InstCombineVectorOps.cpp revision 6548096a2e2b34e685680e6e1055b8e407c2c243
1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements instcombine for ExtractElement, InsertElement and
11// ShuffleVector.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
21/// is to leave as a vector operation.  isConstant indicates whether we're
22/// extracting one known element.  If false we're extracting a variable index.
23static bool CheapToScalarize(Value *V, bool isConstant) {
24  if (Constant *C = dyn_cast<Constant>(V)) {
25    if (isConstant) return true;
26
27    // If all elts are the same, we can extract it and use any of the values.
28    Constant *Op0 = C->getAggregateElement(0U);
29    for (unsigned i = 1, e = V->getType()->getVectorNumElements(); i != e; ++i)
30      if (C->getAggregateElement(i) != Op0)
31        return false;
32    return true;
33  }
34  Instruction *I = dyn_cast<Instruction>(V);
35  if (!I) return false;
36
37  // Insert element gets simplified to the inserted element or is deleted if
38  // this is constant idx extract element and its a constant idx insertelt.
39  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
40      isa<ConstantInt>(I->getOperand(2)))
41    return true;
42  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
43    return true;
44  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
45    if (BO->hasOneUse() &&
46        (CheapToScalarize(BO->getOperand(0), isConstant) ||
47         CheapToScalarize(BO->getOperand(1), isConstant)))
48      return true;
49  if (CmpInst *CI = dyn_cast<CmpInst>(I))
50    if (CI->hasOneUse() &&
51        (CheapToScalarize(CI->getOperand(0), isConstant) ||
52         CheapToScalarize(CI->getOperand(1), isConstant)))
53      return true;
54
55  return false;
56}
57
58/// FindScalarElement - Given a vector and an element number, see if the scalar
59/// value is already around as a register, for example if it were inserted then
60/// extracted from the vector.
61static Value *FindScalarElement(Value *V, unsigned EltNo) {
62  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
63  VectorType *VTy = cast<VectorType>(V->getType());
64  unsigned Width = VTy->getNumElements();
65  if (EltNo >= Width)  // Out of range access.
66    return UndefValue::get(VTy->getElementType());
67
68  if (Constant *C = dyn_cast<Constant>(V))
69    return C->getAggregateElement(EltNo);
70
71  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
72    // If this is an insert to a variable element, we don't know what it is.
73    if (!isa<ConstantInt>(III->getOperand(2)))
74      return 0;
75    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
76
77    // If this is an insert to the element we are looking for, return the
78    // inserted value.
79    if (EltNo == IIElt)
80      return III->getOperand(1);
81
82    // Otherwise, the insertelement doesn't modify the value, recurse on its
83    // vector input.
84    return FindScalarElement(III->getOperand(0), EltNo);
85  }
86
87  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
88    unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
89    int InEl = SVI->getMaskValue(EltNo);
90    if (InEl < 0)
91      return UndefValue::get(VTy->getElementType());
92    if (InEl < (int)LHSWidth)
93      return FindScalarElement(SVI->getOperand(0), InEl);
94    return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
95  }
96
97  // Extract a value from a vector add operation with a constant zero.
98  Value *Val = 0; Constant *Con = 0;
99  if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) {
100    if (Con->getAggregateElement(EltNo)->isNullValue())
101      return FindScalarElement(Val, EltNo);
102  }
103
104  // Otherwise, we don't know.
105  return 0;
106}
107
108// If we have a PHI node with a vector type that has only 2 uses: feed
109// itself and be an operand of extractelemnt at a constant location,
110// try to replace the PHI of the vector type with a PHI of a scalar type
111Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
112  // Verify that the PHI node has exactly 2 uses. Otherwise return NULL.
113  if (!PN->hasNUses(2))
114    return NULL;
115
116  // If so, it's known at this point that one operand is PHI and the other is
117  // an extractelement node. Find the PHI user that is not the extractelement
118  // node.
119  Value::use_iterator iu = PN->use_begin();
120  Instruction *PHIUser = dyn_cast<Instruction>(*iu);
121  if (PHIUser == cast<Instruction>(&EI))
122    PHIUser = cast<Instruction>(*(++iu));
123
124  // Verify that this PHI user has one use, which is the PHI itself,
125  // and that it is a binary operation which is cheap to scalarize.
126  // otherwise return NULL.
127  if (!PHIUser->hasOneUse() || !(PHIUser->use_back() == PN) ||
128    !(isa<BinaryOperator>(PHIUser)) ||
129    !CheapToScalarize(PHIUser, true))
130    return NULL;
131
132  // Create a scalar PHI node that will replace the vector PHI node
133  // just before the current PHI node.
134  PHINode * scalarPHI = cast<PHINode>(
135    InsertNewInstWith(PHINode::Create(EI.getType(),
136    PN->getNumIncomingValues(), ""), *PN));
137  // Scalarize each PHI operand.
138  for (unsigned i=0; i < PN->getNumIncomingValues(); i++) {
139    Value *PHIInVal = PN->getIncomingValue(i);
140    BasicBlock *inBB = PN->getIncomingBlock(i);
141    Value *Elt = EI.getIndexOperand();
142    // If the operand is the PHI induction variable:
143    if (PHIInVal == PHIUser) {
144      // Scalarize the binary operation. Its first operand is the
145      // scalar PHI and the second operand is extracted from the other
146      // vector operand.
147      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
148      unsigned opId = (B0->getOperand(0) == PN) ? 1: 0;
149      Value *Op = Builder->CreateExtractElement(
150        B0->getOperand(opId), Elt, B0->getOperand(opId)->getName()+".Elt");
151      Value *newPHIUser = InsertNewInstWith(
152        BinaryOperator::Create(B0->getOpcode(), scalarPHI,Op),
153        *B0);
154      scalarPHI->addIncoming(newPHIUser, inBB);
155    } else {
156      // Scalarize PHI input:
157      Instruction *newEI =
158        ExtractElementInst::Create(PHIInVal, Elt, "");
159      // Insert the new instruction into the predecessor basic block.
160      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
161      BasicBlock::iterator InsertPos;
162      if (pos && !isa<PHINode>(pos)) {
163        InsertPos = pos;
164        ++InsertPos;
165      } else {
166        InsertPos = inBB->getFirstInsertionPt();
167      }
168
169      InsertNewInstWith(newEI, *InsertPos);
170
171      scalarPHI->addIncoming(newEI, inBB);
172    }
173  }
174  return ReplaceInstUsesWith(EI, scalarPHI);
175}
176
177Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
178  // If vector val is constant with all elements the same, replace EI with
179  // that element.  We handle a known element # below.
180  if (Constant *C = dyn_cast<Constant>(EI.getOperand(0)))
181    if (CheapToScalarize(C, false))
182      return ReplaceInstUsesWith(EI, C->getAggregateElement(0U));
183
184  // If extracting a specified index from the vector, see if we can recursively
185  // find a previously computed scalar that was inserted into the vector.
186  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
187    unsigned IndexVal = IdxC->getZExtValue();
188    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
189
190    // If this is extracting an invalid index, turn this into undef, to avoid
191    // crashing the code below.
192    if (IndexVal >= VectorWidth)
193      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
194
195    // This instruction only demands the single element from the input vector.
196    // If the input vector has a single use, simplify it based on this use
197    // property.
198    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
199      APInt UndefElts(VectorWidth, 0);
200      APInt DemandedMask(VectorWidth, 0);
201      DemandedMask.setBit(IndexVal);
202      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
203                                                DemandedMask, UndefElts)) {
204        EI.setOperand(0, V);
205        return &EI;
206      }
207    }
208
209    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
210      return ReplaceInstUsesWith(EI, Elt);
211
212    // If the this extractelement is directly using a bitcast from a vector of
213    // the same number of elements, see if we can find the source element from
214    // it.  In this case, we will end up needing to bitcast the scalars.
215    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
216      if (VectorType *VT = dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
217        if (VT->getNumElements() == VectorWidth)
218          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
219            return new BitCastInst(Elt, EI.getType());
220    }
221
222    // If there's a vector PHI feeding a scalar use through this extractelement
223    // instruction, try to scalarize the PHI.
224    if (PHINode *PN = dyn_cast<PHINode>(EI.getOperand(0))) {
225    	Instruction *scalarPHI = scalarizePHI(EI, PN);
226    	if (scalarPHI)
227    		return (scalarPHI);
228    }
229  }
230
231  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
232    // Push extractelement into predecessor operation if legal and
233    // profitable to do so
234    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
235      if (I->hasOneUse() &&
236          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
237        Value *newEI0 =
238          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
239                                        EI.getName()+".lhs");
240        Value *newEI1 =
241          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
242                                        EI.getName()+".rhs");
243        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
244      }
245    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
246      // Extracting the inserted element?
247      if (IE->getOperand(2) == EI.getOperand(1))
248        return ReplaceInstUsesWith(EI, IE->getOperand(1));
249      // If the inserted and extracted elements are constants, they must not
250      // be the same value, extract from the pre-inserted value instead.
251      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
252        Worklist.AddValue(EI.getOperand(0));
253        EI.setOperand(0, IE->getOperand(0));
254        return &EI;
255      }
256    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
257      // If this is extracting an element from a shufflevector, figure out where
258      // it came from and extract from the appropriate input element instead.
259      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
260        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
261        Value *Src;
262        unsigned LHSWidth =
263          SVI->getOperand(0)->getType()->getVectorNumElements();
264
265        if (SrcIdx < 0)
266          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
267        if (SrcIdx < (int)LHSWidth)
268          Src = SVI->getOperand(0);
269        else {
270          SrcIdx -= LHSWidth;
271          Src = SVI->getOperand(1);
272        }
273        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
274        return ExtractElementInst::Create(Src,
275                                          ConstantInt::get(Int32Ty,
276                                                           SrcIdx, false));
277      }
278    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
279      // Canonicalize extractelement(cast) -> cast(extractelement)
280      // bitcasts can change the number of vector elements and they cost nothing
281      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
282        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
283                                                  EI.getIndexOperand());
284        Worklist.AddValue(EE);
285        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
286      }
287    }
288  }
289  return 0;
290}
291
292/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
293/// elements from either LHS or RHS, return the shuffle mask and true.
294/// Otherwise, return false.
295static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
296                                         SmallVectorImpl<Constant*> &Mask) {
297  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
298         "Invalid CollectSingleShuffleElements");
299  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
300
301  if (isa<UndefValue>(V)) {
302    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
303    return true;
304  }
305
306  if (V == LHS) {
307    for (unsigned i = 0; i != NumElts; ++i)
308      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
309    return true;
310  }
311
312  if (V == RHS) {
313    for (unsigned i = 0; i != NumElts; ++i)
314      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
315                                      i+NumElts));
316    return true;
317  }
318
319  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
320    // If this is an insert of an extract from some other vector, include it.
321    Value *VecOp    = IEI->getOperand(0);
322    Value *ScalarOp = IEI->getOperand(1);
323    Value *IdxOp    = IEI->getOperand(2);
324
325    if (!isa<ConstantInt>(IdxOp))
326      return false;
327    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
328
329    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
330      // Okay, we can handle this if the vector we are insertinting into is
331      // transitively ok.
332      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
333        // If so, update the mask to reflect the inserted undef.
334        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
335        return true;
336      }
337    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
338      if (isa<ConstantInt>(EI->getOperand(1)) &&
339          EI->getOperand(0)->getType() == V->getType()) {
340        unsigned ExtractedIdx =
341        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
342
343        // This must be extracting from either LHS or RHS.
344        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
345          // Okay, we can handle this if the vector we are insertinting into is
346          // transitively ok.
347          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
348            // If so, update the mask to reflect the inserted value.
349            if (EI->getOperand(0) == LHS) {
350              Mask[InsertedIdx % NumElts] =
351              ConstantInt::get(Type::getInt32Ty(V->getContext()),
352                               ExtractedIdx);
353            } else {
354              assert(EI->getOperand(0) == RHS);
355              Mask[InsertedIdx % NumElts] =
356              ConstantInt::get(Type::getInt32Ty(V->getContext()),
357                               ExtractedIdx+NumElts);
358            }
359            return true;
360          }
361        }
362      }
363    }
364  }
365  // TODO: Handle shufflevector here!
366
367  return false;
368}
369
370/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
371/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
372/// that computes V and the LHS value of the shuffle.
373static Value *CollectShuffleElements(Value *V, SmallVectorImpl<Constant*> &Mask,
374                                     Value *&RHS) {
375  assert(V->getType()->isVectorTy() &&
376         (RHS == 0 || V->getType() == RHS->getType()) &&
377         "Invalid shuffle!");
378  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
379
380  if (isa<UndefValue>(V)) {
381    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
382    return V;
383  }
384
385  if (isa<ConstantAggregateZero>(V)) {
386    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
387    return V;
388  }
389
390  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
391    // If this is an insert of an extract from some other vector, include it.
392    Value *VecOp    = IEI->getOperand(0);
393    Value *ScalarOp = IEI->getOperand(1);
394    Value *IdxOp    = IEI->getOperand(2);
395
396    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
397      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
398          EI->getOperand(0)->getType() == V->getType()) {
399        unsigned ExtractedIdx =
400          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
401        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
402
403        // Either the extracted from or inserted into vector must be RHSVec,
404        // otherwise we'd end up with a shuffle of three inputs.
405        if (EI->getOperand(0) == RHS || RHS == 0) {
406          RHS = EI->getOperand(0);
407          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
408          Mask[InsertedIdx % NumElts] =
409            ConstantInt::get(Type::getInt32Ty(V->getContext()),
410                             NumElts+ExtractedIdx);
411          return V;
412        }
413
414        if (VecOp == RHS) {
415          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
416          // Update Mask to reflect that `ScalarOp' has been inserted at
417          // position `InsertedIdx' within the vector returned by IEI.
418          Mask[InsertedIdx % NumElts] = Mask[ExtractedIdx];
419
420          // Everything but the extracted element is replaced with the RHS.
421          for (unsigned i = 0; i != NumElts; ++i) {
422            if (i != InsertedIdx)
423              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
424                                         NumElts+i);
425          }
426          return V;
427        }
428
429        // If this insertelement is a chain that comes from exactly these two
430        // vectors, return the vector and the effective shuffle.
431        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
432          return EI->getOperand(0);
433      }
434    }
435  }
436  // TODO: Handle shufflevector here!
437
438  // Otherwise, can't do anything fancy.  Return an identity vector.
439  for (unsigned i = 0; i != NumElts; ++i)
440    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
441  return V;
442}
443
444Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
445  Value *VecOp    = IE.getOperand(0);
446  Value *ScalarOp = IE.getOperand(1);
447  Value *IdxOp    = IE.getOperand(2);
448
449  // Inserting an undef or into an undefined place, remove this.
450  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
451    ReplaceInstUsesWith(IE, VecOp);
452
453  // If the inserted element was extracted from some other vector, and if the
454  // indexes are constant, try to turn this into a shufflevector operation.
455  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
456    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
457        EI->getOperand(0)->getType() == IE.getType()) {
458      unsigned NumVectorElts = IE.getType()->getNumElements();
459      unsigned ExtractedIdx =
460        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
461      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
462
463      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
464        return ReplaceInstUsesWith(IE, VecOp);
465
466      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
467        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
468
469      // If we are extracting a value from a vector, then inserting it right
470      // back into the same place, just use the input vector.
471      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
472        return ReplaceInstUsesWith(IE, VecOp);
473
474      // If this insertelement isn't used by some other insertelement, turn it
475      // (and any insertelements it points to), into one big shuffle.
476      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
477        SmallVector<Constant*, 16> Mask;
478        Value *RHS = 0;
479        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
480        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
481        // We now have a shuffle of LHS, RHS, Mask.
482        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
483      }
484    }
485  }
486
487  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
488  APInt UndefElts(VWidth, 0);
489  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
490  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
491    if (V != &IE)
492      return ReplaceInstUsesWith(IE, V);
493    return &IE;
494  }
495
496  return 0;
497}
498
499
500Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
501  Value *LHS = SVI.getOperand(0);
502  Value *RHS = SVI.getOperand(1);
503  SmallVector<int, 16> Mask = SVI.getShuffleMask();
504
505  bool MadeChange = false;
506
507  // Undefined shuffle mask -> undefined value.
508  if (isa<UndefValue>(SVI.getOperand(2)))
509    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
510
511  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
512
513  APInt UndefElts(VWidth, 0);
514  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
515  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
516    if (V != &SVI)
517      return ReplaceInstUsesWith(SVI, V);
518    LHS = SVI.getOperand(0);
519    RHS = SVI.getOperand(1);
520    MadeChange = true;
521  }
522
523  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
524
525  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
526  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
527  if (LHS == RHS || isa<UndefValue>(LHS)) {
528    if (isa<UndefValue>(LHS) && LHS == RHS) {
529      // shuffle(undef,undef,mask) -> undef.
530      Value* result = (VWidth == LHSWidth)
531                      ? LHS : UndefValue::get(SVI.getType());
532      return ReplaceInstUsesWith(SVI, result);
533    }
534
535    // Remap any references to RHS to use LHS.
536    SmallVector<Constant*, 16> Elts;
537    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
538      if (Mask[i] < 0) {
539        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
540        continue;
541      }
542
543      if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
544          (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
545        Mask[i] = -1;     // Turn into undef.
546        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
547      } else {
548        Mask[i] = Mask[i] % e;  // Force to LHS.
549        Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
550                                        Mask[i]));
551      }
552    }
553    SVI.setOperand(0, SVI.getOperand(1));
554    SVI.setOperand(1, UndefValue::get(RHS->getType()));
555    SVI.setOperand(2, ConstantVector::get(Elts));
556    LHS = SVI.getOperand(0);
557    RHS = SVI.getOperand(1);
558    MadeChange = true;
559  }
560
561  if (VWidth == LHSWidth) {
562    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
563    bool isLHSID = true, isRHSID = true;
564
565    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
566      if (Mask[i] < 0) continue;  // Ignore undef values.
567      // Is this an identity shuffle of the LHS value?
568      isLHSID &= (Mask[i] == (int)i);
569
570      // Is this an identity shuffle of the RHS value?
571      isRHSID &= (Mask[i]-e == i);
572    }
573
574    // Eliminate identity shuffles.
575    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
576    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
577  }
578
579  // If the LHS is a shufflevector itself, see if we can combine it with this
580  // one without producing an unusual shuffle.
581  // Cases that might be simplified:
582  // 1.
583  // x1=shuffle(v1,v2,mask1)
584  //  x=shuffle(x1,undef,mask)
585  //        ==>
586  //  x=shuffle(v1,undef,newMask)
587  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
588  // 2.
589  // x1=shuffle(v1,undef,mask1)
590  //  x=shuffle(x1,x2,mask)
591  // where v1.size() == mask1.size()
592  //        ==>
593  //  x=shuffle(v1,x2,newMask)
594  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
595  // 3.
596  // x2=shuffle(v2,undef,mask2)
597  //  x=shuffle(x1,x2,mask)
598  // where v2.size() == mask2.size()
599  //        ==>
600  //  x=shuffle(x1,v2,newMask)
601  // newMask[i] = (mask[i] < x1.size())
602  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
603  // 4.
604  // x1=shuffle(v1,undef,mask1)
605  // x2=shuffle(v2,undef,mask2)
606  //  x=shuffle(x1,x2,mask)
607  // where v1.size() == v2.size()
608  //        ==>
609  //  x=shuffle(v1,v2,newMask)
610  // newMask[i] = (mask[i] < x1.size())
611  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
612  //
613  // Here we are really conservative:
614  // we are absolutely afraid of producing a shuffle mask not in the input
615  // program, because the code gen may not be smart enough to turn a merged
616  // shuffle into two specific shuffles: it may produce worse code.  As such,
617  // we only merge two shuffles if the result is a splat, one of the input
618  // input shuffle masks, or if there's only one input to the shuffle.
619  // In this case, merging the shuffles just removes one instruction, which
620  // we know is safe.  This is good for things like
621  // turning: (splat(splat)) -> splat, or
622  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
623  //
624  // FIXME: This is almost certainly far, far too conservative. We should
625  // have a better model. Perhaps a TargetTransformInfo hook to ask whether
626  // a shuffle is considered OK?
627  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
628  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
629  if (LHSShuffle)
630    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
631      LHSShuffle = NULL;
632  if (RHSShuffle)
633    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
634      RHSShuffle = NULL;
635  if (!LHSShuffle && !RHSShuffle)
636    return MadeChange ? &SVI : 0;
637
638  Value* LHSOp0 = NULL;
639  Value* LHSOp1 = NULL;
640  Value* RHSOp0 = NULL;
641  unsigned LHSOp0Width = 0;
642  unsigned RHSOp0Width = 0;
643  if (LHSShuffle) {
644    LHSOp0 = LHSShuffle->getOperand(0);
645    LHSOp1 = LHSShuffle->getOperand(1);
646    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
647  }
648  if (RHSShuffle) {
649    RHSOp0 = RHSShuffle->getOperand(0);
650    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
651  }
652  Value* newLHS = LHS;
653  Value* newRHS = RHS;
654  if (LHSShuffle) {
655    // case 1
656    if (isa<UndefValue>(RHS)) {
657      newLHS = LHSOp0;
658      newRHS = LHSOp1;
659    }
660    // case 2 or 4
661    else if (LHSOp0Width == LHSWidth) {
662      newLHS = LHSOp0;
663    }
664  }
665  // case 3 or 4
666  if (RHSShuffle && RHSOp0Width == LHSWidth) {
667    newRHS = RHSOp0;
668  }
669  // case 4
670  if (LHSOp0 == RHSOp0) {
671    newLHS = LHSOp0;
672    newRHS = NULL;
673  }
674
675  if (newLHS == LHS && newRHS == RHS)
676    return MadeChange ? &SVI : 0;
677
678  SmallVector<int, 16> LHSMask;
679  SmallVector<int, 16> RHSMask;
680  if (newLHS != LHS)
681    LHSMask = LHSShuffle->getShuffleMask();
682  if (RHSShuffle && newRHS != RHS)
683    RHSMask = RHSShuffle->getShuffleMask();
684
685  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
686  SmallVector<int, 16> newMask;
687  bool isSplat = true;
688  int SplatElt = -1;
689  // Create a new mask for the new ShuffleVectorInst so that the new
690  // ShuffleVectorInst is equivalent to the original one.
691  for (unsigned i = 0; i < VWidth; ++i) {
692    int eltMask;
693    if (Mask[i] < 0) {
694      // This element is an undef value.
695      eltMask = -1;
696    } else if (Mask[i] < (int)LHSWidth) {
697      // This element is from left hand side vector operand.
698      //
699      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
700      // new mask value for the element.
701      if (newLHS != LHS) {
702        eltMask = LHSMask[Mask[i]];
703        // If the value selected is an undef value, explicitly specify it
704        // with a -1 mask value.
705        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
706          eltMask = -1;
707      } else
708        eltMask = Mask[i];
709    } else {
710      // This element is from right hand side vector operand
711      //
712      // If the value selected is an undef value, explicitly specify it
713      // with a -1 mask value. (case 1)
714      if (isa<UndefValue>(RHS))
715        eltMask = -1;
716      // If RHS is going to be replaced (case 3 or 4), calculate the
717      // new mask value for the element.
718      else if (newRHS != RHS) {
719        eltMask = RHSMask[Mask[i]-LHSWidth];
720        // If the value selected is an undef value, explicitly specify it
721        // with a -1 mask value.
722        if (eltMask >= (int)RHSOp0Width) {
723          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
724                 && "should have been check above");
725          eltMask = -1;
726        }
727      } else
728        eltMask = Mask[i]-LHSWidth;
729
730      // If LHS's width is changed, shift the mask value accordingly.
731      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
732      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
733      // If newRHS == newLHS, we want to remap any references from newRHS to
734      // newLHS so that we can properly identify splats that may occur due to
735      // obfuscation accross the two vectors.
736      if (eltMask >= 0 && newRHS != NULL && newLHS != newRHS)
737        eltMask += newLHSWidth;
738    }
739
740    // Check if this could still be a splat.
741    if (eltMask >= 0) {
742      if (SplatElt >= 0 && SplatElt != eltMask)
743        isSplat = false;
744      SplatElt = eltMask;
745    }
746
747    newMask.push_back(eltMask);
748  }
749
750  // If the result mask is equal to one of the original shuffle masks,
751  // or is a splat, do the replacement. Similarly, if there is only one
752  // input vector, go ahead and do the folding.
753  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask ||
754      isa<UndefValue>(RHS)) {
755    SmallVector<Constant*, 16> Elts;
756    Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
757    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
758      if (newMask[i] < 0) {
759        Elts.push_back(UndefValue::get(Int32Ty));
760      } else {
761        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
762      }
763    }
764    if (newRHS == NULL)
765      newRHS = UndefValue::get(newLHS->getType());
766    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
767  }
768
769  return MadeChange ? &SVI : 0;
770}
771