1//===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a trivial dead store elimination that only considers
11// basic-block local redundant stores.
12//
13// FIXME: This should eventually be extended to be a post-dominator tree
14// traversal.  Doing so would be pretty trivial.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/CaptureTracking.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/MemoryDependenceAnalysis.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/Pass.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Target/TargetLibraryInfo.h"
37#include "llvm/Transforms/Utils/Local.h"
38using namespace llvm;
39
40#define DEBUG_TYPE "dse"
41
42STATISTIC(NumFastStores, "Number of stores deleted");
43STATISTIC(NumFastOther , "Number of other instrs removed");
44
45namespace {
46  struct DSE : public FunctionPass {
47    AliasAnalysis *AA;
48    MemoryDependenceAnalysis *MD;
49    DominatorTree *DT;
50    const TargetLibraryInfo *TLI;
51
52    static char ID; // Pass identification, replacement for typeid
53    DSE() : FunctionPass(ID), AA(nullptr), MD(nullptr), DT(nullptr) {
54      initializeDSEPass(*PassRegistry::getPassRegistry());
55    }
56
57    bool runOnFunction(Function &F) override {
58      if (skipOptnoneFunction(F))
59        return false;
60
61      AA = &getAnalysis<AliasAnalysis>();
62      MD = &getAnalysis<MemoryDependenceAnalysis>();
63      DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
64      TLI = AA->getTargetLibraryInfo();
65
66      bool Changed = false;
67      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
68        // Only check non-dead blocks.  Dead blocks may have strange pointer
69        // cycles that will confuse alias analysis.
70        if (DT->isReachableFromEntry(I))
71          Changed |= runOnBasicBlock(*I);
72
73      AA = nullptr; MD = nullptr; DT = nullptr;
74      return Changed;
75    }
76
77    bool runOnBasicBlock(BasicBlock &BB);
78    bool HandleFree(CallInst *F);
79    bool handleEndBlock(BasicBlock &BB);
80    void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
81                               SmallSetVector<Value*, 16> &DeadStackObjects);
82
83    void getAnalysisUsage(AnalysisUsage &AU) const override {
84      AU.setPreservesCFG();
85      AU.addRequired<DominatorTreeWrapperPass>();
86      AU.addRequired<AliasAnalysis>();
87      AU.addRequired<MemoryDependenceAnalysis>();
88      AU.addPreserved<AliasAnalysis>();
89      AU.addPreserved<DominatorTreeWrapperPass>();
90      AU.addPreserved<MemoryDependenceAnalysis>();
91    }
92  };
93}
94
95char DSE::ID = 0;
96INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
97INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
98INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
99INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
100INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
101
102FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
103
104//===----------------------------------------------------------------------===//
105// Helper functions
106//===----------------------------------------------------------------------===//
107
108/// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
109/// and zero out all the operands of this instruction.  If any of them become
110/// dead, delete them and the computation tree that feeds them.
111///
112/// If ValueSet is non-null, remove any deleted instructions from it as well.
113///
114static void DeleteDeadInstruction(Instruction *I,
115                               MemoryDependenceAnalysis &MD,
116                               const TargetLibraryInfo *TLI,
117                               SmallSetVector<Value*, 16> *ValueSet = nullptr) {
118  SmallVector<Instruction*, 32> NowDeadInsts;
119
120  NowDeadInsts.push_back(I);
121  --NumFastOther;
122
123  // Before we touch this instruction, remove it from memdep!
124  do {
125    Instruction *DeadInst = NowDeadInsts.pop_back_val();
126    ++NumFastOther;
127
128    // This instruction is dead, zap it, in stages.  Start by removing it from
129    // MemDep, which needs to know the operands and needs it to be in the
130    // function.
131    MD.removeInstruction(DeadInst);
132
133    for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
134      Value *Op = DeadInst->getOperand(op);
135      DeadInst->setOperand(op, nullptr);
136
137      // If this operand just became dead, add it to the NowDeadInsts list.
138      if (!Op->use_empty()) continue;
139
140      if (Instruction *OpI = dyn_cast<Instruction>(Op))
141        if (isInstructionTriviallyDead(OpI, TLI))
142          NowDeadInsts.push_back(OpI);
143    }
144
145    DeadInst->eraseFromParent();
146
147    if (ValueSet) ValueSet->remove(DeadInst);
148  } while (!NowDeadInsts.empty());
149}
150
151
152/// hasMemoryWrite - Does this instruction write some memory?  This only returns
153/// true for things that we can analyze with other helpers below.
154static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
155  if (isa<StoreInst>(I))
156    return true;
157  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
158    switch (II->getIntrinsicID()) {
159    default:
160      return false;
161    case Intrinsic::memset:
162    case Intrinsic::memmove:
163    case Intrinsic::memcpy:
164    case Intrinsic::init_trampoline:
165    case Intrinsic::lifetime_end:
166      return true;
167    }
168  }
169  if (CallSite CS = I) {
170    if (Function *F = CS.getCalledFunction()) {
171      if (TLI && TLI->has(LibFunc::strcpy) &&
172          F->getName() == TLI->getName(LibFunc::strcpy)) {
173        return true;
174      }
175      if (TLI && TLI->has(LibFunc::strncpy) &&
176          F->getName() == TLI->getName(LibFunc::strncpy)) {
177        return true;
178      }
179      if (TLI && TLI->has(LibFunc::strcat) &&
180          F->getName() == TLI->getName(LibFunc::strcat)) {
181        return true;
182      }
183      if (TLI && TLI->has(LibFunc::strncat) &&
184          F->getName() == TLI->getName(LibFunc::strncat)) {
185        return true;
186      }
187    }
188  }
189  return false;
190}
191
192/// getLocForWrite - Return a Location stored to by the specified instruction.
193/// If isRemovable returns true, this function and getLocForRead completely
194/// describe the memory operations for this instruction.
195static AliasAnalysis::Location
196getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
197  const DataLayout *DL = AA.getDataLayout();
198  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
199    return AA.getLocation(SI);
200
201  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
202    // memcpy/memmove/memset.
203    AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
204    // If we don't have target data around, an unknown size in Location means
205    // that we should use the size of the pointee type.  This isn't valid for
206    // memset/memcpy, which writes more than an i8.
207    if (Loc.Size == AliasAnalysis::UnknownSize && DL == nullptr)
208      return AliasAnalysis::Location();
209    return Loc;
210  }
211
212  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
213  if (!II) return AliasAnalysis::Location();
214
215  switch (II->getIntrinsicID()) {
216  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
217  case Intrinsic::init_trampoline:
218    // If we don't have target data around, an unknown size in Location means
219    // that we should use the size of the pointee type.  This isn't valid for
220    // init.trampoline, which writes more than an i8.
221    if (!DL) return AliasAnalysis::Location();
222
223    // FIXME: We don't know the size of the trampoline, so we can't really
224    // handle it here.
225    return AliasAnalysis::Location(II->getArgOperand(0));
226  case Intrinsic::lifetime_end: {
227    uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
228    return AliasAnalysis::Location(II->getArgOperand(1), Len);
229  }
230  }
231}
232
233/// getLocForRead - Return the location read by the specified "hasMemoryWrite"
234/// instruction if any.
235static AliasAnalysis::Location
236getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
237  assert(hasMemoryWrite(Inst, AA.getTargetLibraryInfo()) &&
238         "Unknown instruction case");
239
240  // The only instructions that both read and write are the mem transfer
241  // instructions (memcpy/memmove).
242  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
243    return AA.getLocationForSource(MTI);
244  return AliasAnalysis::Location();
245}
246
247
248/// isRemovable - If the value of this instruction and the memory it writes to
249/// is unused, may we delete this instruction?
250static bool isRemovable(Instruction *I) {
251  // Don't remove volatile/atomic stores.
252  if (StoreInst *SI = dyn_cast<StoreInst>(I))
253    return SI->isUnordered();
254
255  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
256    switch (II->getIntrinsicID()) {
257    default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
258    case Intrinsic::lifetime_end:
259      // Never remove dead lifetime_end's, e.g. because it is followed by a
260      // free.
261      return false;
262    case Intrinsic::init_trampoline:
263      // Always safe to remove init_trampoline.
264      return true;
265
266    case Intrinsic::memset:
267    case Intrinsic::memmove:
268    case Intrinsic::memcpy:
269      // Don't remove volatile memory intrinsics.
270      return !cast<MemIntrinsic>(II)->isVolatile();
271    }
272  }
273
274  if (CallSite CS = I)
275    return CS.getInstruction()->use_empty();
276
277  return false;
278}
279
280
281/// isShortenable - Returns true if this instruction can be safely shortened in
282/// length.
283static bool isShortenable(Instruction *I) {
284  // Don't shorten stores for now
285  if (isa<StoreInst>(I))
286    return false;
287
288  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
289    switch (II->getIntrinsicID()) {
290      default: return false;
291      case Intrinsic::memset:
292      case Intrinsic::memcpy:
293        // Do shorten memory intrinsics.
294        return true;
295    }
296  }
297
298  // Don't shorten libcalls calls for now.
299
300  return false;
301}
302
303/// getStoredPointerOperand - Return the pointer that is being written to.
304static Value *getStoredPointerOperand(Instruction *I) {
305  if (StoreInst *SI = dyn_cast<StoreInst>(I))
306    return SI->getPointerOperand();
307  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
308    return MI->getDest();
309
310  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
311    switch (II->getIntrinsicID()) {
312    default: llvm_unreachable("Unexpected intrinsic!");
313    case Intrinsic::init_trampoline:
314      return II->getArgOperand(0);
315    }
316  }
317
318  CallSite CS = I;
319  // All the supported functions so far happen to have dest as their first
320  // argument.
321  return CS.getArgument(0);
322}
323
324static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
325  uint64_t Size;
326  if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
327    return Size;
328  return AliasAnalysis::UnknownSize;
329}
330
331namespace {
332  enum OverwriteResult
333  {
334    OverwriteComplete,
335    OverwriteEnd,
336    OverwriteUnknown
337  };
338}
339
340/// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
341/// completely overwrites a store to the 'Earlier' location.
342/// 'OverwriteEnd' if the end of the 'Earlier' location is completely
343/// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
344static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
345                                   const AliasAnalysis::Location &Earlier,
346                                   AliasAnalysis &AA,
347                                   int64_t &EarlierOff,
348                                   int64_t &LaterOff) {
349  const DataLayout *DL = AA.getDataLayout();
350  const Value *P1 = Earlier.Ptr->stripPointerCasts();
351  const Value *P2 = Later.Ptr->stripPointerCasts();
352
353  // If the start pointers are the same, we just have to compare sizes to see if
354  // the later store was larger than the earlier store.
355  if (P1 == P2) {
356    // If we don't know the sizes of either access, then we can't do a
357    // comparison.
358    if (Later.Size == AliasAnalysis::UnknownSize ||
359        Earlier.Size == AliasAnalysis::UnknownSize) {
360      // If we have no DataLayout information around, then the size of the store
361      // is inferrable from the pointee type.  If they are the same type, then
362      // we know that the store is safe.
363      if (DL == nullptr && Later.Ptr->getType() == Earlier.Ptr->getType())
364        return OverwriteComplete;
365
366      return OverwriteUnknown;
367    }
368
369    // Make sure that the Later size is >= the Earlier size.
370    if (Later.Size >= Earlier.Size)
371      return OverwriteComplete;
372  }
373
374  // Otherwise, we have to have size information, and the later store has to be
375  // larger than the earlier one.
376  if (Later.Size == AliasAnalysis::UnknownSize ||
377      Earlier.Size == AliasAnalysis::UnknownSize || DL == nullptr)
378    return OverwriteUnknown;
379
380  // Check to see if the later store is to the entire object (either a global,
381  // an alloca, or a byval/inalloca argument).  If so, then it clearly
382  // overwrites any other store to the same object.
383  const Value *UO1 = GetUnderlyingObject(P1, DL),
384              *UO2 = GetUnderlyingObject(P2, DL);
385
386  // If we can't resolve the same pointers to the same object, then we can't
387  // analyze them at all.
388  if (UO1 != UO2)
389    return OverwriteUnknown;
390
391  // If the "Later" store is to a recognizable object, get its size.
392  uint64_t ObjectSize = getPointerSize(UO2, AA);
393  if (ObjectSize != AliasAnalysis::UnknownSize)
394    if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
395      return OverwriteComplete;
396
397  // Okay, we have stores to two completely different pointers.  Try to
398  // decompose the pointer into a "base + constant_offset" form.  If the base
399  // pointers are equal, then we can reason about the two stores.
400  EarlierOff = 0;
401  LaterOff = 0;
402  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
403  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
404
405  // If the base pointers still differ, we have two completely different stores.
406  if (BP1 != BP2)
407    return OverwriteUnknown;
408
409  // The later store completely overlaps the earlier store if:
410  //
411  // 1. Both start at the same offset and the later one's size is greater than
412  //    or equal to the earlier one's, or
413  //
414  //      |--earlier--|
415  //      |--   later   --|
416  //
417  // 2. The earlier store has an offset greater than the later offset, but which
418  //    still lies completely within the later store.
419  //
420  //        |--earlier--|
421  //    |-----  later  ------|
422  //
423  // We have to be careful here as *Off is signed while *.Size is unsigned.
424  if (EarlierOff >= LaterOff &&
425      Later.Size >= Earlier.Size &&
426      uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
427    return OverwriteComplete;
428
429  // The other interesting case is if the later store overwrites the end of
430  // the earlier store
431  //
432  //      |--earlier--|
433  //                |--   later   --|
434  //
435  // In this case we may want to trim the size of earlier to avoid generating
436  // writes to addresses which will definitely be overwritten later
437  if (LaterOff > EarlierOff &&
438      LaterOff < int64_t(EarlierOff + Earlier.Size) &&
439      int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
440    return OverwriteEnd;
441
442  // Otherwise, they don't completely overlap.
443  return OverwriteUnknown;
444}
445
446/// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
447/// memory region into an identical pointer) then it doesn't actually make its
448/// input dead in the traditional sense.  Consider this case:
449///
450///   memcpy(A <- B)
451///   memcpy(A <- A)
452///
453/// In this case, the second store to A does not make the first store to A dead.
454/// The usual situation isn't an explicit A<-A store like this (which can be
455/// trivially removed) but a case where two pointers may alias.
456///
457/// This function detects when it is unsafe to remove a dependent instruction
458/// because the DSE inducing instruction may be a self-read.
459static bool isPossibleSelfRead(Instruction *Inst,
460                               const AliasAnalysis::Location &InstStoreLoc,
461                               Instruction *DepWrite, AliasAnalysis &AA) {
462  // Self reads can only happen for instructions that read memory.  Get the
463  // location read.
464  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
465  if (!InstReadLoc.Ptr) return false;  // Not a reading instruction.
466
467  // If the read and written loc obviously don't alias, it isn't a read.
468  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
469
470  // Okay, 'Inst' may copy over itself.  However, we can still remove a the
471  // DepWrite instruction if we can prove that it reads from the same location
472  // as Inst.  This handles useful cases like:
473  //   memcpy(A <- B)
474  //   memcpy(A <- B)
475  // Here we don't know if A/B may alias, but we do know that B/B are must
476  // aliases, so removing the first memcpy is safe (assuming it writes <= #
477  // bytes as the second one.
478  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
479
480  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
481    return false;
482
483  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
484  // then it can't be considered dead.
485  return true;
486}
487
488
489//===----------------------------------------------------------------------===//
490// DSE Pass
491//===----------------------------------------------------------------------===//
492
493bool DSE::runOnBasicBlock(BasicBlock &BB) {
494  bool MadeChange = false;
495
496  // Do a top-down walk on the BB.
497  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
498    Instruction *Inst = BBI++;
499
500    // Handle 'free' calls specially.
501    if (CallInst *F = isFreeCall(Inst, TLI)) {
502      MadeChange |= HandleFree(F);
503      continue;
504    }
505
506    // If we find something that writes memory, get its memory dependence.
507    if (!hasMemoryWrite(Inst, TLI))
508      continue;
509
510    MemDepResult InstDep = MD->getDependency(Inst);
511
512    // Ignore any store where we can't find a local dependence.
513    // FIXME: cross-block DSE would be fun. :)
514    if (!InstDep.isDef() && !InstDep.isClobber())
515      continue;
516
517    // If we're storing the same value back to a pointer that we just
518    // loaded from, then the store can be removed.
519    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
520      if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
521        if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
522            SI->getOperand(0) == DepLoad && isRemovable(SI)) {
523          DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
524                       << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
525
526          // DeleteDeadInstruction can delete the current instruction.  Save BBI
527          // in case we need it.
528          WeakVH NextInst(BBI);
529
530          DeleteDeadInstruction(SI, *MD, TLI);
531
532          if (!NextInst)  // Next instruction deleted.
533            BBI = BB.begin();
534          else if (BBI != BB.begin())  // Revisit this instruction if possible.
535            --BBI;
536          ++NumFastStores;
537          MadeChange = true;
538          continue;
539        }
540      }
541    }
542
543    // Figure out what location is being stored to.
544    AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
545
546    // If we didn't get a useful location, fail.
547    if (!Loc.Ptr)
548      continue;
549
550    while (InstDep.isDef() || InstDep.isClobber()) {
551      // Get the memory clobbered by the instruction we depend on.  MemDep will
552      // skip any instructions that 'Loc' clearly doesn't interact with.  If we
553      // end up depending on a may- or must-aliased load, then we can't optimize
554      // away the store and we bail out.  However, if we depend on on something
555      // that overwrites the memory location we *can* potentially optimize it.
556      //
557      // Find out what memory location the dependent instruction stores.
558      Instruction *DepWrite = InstDep.getInst();
559      AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
560      // If we didn't get a useful location, or if it isn't a size, bail out.
561      if (!DepLoc.Ptr)
562        break;
563
564      // If we find a write that is a) removable (i.e., non-volatile), b) is
565      // completely obliterated by the store to 'Loc', and c) which we know that
566      // 'Inst' doesn't load from, then we can remove it.
567      if (isRemovable(DepWrite) &&
568          !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
569        int64_t InstWriteOffset, DepWriteOffset;
570        OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
571                                         DepWriteOffset, InstWriteOffset);
572        if (OR == OverwriteComplete) {
573          DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
574                << *DepWrite << "\n  KILLER: " << *Inst << '\n');
575
576          // Delete the store and now-dead instructions that feed it.
577          DeleteDeadInstruction(DepWrite, *MD, TLI);
578          ++NumFastStores;
579          MadeChange = true;
580
581          // DeleteDeadInstruction can delete the current instruction in loop
582          // cases, reset BBI.
583          BBI = Inst;
584          if (BBI != BB.begin())
585            --BBI;
586          break;
587        } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
588          // TODO: base this on the target vector size so that if the earlier
589          // store was too small to get vector writes anyway then its likely
590          // a good idea to shorten it
591          // Power of 2 vector writes are probably always a bad idea to optimize
592          // as any store/memset/memcpy is likely using vector instructions so
593          // shortening it to not vector size is likely to be slower
594          MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
595          unsigned DepWriteAlign = DepIntrinsic->getAlignment();
596          if (llvm::isPowerOf2_64(InstWriteOffset) ||
597              ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
598
599            DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
600                  << *DepWrite << "\n  KILLER (offset "
601                  << InstWriteOffset << ", "
602                  << DepLoc.Size << ")"
603                  << *Inst << '\n');
604
605            Value* DepWriteLength = DepIntrinsic->getLength();
606            Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
607                                                    InstWriteOffset -
608                                                    DepWriteOffset);
609            DepIntrinsic->setLength(TrimmedLength);
610            MadeChange = true;
611          }
612        }
613      }
614
615      // If this is a may-aliased store that is clobbering the store value, we
616      // can keep searching past it for another must-aliased pointer that stores
617      // to the same location.  For example, in:
618      //   store -> P
619      //   store -> Q
620      //   store -> P
621      // we can remove the first store to P even though we don't know if P and Q
622      // alias.
623      if (DepWrite == &BB.front()) break;
624
625      // Can't look past this instruction if it might read 'Loc'.
626      if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
627        break;
628
629      InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
630    }
631  }
632
633  // If this block ends in a return, unwind, or unreachable, all allocas are
634  // dead at its end, which means stores to them are also dead.
635  if (BB.getTerminator()->getNumSuccessors() == 0)
636    MadeChange |= handleEndBlock(BB);
637
638  return MadeChange;
639}
640
641/// Find all blocks that will unconditionally lead to the block BB and append
642/// them to F.
643static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
644                                   BasicBlock *BB, DominatorTree *DT) {
645  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
646    BasicBlock *Pred = *I;
647    if (Pred == BB) continue;
648    TerminatorInst *PredTI = Pred->getTerminator();
649    if (PredTI->getNumSuccessors() != 1)
650      continue;
651
652    if (DT->isReachableFromEntry(Pred))
653      Blocks.push_back(Pred);
654  }
655}
656
657/// HandleFree - Handle frees of entire structures whose dependency is a store
658/// to a field of that structure.
659bool DSE::HandleFree(CallInst *F) {
660  bool MadeChange = false;
661
662  AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
663  SmallVector<BasicBlock *, 16> Blocks;
664  Blocks.push_back(F->getParent());
665
666  while (!Blocks.empty()) {
667    BasicBlock *BB = Blocks.pop_back_val();
668    Instruction *InstPt = BB->getTerminator();
669    if (BB == F->getParent()) InstPt = F;
670
671    MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
672    while (Dep.isDef() || Dep.isClobber()) {
673      Instruction *Dependency = Dep.getInst();
674      if (!hasMemoryWrite(Dependency, TLI) || !isRemovable(Dependency))
675        break;
676
677      Value *DepPointer =
678        GetUnderlyingObject(getStoredPointerOperand(Dependency));
679
680      // Check for aliasing.
681      if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
682        break;
683
684      Instruction *Next = std::next(BasicBlock::iterator(Dependency));
685
686      // DCE instructions only used to calculate that store
687      DeleteDeadInstruction(Dependency, *MD, TLI);
688      ++NumFastStores;
689      MadeChange = true;
690
691      // Inst's old Dependency is now deleted. Compute the next dependency,
692      // which may also be dead, as in
693      //    s[0] = 0;
694      //    s[1] = 0; // This has just been deleted.
695      //    free(s);
696      Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
697    }
698
699    if (Dep.isNonLocal())
700      FindUnconditionalPreds(Blocks, BB, DT);
701  }
702
703  return MadeChange;
704}
705
706/// handleEndBlock - Remove dead stores to stack-allocated locations in the
707/// function end block.  Ex:
708/// %A = alloca i32
709/// ...
710/// store i32 1, i32* %A
711/// ret void
712bool DSE::handleEndBlock(BasicBlock &BB) {
713  bool MadeChange = false;
714
715  // Keep track of all of the stack objects that are dead at the end of the
716  // function.
717  SmallSetVector<Value*, 16> DeadStackObjects;
718
719  // Find all of the alloca'd pointers in the entry block.
720  BasicBlock *Entry = BB.getParent()->begin();
721  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
722    if (isa<AllocaInst>(I))
723      DeadStackObjects.insert(I);
724
725    // Okay, so these are dead heap objects, but if the pointer never escapes
726    // then it's leaked by this function anyways.
727    else if (isAllocLikeFn(I, TLI) && !PointerMayBeCaptured(I, true, true))
728      DeadStackObjects.insert(I);
729  }
730
731  // Treat byval or inalloca arguments the same, stores to them are dead at the
732  // end of the function.
733  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
734       AE = BB.getParent()->arg_end(); AI != AE; ++AI)
735    if (AI->hasByValOrInAllocaAttr())
736      DeadStackObjects.insert(AI);
737
738  // Scan the basic block backwards
739  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
740    --BBI;
741
742    // If we find a store, check to see if it points into a dead stack value.
743    if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
744      // See through pointer-to-pointer bitcasts
745      SmallVector<Value *, 4> Pointers;
746      GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
747
748      // Stores to stack values are valid candidates for removal.
749      bool AllDead = true;
750      for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
751           E = Pointers.end(); I != E; ++I)
752        if (!DeadStackObjects.count(*I)) {
753          AllDead = false;
754          break;
755        }
756
757      if (AllDead) {
758        Instruction *Dead = BBI++;
759
760        DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
761                     << *Dead << "\n  Objects: ";
762              for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
763                   E = Pointers.end(); I != E; ++I) {
764                dbgs() << **I;
765                if (std::next(I) != E)
766                  dbgs() << ", ";
767              }
768              dbgs() << '\n');
769
770        // DCE instructions only used to calculate that store.
771        DeleteDeadInstruction(Dead, *MD, TLI, &DeadStackObjects);
772        ++NumFastStores;
773        MadeChange = true;
774        continue;
775      }
776    }
777
778    // Remove any dead non-memory-mutating instructions.
779    if (isInstructionTriviallyDead(BBI, TLI)) {
780      Instruction *Inst = BBI++;
781      DeleteDeadInstruction(Inst, *MD, TLI, &DeadStackObjects);
782      ++NumFastOther;
783      MadeChange = true;
784      continue;
785    }
786
787    if (isa<AllocaInst>(BBI)) {
788      // Remove allocas from the list of dead stack objects; there can't be
789      // any references before the definition.
790      DeadStackObjects.remove(BBI);
791      continue;
792    }
793
794    if (CallSite CS = cast<Value>(BBI)) {
795      // Remove allocation function calls from the list of dead stack objects;
796      // there can't be any references before the definition.
797      if (isAllocLikeFn(BBI, TLI))
798        DeadStackObjects.remove(BBI);
799
800      // If this call does not access memory, it can't be loading any of our
801      // pointers.
802      if (AA->doesNotAccessMemory(CS))
803        continue;
804
805      // If the call might load from any of our allocas, then any store above
806      // the call is live.
807      DeadStackObjects.remove_if([&](Value *I) {
808        // See if the call site touches the value.
809        AliasAnalysis::ModRefResult A =
810            AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
811
812        return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
813      });
814
815      // If all of the allocas were clobbered by the call then we're not going
816      // to find anything else to process.
817      if (DeadStackObjects.empty())
818        break;
819
820      continue;
821    }
822
823    AliasAnalysis::Location LoadedLoc;
824
825    // If we encounter a use of the pointer, it is no longer considered dead
826    if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
827      if (!L->isUnordered()) // Be conservative with atomic/volatile load
828        break;
829      LoadedLoc = AA->getLocation(L);
830    } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
831      LoadedLoc = AA->getLocation(V);
832    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
833      LoadedLoc = AA->getLocationForSource(MTI);
834    } else if (!BBI->mayReadFromMemory()) {
835      // Instruction doesn't read memory.  Note that stores that weren't removed
836      // above will hit this case.
837      continue;
838    } else {
839      // Unknown inst; assume it clobbers everything.
840      break;
841    }
842
843    // Remove any allocas from the DeadPointer set that are loaded, as this
844    // makes any stores above the access live.
845    RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
846
847    // If all of the allocas were clobbered by the access then we're not going
848    // to find anything else to process.
849    if (DeadStackObjects.empty())
850      break;
851  }
852
853  return MadeChange;
854}
855
856/// RemoveAccessedObjects - Check to see if the specified location may alias any
857/// of the stack objects in the DeadStackObjects set.  If so, they become live
858/// because the location is being loaded.
859void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
860                                SmallSetVector<Value*, 16> &DeadStackObjects) {
861  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
862
863  // A constant can't be in the dead pointer set.
864  if (isa<Constant>(UnderlyingPointer))
865    return;
866
867  // If the kill pointer can be easily reduced to an alloca, don't bother doing
868  // extraneous AA queries.
869  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
870    DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
871    return;
872  }
873
874  // Remove objects that could alias LoadedLoc.
875  DeadStackObjects.remove_if([&](Value *I) {
876    // See if the loaded location could alias the stack location.
877    AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
878    return !AA->isNoAlias(StackLoc, LoadedLoc);
879  });
880}
881