InstCombineVectorOps.cpp revision 8d992f5c2c90ebc8963679de51f461dc5d54fae1
1//===- InstCombineVectorOps.cpp -------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements instcombine for ExtractElement, InsertElement and
11// ShuffleVector.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
16using namespace llvm;
17
18/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
19/// is to leave as a vector operation.
20static bool CheapToScalarize(Value *V, bool isConstant) {
21  if (isa<ConstantAggregateZero>(V))
22    return true;
23  if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
24    if (isConstant) return true;
25    // If all elts are the same, we can extract.
26    Constant *Op0 = C->getOperand(0);
27    for (unsigned i = 1; i < C->getNumOperands(); ++i)
28      if (C->getOperand(i) != Op0)
29        return false;
30    return true;
31  }
32  Instruction *I = dyn_cast<Instruction>(V);
33  if (!I) return false;
34
35  // Insert element gets simplified to the inserted element or is deleted if
36  // this is constant idx extract element and its a constant idx insertelt.
37  if (I->getOpcode() == Instruction::InsertElement && isConstant &&
38      isa<ConstantInt>(I->getOperand(2)))
39    return true;
40  if (I->getOpcode() == Instruction::Load && I->hasOneUse())
41    return true;
42  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
43    if (BO->hasOneUse() &&
44        (CheapToScalarize(BO->getOperand(0), isConstant) ||
45         CheapToScalarize(BO->getOperand(1), isConstant)))
46      return true;
47  if (CmpInst *CI = dyn_cast<CmpInst>(I))
48    if (CI->hasOneUse() &&
49        (CheapToScalarize(CI->getOperand(0), isConstant) ||
50         CheapToScalarize(CI->getOperand(1), isConstant)))
51      return true;
52
53  return false;
54}
55
56/// getShuffleMask - Read and decode a shufflevector mask.
57/// Turn undef elements into negative values.
58static SmallVector<int, 16> getShuffleMask(const ShuffleVectorInst *SVI) {
59  unsigned NElts = SVI->getType()->getNumElements();
60  if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
61    return SmallVector<int, 16>(NElts, 0);
62  if (isa<UndefValue>(SVI->getOperand(2)))
63    return SmallVector<int, 16>(NElts, -1);
64
65  SmallVector<int, 16> Result;
66  const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
67  for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
68    if (isa<UndefValue>(*i))
69      Result.push_back(-1);  // undef
70    else
71      Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
72  return Result;
73}
74
75/// FindScalarElement - Given a vector and an element number, see if the scalar
76/// value is already around as a register, for example if it were inserted then
77/// extracted from the vector.
78static Value *FindScalarElement(Value *V, unsigned EltNo) {
79  assert(V->getType()->isVectorTy() && "Not looking at a vector?");
80  VectorType *PTy = cast<VectorType>(V->getType());
81  unsigned Width = PTy->getNumElements();
82  if (EltNo >= Width)  // Out of range access.
83    return UndefValue::get(PTy->getElementType());
84
85  if (isa<UndefValue>(V))
86    return UndefValue::get(PTy->getElementType());
87  if (isa<ConstantAggregateZero>(V))
88    return Constant::getNullValue(PTy->getElementType());
89  if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
90    return CP->getOperand(EltNo);
91
92  if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
93    // If this is an insert to a variable element, we don't know what it is.
94    if (!isa<ConstantInt>(III->getOperand(2)))
95      return 0;
96    unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
97
98    // If this is an insert to the element we are looking for, return the
99    // inserted value.
100    if (EltNo == IIElt)
101      return III->getOperand(1);
102
103    // Otherwise, the insertelement doesn't modify the value, recurse on its
104    // vector input.
105    return FindScalarElement(III->getOperand(0), EltNo);
106  }
107
108  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
109    unsigned LHSWidth =
110      cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
111    int InEl = SVI->getMaskValue(EltNo);
112    if (InEl < 0)
113      return UndefValue::get(PTy->getElementType());
114    if (InEl < (int)LHSWidth)
115      return FindScalarElement(SVI->getOperand(0), InEl);
116    return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
117  }
118
119  // Otherwise, we don't know.
120  return 0;
121}
122
123Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
124  // If vector val is undef, replace extract with scalar undef.
125  if (isa<UndefValue>(EI.getOperand(0)))
126    return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
127
128  // If vector val is constant 0, replace extract with scalar 0.
129  if (isa<ConstantAggregateZero>(EI.getOperand(0)))
130    return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
131
132  if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
133    // If vector val is constant with all elements the same, replace EI with
134    // that element. When the elements are not identical, we cannot replace yet
135    // (we do that below, but only when the index is constant).
136    Constant *op0 = C->getOperand(0);
137    for (unsigned i = 1; i != C->getNumOperands(); ++i)
138      if (C->getOperand(i) != op0) {
139        op0 = 0;
140        break;
141      }
142    if (op0)
143      return ReplaceInstUsesWith(EI, op0);
144  }
145
146  // If extracting a specified index from the vector, see if we can recursively
147  // find a previously computed scalar that was inserted into the vector.
148  if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
149    unsigned IndexVal = IdxC->getZExtValue();
150    unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
151
152    // If this is extracting an invalid index, turn this into undef, to avoid
153    // crashing the code below.
154    if (IndexVal >= VectorWidth)
155      return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
156
157    // This instruction only demands the single element from the input vector.
158    // If the input vector has a single use, simplify it based on this use
159    // property.
160    if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
161      APInt UndefElts(VectorWidth, 0);
162      APInt DemandedMask(VectorWidth, 0);
163      DemandedMask.setBit(IndexVal);
164      if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
165                                                DemandedMask, UndefElts)) {
166        EI.setOperand(0, V);
167        return &EI;
168      }
169    }
170
171    if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
172      return ReplaceInstUsesWith(EI, Elt);
173
174    // If the this extractelement is directly using a bitcast from a vector of
175    // the same number of elements, see if we can find the source element from
176    // it.  In this case, we will end up needing to bitcast the scalars.
177    if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
178      if (VectorType *VT =
179          dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
180        if (VT->getNumElements() == VectorWidth)
181          if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
182            return new BitCastInst(Elt, EI.getType());
183    }
184  }
185
186  if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
187    // Push extractelement into predecessor operation if legal and
188    // profitable to do so
189    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
190      if (I->hasOneUse() &&
191          CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
192        Value *newEI0 =
193          Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
194                                        EI.getName()+".lhs");
195        Value *newEI1 =
196          Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
197                                        EI.getName()+".rhs");
198        return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
199      }
200    } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
201      // Extracting the inserted element?
202      if (IE->getOperand(2) == EI.getOperand(1))
203        return ReplaceInstUsesWith(EI, IE->getOperand(1));
204      // If the inserted and extracted elements are constants, they must not
205      // be the same value, extract from the pre-inserted value instead.
206      if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
207        Worklist.AddValue(EI.getOperand(0));
208        EI.setOperand(0, IE->getOperand(0));
209        return &EI;
210      }
211    } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
212      // If this is extracting an element from a shufflevector, figure out where
213      // it came from and extract from the appropriate input element instead.
214      if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
215        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
216        Value *Src;
217        unsigned LHSWidth =
218          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
219
220        if (SrcIdx < 0)
221          return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
222        if (SrcIdx < (int)LHSWidth)
223          Src = SVI->getOperand(0);
224        else {
225          SrcIdx -= LHSWidth;
226          Src = SVI->getOperand(1);
227        }
228        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
229        return ExtractElementInst::Create(Src,
230                                          ConstantInt::get(Int32Ty,
231                                                           SrcIdx, false));
232      }
233    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
234      // Canonicalize extractelement(cast) -> cast(extractelement)
235      // bitcasts can change the number of vector elements and they cost nothing
236      if (CI->hasOneUse() && EI.hasOneUse() &&
237          (CI->getOpcode() != Instruction::BitCast)) {
238        Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
239                                                  EI.getIndexOperand());
240        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
241      }
242    }
243  }
244  return 0;
245}
246
247/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
248/// elements from either LHS or RHS, return the shuffle mask and true.
249/// Otherwise, return false.
250static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
251                                         std::vector<Constant*> &Mask) {
252  assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
253         "Invalid CollectSingleShuffleElements");
254  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
255
256  if (isa<UndefValue>(V)) {
257    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
258    return true;
259  }
260
261  if (V == LHS) {
262    for (unsigned i = 0; i != NumElts; ++i)
263      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
264    return true;
265  }
266
267  if (V == RHS) {
268    for (unsigned i = 0; i != NumElts; ++i)
269      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
270                                      i+NumElts));
271    return true;
272  }
273
274  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
275    // If this is an insert of an extract from some other vector, include it.
276    Value *VecOp    = IEI->getOperand(0);
277    Value *ScalarOp = IEI->getOperand(1);
278    Value *IdxOp    = IEI->getOperand(2);
279
280    if (!isa<ConstantInt>(IdxOp))
281      return false;
282    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
283
284    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
285      // Okay, we can handle this if the vector we are insertinting into is
286      // transitively ok.
287      if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
288        // If so, update the mask to reflect the inserted undef.
289        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
290        return true;
291      }
292    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
293      if (isa<ConstantInt>(EI->getOperand(1)) &&
294          EI->getOperand(0)->getType() == V->getType()) {
295        unsigned ExtractedIdx =
296        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
297
298        // This must be extracting from either LHS or RHS.
299        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
300          // Okay, we can handle this if the vector we are insertinting into is
301          // transitively ok.
302          if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
303            // If so, update the mask to reflect the inserted value.
304            if (EI->getOperand(0) == LHS) {
305              Mask[InsertedIdx % NumElts] =
306              ConstantInt::get(Type::getInt32Ty(V->getContext()),
307                               ExtractedIdx);
308            } else {
309              assert(EI->getOperand(0) == RHS);
310              Mask[InsertedIdx % NumElts] =
311              ConstantInt::get(Type::getInt32Ty(V->getContext()),
312                               ExtractedIdx+NumElts);
313            }
314            return true;
315          }
316        }
317      }
318    }
319  }
320  // TODO: Handle shufflevector here!
321
322  return false;
323}
324
325/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
326/// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
327/// that computes V and the LHS value of the shuffle.
328static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
329                                     Value *&RHS) {
330  assert(V->getType()->isVectorTy() &&
331         (RHS == 0 || V->getType() == RHS->getType()) &&
332         "Invalid shuffle!");
333  unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
334
335  if (isa<UndefValue>(V)) {
336    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
337    return V;
338  } else if (isa<ConstantAggregateZero>(V)) {
339    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
340    return V;
341  } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
342    // If this is an insert of an extract from some other vector, include it.
343    Value *VecOp    = IEI->getOperand(0);
344    Value *ScalarOp = IEI->getOperand(1);
345    Value *IdxOp    = IEI->getOperand(2);
346
347    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
348      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
349          EI->getOperand(0)->getType() == V->getType()) {
350        unsigned ExtractedIdx =
351          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
352        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
353
354        // Either the extracted from or inserted into vector must be RHSVec,
355        // otherwise we'd end up with a shuffle of three inputs.
356        if (EI->getOperand(0) == RHS || RHS == 0) {
357          RHS = EI->getOperand(0);
358          Value *V = CollectShuffleElements(VecOp, Mask, RHS);
359          Mask[InsertedIdx % NumElts] =
360            ConstantInt::get(Type::getInt32Ty(V->getContext()),
361                             NumElts+ExtractedIdx);
362          return V;
363        }
364
365        if (VecOp == RHS) {
366          Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
367          // Everything but the extracted element is replaced with the RHS.
368          for (unsigned i = 0; i != NumElts; ++i) {
369            if (i != InsertedIdx)
370              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
371                                         NumElts+i);
372          }
373          return V;
374        }
375
376        // If this insertelement is a chain that comes from exactly these two
377        // vectors, return the vector and the effective shuffle.
378        if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
379          return EI->getOperand(0);
380      }
381    }
382  }
383  // TODO: Handle shufflevector here!
384
385  // Otherwise, can't do anything fancy.  Return an identity vector.
386  for (unsigned i = 0; i != NumElts; ++i)
387    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
388  return V;
389}
390
391Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
392  Value *VecOp    = IE.getOperand(0);
393  Value *ScalarOp = IE.getOperand(1);
394  Value *IdxOp    = IE.getOperand(2);
395
396  // Inserting an undef or into an undefined place, remove this.
397  if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
398    ReplaceInstUsesWith(IE, VecOp);
399
400  // If the inserted element was extracted from some other vector, and if the
401  // indexes are constant, try to turn this into a shufflevector operation.
402  if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
403    if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
404        EI->getOperand(0)->getType() == IE.getType()) {
405      unsigned NumVectorElts = IE.getType()->getNumElements();
406      unsigned ExtractedIdx =
407        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
408      unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
409
410      if (ExtractedIdx >= NumVectorElts) // Out of range extract.
411        return ReplaceInstUsesWith(IE, VecOp);
412
413      if (InsertedIdx >= NumVectorElts)  // Out of range insert.
414        return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
415
416      // If we are extracting a value from a vector, then inserting it right
417      // back into the same place, just use the input vector.
418      if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
419        return ReplaceInstUsesWith(IE, VecOp);
420
421      // If this insertelement isn't used by some other insertelement, turn it
422      // (and any insertelements it points to), into one big shuffle.
423      if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
424        std::vector<Constant*> Mask;
425        Value *RHS = 0;
426        Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
427        if (RHS == 0) RHS = UndefValue::get(LHS->getType());
428        // We now have a shuffle of LHS, RHS, Mask.
429        return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
430      }
431    }
432  }
433
434  unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
435  APInt UndefElts(VWidth, 0);
436  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
437  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
438    if (V != &IE)
439      return ReplaceInstUsesWith(IE, V);
440    return &IE;
441  }
442
443  return 0;
444}
445
446
447Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
448  Value *LHS = SVI.getOperand(0);
449  Value *RHS = SVI.getOperand(1);
450  SmallVector<int, 16> Mask = getShuffleMask(&SVI);
451
452  bool MadeChange = false;
453
454  // Undefined shuffle mask -> undefined value.
455  if (isa<UndefValue>(SVI.getOperand(2)))
456    return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
457
458  unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
459
460  APInt UndefElts(VWidth, 0);
461  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
462  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
463    if (V != &SVI)
464      return ReplaceInstUsesWith(SVI, V);
465    LHS = SVI.getOperand(0);
466    RHS = SVI.getOperand(1);
467    MadeChange = true;
468  }
469
470  unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
471
472  // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
473  // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
474  if (LHS == RHS || isa<UndefValue>(LHS)) {
475    if (isa<UndefValue>(LHS) && LHS == RHS) {
476      // shuffle(undef,undef,mask) -> undef.
477      Value* result = (VWidth == LHSWidth)
478                      ? LHS : UndefValue::get(SVI.getType());
479      return ReplaceInstUsesWith(SVI, result);
480    }
481
482    // Remap any references to RHS to use LHS.
483    std::vector<Constant*> Elts;
484    for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
485      if (Mask[i] < 0)
486        Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
487      else {
488        if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
489            (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
490          Mask[i] = -1;     // Turn into undef.
491          Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
492        } else {
493          Mask[i] = Mask[i] % e;  // Force to LHS.
494          Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
495                                          Mask[i]));
496        }
497      }
498    }
499    SVI.setOperand(0, SVI.getOperand(1));
500    SVI.setOperand(1, UndefValue::get(RHS->getType()));
501    SVI.setOperand(2, ConstantVector::get(Elts));
502    LHS = SVI.getOperand(0);
503    RHS = SVI.getOperand(1);
504    MadeChange = true;
505  }
506
507  if (VWidth == LHSWidth) {
508    // Analyze the shuffle, are the LHS or RHS and identity shuffles?
509    bool isLHSID = true, isRHSID = true;
510
511    for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
512      if (Mask[i] < 0) continue;  // Ignore undef values.
513      // Is this an identity shuffle of the LHS value?
514      isLHSID &= (Mask[i] == (int)i);
515
516      // Is this an identity shuffle of the RHS value?
517      isRHSID &= (Mask[i]-e == i);
518    }
519
520    // Eliminate identity shuffles.
521    if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
522    if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
523  }
524
525  // If the LHS is a shufflevector itself, see if we can combine it with this
526  // one without producing an unusual shuffle.
527  // Cases that might be simplified:
528  // 1.
529  // x1=shuffle(v1,v2,mask1)
530  //  x=shuffle(x1,undef,mask)
531  //        ==>
532  //  x=shuffle(v1,undef,newMask)
533  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
534  // 2.
535  // x1=shuffle(v1,undef,mask1)
536  //  x=shuffle(x1,x2,mask)
537  // where v1.size() == mask1.size()
538  //        ==>
539  //  x=shuffle(v1,x2,newMask)
540  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
541  // 3.
542  // x2=shuffle(v2,undef,mask2)
543  //  x=shuffle(x1,x2,mask)
544  // where v2.size() == mask2.size()
545  //        ==>
546  //  x=shuffle(x1,v2,newMask)
547  // newMask[i] = (mask[i] < x1.size())
548  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
549  // 4.
550  // x1=shuffle(v1,undef,mask1)
551  // x2=shuffle(v2,undef,mask2)
552  //  x=shuffle(x1,x2,mask)
553  // where v1.size() == v2.size()
554  //        ==>
555  //  x=shuffle(v1,v2,newMask)
556  // newMask[i] = (mask[i] < x1.size())
557  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
558  //
559  // Here we are really conservative:
560  // we are absolutely afraid of producing a shuffle mask not in the input
561  // program, because the code gen may not be smart enough to turn a merged
562  // shuffle into two specific shuffles: it may produce worse code.  As such,
563  // we only merge two shuffles if the result is either a splat or one of the
564  // input shuffle masks.  In this case, merging the shuffles just removes
565  // one instruction, which we know is safe.  This is good for things like
566  // turning: (splat(splat)) -> splat, or
567  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
568  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
569  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
570  if (LHSShuffle)
571    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
572      LHSShuffle = NULL;
573  if (RHSShuffle)
574    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
575      RHSShuffle = NULL;
576  if (!LHSShuffle && !RHSShuffle)
577    return MadeChange ? &SVI : 0;
578
579  Value* LHSOp0 = NULL;
580  Value* LHSOp1 = NULL;
581  Value* RHSOp0 = NULL;
582  unsigned LHSOp0Width = 0;
583  unsigned RHSOp0Width = 0;
584  if (LHSShuffle) {
585    LHSOp0 = LHSShuffle->getOperand(0);
586    LHSOp1 = LHSShuffle->getOperand(1);
587    LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
588  }
589  if (RHSShuffle) {
590    RHSOp0 = RHSShuffle->getOperand(0);
591    RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
592  }
593  Value* newLHS = LHS;
594  Value* newRHS = RHS;
595  if (LHSShuffle) {
596    // case 1
597    if (isa<UndefValue>(RHS)) {
598      newLHS = LHSOp0;
599      newRHS = LHSOp1;
600    }
601    // case 2 or 4
602    else if (LHSOp0Width == LHSWidth) {
603      newLHS = LHSOp0;
604    }
605  }
606  // case 3 or 4
607  if (RHSShuffle && RHSOp0Width == LHSWidth) {
608    newRHS = RHSOp0;
609  }
610  // case 4
611  if (LHSOp0 == RHSOp0) {
612    newLHS = LHSOp0;
613    newRHS = NULL;
614  }
615
616  if (newLHS == LHS && newRHS == RHS)
617    return MadeChange ? &SVI : 0;
618
619  SmallVector<int, 16> LHSMask;
620  SmallVector<int, 16> RHSMask;
621  if (newLHS != LHS) {
622    LHSMask = getShuffleMask(LHSShuffle);
623  }
624  if (RHSShuffle && newRHS != RHS) {
625    RHSMask = getShuffleMask(RHSShuffle);
626  }
627  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
628  SmallVector<int, 16> newMask;
629  bool isSplat = true;
630  int SplatElt = -1;
631  // Create a new mask for the new ShuffleVectorInst so that the new
632  // ShuffleVectorInst is equivalent to the original one.
633  for (unsigned i = 0; i < VWidth; ++i) {
634    int eltMask;
635    if (Mask[i] == -1) {
636      // This element is an undef value.
637      eltMask = -1;
638    } else if (Mask[i] < (int)LHSWidth) {
639      // This element is from left hand side vector operand.
640      //
641      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
642      // new mask value for the element.
643      if (newLHS != LHS) {
644        eltMask = LHSMask[Mask[i]];
645        // If the value selected is an undef value, explicitly specify it
646        // with a -1 mask value.
647        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
648          eltMask = -1;
649      }
650      else
651        eltMask = Mask[i];
652    } else {
653      // This element is from right hand side vector operand
654      //
655      // If the value selected is an undef value, explicitly specify it
656      // with a -1 mask value. (case 1)
657      if (isa<UndefValue>(RHS))
658        eltMask = -1;
659      // If RHS is going to be replaced (case 3 or 4), calculate the
660      // new mask value for the element.
661      else if (newRHS != RHS) {
662        eltMask = RHSMask[Mask[i]-LHSWidth];
663        // If the value selected is an undef value, explicitly specify it
664        // with a -1 mask value.
665        if (eltMask >= (int)RHSOp0Width) {
666          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
667                 && "should have been check above");
668          eltMask = -1;
669        }
670      }
671      else
672        eltMask = Mask[i]-LHSWidth;
673
674      // If LHS's width is changed, shift the mask value accordingly.
675      // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
676      // references to RHSOp0 to LHSOp0, so we don't need to shift the mask.
677      if (eltMask >= 0 && newRHS != NULL)
678        eltMask += newLHSWidth;
679    }
680
681    // Check if this could still be a splat.
682    if (eltMask >= 0) {
683      if (SplatElt >= 0 && SplatElt != eltMask)
684        isSplat = false;
685      SplatElt = eltMask;
686    }
687
688    newMask.push_back(eltMask);
689  }
690
691  // If the result mask is equal to one of the original shuffle masks,
692  // or is a splat, do the replacement.
693  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
694    SmallVector<Constant*, 16> Elts;
695    Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
696    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
697      if (newMask[i] < 0) {
698        Elts.push_back(UndefValue::get(Int32Ty));
699      } else {
700        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
701      }
702    }
703    if (newRHS == NULL)
704      newRHS = UndefValue::get(newLHS->getType());
705    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
706  }
707
708  return MadeChange ? &SVI : 0;
709}
710