SampleProfile.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2//
3//                      The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SampleProfileLoader transformation. This pass
11// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13// profile information in the given profile.
14//
15// This pass generates branch weight annotations on the IR:
16//
17// - prof: Represents branch weights. This annotation is added to branches
18//      to indicate the weights of each edge coming out of the branch.
19//      The weight of each edge is the weight of the target block for
20//      that edge. The weight of a block B is computed as the maximum
21//      number of samples found in B.
22//
23//===----------------------------------------------------------------------===//
24
25#define DEBUG_TYPE "sample-profile"
26
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/ADT/StringRef.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/PostDominators.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DiagnosticInfo.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/InstIterator.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/MDBuilder.h"
44#include "llvm/IR/Metadata.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/LineIterator.h"
50#include "llvm/Support/MemoryBuffer.h"
51#include "llvm/Support/Regex.h"
52#include "llvm/Support/raw_ostream.h"
53#include <cctype>
54
55using namespace llvm;
56
57// Command line option to specify the file to read samples from. This is
58// mainly used for debugging.
59static cl::opt<std::string> SampleProfileFile(
60    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
61    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
62static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
63    "sample-profile-max-propagate-iterations", cl::init(100),
64    cl::desc("Maximum number of iterations to go through when propagating "
65             "sample block/edge weights through the CFG."));
66
67namespace {
68/// \brief Represents the relative location of an instruction.
69///
70/// Instruction locations are specified by the line offset from the
71/// beginning of the function (marked by the line where the function
72/// header is) and the discriminator value within that line.
73///
74/// The discriminator value is useful to distinguish instructions
75/// that are on the same line but belong to different basic blocks
76/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
77struct InstructionLocation {
78  InstructionLocation(int L, unsigned D) : LineOffset(L), Discriminator(D) {}
79  int LineOffset;
80  unsigned Discriminator;
81};
82}
83
84namespace llvm {
85template <> struct DenseMapInfo<InstructionLocation> {
86  typedef DenseMapInfo<int> OffsetInfo;
87  typedef DenseMapInfo<unsigned> DiscriminatorInfo;
88  static inline InstructionLocation getEmptyKey() {
89    return InstructionLocation(OffsetInfo::getEmptyKey(),
90                               DiscriminatorInfo::getEmptyKey());
91  }
92  static inline InstructionLocation getTombstoneKey() {
93    return InstructionLocation(OffsetInfo::getTombstoneKey(),
94                               DiscriminatorInfo::getTombstoneKey());
95  }
96  static inline unsigned getHashValue(InstructionLocation Val) {
97    return DenseMapInfo<std::pair<int, unsigned>>::getHashValue(
98        std::pair<int, unsigned>(Val.LineOffset, Val.Discriminator));
99  }
100  static inline bool isEqual(InstructionLocation LHS, InstructionLocation RHS) {
101    return LHS.LineOffset == RHS.LineOffset &&
102           LHS.Discriminator == RHS.Discriminator;
103  }
104};
105}
106
107namespace {
108typedef DenseMap<InstructionLocation, unsigned> BodySampleMap;
109typedef DenseMap<BasicBlock *, unsigned> BlockWeightMap;
110typedef DenseMap<BasicBlock *, BasicBlock *> EquivalenceClassMap;
111typedef std::pair<BasicBlock *, BasicBlock *> Edge;
112typedef DenseMap<Edge, unsigned> EdgeWeightMap;
113typedef DenseMap<BasicBlock *, SmallVector<BasicBlock *, 8>> BlockEdgeMap;
114
115/// \brief Representation of the runtime profile for a function.
116///
117/// This data structure contains the runtime profile for a given
118/// function. It contains the total number of samples collected
119/// in the function and a map of samples collected in every statement.
120class SampleFunctionProfile {
121public:
122  SampleFunctionProfile()
123      : TotalSamples(0), TotalHeadSamples(0), HeaderLineno(0), DT(0), PDT(0),
124        LI(0), Ctx(0) {}
125
126  unsigned getFunctionLoc(Function &F);
127  bool emitAnnotations(Function &F, DominatorTree *DomTree,
128                       PostDominatorTree *PostDomTree, LoopInfo *Loops);
129  unsigned getInstWeight(Instruction &I);
130  unsigned getBlockWeight(BasicBlock *B);
131  void addTotalSamples(unsigned Num) { TotalSamples += Num; }
132  void addHeadSamples(unsigned Num) { TotalHeadSamples += Num; }
133  void addBodySamples(int LineOffset, unsigned Discriminator, unsigned Num) {
134    assert(LineOffset >= 0);
135    BodySamples[InstructionLocation(LineOffset, Discriminator)] += Num;
136  }
137  void print(raw_ostream &OS);
138  void printEdgeWeight(raw_ostream &OS, Edge E);
139  void printBlockWeight(raw_ostream &OS, BasicBlock *BB);
140  void printBlockEquivalence(raw_ostream &OS, BasicBlock *BB);
141  bool computeBlockWeights(Function &F);
142  void findEquivalenceClasses(Function &F);
143  void findEquivalencesFor(BasicBlock *BB1,
144                           SmallVector<BasicBlock *, 8> Descendants,
145                           DominatorTreeBase<BasicBlock> *DomTree);
146  void propagateWeights(Function &F);
147  unsigned visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
148  void buildEdges(Function &F);
149  bool propagateThroughEdges(Function &F);
150  bool empty() { return BodySamples.empty(); }
151
152protected:
153  /// \brief Total number of samples collected inside this function.
154  ///
155  /// Samples are cumulative, they include all the samples collected
156  /// inside this function and all its inlined callees.
157  unsigned TotalSamples;
158
159  /// \brief Total number of samples collected at the head of the function.
160  /// FIXME: Use head samples to estimate a cold/hot attribute for the function.
161  unsigned TotalHeadSamples;
162
163  /// \brief Line number for the function header. Used to compute relative
164  /// line numbers from the absolute line LOCs found in instruction locations.
165  /// The relative line numbers are needed to address the samples from the
166  /// profile file.
167  unsigned HeaderLineno;
168
169  /// \brief Map line offsets to collected samples.
170  ///
171  /// Each entry in this map contains the number of samples
172  /// collected at the corresponding line offset. All line locations
173  /// are an offset from the start of the function.
174  BodySampleMap BodySamples;
175
176  /// \brief Map basic blocks to their computed weights.
177  ///
178  /// The weight of a basic block is defined to be the maximum
179  /// of all the instruction weights in that block.
180  BlockWeightMap BlockWeights;
181
182  /// \brief Map edges to their computed weights.
183  ///
184  /// Edge weights are computed by propagating basic block weights in
185  /// SampleProfile::propagateWeights.
186  EdgeWeightMap EdgeWeights;
187
188  /// \brief Set of visited blocks during propagation.
189  SmallPtrSet<BasicBlock *, 128> VisitedBlocks;
190
191  /// \brief Set of visited edges during propagation.
192  SmallSet<Edge, 128> VisitedEdges;
193
194  /// \brief Equivalence classes for block weights.
195  ///
196  /// Two blocks BB1 and BB2 are in the same equivalence class if they
197  /// dominate and post-dominate each other, and they are in the same loop
198  /// nest. When this happens, the two blocks are guaranteed to execute
199  /// the same number of times.
200  EquivalenceClassMap EquivalenceClass;
201
202  /// \brief Dominance, post-dominance and loop information.
203  DominatorTree *DT;
204  PostDominatorTree *PDT;
205  LoopInfo *LI;
206
207  /// \brief Predecessors for each basic block in the CFG.
208  BlockEdgeMap Predecessors;
209
210  /// \brief Successors for each basic block in the CFG.
211  BlockEdgeMap Successors;
212
213  /// \brief LLVM context holding the debug data we need.
214  LLVMContext *Ctx;
215};
216
217/// \brief Sample-based profile reader.
218///
219/// Each profile contains sample counts for all the functions
220/// executed. Inside each function, statements are annotated with the
221/// collected samples on all the instructions associated with that
222/// statement.
223///
224/// For this to produce meaningful data, the program needs to be
225/// compiled with some debug information (at minimum, line numbers:
226/// -gline-tables-only). Otherwise, it will be impossible to match IR
227/// instructions to the line numbers collected by the profiler.
228///
229/// From the profile file, we are interested in collecting the
230/// following information:
231///
232/// * A list of functions included in the profile (mangled names).
233///
234/// * For each function F:
235///   1. The total number of samples collected in F.
236///
237///   2. The samples collected at each line in F. To provide some
238///      protection against source code shuffling, line numbers should
239///      be relative to the start of the function.
240class SampleModuleProfile {
241public:
242  SampleModuleProfile(const Module &M, StringRef F)
243      : Profiles(0), Filename(F), M(M) {}
244
245  void dump();
246  bool loadText();
247  void loadNative() { llvm_unreachable("not implemented"); }
248  void printFunctionProfile(raw_ostream &OS, StringRef FName);
249  void dumpFunctionProfile(StringRef FName);
250  SampleFunctionProfile &getProfile(const Function &F) {
251    return Profiles[F.getName()];
252  }
253
254  /// \brief Report a parse error message.
255  void reportParseError(int64_t LineNumber, Twine Msg) const {
256    DiagnosticInfoSampleProfile Diag(Filename.data(), LineNumber, Msg);
257    M.getContext().diagnose(Diag);
258  }
259
260protected:
261  /// \brief Map every function to its associated profile.
262  ///
263  /// The profile of every function executed at runtime is collected
264  /// in the structure SampleFunctionProfile. This maps function objects
265  /// to their corresponding profiles.
266  StringMap<SampleFunctionProfile> Profiles;
267
268  /// \brief Path name to the file holding the profile data.
269  ///
270  /// The format of this file is defined by each profiler
271  /// independently. If possible, the profiler should have a text
272  /// version of the profile format to be used in constructing test
273  /// cases and debugging.
274  StringRef Filename;
275
276  /// \brief Module being compiled. Used mainly to access the current
277  /// LLVM context for diagnostics.
278  const Module &M;
279};
280
281/// \brief Sample profile pass.
282///
283/// This pass reads profile data from the file specified by
284/// -sample-profile-file and annotates every affected function with the
285/// profile information found in that file.
286class SampleProfileLoader : public FunctionPass {
287public:
288  // Class identification, replacement for typeinfo
289  static char ID;
290
291  SampleProfileLoader(StringRef Name = SampleProfileFile)
292      : FunctionPass(ID), Profiler(), Filename(Name), ProfileIsValid(false) {
293    initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
294  }
295
296  bool doInitialization(Module &M) override;
297
298  void dump() { Profiler->dump(); }
299
300  const char *getPassName() const override { return "Sample profile pass"; }
301
302  bool runOnFunction(Function &F) override;
303
304  void getAnalysisUsage(AnalysisUsage &AU) const override {
305    AU.setPreservesCFG();
306    AU.addRequired<LoopInfo>();
307    AU.addRequired<DominatorTreeWrapperPass>();
308    AU.addRequired<PostDominatorTree>();
309  }
310
311protected:
312  /// \brief Profile reader object.
313  std::unique_ptr<SampleModuleProfile> Profiler;
314
315  /// \brief Name of the profile file to load.
316  StringRef Filename;
317
318  /// \brief Flag indicating whether the profile input loaded succesfully.
319  bool ProfileIsValid;
320};
321}
322
323/// \brief Print this function profile on stream \p OS.
324///
325/// \param OS Stream to emit the output to.
326void SampleFunctionProfile::print(raw_ostream &OS) {
327  OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
328     << " sampled lines\n";
329  for (BodySampleMap::const_iterator SI = BodySamples.begin(),
330                                     SE = BodySamples.end();
331       SI != SE; ++SI)
332    OS << "\tline offset: " << SI->first.LineOffset
333       << ", discriminator: " << SI->first.Discriminator
334       << ", number of samples: " << SI->second << "\n";
335  OS << "\n";
336}
337
338/// \brief Print the weight of edge \p E on stream \p OS.
339///
340/// \param OS  Stream to emit the output to.
341/// \param E  Edge to print.
342void SampleFunctionProfile::printEdgeWeight(raw_ostream &OS, Edge E) {
343  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
344     << "]: " << EdgeWeights[E] << "\n";
345}
346
347/// \brief Print the equivalence class of block \p BB on stream \p OS.
348///
349/// \param OS  Stream to emit the output to.
350/// \param BB  Block to print.
351void SampleFunctionProfile::printBlockEquivalence(raw_ostream &OS,
352                                                  BasicBlock *BB) {
353  BasicBlock *Equiv = EquivalenceClass[BB];
354  OS << "equivalence[" << BB->getName()
355     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
356}
357
358/// \brief Print the weight of block \p BB on stream \p OS.
359///
360/// \param OS  Stream to emit the output to.
361/// \param BB  Block to print.
362void SampleFunctionProfile::printBlockWeight(raw_ostream &OS, BasicBlock *BB) {
363  OS << "weight[" << BB->getName() << "]: " << BlockWeights[BB] << "\n";
364}
365
366/// \brief Print the function profile for \p FName on stream \p OS.
367///
368/// \param OS Stream to emit the output to.
369/// \param FName Name of the function to print.
370void SampleModuleProfile::printFunctionProfile(raw_ostream &OS,
371                                               StringRef FName) {
372  OS << "Function: " << FName << ":\n";
373  Profiles[FName].print(OS);
374}
375
376/// \brief Dump the function profile for \p FName.
377///
378/// \param FName Name of the function to print.
379void SampleModuleProfile::dumpFunctionProfile(StringRef FName) {
380  printFunctionProfile(dbgs(), FName);
381}
382
383/// \brief Dump all the function profiles found.
384void SampleModuleProfile::dump() {
385  for (StringMap<SampleFunctionProfile>::const_iterator I = Profiles.begin(),
386                                                        E = Profiles.end();
387       I != E; ++I)
388    dumpFunctionProfile(I->getKey());
389}
390
391/// \brief Load samples from a text file.
392///
393/// The file contains a list of samples for every function executed at
394/// runtime. Each function profile has the following format:
395///
396///    function1:total_samples:total_head_samples
397///    offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
398///    offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
399///    ...
400///    offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
401///
402/// Function names must be mangled in order for the profile loader to
403/// match them in the current translation unit. The two numbers in the
404/// function header specify how many total samples were accumulated in
405/// the function (first number), and the total number of samples accumulated
406/// at the prologue of the function (second number). This head sample
407/// count provides an indicator of how frequent is the function invoked.
408///
409/// Each sampled line may contain several items. Some are optional
410/// (marked below):
411///
412/// a- Source line offset. This number represents the line number
413///    in the function where the sample was collected. The line number
414///    is always relative to the line where symbol of the function
415///    is defined. So, if the function has its header at line 280,
416///    the offset 13 is at line 293 in the file.
417///
418/// b- [OPTIONAL] Discriminator. This is used if the sampled program
419///    was compiled with DWARF discriminator support
420///    (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators)
421///
422/// c- Number of samples. This is the number of samples collected by
423///    the profiler at this source location.
424///
425/// d- [OPTIONAL] Potential call targets and samples. If present, this
426///    line contains a call instruction. This models both direct and
427///    indirect calls. Each called target is listed together with the
428///    number of samples. For example,
429///
430///    130: 7  foo:3  bar:2  baz:7
431///
432///    The above means that at relative line offset 130 there is a
433///    call instruction that calls one of foo(), bar() and baz(). With
434///    baz() being the relatively more frequent call target.
435///
436///    FIXME: This is currently unhandled, but it has a lot of
437///           potential for aiding the inliner.
438///
439///
440/// Since this is a flat profile, a function that shows up more than
441/// once gets all its samples aggregated across all its instances.
442///
443/// FIXME: flat profiles are too imprecise to provide good optimization
444///        opportunities. Convert them to context-sensitive profile.
445///
446/// This textual representation is useful to generate unit tests and
447/// for debugging purposes, but it should not be used to generate
448/// profiles for large programs, as the representation is extremely
449/// inefficient.
450///
451/// \returns true if the file was loaded successfully, false otherwise.
452bool SampleModuleProfile::loadText() {
453  std::unique_ptr<MemoryBuffer> Buffer;
454  error_code EC = MemoryBuffer::getFile(Filename, Buffer);
455  if (EC) {
456    std::string Msg(EC.message());
457    M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
458    return false;
459  }
460  line_iterator LineIt(*Buffer, '#');
461
462  // Read the profile of each function. Since each function may be
463  // mentioned more than once, and we are collecting flat profiles,
464  // accumulate samples as we parse them.
465  Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
466  Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
467  while (!LineIt.is_at_eof()) {
468    // Read the header of each function.
469    //
470    // Note that for function identifiers we are actually expecting
471    // mangled names, but we may not always get them. This happens when
472    // the compiler decides not to emit the function (e.g., it was inlined
473    // and removed). In this case, the binary will not have the linkage
474    // name for the function, so the profiler will emit the function's
475    // unmangled name, which may contain characters like ':' and '>' in its
476    // name (member functions, templates, etc).
477    //
478    // The only requirement we place on the identifier, then, is that it
479    // should not begin with a number.
480    SmallVector<StringRef, 3> Matches;
481    if (!HeadRE.match(*LineIt, &Matches)) {
482      reportParseError(LineIt.line_number(),
483                       "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
484      return false;
485    }
486    assert(Matches.size() == 4);
487    StringRef FName = Matches[1];
488    unsigned NumSamples, NumHeadSamples;
489    Matches[2].getAsInteger(10, NumSamples);
490    Matches[3].getAsInteger(10, NumHeadSamples);
491    Profiles[FName] = SampleFunctionProfile();
492    SampleFunctionProfile &FProfile = Profiles[FName];
493    FProfile.addTotalSamples(NumSamples);
494    FProfile.addHeadSamples(NumHeadSamples);
495    ++LineIt;
496
497    // Now read the body. The body of the function ends when we reach
498    // EOF or when we see the start of the next function.
499    while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
500      if (!LineSample.match(*LineIt, &Matches)) {
501        reportParseError(
502            LineIt.line_number(),
503            "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
504        return false;
505      }
506      assert(Matches.size() == 5);
507      unsigned LineOffset, NumSamples, Discriminator = 0;
508      Matches[1].getAsInteger(10, LineOffset);
509      if (Matches[2] != "")
510        Matches[2].getAsInteger(10, Discriminator);
511      Matches[3].getAsInteger(10, NumSamples);
512
513      // FIXME: Handle called targets (in Matches[4]).
514
515      // When dealing with instruction weights, we use the value
516      // zero to indicate the absence of a sample. If we read an
517      // actual zero from the profile file, return it as 1 to
518      // avoid the confusion later on.
519      if (NumSamples == 0)
520        NumSamples = 1;
521      FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
522      ++LineIt;
523    }
524  }
525
526  return true;
527}
528
529/// \brief Get the weight for an instruction.
530///
531/// The "weight" of an instruction \p Inst is the number of samples
532/// collected on that instruction at runtime. To retrieve it, we
533/// need to compute the line number of \p Inst relative to the start of its
534/// function. We use HeaderLineno to compute the offset. We then
535/// look up the samples collected for \p Inst using BodySamples.
536///
537/// \param Inst Instruction to query.
538///
539/// \returns The profiled weight of I.
540unsigned SampleFunctionProfile::getInstWeight(Instruction &Inst) {
541  DebugLoc DLoc = Inst.getDebugLoc();
542  unsigned Lineno = DLoc.getLine();
543  if (Lineno < HeaderLineno)
544    return 0;
545
546  DILocation DIL(DLoc.getAsMDNode(*Ctx));
547  int LOffset = Lineno - HeaderLineno;
548  unsigned Discriminator = DIL.getDiscriminator();
549  unsigned Weight =
550      BodySamples.lookup(InstructionLocation(LOffset, Discriminator));
551  DEBUG(dbgs() << "    " << Lineno << "." << Discriminator << ":" << Inst
552               << " (line offset: " << LOffset << "." << Discriminator
553               << " - weight: " << Weight << ")\n");
554  return Weight;
555}
556
557/// \brief Compute the weight of a basic block.
558///
559/// The weight of basic block \p B is the maximum weight of all the
560/// instructions in B. The weight of \p B is computed and cached in
561/// the BlockWeights map.
562///
563/// \param B The basic block to query.
564///
565/// \returns The computed weight of B.
566unsigned SampleFunctionProfile::getBlockWeight(BasicBlock *B) {
567  // If we've computed B's weight before, return it.
568  std::pair<BlockWeightMap::iterator, bool> Entry =
569      BlockWeights.insert(std::make_pair(B, 0));
570  if (!Entry.second)
571    return Entry.first->second;
572
573  // Otherwise, compute and cache B's weight.
574  unsigned Weight = 0;
575  for (BasicBlock::iterator I = B->begin(), E = B->end(); I != E; ++I) {
576    unsigned InstWeight = getInstWeight(*I);
577    if (InstWeight > Weight)
578      Weight = InstWeight;
579  }
580  Entry.first->second = Weight;
581  return Weight;
582}
583
584/// \brief Compute and store the weights of every basic block.
585///
586/// This populates the BlockWeights map by computing
587/// the weights of every basic block in the CFG.
588///
589/// \param F The function to query.
590bool SampleFunctionProfile::computeBlockWeights(Function &F) {
591  bool Changed = false;
592  DEBUG(dbgs() << "Block weights\n");
593  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
594    unsigned Weight = getBlockWeight(B);
595    Changed |= (Weight > 0);
596    DEBUG(printBlockWeight(dbgs(), B));
597  }
598
599  return Changed;
600}
601
602/// \brief Find equivalence classes for the given block.
603///
604/// This finds all the blocks that are guaranteed to execute the same
605/// number of times as \p BB1. To do this, it traverses all the the
606/// descendants of \p BB1 in the dominator or post-dominator tree.
607///
608/// A block BB2 will be in the same equivalence class as \p BB1 if
609/// the following holds:
610///
611/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
612///    is a descendant of \p BB1 in the dominator tree, then BB2 should
613///    dominate BB1 in the post-dominator tree.
614///
615/// 2- Both BB2 and \p BB1 must be in the same loop.
616///
617/// For every block BB2 that meets those two requirements, we set BB2's
618/// equivalence class to \p BB1.
619///
620/// \param BB1  Block to check.
621/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
622/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
623///                 with blocks from \p BB1's dominator tree, then
624///                 this is the post-dominator tree, and vice versa.
625void SampleFunctionProfile::findEquivalencesFor(
626    BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
627    DominatorTreeBase<BasicBlock> *DomTree) {
628  for (SmallVectorImpl<BasicBlock *>::iterator I = Descendants.begin(),
629                                               E = Descendants.end();
630       I != E; ++I) {
631    BasicBlock *BB2 = *I;
632    bool IsDomParent = DomTree->dominates(BB2, BB1);
633    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
634    if (BB1 != BB2 && VisitedBlocks.insert(BB2) && IsDomParent &&
635        IsInSameLoop) {
636      EquivalenceClass[BB2] = BB1;
637
638      // If BB2 is heavier than BB1, make BB2 have the same weight
639      // as BB1.
640      //
641      // Note that we don't worry about the opposite situation here
642      // (when BB2 is lighter than BB1). We will deal with this
643      // during the propagation phase. Right now, we just want to
644      // make sure that BB1 has the largest weight of all the
645      // members of its equivalence set.
646      unsigned &BB1Weight = BlockWeights[BB1];
647      unsigned &BB2Weight = BlockWeights[BB2];
648      BB1Weight = std::max(BB1Weight, BB2Weight);
649    }
650  }
651}
652
653/// \brief Find equivalence classes.
654///
655/// Since samples may be missing from blocks, we can fill in the gaps by setting
656/// the weights of all the blocks in the same equivalence class to the same
657/// weight. To compute the concept of equivalence, we use dominance and loop
658/// information. Two blocks B1 and B2 are in the same equivalence class if B1
659/// dominates B2, B2 post-dominates B1 and both are in the same loop.
660///
661/// \param F The function to query.
662void SampleFunctionProfile::findEquivalenceClasses(Function &F) {
663  SmallVector<BasicBlock *, 8> DominatedBBs;
664  DEBUG(dbgs() << "\nBlock equivalence classes\n");
665  // Find equivalence sets based on dominance and post-dominance information.
666  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
667    BasicBlock *BB1 = B;
668
669    // Compute BB1's equivalence class once.
670    if (EquivalenceClass.count(BB1)) {
671      DEBUG(printBlockEquivalence(dbgs(), BB1));
672      continue;
673    }
674
675    // By default, blocks are in their own equivalence class.
676    EquivalenceClass[BB1] = BB1;
677
678    // Traverse all the blocks dominated by BB1. We are looking for
679    // every basic block BB2 such that:
680    //
681    // 1- BB1 dominates BB2.
682    // 2- BB2 post-dominates BB1.
683    // 3- BB1 and BB2 are in the same loop nest.
684    //
685    // If all those conditions hold, it means that BB2 is executed
686    // as many times as BB1, so they are placed in the same equivalence
687    // class by making BB2's equivalence class be BB1.
688    DominatedBBs.clear();
689    DT->getDescendants(BB1, DominatedBBs);
690    findEquivalencesFor(BB1, DominatedBBs, PDT->DT);
691
692    // Repeat the same logic for all the blocks post-dominated by BB1.
693    // We are looking for every basic block BB2 such that:
694    //
695    // 1- BB1 post-dominates BB2.
696    // 2- BB2 dominates BB1.
697    // 3- BB1 and BB2 are in the same loop nest.
698    //
699    // If all those conditions hold, BB2's equivalence class is BB1.
700    DominatedBBs.clear();
701    PDT->getDescendants(BB1, DominatedBBs);
702    findEquivalencesFor(BB1, DominatedBBs, DT);
703
704    DEBUG(printBlockEquivalence(dbgs(), BB1));
705  }
706
707  // Assign weights to equivalence classes.
708  //
709  // All the basic blocks in the same equivalence class will execute
710  // the same number of times. Since we know that the head block in
711  // each equivalence class has the largest weight, assign that weight
712  // to all the blocks in that equivalence class.
713  DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
714  for (Function::iterator B = F.begin(), E = F.end(); B != E; ++B) {
715    BasicBlock *BB = B;
716    BasicBlock *EquivBB = EquivalenceClass[BB];
717    if (BB != EquivBB)
718      BlockWeights[BB] = BlockWeights[EquivBB];
719    DEBUG(printBlockWeight(dbgs(), BB));
720  }
721}
722
723/// \brief Visit the given edge to decide if it has a valid weight.
724///
725/// If \p E has not been visited before, we copy to \p UnknownEdge
726/// and increment the count of unknown edges.
727///
728/// \param E  Edge to visit.
729/// \param NumUnknownEdges  Current number of unknown edges.
730/// \param UnknownEdge  Set if E has not been visited before.
731///
732/// \returns E's weight, if known. Otherwise, return 0.
733unsigned SampleFunctionProfile::visitEdge(Edge E, unsigned *NumUnknownEdges,
734                                          Edge *UnknownEdge) {
735  if (!VisitedEdges.count(E)) {
736    (*NumUnknownEdges)++;
737    *UnknownEdge = E;
738    return 0;
739  }
740
741  return EdgeWeights[E];
742}
743
744/// \brief Propagate weights through incoming/outgoing edges.
745///
746/// If the weight of a basic block is known, and there is only one edge
747/// with an unknown weight, we can calculate the weight of that edge.
748///
749/// Similarly, if all the edges have a known count, we can calculate the
750/// count of the basic block, if needed.
751///
752/// \param F  Function to process.
753///
754/// \returns  True if new weights were assigned to edges or blocks.
755bool SampleFunctionProfile::propagateThroughEdges(Function &F) {
756  bool Changed = false;
757  DEBUG(dbgs() << "\nPropagation through edges\n");
758  for (Function::iterator BI = F.begin(), EI = F.end(); BI != EI; ++BI) {
759    BasicBlock *BB = BI;
760
761    // Visit all the predecessor and successor edges to determine
762    // which ones have a weight assigned already. Note that it doesn't
763    // matter that we only keep track of a single unknown edge. The
764    // only case we are interested in handling is when only a single
765    // edge is unknown (see setEdgeOrBlockWeight).
766    for (unsigned i = 0; i < 2; i++) {
767      unsigned TotalWeight = 0;
768      unsigned NumUnknownEdges = 0;
769      Edge UnknownEdge, SelfReferentialEdge;
770
771      if (i == 0) {
772        // First, visit all predecessor edges.
773        for (size_t I = 0; I < Predecessors[BB].size(); I++) {
774          Edge E = std::make_pair(Predecessors[BB][I], BB);
775          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
776          if (E.first == E.second)
777            SelfReferentialEdge = E;
778        }
779      } else {
780        // On the second round, visit all successor edges.
781        for (size_t I = 0; I < Successors[BB].size(); I++) {
782          Edge E = std::make_pair(BB, Successors[BB][I]);
783          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
784        }
785      }
786
787      // After visiting all the edges, there are three cases that we
788      // can handle immediately:
789      //
790      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
791      //   In this case, we simply check that the sum of all the edges
792      //   is the same as BB's weight. If not, we change BB's weight
793      //   to match. Additionally, if BB had not been visited before,
794      //   we mark it visited.
795      //
796      // - Only one edge is unknown and BB has already been visited.
797      //   In this case, we can compute the weight of the edge by
798      //   subtracting the total block weight from all the known
799      //   edge weights. If the edges weight more than BB, then the
800      //   edge of the last remaining edge is set to zero.
801      //
802      // - There exists a self-referential edge and the weight of BB is
803      //   known. In this case, this edge can be based on BB's weight.
804      //   We add up all the other known edges and set the weight on
805      //   the self-referential edge as we did in the previous case.
806      //
807      // In any other case, we must continue iterating. Eventually,
808      // all edges will get a weight, or iteration will stop when
809      // it reaches SampleProfileMaxPropagateIterations.
810      if (NumUnknownEdges <= 1) {
811        unsigned &BBWeight = BlockWeights[BB];
812        if (NumUnknownEdges == 0) {
813          // If we already know the weight of all edges, the weight of the
814          // basic block can be computed. It should be no larger than the sum
815          // of all edge weights.
816          if (TotalWeight > BBWeight) {
817            BBWeight = TotalWeight;
818            Changed = true;
819            DEBUG(dbgs() << "All edge weights for " << BB->getName()
820                         << " known. Set weight for block: ";
821                  printBlockWeight(dbgs(), BB););
822          }
823          if (VisitedBlocks.insert(BB))
824            Changed = true;
825        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(BB)) {
826          // If there is a single unknown edge and the block has been
827          // visited, then we can compute E's weight.
828          if (BBWeight >= TotalWeight)
829            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
830          else
831            EdgeWeights[UnknownEdge] = 0;
832          VisitedEdges.insert(UnknownEdge);
833          Changed = true;
834          DEBUG(dbgs() << "Set weight for edge: ";
835                printEdgeWeight(dbgs(), UnknownEdge));
836        }
837      } else if (SelfReferentialEdge.first && VisitedBlocks.count(BB)) {
838        unsigned &BBWeight = BlockWeights[BB];
839        // We have a self-referential edge and the weight of BB is known.
840        if (BBWeight >= TotalWeight)
841          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
842        else
843          EdgeWeights[SelfReferentialEdge] = 0;
844        VisitedEdges.insert(SelfReferentialEdge);
845        Changed = true;
846        DEBUG(dbgs() << "Set self-referential edge weight to: ";
847              printEdgeWeight(dbgs(), SelfReferentialEdge));
848      }
849    }
850  }
851
852  return Changed;
853}
854
855/// \brief Build in/out edge lists for each basic block in the CFG.
856///
857/// We are interested in unique edges. If a block B1 has multiple
858/// edges to another block B2, we only add a single B1->B2 edge.
859void SampleFunctionProfile::buildEdges(Function &F) {
860  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
861    BasicBlock *B1 = I;
862
863    // Add predecessors for B1.
864    SmallPtrSet<BasicBlock *, 16> Visited;
865    if (!Predecessors[B1].empty())
866      llvm_unreachable("Found a stale predecessors list in a basic block.");
867    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
868      BasicBlock *B2 = *PI;
869      if (Visited.insert(B2))
870        Predecessors[B1].push_back(B2);
871    }
872
873    // Add successors for B1.
874    Visited.clear();
875    if (!Successors[B1].empty())
876      llvm_unreachable("Found a stale successors list in a basic block.");
877    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
878      BasicBlock *B2 = *SI;
879      if (Visited.insert(B2))
880        Successors[B1].push_back(B2);
881    }
882  }
883}
884
885/// \brief Propagate weights into edges
886///
887/// The following rules are applied to every block B in the CFG:
888///
889/// - If B has a single predecessor/successor, then the weight
890///   of that edge is the weight of the block.
891///
892/// - If all incoming or outgoing edges are known except one, and the
893///   weight of the block is already known, the weight of the unknown
894///   edge will be the weight of the block minus the sum of all the known
895///   edges. If the sum of all the known edges is larger than B's weight,
896///   we set the unknown edge weight to zero.
897///
898/// - If there is a self-referential edge, and the weight of the block is
899///   known, the weight for that edge is set to the weight of the block
900///   minus the weight of the other incoming edges to that block (if
901///   known).
902void SampleFunctionProfile::propagateWeights(Function &F) {
903  bool Changed = true;
904  unsigned i = 0;
905
906  // Before propagation starts, build, for each block, a list of
907  // unique predecessors and successors. This is necessary to handle
908  // identical edges in multiway branches. Since we visit all blocks and all
909  // edges of the CFG, it is cleaner to build these lists once at the start
910  // of the pass.
911  buildEdges(F);
912
913  // Propagate until we converge or we go past the iteration limit.
914  while (Changed && i++ < SampleProfileMaxPropagateIterations) {
915    Changed = propagateThroughEdges(F);
916  }
917
918  // Generate MD_prof metadata for every branch instruction using the
919  // edge weights computed during propagation.
920  DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
921  MDBuilder MDB(F.getContext());
922  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
923    BasicBlock *B = I;
924    TerminatorInst *TI = B->getTerminator();
925    if (TI->getNumSuccessors() == 1)
926      continue;
927    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
928      continue;
929
930    DEBUG(dbgs() << "\nGetting weights for branch at line "
931                 << TI->getDebugLoc().getLine() << ".\n");
932    SmallVector<unsigned, 4> Weights;
933    bool AllWeightsZero = true;
934    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
935      BasicBlock *Succ = TI->getSuccessor(I);
936      Edge E = std::make_pair(B, Succ);
937      unsigned Weight = EdgeWeights[E];
938      DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
939      Weights.push_back(Weight);
940      if (Weight != 0)
941        AllWeightsZero = false;
942    }
943
944    // Only set weights if there is at least one non-zero weight.
945    // In any other case, let the analyzer set weights.
946    if (!AllWeightsZero) {
947      DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
948      TI->setMetadata(llvm::LLVMContext::MD_prof,
949                      MDB.createBranchWeights(Weights));
950    } else {
951      DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
952    }
953  }
954}
955
956/// \brief Get the line number for the function header.
957///
958/// This looks up function \p F in the current compilation unit and
959/// retrieves the line number where the function is defined. This is
960/// line 0 for all the samples read from the profile file. Every line
961/// number is relative to this line.
962///
963/// \param F  Function object to query.
964///
965/// \returns the line number where \p F is defined. If it returns 0,
966///          it means that there is no debug information available for \p F.
967unsigned SampleFunctionProfile::getFunctionLoc(Function &F) {
968  NamedMDNode *CUNodes = F.getParent()->getNamedMetadata("llvm.dbg.cu");
969  if (CUNodes) {
970    for (unsigned I = 0, E1 = CUNodes->getNumOperands(); I != E1; ++I) {
971      DICompileUnit CU(CUNodes->getOperand(I));
972      DIArray Subprograms = CU.getSubprograms();
973      for (unsigned J = 0, E2 = Subprograms.getNumElements(); J != E2; ++J) {
974        DISubprogram Subprogram(Subprograms.getElement(J));
975        if (Subprogram.describes(&F))
976          return Subprogram.getLineNumber();
977      }
978    }
979  }
980
981  F.getContext().diagnose(DiagnosticInfoSampleProfile(
982      "No debug information found in function " + F.getName()));
983  return 0;
984}
985
986/// \brief Generate branch weight metadata for all branches in \p F.
987///
988/// Branch weights are computed out of instruction samples using a
989/// propagation heuristic. Propagation proceeds in 3 phases:
990///
991/// 1- Assignment of block weights. All the basic blocks in the function
992///    are initial assigned the same weight as their most frequently
993///    executed instruction.
994///
995/// 2- Creation of equivalence classes. Since samples may be missing from
996///    blocks, we can fill in the gaps by setting the weights of all the
997///    blocks in the same equivalence class to the same weight. To compute
998///    the concept of equivalence, we use dominance and loop information.
999///    Two blocks B1 and B2 are in the same equivalence class if B1
1000///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1001///
1002/// 3- Propagation of block weights into edges. This uses a simple
1003///    propagation heuristic. The following rules are applied to every
1004///    block B in the CFG:
1005///
1006///    - If B has a single predecessor/successor, then the weight
1007///      of that edge is the weight of the block.
1008///
1009///    - If all the edges are known except one, and the weight of the
1010///      block is already known, the weight of the unknown edge will
1011///      be the weight of the block minus the sum of all the known
1012///      edges. If the sum of all the known edges is larger than B's weight,
1013///      we set the unknown edge weight to zero.
1014///
1015///    - If there is a self-referential edge, and the weight of the block is
1016///      known, the weight for that edge is set to the weight of the block
1017///      minus the weight of the other incoming edges to that block (if
1018///      known).
1019///
1020/// Since this propagation is not guaranteed to finalize for every CFG, we
1021/// only allow it to proceed for a limited number of iterations (controlled
1022/// by -sample-profile-max-propagate-iterations).
1023///
1024/// FIXME: Try to replace this propagation heuristic with a scheme
1025/// that is guaranteed to finalize. A work-list approach similar to
1026/// the standard value propagation algorithm used by SSA-CCP might
1027/// work here.
1028///
1029/// Once all the branch weights are computed, we emit the MD_prof
1030/// metadata on B using the computed values for each of its branches.
1031///
1032/// \param F The function to query.
1033///
1034/// \returns true if \p F was modified. Returns false, otherwise.
1035bool SampleFunctionProfile::emitAnnotations(Function &F, DominatorTree *DomTree,
1036                                            PostDominatorTree *PostDomTree,
1037                                            LoopInfo *Loops) {
1038  bool Changed = false;
1039
1040  // Initialize invariants used during computation and propagation.
1041  HeaderLineno = getFunctionLoc(F);
1042  if (HeaderLineno == 0)
1043    return false;
1044
1045  DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1046               << ": " << HeaderLineno << "\n");
1047  DT = DomTree;
1048  PDT = PostDomTree;
1049  LI = Loops;
1050  Ctx = &F.getParent()->getContext();
1051
1052  // Compute basic block weights.
1053  Changed |= computeBlockWeights(F);
1054
1055  if (Changed) {
1056    // Find equivalence classes.
1057    findEquivalenceClasses(F);
1058
1059    // Propagate weights to all edges.
1060    propagateWeights(F);
1061  }
1062
1063  return Changed;
1064}
1065
1066char SampleProfileLoader::ID = 0;
1067INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
1068                      "Sample Profile loader", false, false)
1069INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1070INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
1071INITIALIZE_PASS_DEPENDENCY(LoopInfo)
1072INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
1073INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
1074                    "Sample Profile loader", false, false)
1075
1076bool SampleProfileLoader::doInitialization(Module &M) {
1077  Profiler.reset(new SampleModuleProfile(M, Filename));
1078  ProfileIsValid = Profiler->loadText();
1079  return true;
1080}
1081
1082FunctionPass *llvm::createSampleProfileLoaderPass() {
1083  return new SampleProfileLoader(SampleProfileFile);
1084}
1085
1086FunctionPass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1087  return new SampleProfileLoader(Name);
1088}
1089
1090bool SampleProfileLoader::runOnFunction(Function &F) {
1091  if (!ProfileIsValid)
1092    return false;
1093  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1094  PostDominatorTree *PDT = &getAnalysis<PostDominatorTree>();
1095  LoopInfo *LI = &getAnalysis<LoopInfo>();
1096  SampleFunctionProfile &FunctionProfile = Profiler->getProfile(F);
1097  if (!FunctionProfile.empty())
1098    return FunctionProfile.emitAnnotations(F, DT, PDT, LI);
1099  return false;
1100}
1101