175  }
176  return ReplaceInstUsesWith(EI, scalarPHI);
177}
178
179Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
180  // If vector val is constant with all elements the same, replace EI with
181  // that element.  We handle a known element # below.
182  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
183    if (CheapToScalarize(C, false))
184      return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
185
186  // If extracting a specified index from the vector, see if we can recursively
187  // find a previously computed scalar that was inserted into the vector.
188  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
189    unsigned IndexVal = IdxC->getZExtValue();
190    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
191
192    // If this is extracting an invalid index, turn this into undef, to avoid
193    // crashing the code below.
194    if (IndexVal >= VectorWidth)
195      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
196
197    // This instruction only demands the single element from the input vector.
198    // If the input vector has a single use, simplify it based on this use
199    // property.
200    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
201      APInt UndefElts(VectorWidth, 0);
202      APInt DemandedMask(VectorWidth, 0);
203      DemandedMask.setBit(IndexVal);
204      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
205                                                DemandedMask, UndefElts)) {
206        EI.setOperand(0, V);
207        return &EI;
208      }
209    }
210
211    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
212      return ReplaceInstUsesWith(EI, Elt);
213
214    // If the this extractelement is directly using a bitcast from a vector of
215    // the same number of elements, see if we can find the source element from
216    // it.  In this case, we will end up needing to bitcast the scalars.
217    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
218      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
219        if (VT->getNumElements() == VectorWidth)
220          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
221            return new BitCastInst(Elt, EI.getType());
222    }
223
224    // If there's a vector PHI feeding a scalar use through this extractelement
225    // instruction, try to scalarize the PHI.
226    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
227      Instruction *scalarPHI = scalarizePHI(EI, PN);
228      if (scalarPHI)
229        return scalarPHI;
230    }
231  }
232
233  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
234    // Push extractelement into predecessor operation if legal and
235    // profitable to do so
236    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
237      if (I->hasOneUse() &&
238          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
239        Value *newEI0 =
240          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
241                                        EI.getName()+".lhs");
242        Value *newEI1 =
243          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
244                                        EI.getName()+".rhs");
245        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
246      }
247    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
248      // Extracting the inserted element?
249      if (IE->getOperand(2) == EI.getOperand(1))
250        return ReplaceInstUsesWith(EI, IE->getOperand(1));
251      // If the inserted and extracted elements are constants, they must not
252      // be the same value, extract from the pre-inserted value instead.
253      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
254        Worklist.AddValue(EI.getOperand(0));
255        EI.setOperand(0, IE->getOperand(0));
256        return &EI;
257      }
258    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
259      // If this is extracting an element from a shufflevector, figure out where
260      // it came from and extract from the appropriate input element instead.
261      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
262        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
263        Value *Src;
264        unsigned LHSWidth =
265          SVI->getOperand(0)->getType()->getVectorNumElements();
266
267        if (SrcIdx < 0)
268          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
269        if (SrcIdx < (int)LHSWidth)
270          Src = SVI->getOperand(0);
271        else {
272          SrcIdx -= LHSWidth;
273          Src = SVI->getOperand(1);
274        }
275        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
276        return ExtractElementInst::Create(Src,
277                                          ConstantInt::get(Int32Ty,
278                                                           SrcIdx, false));
279      }
280    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
281      // Canonicalize extractelement(cast) -> cast(extractelement)
282      // bitcasts can change the number of vector elements and they cost nothing
283      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
284        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
285                                                  EI.getIndexOperand());
286        Worklist.AddValue(EE);
287        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
288      }
289    } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
290      if (SI->hasOneUse()) {
291        // TODO: For a select on vectors, it might be useful to do this if it
292        // has multiple extractelement uses. For vector select, that seems to
293        // fight the vectorizer.
294
295        // If we are extracting an element from a vector select or a select on
296        // vectors, a select on the scalars extracted from the vector arguments.
297        Value *TrueVal = SI->getTrueValue();
298        Value *FalseVal = SI->getFalseValue();
299
300        Value *Cond = SI->getCondition();
301        if (Cond->getType()->isVectorTy()) {
302          Cond = Builder->CreateExtractElement(Cond,
303                                               EI.getIndexOperand(),
304                                               Cond->getName() + ".elt");
305        }
306
307        Value *V1Elem
308          = Builder->CreateExtractElement(TrueVal,
309                                          EI.getIndexOperand(),
310                                          TrueVal->getName() + ".elt");
311
312        Value *V2Elem
313          = Builder->CreateExtractElement(FalseVal,
314                                          EI.getIndexOperand(),
315                                          FalseVal->getName() + ".elt");
316        return SelectInst::Create(Cond,
317                                  V1Elem,
318                                  V2Elem,
319                                  SI->getName() + ".elt");
320      }
321    }
322  }
323  return nullptr;
324}
325
326/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
327/// elements from either LHS or RHS, return the shuffle mask and true.
328/// Otherwise, return false.
329static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
330                                         SmallVectorImpl<Constant*> &Mask) {
331  assert(LHS->getType() == RHS->getType() &&
332         "Invalid CollectSingleShuffleElements");
333  unsigned NumElts = V->getType()->getVectorNumElements();
334
335  if (isa<UndefValue>(V)) {
336    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
337    return true;
338  }
339
340  if (V == LHS) {
341    for (unsigned i = 0; i != NumElts; ++i)
342      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
343    return true;
344  }
345
346  if (V == RHS) {
347    for (unsigned i = 0; i != NumElts; ++i)
348      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
349                                      i+NumElts));
350    return true;
351  }
352
353  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
354    // If this is an insert of an extract from some other vector, include it.
355    Value *VecOp    = IEI->getOperand(0);
356    Value *ScalarOp = IEI->getOperand(1);
357    Value *IdxOp    = IEI->getOperand(2);
358
359    if (!isa<ConstantInt>(IdxOp))
360      return false;
361    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
362
363    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
364      // We can handle this if the vector we are inserting into is
365      // transitively ok.
366      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
367        // If so, update the mask to reflect the inserted undef.
368        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
369        return true;
370      }
371    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
372      if (isa<ConstantInt>(EI->getOperand(1))) {
373        unsigned ExtractedIdx =
374        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
375        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
376
377        // This must be extracting from either LHS or RHS.
378        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
379          // We can handle this if the vector we are inserting into is
380          // transitively ok.
381          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
382            // If so, update the mask to reflect the inserted value.
383            if (EI->getOperand(0) == LHS) {
384              Mask[InsertedIdx % NumElts] =
385              ConstantInt::get(Type::getInt32Ty(V->getContext()),
386                               ExtractedIdx);
387            } else {
388              assert(EI->getOperand(0) == RHS);
389              Mask[InsertedIdx % NumElts] =
390              ConstantInt::get(Type::getInt32Ty(V->getContext()),
391                               ExtractedIdx + NumLHSElts);
392            }
393            return true;
394          }
395        }
396      }
397    }
398  }
399
400  return false;
401}
402
403
404/// We are building a shuffle to create V, which is a sequence of insertelement,
405/// extractelement pairs. If PermittedRHS is set, then we must either use it or
406/// not rely on the second vector source. Return a std::pair containing the
407/// left and right vectors of the proposed shuffle (or 0), and set the Mask
408/// parameter as required.
409///
410/// Note: we intentionally don't try to fold earlier shuffles since they have
411/// often been chosen carefully to be efficiently implementable on the target.
412typedef std::pair<Value *, Value *> ShuffleOps;
413
414static ShuffleOps CollectShuffleElements(Value *V,
415                                         SmallVectorImpl<Constant *> &Mask,
416                                         Value *PermittedRHS) {
417  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
418  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
419
420  if (isa<UndefValue>(V)) {
421    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
422    return std::make_pair(
423        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
424  }
425
426  if (isa<ConstantAggregateZero>(V)) {
427    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
428    return std::make_pair(V, nullptr);
429  }
430
431  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
432    // If this is an insert of an extract from some other vector, include it.
433    Value *VecOp    = IEI->getOperand(0);
434    Value *ScalarOp = IEI->getOperand(1);
435    Value *IdxOp    = IEI->getOperand(2);
436
437    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
438      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
439        unsigned ExtractedIdx =
440          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
441        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
442
443        // Either the extracted from or inserted into vector must be RHSVec,
444        // otherwise we'd end up with a shuffle of three inputs.
445        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
446          Value *RHS = EI->getOperand(0);
447          ShuffleOps LR = CollectShuffleElements(VecOp, Mask, RHS);
448          assert(LR.second == nullptr || LR.second == RHS);
449
450          if (LR.first->getType() != RHS->getType()) {
451            // We tried our best, but we can't find anything compatible with RHS
452            // further up the chain. Return a trivial shuffle.
453            for (unsigned i = 0; i < NumElts; ++i)
454              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
455            return std::make_pair(V, nullptr);
456          }
457
458          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
459          Mask[InsertedIdx % NumElts] =
460            ConstantInt::get(Type::getInt32Ty(V->getContext()),
461                             NumLHSElts+ExtractedIdx);
462          return std::make_pair(LR.first, RHS);
463        }
464
465        if (VecOp == PermittedRHS) {
466          // We've gone as far as we can: anything on the other side of the
467          // extractelement will already have been converted into a shuffle.
468          unsigned NumLHSElts =
469              EI->getOperand(0)->getType()->getVectorNumElements();
470          for (unsigned i = 0; i != NumElts; ++i)
471            Mask.push_back(ConstantInt::get(
472                Type::getInt32Ty(V->getContext()),
473                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
474          return std::make_pair(EI->getOperand(0), PermittedRHS);
475        }
476
477        // If this insertelement is a chain that comes from exactly these two
478        // vectors, return the vector and the effective shuffle.
479        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
480            CollectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
481                                         Mask))
482          return std::make_pair(EI->getOperand(0), PermittedRHS);
483      }
484    }
485  }
486
487  // Otherwise, can't do anything fancy.  Return an identity vector.
488  for (unsigned i = 0; i != NumElts; ++i)
489    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
490  return std::make_pair(V, nullptr);
491}
492
493/// Try to find redundant insertvalue instructions, like the following ones:
494///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
495///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
496/// Here the second instruction inserts values at the same indices, as the
497/// first one, making the first one redundant.
498/// It should be transformed to:
499///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
500Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
501  bool IsRedundant = false;
502  ArrayRef<unsigned int> FirstIndices = I.getIndices();
503
504  // If there is a chain of insertvalue instructions (each of them except the
505  // last one has only one use and it's another insertvalue insn from this
506  // chain), check if any of the 'children' uses the same indices as the first
507  // instruction. In this case, the first one is redundant.
508  Value *V = &I;
509  unsigned Depth = 0;
510  while (V->hasOneUse() && Depth < 10) {
511    User *U = V->user_back();
512    auto UserInsInst = dyn_cast<InsertValueInst>(U);
513    if (!UserInsInst || U->getOperand(0) != V)
514      break;
515    if (UserInsInst->getIndices() == FirstIndices) {
516      IsRedundant = true;
517      break;
518    }
519    V = UserInsInst;
520    Depth++;
521  }
522
523  if (IsRedundant)
524    return ReplaceInstUsesWith(I, I.getOperand(0));
525  return nullptr;
526}
527
528Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
529  Value *VecOp    = IE.getOperand(0);
530  Value *ScalarOp = IE.getOperand(1);
531  Value *IdxOp    = IE.getOperand(2);
532
533  // Inserting an undef or into an undefined place, remove this.
534  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
535    ReplaceInstUsesWith(IE, VecOp);
536
537  // If the inserted element was extracted from some other vector, and if the
538  // indexes are constant, try to turn this into a shufflevector operation.
539  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
540    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
541      unsigned NumInsertVectorElts = IE.getType()->getNumElements();
542      unsigned NumExtractVectorElts =
543          EI->getOperand(0)->getType()->getVectorNumElements();
544      unsigned ExtractedIdx =
545        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
546      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
547
548      if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
549        return ReplaceInstUsesWith(IE, VecOp);
550
551      if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
552        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
553
554      // If we are extracting a value from a vector, then inserting it right
555      // back into the same place, just use the input vector.
556      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
557        return ReplaceInstUsesWith(IE, VecOp);
558
559      // If this insertelement isn't used by some other insertelement, turn it
560      // (and any insertelements it points to), into one big shuffle.
561      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.user_back())) {
562        SmallVector<Constant*, 16> Mask;
563        ShuffleOps LR = CollectShuffleElements(&IE, Mask, nullptr);
564
565        // The proposed shuffle may be trivial, in which case we shouldn't
566        // perform the combine.
567        if (LR.first != &IE && LR.second != &IE) {
568          // We now have a shuffle of LHS, RHS, Mask.
569          if (LR.second == nullptr)
570            LR.second = UndefValue::get(LR.first->getType());
571          return new ShuffleVectorInst(LR.first, LR.second,
572                                       ConstantVector::get(Mask));
573        }
574      }
575    }
576  }
577
578  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
579  APInt UndefElts(VWidth, 0);
580  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
581  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
582    if (V != &IE)
583      return ReplaceInstUsesWith(IE, V);
584    return &IE;
585  }
586
587  return nullptr;
588}
589
590/// Return true if we can evaluate the specified expression tree if the vector
591/// elements were shuffled in a different order.
592static bool CanEvaluateShuffled(Value *V, ArrayRef<int> Mask,
593                                unsigned Depth = 5) {
594  // We can always reorder the elements of a constant.
595  if (isa<Constant>(V))
596    return true;
597
598  // We won't reorder vector arguments. No IPO here.
599  Instruction *I = dyn_cast<Instruction>(V);
600  if (!I) return false;
601
602  // Two users may expect different orders of the elements. Don't try it.
603  if (!I->hasOneUse())
604    return false;
605
606  if (Depth == 0) return false;
607
608  switch (I->getOpcode()) {
609    case Instruction::Add:
610    case Instruction::FAdd:
611    case Instruction::Sub:
612    case Instruction::FSub:
613    case Instruction::Mul:
614    case Instruction::FMul:
615    case Instruction::UDiv:
616    case Instruction::SDiv:
617    case Instruction::FDiv:
618    case Instruction::URem:
619    case Instruction::SRem:
620    case Instruction::FRem:
621    case Instruction::Shl:
622    case Instruction::LShr:
623    case Instruction::AShr:
624    case Instruction::And:
625    case Instruction::Or:
626    case Instruction::Xor:
627    case Instruction::ICmp:
628    case Instruction::FCmp:
629    case Instruction::Trunc:
630    case Instruction::ZExt:
631    case Instruction::SExt:
632    case Instruction::FPToUI:
633    case Instruction::FPToSI:
634    case Instruction::UIToFP:
635    case Instruction::SIToFP:
636    case Instruction::FPTrunc:
637    case Instruction::FPExt:
638    case Instruction::GetElementPtr: {
639      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
640        if (!CanEvaluateShuffled(I->getOperand(i), Mask, Depth-1))
641          return false;
642      }
643      return true;
644    }
645    case Instruction::InsertElement: {
646      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
647      if (!CI) return false;
648      int ElementNumber = CI->getLimitedValue();
649
650      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
651      // can't put an element into multiple indices.
652      bool SeenOnce = false;
653      for (int i = 0, e = Mask.size(); i != e; ++i) {
654        if (Mask[i] == ElementNumber) {
655          if (SeenOnce)
656            return false;
657          SeenOnce = true;
658        }
659      }
660      return CanEvaluateShuffled(I->getOperand(0), Mask, Depth-1);
661    }
662  }
663  return false;
664}
665
666/// Rebuild a new instruction just like 'I' but with the new operands given.
667/// In the event of type mismatch, the type of the operands is correct.
668static Value *BuildNew(Instruction *I, ArrayRef<Value*> NewOps) {
669  // We don't want to use the IRBuilder here because we want the replacement
670  // instructions to appear next to 'I', not the builder's insertion point.
671  switch (I->getOpcode()) {
672    case Instruction::Add:
673    case Instruction::FAdd:
674    case Instruction::Sub:
675    case Instruction::FSub:
676    case Instruction::Mul:
677    case Instruction::FMul:
678    case Instruction::UDiv:
679    case Instruction::SDiv:
680    case Instruction::FDiv:
681    case Instruction::URem:
682    case Instruction::SRem:
683    case Instruction::FRem:
684    case Instruction::Shl:
685    case Instruction::LShr:
686    case Instruction::AShr:
687    case Instruction::And:
688    case Instruction::Or:
689    case Instruction::Xor: {
690      BinaryOperator *BO = cast<BinaryOperator>(I);
691      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
692      BinaryOperator *New =
693          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
694                                 NewOps[0], NewOps[1], "", BO);
695      if (isa<OverflowingBinaryOperator>(BO)) {
696        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
697        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
698      }
699      if (isa<PossiblyExactOperator>(BO)) {
700        New->setIsExact(BO->isExact());
701      }
702      if (isa<FPMathOperator>(BO))
703        New->copyFastMathFlags(I);
704      return New;
705    }
706    case Instruction::ICmp:
707      assert(NewOps.size() == 2 && "icmp with #ops != 2");
708      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
709                          NewOps[0], NewOps[1]);
710    case Instruction::FCmp:
711      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
712      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
713                          NewOps[0], NewOps[1]);
714    case Instruction::Trunc:
715    case Instruction::ZExt:
716    case Instruction::SExt:
717    case Instruction::FPToUI:
718    case Instruction::FPToSI:
719    case Instruction::UIToFP:
720    case Instruction::SIToFP:
721    case Instruction::FPTrunc:
722    case Instruction::FPExt: {
723      // It's possible that the mask has a different number of elements from
724      // the original cast. We recompute the destination type to match the mask.
725      Type *DestTy =
726          VectorType::get(I->getType()->getScalarType(),
727                          NewOps[0]->getType()->getVectorNumElements());
728      assert(NewOps.size() == 1 && "cast with #ops != 1");
729      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
730                              "", I);
731    }
732    case Instruction::GetElementPtr: {
733      Value *Ptr = NewOps[0];
734      ArrayRef<Value*> Idx = NewOps.slice(1);
735      GetElementPtrInst *GEP = GetElementPtrInst::Create(Ptr, Idx, "", I);
736      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
737      return GEP;
738    }
739  }
740  llvm_unreachable("failed to rebuild vector instructions");
741}
742
743Value *
744InstCombiner::EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
745  // Mask.size() does not need to be equal to the number of vector elements.
746
747  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
748  if (isa<UndefValue>(V)) {
749    return UndefValue::get(VectorType::get(V->getType()->getScalarType(),
750                                           Mask.size()));
751  }
752  if (isa<ConstantAggregateZero>(V)) {
753    return ConstantAggregateZero::get(
754               VectorType::get(V->getType()->getScalarType(),
755                               Mask.size()));
756  }
757  if (Constant *C = dyn_cast<Constant>(V)) {
758    SmallVector<Constant *, 16> MaskValues;
759    for (int i = 0, e = Mask.size(); i != e; ++i) {
760      if (Mask[i] == -1)
761        MaskValues.push_back(UndefValue::get(Builder->getInt32Ty()));
762      else
763        MaskValues.push_back(Builder->getInt32(Mask[i]));
764    }
765    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
766                                          ConstantVector::get(MaskValues));
767  }
768
769  Instruction *I = cast<Instruction>(V);
770  switch (I->getOpcode()) {
771    case Instruction::Add:
772    case Instruction::FAdd:
773    case Instruction::Sub:
774    case Instruction::FSub:
775    case Instruction::Mul:
776    case Instruction::FMul:
777    case Instruction::UDiv:
778    case Instruction::SDiv:
779    case Instruction::FDiv:
780    case Instruction::URem:
781    case Instruction::SRem:
782    case Instruction::FRem:
783    case Instruction::Shl:
784    case Instruction::LShr:
785    case Instruction::AShr:
786    case Instruction::And:
787    case Instruction::Or:
788    case Instruction::Xor:
789    case Instruction::ICmp:
790    case Instruction::FCmp:
791    case Instruction::Trunc:
792    case Instruction::ZExt:
793    case Instruction::SExt:
794    case Instruction::FPToUI:
795    case Instruction::FPToSI:
796    case Instruction::UIToFP:
797    case Instruction::SIToFP:
798    case Instruction::FPTrunc:
799    case Instruction::FPExt:
800    case Instruction::Select:
801    case Instruction::GetElementPtr: {
802      SmallVector<Value*, 8> NewOps;
803      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
804      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
805        Value *V = EvaluateInDifferentElementOrder(I->getOperand(i), Mask);
806        NewOps.push_back(V);
807        NeedsRebuild |= (V != I->getOperand(i));
808      }
809      if (NeedsRebuild) {
810        return BuildNew(I, NewOps);
811      }
812      return I;
813    }
814    case Instruction::InsertElement: {
815      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
816
817      // The insertelement was inserting at Element. Figure out which element
818      // that becomes after shuffling. The answer is guaranteed to be unique
819      // by CanEvaluateShuffled.
820      bool Found = false;
821      int Index = 0;
822      for (int e = Mask.size(); Index != e; ++Index) {
823        if (Mask[Index] == Element) {
824          Found = true;
825          break;
826        }
827      }
828
829      // If element is not in Mask, no need to handle the operand 1 (element to
830      // be inserted). Just evaluate values in operand 0 according to Mask.
831      if (!Found)
832        return EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
833
834      Value *V = EvaluateInDifferentElementOrder(I->getOperand(0), Mask);
835      return InsertElementInst::Create(V, I->getOperand(1),
836                                       Builder->getInt32(Index), "", I);
837    }
838  }
839  llvm_unreachable("failed to reorder elements of vector instruction!");
840}
841
842static void RecognizeIdentityMask(const SmallVectorImpl<int> &Mask,
843                                  bool &isLHSID, bool &isRHSID) {
844  isLHSID = isRHSID = true;
845
846  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
847    if (Mask[i] < 0) continue;  // Ignore undef values.
848    // Is this an identity shuffle of the LHS value?
849    isLHSID &= (Mask[i] == (int)i);
850
851    // Is this an identity shuffle of the RHS value?
852    isRHSID &= (Mask[i]-e == i);
853  }
854}
855
856Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
857  Value *LHS = SVI.getOperand(0);
858  Value *RHS = SVI.getOperand(1);
859  SmallVector<int, 16> Mask = SVI.getShuffleMask();
860
861  bool MadeChange = false;
862
863  // Undefined shuffle mask -> undefined value.
864  if (isa<UndefValue>(SVI.getOperand(2)))
865    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
866
867  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
868
869  APInt UndefElts(VWidth, 0);
870  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
871  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
872    if (V != &SVI)
873      return ReplaceInstUsesWith(SVI, V);
874    LHS = SVI.getOperand(0);
875    RHS = SVI.getOperand(1);
876    MadeChange = true;
877  }
878
879  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
880
881  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
882  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
883  if (LHS == RHS || isa<UndefValue>(LHS)) {
884    if (isa<UndefValue>(LHS) && LHS == RHS) {
885      // shuffle(undef,undef,mask) -> undef.
886      Value *Result = (VWidth == LHSWidth)
887                      ? LHS : UndefValue::get(SVI.getType());
888      return ReplaceInstUsesWith(SVI, Result);
889    }
890
891    // Remap any references to RHS to use LHS.
892    SmallVector<Constant*, 16> Elts;
893    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
894      if (Mask[i] < 0) {
895        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
896        continue;
897      }
898
899      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
900          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
901        Mask[i] = -1;     // Turn into undef.
902        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
903      } else {
904        Mask[i] = Mask[i] % e;  // Force to LHS.
905        Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
906                                        Mask[i]));
907      }
908    }
909    SVI.setOperand(0, SVI.getOperand(1));
910    SVI.setOperand(1, UndefValue::get(RHS->getType()));
911    SVI.setOperand(2, ConstantVector::get(Elts));
912    LHS = SVI.getOperand(0);
913    RHS = SVI.getOperand(1);
914    MadeChange = true;
915  }
916
917  if (VWidth == LHSWidth) {
918    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
919    bool isLHSID, isRHSID;
920    RecognizeIdentityMask(Mask, isLHSID, isRHSID);
921
922    // Eliminate identity shuffles.
923    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
924    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
925  }
926
927  if (isa<UndefValue>(RHS) && CanEvaluateShuffled(LHS, Mask)) {
928    Value *V = EvaluateInDifferentElementOrder(LHS, Mask);
929    return ReplaceInstUsesWith(SVI, V);
930  }
931
932  // If the LHS is a shufflevector itself, see if we can combine it with this
933  // one without producing an unusual shuffle.
934  // Cases that might be simplified:
935  // 1.
936  // x1=shuffle(v1,v2,mask1)
937  //  x=shuffle(x1,undef,mask)
938  //        ==>
939  //  x=shuffle(v1,undef,newMask)
940  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
941  // 2.
942  // x1=shuffle(v1,undef,mask1)
943  //  x=shuffle(x1,x2,mask)
944  // where v1.size() == mask1.size()
945  //        ==>
946  //  x=shuffle(v1,x2,newMask)
947  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
948  // 3.
949  // x2=shuffle(v2,undef,mask2)
950  //  x=shuffle(x1,x2,mask)
951  // where v2.size() == mask2.size()
952  //        ==>
953  //  x=shuffle(x1,v2,newMask)
954  // newMask[i] = (mask[i] < x1.size())
955  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
956  // 4.
957  // x1=shuffle(v1,undef,mask1)
958  // x2=shuffle(v2,undef,mask2)
959  //  x=shuffle(x1,x2,mask)
960  // where v1.size() == v2.size()
961  //        ==>
962  //  x=shuffle(v1,v2,newMask)
963  // newMask[i] = (mask[i] < x1.size())
964  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
965  //
966  // Here we are really conservative:
967  // we are absolutely afraid of producing a shuffle mask not in the input
968  // program, because the code gen may not be smart enough to turn a merged
969  // shuffle into two specific shuffles: it may produce worse code.  As such,
970  // we only merge two shuffles if the result is either a splat or one of the
971  // input shuffle masks.  In this case, merging the shuffles just removes
972  // one instruction, which we know is safe.  This is good for things like
973  // turning: (splat(splat)) -> splat, or
974  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
975  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
976  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
977  if (LHSShuffle)
978    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
979      LHSShuffle = nullptr;
980  if (RHSShuffle)
981    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
982      RHSShuffle = nullptr;
983  if (!LHSShuffle && !RHSShuffle)
984    return MadeChange ? &SVI : nullptr;
985
986  Value* LHSOp0 = nullptr;
987  Value* LHSOp1 = nullptr;
988  Value* RHSOp0 = nullptr;
989  unsigned LHSOp0Width = 0;
990  unsigned RHSOp0Width = 0;
991  if (LHSShuffle) {
992    LHSOp0 = LHSShuffle->getOperand(0);
993    LHSOp1 = LHSShuffle->getOperand(1);
994    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
995  }
996  if (RHSShuffle) {
997    RHSOp0 = RHSShuffle->getOperand(0);
998    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
999  }
1000  Value* newLHS = LHS;
1001  Value* newRHS = RHS;
1002  if (LHSShuffle) {
1003    // case 1
1004    if (isa<UndefValue>(RHS)) {
1005      newLHS = LHSOp0;
1006      newRHS = LHSOp1;
1007    }
1008    // case 2 or 4
1009    else if (LHSOp0Width == LHSWidth) {
1010      newLHS = LHSOp0;
1011    }
1012  }
1013  // case 3 or 4
1014  if (RHSShuffle && RHSOp0Width == LHSWidth) {
1015    newRHS = RHSOp0;
1016  }
1017  // case 4
1018  if (LHSOp0 == RHSOp0) {
1019    newLHS = LHSOp0;
1020    newRHS = nullptr;
1021  }
1022
1023  if (newLHS == LHS && newRHS == RHS)
1024    return MadeChange ? &SVI : nullptr;
1025
1026  SmallVector<int, 16> LHSMask;
1027  SmallVector<int, 16> RHSMask;
1028  if (newLHS != LHS)
1029    LHSMask = LHSShuffle->getShuffleMask();
1030  if (RHSShuffle && newRHS != RHS)
1031    RHSMask = RHSShuffle->getShuffleMask();
1032
1033  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1034  SmallVector<int, 16> newMask;
1035  bool isSplat = true;
1036  int SplatElt = -1;
1037  // Create a new mask for the new ShuffleVectorInst so that the new
1038  // ShuffleVectorInst is equivalent to the original one.
1039  for (unsigned i = 0; i < VWidth; ++i) {
1040    int eltMask;
1041    if (Mask[i] < 0) {
1042      // This element is an undef value.
1043      eltMask = -1;
1044    } else if (Mask[i] < (int)LHSWidth) {
1045      // This element is from left hand side vector operand.
1046      //
1047      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1048      // new mask value for the element.
1049      if (newLHS != LHS) {
1050        eltMask = LHSMask[Mask[i]];
1051        // If the value selected is an undef value, explicitly specify it
1052        // with a -1 mask value.
1053        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1054          eltMask = -1;
1055      } else
1056        eltMask = Mask[i];
1057    } else {
1058      // This element is from right hand side vector operand
1059      //
1060      // If the value selected is an undef value, explicitly specify it
1061      // with a -1 mask value. (case 1)
1062      if (isa<UndefValue>(RHS))
1063        eltMask = -1;
1064      // If RHS is going to be replaced (case 3 or 4), calculate the
1065      // new mask value for the element.
1066      else if (newRHS != RHS) {
1067        eltMask = RHSMask[Mask[i]-LHSWidth];
1068        // If the value selected is an undef value, explicitly specify it
1069        // with a -1 mask value.
1070        if (eltMask >= (int)RHSOp0Width) {
1071          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1072                 && "should have been check above");
1073          eltMask = -1;
1074        }
1075      } else
1076        eltMask = Mask[i]-LHSWidth;
1077
1078      // If LHS's width is changed, shift the mask value accordingly.
1079      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
1080      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1081      // If newRHS == newLHS, we want to remap any references from newRHS to
1082      // newLHS so that we can properly identify splats that may occur due to
1083      // obfuscation across the two vectors.
1084      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1085        eltMask += newLHSWidth;
1086    }
1087
1088    // Check if this could still be a splat.
1089    if (eltMask >= 0) {
1090      if (SplatElt >= 0 && SplatElt != eltMask)
1091        isSplat = false;
1092      SplatElt = eltMask;
1093    }
1094
1095    newMask.push_back(eltMask);
1096  }
1097
1098  // If the result mask is equal to one of the original shuffle masks,
1099  // or is a splat, do the replacement.
1100  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1101    SmallVector<Constant*, 16> Elts;
1102    Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1103    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1104      if (newMask[i] < 0) {
1105        Elts.push_back(UndefValue::get(Int32Ty));
1106      } else {
1107        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1108      }
1109    }
1110    if (!newRHS)
1111      newRHS = UndefValue::get(newLHS->getType());
1112    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1113  }
1114
1115  // If the result mask is an identity, replace uses of this instruction with
1116  // corresponding argument.
1117  bool isLHSID, isRHSID;
1118  RecognizeIdentityMask(newMask, isLHSID, isRHSID);
1119  if (isLHSID && VWidth == LHSOp0Width) return ReplaceInstUsesWith(SVI, newLHS);
1120  if (isRHSID && VWidth == RHSOp0Width) return ReplaceInstUsesWith(SVI, newRHS);
1121
1122  return MadeChange ? &SVI : nullptr;
1123}
1124