1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Analysis/Loads.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/CallSite.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DIBuilder.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/DebugInfo.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/GetElementPtrTypeIterator.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/Operator.h"
44#include "llvm/Pass.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Transforms/Utils/Local.h"
50#include "llvm/Transforms/Utils/PromoteMemToReg.h"
51#include "llvm/Transforms/Utils/SSAUpdater.h"
52using namespace llvm;
53
54#define DEBUG_TYPE "scalarrepl"
55
56STATISTIC(NumReplaced,  "Number of allocas broken up");
57STATISTIC(NumPromoted,  "Number of allocas promoted");
58STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
59STATISTIC(NumConverted, "Number of aggregates converted to scalar");
60
61namespace {
62  struct SROA : public FunctionPass {
63    SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
64      : FunctionPass(ID), HasDomTree(hasDT) {
65      if (T == -1)
66        SRThreshold = 128;
67      else
68        SRThreshold = T;
69      if (ST == -1)
70        StructMemberThreshold = 32;
71      else
72        StructMemberThreshold = ST;
73      if (AT == -1)
74        ArrayElementThreshold = 8;
75      else
76        ArrayElementThreshold = AT;
77      if (SLT == -1)
78        // Do not limit the scalar integer load size if no threshold is given.
79        ScalarLoadThreshold = -1;
80      else
81        ScalarLoadThreshold = SLT;
82    }
83
84    bool runOnFunction(Function &F) override;
85
86    bool performScalarRepl(Function &F);
87    bool performPromotion(Function &F);
88
89  private:
90    bool HasDomTree;
91    const DataLayout *DL;
92
93    /// DeadInsts - Keep track of instructions we have made dead, so that
94    /// we can remove them after we are done working.
95    SmallVector<Value*, 32> DeadInsts;
96
97    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
98    /// information about the uses.  All these fields are initialized to false
99    /// and set to true when something is learned.
100    struct AllocaInfo {
101      /// The alloca to promote.
102      AllocaInst *AI;
103
104      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
105      /// looping and avoid redundant work.
106      SmallPtrSet<PHINode*, 8> CheckedPHIs;
107
108      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
109      bool isUnsafe : 1;
110
111      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
112      bool isMemCpySrc : 1;
113
114      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
115      bool isMemCpyDst : 1;
116
117      /// hasSubelementAccess - This is true if a subelement of the alloca is
118      /// ever accessed, or false if the alloca is only accessed with mem
119      /// intrinsics or load/store that only access the entire alloca at once.
120      bool hasSubelementAccess : 1;
121
122      /// hasALoadOrStore - This is true if there are any loads or stores to it.
123      /// The alloca may just be accessed with memcpy, for example, which would
124      /// not set this.
125      bool hasALoadOrStore : 1;
126
127      explicit AllocaInfo(AllocaInst *ai)
128        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
129          hasSubelementAccess(false), hasALoadOrStore(false) {}
130    };
131
132    /// SRThreshold - The maximum alloca size to considered for SROA.
133    unsigned SRThreshold;
134
135    /// StructMemberThreshold - The maximum number of members a struct can
136    /// contain to be considered for SROA.
137    unsigned StructMemberThreshold;
138
139    /// ArrayElementThreshold - The maximum number of elements an array can
140    /// have to be considered for SROA.
141    unsigned ArrayElementThreshold;
142
143    /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
144    /// converting to scalar
145    unsigned ScalarLoadThreshold;
146
147    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
148      I.isUnsafe = true;
149      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
150    }
151
152    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
153
154    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
155    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
156                                         AllocaInfo &Info);
157    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
158    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
159                         Type *MemOpType, bool isStore, AllocaInfo &Info,
160                         Instruction *TheAccess, bool AllowWholeAccess);
161    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
162    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
163                                  Type *&IdxTy);
164
165    void DoScalarReplacement(AllocaInst *AI,
166                             std::vector<AllocaInst*> &WorkList);
167    void DeleteDeadInstructions();
168
169    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
170                              SmallVectorImpl<AllocaInst *> &NewElts);
171    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
172                        SmallVectorImpl<AllocaInst *> &NewElts);
173    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
174                    SmallVectorImpl<AllocaInst *> &NewElts);
175    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
176                                  uint64_t Offset,
177                                  SmallVectorImpl<AllocaInst *> &NewElts);
178    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
179                                      AllocaInst *AI,
180                                      SmallVectorImpl<AllocaInst *> &NewElts);
181    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
182                                       SmallVectorImpl<AllocaInst *> &NewElts);
183    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
184                                      SmallVectorImpl<AllocaInst *> &NewElts);
185    bool ShouldAttemptScalarRepl(AllocaInst *AI);
186  };
187
188  // SROA_DT - SROA that uses DominatorTree.
189  struct SROA_DT : public SROA {
190    static char ID;
191  public:
192    SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
193        SROA(T, true, ID, ST, AT, SLT) {
194      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
195    }
196
197    // getAnalysisUsage - This pass does not require any passes, but we know it
198    // will not alter the CFG, so say so.
199    void getAnalysisUsage(AnalysisUsage &AU) const override {
200      AU.addRequired<DominatorTreeWrapperPass>();
201      AU.setPreservesCFG();
202    }
203  };
204
205  // SROA_SSAUp - SROA that uses SSAUpdater.
206  struct SROA_SSAUp : public SROA {
207    static char ID;
208  public:
209    SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
210        SROA(T, false, ID, ST, AT, SLT) {
211      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
212    }
213
214    // getAnalysisUsage - This pass does not require any passes, but we know it
215    // will not alter the CFG, so say so.
216    void getAnalysisUsage(AnalysisUsage &AU) const override {
217      AU.setPreservesCFG();
218    }
219  };
220
221}
222
223char SROA_DT::ID = 0;
224char SROA_SSAUp::ID = 0;
225
226INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
227                "Scalar Replacement of Aggregates (DT)", false, false)
228INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
229INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
230                "Scalar Replacement of Aggregates (DT)", false, false)
231
232INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
233                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
234INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
235                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
236
237// Public interface to the ScalarReplAggregates pass
238FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
239                                                   bool UseDomTree,
240                                                   int StructMemberThreshold,
241                                                   int ArrayElementThreshold,
242                                                   int ScalarLoadThreshold) {
243  if (UseDomTree)
244    return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
245                       ScalarLoadThreshold);
246  return new SROA_SSAUp(Threshold, StructMemberThreshold,
247                        ArrayElementThreshold, ScalarLoadThreshold);
248}
249
250
251//===----------------------------------------------------------------------===//
252// Convert To Scalar Optimization.
253//===----------------------------------------------------------------------===//
254
255namespace {
256/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
257/// optimization, which scans the uses of an alloca and determines if it can
258/// rewrite it in terms of a single new alloca that can be mem2reg'd.
259class ConvertToScalarInfo {
260  /// AllocaSize - The size of the alloca being considered in bytes.
261  unsigned AllocaSize;
262  const DataLayout &DL;
263  unsigned ScalarLoadThreshold;
264
265  /// IsNotTrivial - This is set to true if there is some access to the object
266  /// which means that mem2reg can't promote it.
267  bool IsNotTrivial;
268
269  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
270  /// computed based on the uses of the alloca rather than the LLVM type system.
271  enum {
272    Unknown,
273
274    // Accesses via GEPs that are consistent with element access of a vector
275    // type. This will not be converted into a vector unless there is a later
276    // access using an actual vector type.
277    ImplicitVector,
278
279    // Accesses via vector operations and GEPs that are consistent with the
280    // layout of a vector type.
281    Vector,
282
283    // An integer bag-of-bits with bitwise operations for insertion and
284    // extraction. Any combination of types can be converted into this kind
285    // of scalar.
286    Integer
287  } ScalarKind;
288
289  /// VectorTy - This tracks the type that we should promote the vector to if
290  /// it is possible to turn it into a vector.  This starts out null, and if it
291  /// isn't possible to turn into a vector type, it gets set to VoidTy.
292  VectorType *VectorTy;
293
294  /// HadNonMemTransferAccess - True if there is at least one access to the
295  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
296  /// large integers unless there is some potential for optimization.
297  bool HadNonMemTransferAccess;
298
299  /// HadDynamicAccess - True if some element of this alloca was dynamic.
300  /// We don't yet have support for turning a dynamic access into a large
301  /// integer.
302  bool HadDynamicAccess;
303
304public:
305  explicit ConvertToScalarInfo(unsigned Size, const DataLayout &DL,
306                               unsigned SLT)
307    : AllocaSize(Size), DL(DL), ScalarLoadThreshold(SLT), IsNotTrivial(false),
308    ScalarKind(Unknown), VectorTy(nullptr), HadNonMemTransferAccess(false),
309    HadDynamicAccess(false) { }
310
311  AllocaInst *TryConvert(AllocaInst *AI);
312
313private:
314  bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
315  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
316  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
317  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
318                           Value *NonConstantIdx);
319
320  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
321                                    uint64_t Offset, Value* NonConstantIdx,
322                                    IRBuilder<> &Builder);
323  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
324                                   uint64_t Offset, Value* NonConstantIdx,
325                                   IRBuilder<> &Builder);
326};
327} // end anonymous namespace.
328
329
330/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
331/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
332/// alloca if possible or null if not.
333AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
334  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
335  // out.
336  if (!CanConvertToScalar(AI, 0, nullptr) || !IsNotTrivial)
337    return nullptr;
338
339  // If an alloca has only memset / memcpy uses, it may still have an Unknown
340  // ScalarKind. Treat it as an Integer below.
341  if (ScalarKind == Unknown)
342    ScalarKind = Integer;
343
344  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
345    ScalarKind = Integer;
346
347  // If we were able to find a vector type that can handle this with
348  // insert/extract elements, and if there was at least one use that had
349  // a vector type, promote this to a vector.  We don't want to promote
350  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
351  // we just get a lot of insert/extracts.  If at least one vector is
352  // involved, then we probably really do have a union of vector/array.
353  Type *NewTy;
354  if (ScalarKind == Vector) {
355    assert(VectorTy && "Missing type for vector scalar.");
356    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
357          << *VectorTy << '\n');
358    NewTy = VectorTy;  // Use the vector type.
359  } else {
360    unsigned BitWidth = AllocaSize * 8;
361
362    // Do not convert to scalar integer if the alloca size exceeds the
363    // scalar load threshold.
364    if (BitWidth > ScalarLoadThreshold)
365      return nullptr;
366
367    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
368        !HadNonMemTransferAccess && !DL.fitsInLegalInteger(BitWidth))
369      return nullptr;
370    // Dynamic accesses on integers aren't yet supported.  They need us to shift
371    // by a dynamic amount which could be difficult to work out as we might not
372    // know whether to use a left or right shift.
373    if (ScalarKind == Integer && HadDynamicAccess)
374      return nullptr;
375
376    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
377    // Create and insert the integer alloca.
378    NewTy = IntegerType::get(AI->getContext(), BitWidth);
379  }
380  AllocaInst *NewAI = new AllocaInst(NewTy, nullptr, "",
381                                     AI->getParent()->begin());
382  ConvertUsesToScalar(AI, NewAI, 0, nullptr);
383  return NewAI;
384}
385
386/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
387/// (VectorTy) so far at the offset specified by Offset (which is specified in
388/// bytes).
389///
390/// There are two cases we handle here:
391///   1) A union of vector types of the same size and potentially its elements.
392///      Here we turn element accesses into insert/extract element operations.
393///      This promotes a <4 x float> with a store of float to the third element
394///      into a <4 x float> that uses insert element.
395///   2) A fully general blob of memory, which we turn into some (potentially
396///      large) integer type with extract and insert operations where the loads
397///      and stores would mutate the memory.  We mark this by setting VectorTy
398///      to VoidTy.
399void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
400                                                    uint64_t Offset) {
401  // If we already decided to turn this into a blob of integer memory, there is
402  // nothing to be done.
403  if (ScalarKind == Integer)
404    return;
405
406  // If this could be contributing to a vector, analyze it.
407
408  // If the In type is a vector that is the same size as the alloca, see if it
409  // matches the existing VecTy.
410  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
411    if (MergeInVectorType(VInTy, Offset))
412      return;
413  } else if (In->isFloatTy() || In->isDoubleTy() ||
414             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
415              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
416    // Full width accesses can be ignored, because they can always be turned
417    // into bitcasts.
418    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
419    if (EltSize == AllocaSize)
420      return;
421
422    // If we're accessing something that could be an element of a vector, see
423    // if the implied vector agrees with what we already have and if Offset is
424    // compatible with it.
425    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
426        (!VectorTy || EltSize == VectorTy->getElementType()
427                                         ->getPrimitiveSizeInBits()/8)) {
428      if (!VectorTy) {
429        ScalarKind = ImplicitVector;
430        VectorTy = VectorType::get(In, AllocaSize/EltSize);
431      }
432      return;
433    }
434  }
435
436  // Otherwise, we have a case that we can't handle with an optimized vector
437  // form.  We can still turn this into a large integer.
438  ScalarKind = Integer;
439}
440
441/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
442/// returning true if the type was successfully merged and false otherwise.
443bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
444                                            uint64_t Offset) {
445  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
446    // If we're storing/loading a vector of the right size, allow it as a
447    // vector.  If this the first vector we see, remember the type so that
448    // we know the element size. If this is a subsequent access, ignore it
449    // even if it is a differing type but the same size. Worst case we can
450    // bitcast the resultant vectors.
451    if (!VectorTy)
452      VectorTy = VInTy;
453    ScalarKind = Vector;
454    return true;
455  }
456
457  return false;
458}
459
460/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
461/// its accesses to a single vector type, return true and set VecTy to
462/// the new type.  If we could convert the alloca into a single promotable
463/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
464/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
465/// is the current offset from the base of the alloca being analyzed.
466///
467/// If we see at least one access to the value that is as a vector type, set the
468/// SawVec flag.
469bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
470                                             Value* NonConstantIdx) {
471  for (User *U : V->users()) {
472    Instruction *UI = cast<Instruction>(U);
473
474    if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
475      // Don't break volatile loads.
476      if (!LI->isSimple())
477        return false;
478      // Don't touch MMX operations.
479      if (LI->getType()->isX86_MMXTy())
480        return false;
481      HadNonMemTransferAccess = true;
482      MergeInTypeForLoadOrStore(LI->getType(), Offset);
483      continue;
484    }
485
486    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
487      // Storing the pointer, not into the value?
488      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
489      // Don't touch MMX operations.
490      if (SI->getOperand(0)->getType()->isX86_MMXTy())
491        return false;
492      HadNonMemTransferAccess = true;
493      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
494      continue;
495    }
496
497    if (BitCastInst *BCI = dyn_cast<BitCastInst>(UI)) {
498      if (!onlyUsedByLifetimeMarkers(BCI))
499        IsNotTrivial = true;  // Can't be mem2reg'd.
500      if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
501        return false;
502      continue;
503    }
504
505    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UI)) {
506      // If this is a GEP with a variable indices, we can't handle it.
507      PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
508      if (!PtrTy)
509        return false;
510
511      // Compute the offset that this GEP adds to the pointer.
512      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
513      Value *GEPNonConstantIdx = nullptr;
514      if (!GEP->hasAllConstantIndices()) {
515        if (!isa<VectorType>(PtrTy->getElementType()))
516          return false;
517        if (NonConstantIdx)
518          return false;
519        GEPNonConstantIdx = Indices.pop_back_val();
520        if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
521          return false;
522        HadDynamicAccess = true;
523      } else
524        GEPNonConstantIdx = NonConstantIdx;
525      uint64_t GEPOffset = DL.getIndexedOffset(PtrTy,
526                                               Indices);
527      // See if all uses can be converted.
528      if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
529        return false;
530      IsNotTrivial = true;  // Can't be mem2reg'd.
531      HadNonMemTransferAccess = true;
532      continue;
533    }
534
535    // If this is a constant sized memset of a constant value (e.g. 0) we can
536    // handle it.
537    if (MemSetInst *MSI = dyn_cast<MemSetInst>(UI)) {
538      // Store to dynamic index.
539      if (NonConstantIdx)
540        return false;
541      // Store of constant value.
542      if (!isa<ConstantInt>(MSI->getValue()))
543        return false;
544
545      // Store of constant size.
546      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
547      if (!Len)
548        return false;
549
550      // If the size differs from the alloca, we can only convert the alloca to
551      // an integer bag-of-bits.
552      // FIXME: This should handle all of the cases that are currently accepted
553      // as vector element insertions.
554      if (Len->getZExtValue() != AllocaSize || Offset != 0)
555        ScalarKind = Integer;
556
557      IsNotTrivial = true;  // Can't be mem2reg'd.
558      HadNonMemTransferAccess = true;
559      continue;
560    }
561
562    // If this is a memcpy or memmove into or out of the whole allocation, we
563    // can handle it like a load or store of the scalar type.
564    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(UI)) {
565      // Store to dynamic index.
566      if (NonConstantIdx)
567        return false;
568      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
569      if (!Len || Len->getZExtValue() != AllocaSize || Offset != 0)
570        return false;
571
572      IsNotTrivial = true;  // Can't be mem2reg'd.
573      continue;
574    }
575
576    // If this is a lifetime intrinsic, we can handle it.
577    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(UI)) {
578      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
579          II->getIntrinsicID() == Intrinsic::lifetime_end) {
580        continue;
581      }
582    }
583
584    // Otherwise, we cannot handle this!
585    return false;
586  }
587
588  return true;
589}
590
591/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
592/// directly.  This happens when we are converting an "integer union" to a
593/// single integer scalar, or when we are converting a "vector union" to a
594/// vector with insert/extractelement instructions.
595///
596/// Offset is an offset from the original alloca, in bits that need to be
597/// shifted to the right.  By the end of this, there should be no uses of Ptr.
598void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
599                                              uint64_t Offset,
600                                              Value* NonConstantIdx) {
601  while (!Ptr->use_empty()) {
602    Instruction *User = cast<Instruction>(Ptr->user_back());
603
604    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
605      ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
606      CI->eraseFromParent();
607      continue;
608    }
609
610    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
611      // Compute the offset that this GEP adds to the pointer.
612      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
613      Value* GEPNonConstantIdx = nullptr;
614      if (!GEP->hasAllConstantIndices()) {
615        assert(!NonConstantIdx &&
616               "Dynamic GEP reading from dynamic GEP unsupported");
617        GEPNonConstantIdx = Indices.pop_back_val();
618      } else
619        GEPNonConstantIdx = NonConstantIdx;
620      uint64_t GEPOffset = DL.getIndexedOffset(GEP->getPointerOperandType(),
621                                               Indices);
622      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
623      GEP->eraseFromParent();
624      continue;
625    }
626
627    IRBuilder<> Builder(User);
628
629    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
630      // The load is a bit extract from NewAI shifted right by Offset bits.
631      Value *LoadedVal = Builder.CreateLoad(NewAI);
632      Value *NewLoadVal
633        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
634                                     NonConstantIdx, Builder);
635      LI->replaceAllUsesWith(NewLoadVal);
636      LI->eraseFromParent();
637      continue;
638    }
639
640    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
641      assert(SI->getOperand(0) != Ptr && "Consistency error!");
642      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
643      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
644                                             NonConstantIdx, Builder);
645      Builder.CreateStore(New, NewAI);
646      SI->eraseFromParent();
647
648      // If the load we just inserted is now dead, then the inserted store
649      // overwrote the entire thing.
650      if (Old->use_empty())
651        Old->eraseFromParent();
652      continue;
653    }
654
655    // If this is a constant sized memset of a constant value (e.g. 0) we can
656    // transform it into a store of the expanded constant value.
657    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
658      assert(MSI->getRawDest() == Ptr && "Consistency error!");
659      assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
660      int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
661      if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
662        unsigned NumBytes = static_cast<unsigned>(SNumBytes);
663        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
664
665        // Compute the value replicated the right number of times.
666        APInt APVal(NumBytes*8, Val);
667
668        // Splat the value if non-zero.
669        if (Val)
670          for (unsigned i = 1; i != NumBytes; ++i)
671            APVal |= APVal << 8;
672
673        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
674        Value *New = ConvertScalar_InsertValue(
675                                    ConstantInt::get(User->getContext(), APVal),
676                                               Old, Offset, nullptr, Builder);
677        Builder.CreateStore(New, NewAI);
678
679        // If the load we just inserted is now dead, then the memset overwrote
680        // the entire thing.
681        if (Old->use_empty())
682          Old->eraseFromParent();
683      }
684      MSI->eraseFromParent();
685      continue;
686    }
687
688    // If this is a memcpy or memmove into or out of the whole allocation, we
689    // can handle it like a load or store of the scalar type.
690    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
691      assert(Offset == 0 && "must be store to start of alloca");
692      assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
693
694      // If the source and destination are both to the same alloca, then this is
695      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
696      // as appropriate.
697      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &DL, 0));
698
699      if (GetUnderlyingObject(MTI->getSource(), &DL, 0) != OrigAI) {
700        // Dest must be OrigAI, change this to be a load from the original
701        // pointer (bitcasted), then a store to our new alloca.
702        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
703        Value *SrcPtr = MTI->getSource();
704        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
705        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
706        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
707          AIPTy = PointerType::get(AIPTy->getElementType(),
708                                   SPTy->getAddressSpace());
709        }
710        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
711
712        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
713        SrcVal->setAlignment(MTI->getAlignment());
714        Builder.CreateStore(SrcVal, NewAI);
715      } else if (GetUnderlyingObject(MTI->getDest(), &DL, 0) != OrigAI) {
716        // Src must be OrigAI, change this to be a load from NewAI then a store
717        // through the original dest pointer (bitcasted).
718        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
719        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
720
721        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
722        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
723        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
724          AIPTy = PointerType::get(AIPTy->getElementType(),
725                                   DPTy->getAddressSpace());
726        }
727        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
728
729        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
730        NewStore->setAlignment(MTI->getAlignment());
731      } else {
732        // Noop transfer. Src == Dst
733      }
734
735      MTI->eraseFromParent();
736      continue;
737    }
738
739    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
740      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
741          II->getIntrinsicID() == Intrinsic::lifetime_end) {
742        // There's no need to preserve these, as the resulting alloca will be
743        // converted to a register anyways.
744        II->eraseFromParent();
745        continue;
746      }
747    }
748
749    llvm_unreachable("Unsupported operation!");
750  }
751}
752
753/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
754/// or vector value FromVal, extracting the bits from the offset specified by
755/// Offset.  This returns the value, which is of type ToType.
756///
757/// This happens when we are converting an "integer union" to a single
758/// integer scalar, or when we are converting a "vector union" to a vector with
759/// insert/extractelement instructions.
760///
761/// Offset is an offset from the original alloca, in bits that need to be
762/// shifted to the right.
763Value *ConvertToScalarInfo::
764ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
765                           uint64_t Offset, Value* NonConstantIdx,
766                           IRBuilder<> &Builder) {
767  // If the load is of the whole new alloca, no conversion is needed.
768  Type *FromType = FromVal->getType();
769  if (FromType == ToType && Offset == 0)
770    return FromVal;
771
772  // If the result alloca is a vector type, this is either an element
773  // access or a bitcast to another vector type of the same size.
774  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
775    unsigned FromTypeSize = DL.getTypeAllocSize(FromType);
776    unsigned ToTypeSize = DL.getTypeAllocSize(ToType);
777    if (FromTypeSize == ToTypeSize)
778        return Builder.CreateBitCast(FromVal, ToType);
779
780    // Otherwise it must be an element access.
781    unsigned Elt = 0;
782    if (Offset) {
783      unsigned EltSize = DL.getTypeAllocSizeInBits(VTy->getElementType());
784      Elt = Offset/EltSize;
785      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
786    }
787    // Return the element extracted out of it.
788    Value *Idx;
789    if (NonConstantIdx) {
790      if (Elt)
791        Idx = Builder.CreateAdd(NonConstantIdx,
792                                Builder.getInt32(Elt),
793                                "dyn.offset");
794      else
795        Idx = NonConstantIdx;
796    } else
797      Idx = Builder.getInt32(Elt);
798    Value *V = Builder.CreateExtractElement(FromVal, Idx);
799    if (V->getType() != ToType)
800      V = Builder.CreateBitCast(V, ToType);
801    return V;
802  }
803
804  // If ToType is a first class aggregate, extract out each of the pieces and
805  // use insertvalue's to form the FCA.
806  if (StructType *ST = dyn_cast<StructType>(ToType)) {
807    assert(!NonConstantIdx &&
808           "Dynamic indexing into struct types not supported");
809    const StructLayout &Layout = *DL.getStructLayout(ST);
810    Value *Res = UndefValue::get(ST);
811    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
812      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
813                                        Offset+Layout.getElementOffsetInBits(i),
814                                              nullptr, Builder);
815      Res = Builder.CreateInsertValue(Res, Elt, i);
816    }
817    return Res;
818  }
819
820  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
821    assert(!NonConstantIdx &&
822           "Dynamic indexing into array types not supported");
823    uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
824    Value *Res = UndefValue::get(AT);
825    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
826      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
827                                              Offset+i*EltSize, nullptr,
828                                              Builder);
829      Res = Builder.CreateInsertValue(Res, Elt, i);
830    }
831    return Res;
832  }
833
834  // Otherwise, this must be a union that was converted to an integer value.
835  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
836
837  // If this is a big-endian system and the load is narrower than the
838  // full alloca type, we need to do a shift to get the right bits.
839  int ShAmt = 0;
840  if (DL.isBigEndian()) {
841    // On big-endian machines, the lowest bit is stored at the bit offset
842    // from the pointer given by getTypeStoreSizeInBits.  This matters for
843    // integers with a bitwidth that is not a multiple of 8.
844    ShAmt = DL.getTypeStoreSizeInBits(NTy) -
845            DL.getTypeStoreSizeInBits(ToType) - Offset;
846  } else {
847    ShAmt = Offset;
848  }
849
850  // Note: we support negative bitwidths (with shl) which are not defined.
851  // We do this to support (f.e.) loads off the end of a structure where
852  // only some bits are used.
853  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
854    FromVal = Builder.CreateLShr(FromVal,
855                                 ConstantInt::get(FromVal->getType(), ShAmt));
856  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
857    FromVal = Builder.CreateShl(FromVal,
858                                ConstantInt::get(FromVal->getType(), -ShAmt));
859
860  // Finally, unconditionally truncate the integer to the right width.
861  unsigned LIBitWidth = DL.getTypeSizeInBits(ToType);
862  if (LIBitWidth < NTy->getBitWidth())
863    FromVal =
864      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
865                                                    LIBitWidth));
866  else if (LIBitWidth > NTy->getBitWidth())
867    FromVal =
868       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
869                                                    LIBitWidth));
870
871  // If the result is an integer, this is a trunc or bitcast.
872  if (ToType->isIntegerTy()) {
873    // Should be done.
874  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
875    // Just do a bitcast, we know the sizes match up.
876    FromVal = Builder.CreateBitCast(FromVal, ToType);
877  } else {
878    // Otherwise must be a pointer.
879    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
880  }
881  assert(FromVal->getType() == ToType && "Didn't convert right?");
882  return FromVal;
883}
884
885/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
886/// or vector value "Old" at the offset specified by Offset.
887///
888/// This happens when we are converting an "integer union" to a
889/// single integer scalar, or when we are converting a "vector union" to a
890/// vector with insert/extractelement instructions.
891///
892/// Offset is an offset from the original alloca, in bits that need to be
893/// shifted to the right.
894///
895/// NonConstantIdx is an index value if there was a GEP with a non-constant
896/// index value.  If this is 0 then all GEPs used to find this insert address
897/// are constant.
898Value *ConvertToScalarInfo::
899ConvertScalar_InsertValue(Value *SV, Value *Old,
900                          uint64_t Offset, Value* NonConstantIdx,
901                          IRBuilder<> &Builder) {
902  // Convert the stored type to the actual type, shift it left to insert
903  // then 'or' into place.
904  Type *AllocaType = Old->getType();
905  LLVMContext &Context = Old->getContext();
906
907  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
908    uint64_t VecSize = DL.getTypeAllocSizeInBits(VTy);
909    uint64_t ValSize = DL.getTypeAllocSizeInBits(SV->getType());
910
911    // Changing the whole vector with memset or with an access of a different
912    // vector type?
913    if (ValSize == VecSize)
914        return Builder.CreateBitCast(SV, AllocaType);
915
916    // Must be an element insertion.
917    Type *EltTy = VTy->getElementType();
918    if (SV->getType() != EltTy)
919      SV = Builder.CreateBitCast(SV, EltTy);
920    uint64_t EltSize = DL.getTypeAllocSizeInBits(EltTy);
921    unsigned Elt = Offset/EltSize;
922    Value *Idx;
923    if (NonConstantIdx) {
924      if (Elt)
925        Idx = Builder.CreateAdd(NonConstantIdx,
926                                Builder.getInt32(Elt),
927                                "dyn.offset");
928      else
929        Idx = NonConstantIdx;
930    } else
931      Idx = Builder.getInt32(Elt);
932    return Builder.CreateInsertElement(Old, SV, Idx);
933  }
934
935  // If SV is a first-class aggregate value, insert each value recursively.
936  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
937    assert(!NonConstantIdx &&
938           "Dynamic indexing into struct types not supported");
939    const StructLayout &Layout = *DL.getStructLayout(ST);
940    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
941      Value *Elt = Builder.CreateExtractValue(SV, i);
942      Old = ConvertScalar_InsertValue(Elt, Old,
943                                      Offset+Layout.getElementOffsetInBits(i),
944                                      nullptr, Builder);
945    }
946    return Old;
947  }
948
949  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
950    assert(!NonConstantIdx &&
951           "Dynamic indexing into array types not supported");
952    uint64_t EltSize = DL.getTypeAllocSizeInBits(AT->getElementType());
953    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
954      Value *Elt = Builder.CreateExtractValue(SV, i);
955      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, nullptr,
956                                      Builder);
957    }
958    return Old;
959  }
960
961  // If SV is a float, convert it to the appropriate integer type.
962  // If it is a pointer, do the same.
963  unsigned SrcWidth = DL.getTypeSizeInBits(SV->getType());
964  unsigned DestWidth = DL.getTypeSizeInBits(AllocaType);
965  unsigned SrcStoreWidth = DL.getTypeStoreSizeInBits(SV->getType());
966  unsigned DestStoreWidth = DL.getTypeStoreSizeInBits(AllocaType);
967  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
968    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
969  else if (SV->getType()->isPointerTy())
970    SV = Builder.CreatePtrToInt(SV, DL.getIntPtrType(SV->getType()));
971
972  // Zero extend or truncate the value if needed.
973  if (SV->getType() != AllocaType) {
974    if (SV->getType()->getPrimitiveSizeInBits() <
975             AllocaType->getPrimitiveSizeInBits())
976      SV = Builder.CreateZExt(SV, AllocaType);
977    else {
978      // Truncation may be needed if storing more than the alloca can hold
979      // (undefined behavior).
980      SV = Builder.CreateTrunc(SV, AllocaType);
981      SrcWidth = DestWidth;
982      SrcStoreWidth = DestStoreWidth;
983    }
984  }
985
986  // If this is a big-endian system and the store is narrower than the
987  // full alloca type, we need to do a shift to get the right bits.
988  int ShAmt = 0;
989  if (DL.isBigEndian()) {
990    // On big-endian machines, the lowest bit is stored at the bit offset
991    // from the pointer given by getTypeStoreSizeInBits.  This matters for
992    // integers with a bitwidth that is not a multiple of 8.
993    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
994  } else {
995    ShAmt = Offset;
996  }
997
998  // Note: we support negative bitwidths (with shr) which are not defined.
999  // We do this to support (f.e.) stores off the end of a structure where
1000  // only some bits in the structure are set.
1001  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1002  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1003    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1004    Mask <<= ShAmt;
1005  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1006    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1007    Mask = Mask.lshr(-ShAmt);
1008  }
1009
1010  // Mask out the bits we are about to insert from the old value, and or
1011  // in the new bits.
1012  if (SrcWidth != DestWidth) {
1013    assert(DestWidth > SrcWidth);
1014    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1015    SV = Builder.CreateOr(Old, SV, "ins");
1016  }
1017  return SV;
1018}
1019
1020
1021//===----------------------------------------------------------------------===//
1022// SRoA Driver
1023//===----------------------------------------------------------------------===//
1024
1025
1026bool SROA::runOnFunction(Function &F) {
1027  if (skipOptnoneFunction(F))
1028    return false;
1029
1030  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1031  DL = DLP ? &DLP->getDataLayout() : nullptr;
1032
1033  bool Changed = performPromotion(F);
1034
1035  // FIXME: ScalarRepl currently depends on DataLayout more than it
1036  // theoretically needs to. It should be refactored in order to support
1037  // target-independent IR. Until this is done, just skip the actual
1038  // scalar-replacement portion of this pass.
1039  if (!DL) return Changed;
1040
1041  while (1) {
1042    bool LocalChange = performScalarRepl(F);
1043    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1044    Changed = true;
1045    LocalChange = performPromotion(F);
1046    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1047  }
1048
1049  return Changed;
1050}
1051
1052namespace {
1053class AllocaPromoter : public LoadAndStorePromoter {
1054  AllocaInst *AI;
1055  DIBuilder *DIB;
1056  SmallVector<DbgDeclareInst *, 4> DDIs;
1057  SmallVector<DbgValueInst *, 4> DVIs;
1058public:
1059  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1060                 DIBuilder *DB)
1061    : LoadAndStorePromoter(Insts, S), AI(nullptr), DIB(DB) {}
1062
1063  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1064    // Remember which alloca we're promoting (for isInstInList).
1065    this->AI = AI;
1066    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
1067      for (User *U : DebugNode->users())
1068        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1069          DDIs.push_back(DDI);
1070        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1071          DVIs.push_back(DVI);
1072    }
1073
1074    LoadAndStorePromoter::run(Insts);
1075    AI->eraseFromParent();
1076    for (SmallVectorImpl<DbgDeclareInst *>::iterator I = DDIs.begin(),
1077           E = DDIs.end(); I != E; ++I) {
1078      DbgDeclareInst *DDI = *I;
1079      DDI->eraseFromParent();
1080    }
1081    for (SmallVectorImpl<DbgValueInst *>::iterator I = DVIs.begin(),
1082           E = DVIs.end(); I != E; ++I) {
1083      DbgValueInst *DVI = *I;
1084      DVI->eraseFromParent();
1085    }
1086  }
1087
1088  bool isInstInList(Instruction *I,
1089                    const SmallVectorImpl<Instruction*> &Insts) const override {
1090    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1091      return LI->getOperand(0) == AI;
1092    return cast<StoreInst>(I)->getPointerOperand() == AI;
1093  }
1094
1095  void updateDebugInfo(Instruction *Inst) const override {
1096    for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
1097           E = DDIs.end(); I != E; ++I) {
1098      DbgDeclareInst *DDI = *I;
1099      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1100        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1101      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1102        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1103    }
1104    for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
1105           E = DVIs.end(); I != E; ++I) {
1106      DbgValueInst *DVI = *I;
1107      Value *Arg = nullptr;
1108      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1109        // If an argument is zero extended then use argument directly. The ZExt
1110        // may be zapped by an optimization pass in future.
1111        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1112          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1113        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1114          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1115        if (!Arg)
1116          Arg = SI->getOperand(0);
1117      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1118        Arg = LI->getOperand(0);
1119      } else {
1120        continue;
1121      }
1122      Instruction *DbgVal =
1123        DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1124                                     Inst);
1125      DbgVal->setDebugLoc(DVI->getDebugLoc());
1126    }
1127  }
1128};
1129} // end anon namespace
1130
1131/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1132/// subsequently loaded can be rewritten to load both input pointers and then
1133/// select between the result, allowing the load of the alloca to be promoted.
1134/// From this:
1135///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1136///   %V = load i32* %P2
1137/// to:
1138///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1139///   %V2 = load i32* %Other
1140///   %V = select i1 %cond, i32 %V1, i32 %V2
1141///
1142/// We can do this to a select if its only uses are loads and if the operand to
1143/// the select can be loaded unconditionally.
1144static bool isSafeSelectToSpeculate(SelectInst *SI, const DataLayout *DL) {
1145  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer(DL);
1146  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer(DL);
1147
1148  for (User *U : SI->users()) {
1149    LoadInst *LI = dyn_cast<LoadInst>(U);
1150    if (!LI || !LI->isSimple()) return false;
1151
1152    // Both operands to the select need to be dereferencable, either absolutely
1153    // (e.g. allocas) or at this point because we can see other accesses to it.
1154    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1155                                                    LI->getAlignment(), DL))
1156      return false;
1157    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1158                                                    LI->getAlignment(), DL))
1159      return false;
1160  }
1161
1162  return true;
1163}
1164
1165/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1166/// subsequently loaded can be rewritten to load both input pointers in the pred
1167/// blocks and then PHI the results, allowing the load of the alloca to be
1168/// promoted.
1169/// From this:
1170///   %P2 = phi [i32* %Alloca, i32* %Other]
1171///   %V = load i32* %P2
1172/// to:
1173///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1174///   ...
1175///   %V2 = load i32* %Other
1176///   ...
1177///   %V = phi [i32 %V1, i32 %V2]
1178///
1179/// We can do this to a select if its only uses are loads and if the operand to
1180/// the select can be loaded unconditionally.
1181static bool isSafePHIToSpeculate(PHINode *PN, const DataLayout *DL) {
1182  // For now, we can only do this promotion if the load is in the same block as
1183  // the PHI, and if there are no stores between the phi and load.
1184  // TODO: Allow recursive phi users.
1185  // TODO: Allow stores.
1186  BasicBlock *BB = PN->getParent();
1187  unsigned MaxAlign = 0;
1188  for (User *U : PN->users()) {
1189    LoadInst *LI = dyn_cast<LoadInst>(U);
1190    if (!LI || !LI->isSimple()) return false;
1191
1192    // For now we only allow loads in the same block as the PHI.  This is a
1193    // common case that happens when instcombine merges two loads through a PHI.
1194    if (LI->getParent() != BB) return false;
1195
1196    // Ensure that there are no instructions between the PHI and the load that
1197    // could store.
1198    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1199      if (BBI->mayWriteToMemory())
1200        return false;
1201
1202    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1203  }
1204
1205  // Okay, we know that we have one or more loads in the same block as the PHI.
1206  // We can transform this if it is safe to push the loads into the predecessor
1207  // blocks.  The only thing to watch out for is that we can't put a possibly
1208  // trapping load in the predecessor if it is a critical edge.
1209  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1210    BasicBlock *Pred = PN->getIncomingBlock(i);
1211    Value *InVal = PN->getIncomingValue(i);
1212
1213    // If the terminator of the predecessor has side-effects (an invoke),
1214    // there is no safe place to put a load in the predecessor.
1215    if (Pred->getTerminator()->mayHaveSideEffects())
1216      return false;
1217
1218    // If the value is produced by the terminator of the predecessor
1219    // (an invoke), there is no valid place to put a load in the predecessor.
1220    if (Pred->getTerminator() == InVal)
1221      return false;
1222
1223    // If the predecessor has a single successor, then the edge isn't critical.
1224    if (Pred->getTerminator()->getNumSuccessors() == 1)
1225      continue;
1226
1227    // If this pointer is always safe to load, or if we can prove that there is
1228    // already a load in the block, then we can move the load to the pred block.
1229    if (InVal->isDereferenceablePointer(DL) ||
1230        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, DL))
1231      continue;
1232
1233    return false;
1234  }
1235
1236  return true;
1237}
1238
1239
1240/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1241/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1242/// not quite there, this will transform the code to allow promotion.  As such,
1243/// it is a non-pure predicate.
1244static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const DataLayout *DL) {
1245  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1246            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1247  for (User *U : AI->users()) {
1248    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1249      if (!LI->isSimple())
1250        return false;
1251      continue;
1252    }
1253
1254    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1255      if (SI->getOperand(0) == AI || !SI->isSimple())
1256        return false;   // Don't allow a store OF the AI, only INTO the AI.
1257      continue;
1258    }
1259
1260    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1261      // If the condition being selected on is a constant, fold the select, yes
1262      // this does (rarely) happen early on.
1263      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1264        Value *Result = SI->getOperand(1+CI->isZero());
1265        SI->replaceAllUsesWith(Result);
1266        SI->eraseFromParent();
1267
1268        // This is very rare and we just scrambled the use list of AI, start
1269        // over completely.
1270        return tryToMakeAllocaBePromotable(AI, DL);
1271      }
1272
1273      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1274      // loads, then we can transform this by rewriting the select.
1275      if (!isSafeSelectToSpeculate(SI, DL))
1276        return false;
1277
1278      InstsToRewrite.insert(SI);
1279      continue;
1280    }
1281
1282    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1283      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1284        InstsToRewrite.insert(PN);
1285        continue;
1286      }
1287
1288      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1289      // in the pred blocks, then we can transform this by rewriting the PHI.
1290      if (!isSafePHIToSpeculate(PN, DL))
1291        return false;
1292
1293      InstsToRewrite.insert(PN);
1294      continue;
1295    }
1296
1297    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1298      if (onlyUsedByLifetimeMarkers(BCI)) {
1299        InstsToRewrite.insert(BCI);
1300        continue;
1301      }
1302    }
1303
1304    return false;
1305  }
1306
1307  // If there are no instructions to rewrite, then all uses are load/stores and
1308  // we're done!
1309  if (InstsToRewrite.empty())
1310    return true;
1311
1312  // If we have instructions that need to be rewritten for this to be promotable
1313  // take care of it now.
1314  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1315    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1316      // This could only be a bitcast used by nothing but lifetime intrinsics.
1317      for (BitCastInst::user_iterator I = BCI->user_begin(), E = BCI->user_end();
1318           I != E;)
1319        cast<Instruction>(*I++)->eraseFromParent();
1320      BCI->eraseFromParent();
1321      continue;
1322    }
1323
1324    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1325      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1326      // loads with a new select.
1327      while (!SI->use_empty()) {
1328        LoadInst *LI = cast<LoadInst>(SI->user_back());
1329
1330        IRBuilder<> Builder(LI);
1331        LoadInst *TrueLoad =
1332          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1333        LoadInst *FalseLoad =
1334          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1335
1336        // Transfer alignment and TBAA info if present.
1337        TrueLoad->setAlignment(LI->getAlignment());
1338        FalseLoad->setAlignment(LI->getAlignment());
1339        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1340          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1341          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1342        }
1343
1344        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1345        V->takeName(LI);
1346        LI->replaceAllUsesWith(V);
1347        LI->eraseFromParent();
1348      }
1349
1350      // Now that all the loads are gone, the select is gone too.
1351      SI->eraseFromParent();
1352      continue;
1353    }
1354
1355    // Otherwise, we have a PHI node which allows us to push the loads into the
1356    // predecessors.
1357    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1358    if (PN->use_empty()) {
1359      PN->eraseFromParent();
1360      continue;
1361    }
1362
1363    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1364    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1365                                     PN->getName()+".ld", PN);
1366
1367    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1368    // matter which one we get and if any differ, it doesn't matter.
1369    LoadInst *SomeLoad = cast<LoadInst>(PN->user_back());
1370    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1371    unsigned Align = SomeLoad->getAlignment();
1372
1373    // Rewrite all loads of the PN to use the new PHI.
1374    while (!PN->use_empty()) {
1375      LoadInst *LI = cast<LoadInst>(PN->user_back());
1376      LI->replaceAllUsesWith(NewPN);
1377      LI->eraseFromParent();
1378    }
1379
1380    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1381    // insert them into in case we have multiple edges from the same block.
1382    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1383
1384    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1385      BasicBlock *Pred = PN->getIncomingBlock(i);
1386      LoadInst *&Load = InsertedLoads[Pred];
1387      if (!Load) {
1388        Load = new LoadInst(PN->getIncomingValue(i),
1389                            PN->getName() + "." + Pred->getName(),
1390                            Pred->getTerminator());
1391        Load->setAlignment(Align);
1392        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1393      }
1394
1395      NewPN->addIncoming(Load, Pred);
1396    }
1397
1398    PN->eraseFromParent();
1399  }
1400
1401  ++NumAdjusted;
1402  return true;
1403}
1404
1405bool SROA::performPromotion(Function &F) {
1406  std::vector<AllocaInst*> Allocas;
1407  DominatorTree *DT = nullptr;
1408  if (HasDomTree)
1409    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1410
1411  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1412  DIBuilder DIB(*F.getParent());
1413  bool Changed = false;
1414  SmallVector<Instruction*, 64> Insts;
1415  while (1) {
1416    Allocas.clear();
1417
1418    // Find allocas that are safe to promote, by looking at all instructions in
1419    // the entry node
1420    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1421      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1422        if (tryToMakeAllocaBePromotable(AI, DL))
1423          Allocas.push_back(AI);
1424
1425    if (Allocas.empty()) break;
1426
1427    if (HasDomTree)
1428      PromoteMemToReg(Allocas, *DT);
1429    else {
1430      SSAUpdater SSA;
1431      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1432        AllocaInst *AI = Allocas[i];
1433
1434        // Build list of instructions to promote.
1435        for (User *U : AI->users())
1436          Insts.push_back(cast<Instruction>(U));
1437        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1438        Insts.clear();
1439      }
1440    }
1441    NumPromoted += Allocas.size();
1442    Changed = true;
1443  }
1444
1445  return Changed;
1446}
1447
1448
1449/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1450/// SROA.  It must be a struct or array type with a small number of elements.
1451bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1452  Type *T = AI->getAllocatedType();
1453  // Do not promote any struct that has too many members.
1454  if (StructType *ST = dyn_cast<StructType>(T))
1455    return ST->getNumElements() <= StructMemberThreshold;
1456  // Do not promote any array that has too many elements.
1457  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1458    return AT->getNumElements() <= ArrayElementThreshold;
1459  return false;
1460}
1461
1462// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1463// which runs on all of the alloca instructions in the entry block, removing
1464// them if they are only used by getelementptr instructions.
1465//
1466bool SROA::performScalarRepl(Function &F) {
1467  std::vector<AllocaInst*> WorkList;
1468
1469  // Scan the entry basic block, adding allocas to the worklist.
1470  BasicBlock &BB = F.getEntryBlock();
1471  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1472    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1473      WorkList.push_back(A);
1474
1475  // Process the worklist
1476  bool Changed = false;
1477  while (!WorkList.empty()) {
1478    AllocaInst *AI = WorkList.back();
1479    WorkList.pop_back();
1480
1481    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1482    // with unused elements.
1483    if (AI->use_empty()) {
1484      AI->eraseFromParent();
1485      Changed = true;
1486      continue;
1487    }
1488
1489    // If this alloca is impossible for us to promote, reject it early.
1490    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1491      continue;
1492
1493    // Check to see if we can perform the core SROA transformation.  We cannot
1494    // transform the allocation instruction if it is an array allocation
1495    // (allocations OF arrays are ok though), and an allocation of a scalar
1496    // value cannot be decomposed at all.
1497    uint64_t AllocaSize = DL->getTypeAllocSize(AI->getAllocatedType());
1498
1499    // Do not promote [0 x %struct].
1500    if (AllocaSize == 0) continue;
1501
1502    // Do not promote any struct whose size is too big.
1503    if (AllocaSize > SRThreshold) continue;
1504
1505    // If the alloca looks like a good candidate for scalar replacement, and if
1506    // all its users can be transformed, then split up the aggregate into its
1507    // separate elements.
1508    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1509      DoScalarReplacement(AI, WorkList);
1510      Changed = true;
1511      continue;
1512    }
1513
1514    // If we can turn this aggregate value (potentially with casts) into a
1515    // simple scalar value that can be mem2reg'd into a register value.
1516    // IsNotTrivial tracks whether this is something that mem2reg could have
1517    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1518    // that we can't just check based on the type: the alloca may be of an i32
1519    // but that has pointer arithmetic to set byte 3 of it or something.
1520    if (AllocaInst *NewAI = ConvertToScalarInfo(
1521              (unsigned)AllocaSize, *DL, ScalarLoadThreshold).TryConvert(AI)) {
1522      NewAI->takeName(AI);
1523      AI->eraseFromParent();
1524      ++NumConverted;
1525      Changed = true;
1526      continue;
1527    }
1528
1529    // Otherwise, couldn't process this alloca.
1530  }
1531
1532  return Changed;
1533}
1534
1535/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1536/// predicate, do SROA now.
1537void SROA::DoScalarReplacement(AllocaInst *AI,
1538                               std::vector<AllocaInst*> &WorkList) {
1539  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1540  SmallVector<AllocaInst*, 32> ElementAllocas;
1541  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1542    ElementAllocas.reserve(ST->getNumContainedTypes());
1543    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1544      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), nullptr,
1545                                      AI->getAlignment(),
1546                                      AI->getName() + "." + Twine(i), AI);
1547      ElementAllocas.push_back(NA);
1548      WorkList.push_back(NA);  // Add to worklist for recursive processing
1549    }
1550  } else {
1551    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1552    ElementAllocas.reserve(AT->getNumElements());
1553    Type *ElTy = AT->getElementType();
1554    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1555      AllocaInst *NA = new AllocaInst(ElTy, nullptr, AI->getAlignment(),
1556                                      AI->getName() + "." + Twine(i), AI);
1557      ElementAllocas.push_back(NA);
1558      WorkList.push_back(NA);  // Add to worklist for recursive processing
1559    }
1560  }
1561
1562  // Now that we have created the new alloca instructions, rewrite all the
1563  // uses of the old alloca.
1564  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1565
1566  // Now erase any instructions that were made dead while rewriting the alloca.
1567  DeleteDeadInstructions();
1568  AI->eraseFromParent();
1569
1570  ++NumReplaced;
1571}
1572
1573/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1574/// recursively including all their operands that become trivially dead.
1575void SROA::DeleteDeadInstructions() {
1576  while (!DeadInsts.empty()) {
1577    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1578
1579    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1580      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1581        // Zero out the operand and see if it becomes trivially dead.
1582        // (But, don't add allocas to the dead instruction list -- they are
1583        // already on the worklist and will be deleted separately.)
1584        *OI = nullptr;
1585        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1586          DeadInsts.push_back(U);
1587      }
1588
1589    I->eraseFromParent();
1590  }
1591}
1592
1593/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1594/// performing scalar replacement of alloca AI.  The results are flagged in
1595/// the Info parameter.  Offset indicates the position within AI that is
1596/// referenced by this instruction.
1597void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1598                               AllocaInfo &Info) {
1599  for (Use &U : I->uses()) {
1600    Instruction *User = cast<Instruction>(U.getUser());
1601
1602    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1603      isSafeForScalarRepl(BC, Offset, Info);
1604    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1605      uint64_t GEPOffset = Offset;
1606      isSafeGEP(GEPI, GEPOffset, Info);
1607      if (!Info.isUnsafe)
1608        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1609    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1610      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1611      if (!Length || Length->isNegative())
1612        return MarkUnsafe(Info, User);
1613
1614      isSafeMemAccess(Offset, Length->getZExtValue(), nullptr,
1615                      U.getOperandNo() == 0, Info, MI,
1616                      true /*AllowWholeAccess*/);
1617    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1618      if (!LI->isSimple())
1619        return MarkUnsafe(Info, User);
1620      Type *LIType = LI->getType();
1621      isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
1622                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1623      Info.hasALoadOrStore = true;
1624
1625    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1626      // Store is ok if storing INTO the pointer, not storing the pointer
1627      if (!SI->isSimple() || SI->getOperand(0) == I)
1628        return MarkUnsafe(Info, User);
1629
1630      Type *SIType = SI->getOperand(0)->getType();
1631      isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
1632                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1633      Info.hasALoadOrStore = true;
1634    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1635      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1636          II->getIntrinsicID() != Intrinsic::lifetime_end)
1637        return MarkUnsafe(Info, User);
1638    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1639      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1640    } else {
1641      return MarkUnsafe(Info, User);
1642    }
1643    if (Info.isUnsafe) return;
1644  }
1645}
1646
1647
1648/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1649/// derived from the alloca, we can often still split the alloca into elements.
1650/// This is useful if we have a large alloca where one element is phi'd
1651/// together somewhere: we can SRoA and promote all the other elements even if
1652/// we end up not being able to promote this one.
1653///
1654/// All we require is that the uses of the PHI do not index into other parts of
1655/// the alloca.  The most important use case for this is single load and stores
1656/// that are PHI'd together, which can happen due to code sinking.
1657void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1658                                           AllocaInfo &Info) {
1659  // If we've already checked this PHI, don't do it again.
1660  if (PHINode *PN = dyn_cast<PHINode>(I))
1661    if (!Info.CheckedPHIs.insert(PN))
1662      return;
1663
1664  for (User *U : I->users()) {
1665    Instruction *UI = cast<Instruction>(U);
1666
1667    if (BitCastInst *BC = dyn_cast<BitCastInst>(UI)) {
1668      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1669    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1670      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1671      // but would have to prove that we're staying inside of an element being
1672      // promoted.
1673      if (!GEPI->hasAllZeroIndices())
1674        return MarkUnsafe(Info, UI);
1675      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1676    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
1677      if (!LI->isSimple())
1678        return MarkUnsafe(Info, UI);
1679      Type *LIType = LI->getType();
1680      isSafeMemAccess(Offset, DL->getTypeAllocSize(LIType),
1681                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1682      Info.hasALoadOrStore = true;
1683
1684    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1685      // Store is ok if storing INTO the pointer, not storing the pointer
1686      if (!SI->isSimple() || SI->getOperand(0) == I)
1687        return MarkUnsafe(Info, UI);
1688
1689      Type *SIType = SI->getOperand(0)->getType();
1690      isSafeMemAccess(Offset, DL->getTypeAllocSize(SIType),
1691                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1692      Info.hasALoadOrStore = true;
1693    } else if (isa<PHINode>(UI) || isa<SelectInst>(UI)) {
1694      isSafePHISelectUseForScalarRepl(UI, Offset, Info);
1695    } else {
1696      return MarkUnsafe(Info, UI);
1697    }
1698    if (Info.isUnsafe) return;
1699  }
1700}
1701
1702/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1703/// replacement.  It is safe when all the indices are constant, in-bounds
1704/// references, and when the resulting offset corresponds to an element within
1705/// the alloca type.  The results are flagged in the Info parameter.  Upon
1706/// return, Offset is adjusted as specified by the GEP indices.
1707void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1708                     uint64_t &Offset, AllocaInfo &Info) {
1709  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1710  if (GEPIt == E)
1711    return;
1712  bool NonConstant = false;
1713  unsigned NonConstantIdxSize = 0;
1714
1715  // Walk through the GEP type indices, checking the types that this indexes
1716  // into.
1717  for (; GEPIt != E; ++GEPIt) {
1718    // Ignore struct elements, no extra checking needed for these.
1719    if ((*GEPIt)->isStructTy())
1720      continue;
1721
1722    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1723    if (!IdxVal)
1724      return MarkUnsafe(Info, GEPI);
1725  }
1726
1727  // Compute the offset due to this GEP and check if the alloca has a
1728  // component element at that offset.
1729  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1730  // If this GEP is non-constant then the last operand must have been a
1731  // dynamic index into a vector.  Pop this now as it has no impact on the
1732  // constant part of the offset.
1733  if (NonConstant)
1734    Indices.pop_back();
1735  Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1736  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
1737                        NonConstantIdxSize))
1738    MarkUnsafe(Info, GEPI);
1739}
1740
1741/// isHomogeneousAggregate - Check if type T is a struct or array containing
1742/// elements of the same type (which is always true for arrays).  If so,
1743/// return true with NumElts and EltTy set to the number of elements and the
1744/// element type, respectively.
1745static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1746                                   Type *&EltTy) {
1747  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1748    NumElts = AT->getNumElements();
1749    EltTy = (NumElts == 0 ? nullptr : AT->getElementType());
1750    return true;
1751  }
1752  if (StructType *ST = dyn_cast<StructType>(T)) {
1753    NumElts = ST->getNumContainedTypes();
1754    EltTy = (NumElts == 0 ? nullptr : ST->getContainedType(0));
1755    for (unsigned n = 1; n < NumElts; ++n) {
1756      if (ST->getContainedType(n) != EltTy)
1757        return false;
1758    }
1759    return true;
1760  }
1761  return false;
1762}
1763
1764/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1765/// "homogeneous" aggregates with the same element type and number of elements.
1766static bool isCompatibleAggregate(Type *T1, Type *T2) {
1767  if (T1 == T2)
1768    return true;
1769
1770  unsigned NumElts1, NumElts2;
1771  Type *EltTy1, *EltTy2;
1772  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1773      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1774      NumElts1 == NumElts2 &&
1775      EltTy1 == EltTy2)
1776    return true;
1777
1778  return false;
1779}
1780
1781/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1782/// alloca or has an offset and size that corresponds to a component element
1783/// within it.  The offset checked here may have been formed from a GEP with a
1784/// pointer bitcasted to a different type.
1785///
1786/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1787/// unit.  If false, it only allows accesses known to be in a single element.
1788void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1789                           Type *MemOpType, bool isStore,
1790                           AllocaInfo &Info, Instruction *TheAccess,
1791                           bool AllowWholeAccess) {
1792  // Check if this is a load/store of the entire alloca.
1793  if (Offset == 0 && AllowWholeAccess &&
1794      MemSize == DL->getTypeAllocSize(Info.AI->getAllocatedType())) {
1795    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1796    // loads/stores (which are essentially the same as the MemIntrinsics with
1797    // regard to copying padding between elements).  But, if an alloca is
1798    // flagged as both a source and destination of such operations, we'll need
1799    // to check later for padding between elements.
1800    if (!MemOpType || MemOpType->isIntegerTy()) {
1801      if (isStore)
1802        Info.isMemCpyDst = true;
1803      else
1804        Info.isMemCpySrc = true;
1805      return;
1806    }
1807    // This is also safe for references using a type that is compatible with
1808    // the type of the alloca, so that loads/stores can be rewritten using
1809    // insertvalue/extractvalue.
1810    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1811      Info.hasSubelementAccess = true;
1812      return;
1813    }
1814  }
1815  // Check if the offset/size correspond to a component within the alloca type.
1816  Type *T = Info.AI->getAllocatedType();
1817  if (TypeHasComponent(T, Offset, MemSize)) {
1818    Info.hasSubelementAccess = true;
1819    return;
1820  }
1821
1822  return MarkUnsafe(Info, TheAccess);
1823}
1824
1825/// TypeHasComponent - Return true if T has a component type with the
1826/// specified offset and size.  If Size is zero, do not check the size.
1827bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1828  Type *EltTy;
1829  uint64_t EltSize;
1830  if (StructType *ST = dyn_cast<StructType>(T)) {
1831    const StructLayout *Layout = DL->getStructLayout(ST);
1832    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1833    EltTy = ST->getContainedType(EltIdx);
1834    EltSize = DL->getTypeAllocSize(EltTy);
1835    Offset -= Layout->getElementOffset(EltIdx);
1836  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1837    EltTy = AT->getElementType();
1838    EltSize = DL->getTypeAllocSize(EltTy);
1839    if (Offset >= AT->getNumElements() * EltSize)
1840      return false;
1841    Offset %= EltSize;
1842  } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1843    EltTy = VT->getElementType();
1844    EltSize = DL->getTypeAllocSize(EltTy);
1845    if (Offset >= VT->getNumElements() * EltSize)
1846      return false;
1847    Offset %= EltSize;
1848  } else {
1849    return false;
1850  }
1851  if (Offset == 0 && (Size == 0 || EltSize == Size))
1852    return true;
1853  // Check if the component spans multiple elements.
1854  if (Offset + Size > EltSize)
1855    return false;
1856  return TypeHasComponent(EltTy, Offset, Size);
1857}
1858
1859/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1860/// the instruction I, which references it, to use the separate elements.
1861/// Offset indicates the position within AI that is referenced by this
1862/// instruction.
1863void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1864                                SmallVectorImpl<AllocaInst *> &NewElts) {
1865  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1866    Use &TheUse = *UI++;
1867    Instruction *User = cast<Instruction>(TheUse.getUser());
1868
1869    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1870      RewriteBitCast(BC, AI, Offset, NewElts);
1871      continue;
1872    }
1873
1874    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1875      RewriteGEP(GEPI, AI, Offset, NewElts);
1876      continue;
1877    }
1878
1879    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1880      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1881      uint64_t MemSize = Length->getZExtValue();
1882      if (Offset == 0 &&
1883          MemSize == DL->getTypeAllocSize(AI->getAllocatedType()))
1884        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1885      // Otherwise the intrinsic can only touch a single element and the
1886      // address operand will be updated, so nothing else needs to be done.
1887      continue;
1888    }
1889
1890    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1891      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1892          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1893        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1894      }
1895      continue;
1896    }
1897
1898    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1899      Type *LIType = LI->getType();
1900
1901      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1902        // Replace:
1903        //   %res = load { i32, i32 }* %alloc
1904        // with:
1905        //   %load.0 = load i32* %alloc.0
1906        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1907        //   %load.1 = load i32* %alloc.1
1908        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1909        // (Also works for arrays instead of structs)
1910        Value *Insert = UndefValue::get(LIType);
1911        IRBuilder<> Builder(LI);
1912        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1913          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1914          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1915        }
1916        LI->replaceAllUsesWith(Insert);
1917        DeadInsts.push_back(LI);
1918      } else if (LIType->isIntegerTy() &&
1919                 DL->getTypeAllocSize(LIType) ==
1920                 DL->getTypeAllocSize(AI->getAllocatedType())) {
1921        // If this is a load of the entire alloca to an integer, rewrite it.
1922        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1923      }
1924      continue;
1925    }
1926
1927    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1928      Value *Val = SI->getOperand(0);
1929      Type *SIType = Val->getType();
1930      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1931        // Replace:
1932        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1933        // with:
1934        //   %val.0 = extractvalue { i32, i32 } %val, 0
1935        //   store i32 %val.0, i32* %alloc.0
1936        //   %val.1 = extractvalue { i32, i32 } %val, 1
1937        //   store i32 %val.1, i32* %alloc.1
1938        // (Also works for arrays instead of structs)
1939        IRBuilder<> Builder(SI);
1940        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1941          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1942          Builder.CreateStore(Extract, NewElts[i]);
1943        }
1944        DeadInsts.push_back(SI);
1945      } else if (SIType->isIntegerTy() &&
1946                 DL->getTypeAllocSize(SIType) ==
1947                 DL->getTypeAllocSize(AI->getAllocatedType())) {
1948        // If this is a store of the entire alloca from an integer, rewrite it.
1949        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1950      }
1951      continue;
1952    }
1953
1954    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1955      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1956      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1957      // the new pointer.
1958      if (!isa<AllocaInst>(I)) continue;
1959
1960      assert(Offset == 0 && NewElts[0] &&
1961             "Direct alloca use should have a zero offset");
1962
1963      // If we have a use of the alloca, we know the derived uses will be
1964      // utilizing just the first element of the scalarized result.  Insert a
1965      // bitcast of the first alloca before the user as required.
1966      AllocaInst *NewAI = NewElts[0];
1967      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1968      NewAI->moveBefore(BCI);
1969      TheUse = BCI;
1970      continue;
1971    }
1972  }
1973}
1974
1975/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1976/// and recursively continue updating all of its uses.
1977void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1978                          SmallVectorImpl<AllocaInst *> &NewElts) {
1979  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1980  if (BC->getOperand(0) != AI)
1981    return;
1982
1983  // The bitcast references the original alloca.  Replace its uses with
1984  // references to the alloca containing offset zero (which is normally at
1985  // index zero, but might not be in cases involving structs with elements
1986  // of size zero).
1987  Type *T = AI->getAllocatedType();
1988  uint64_t EltOffset = 0;
1989  Type *IdxTy;
1990  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1991  Instruction *Val = NewElts[Idx];
1992  if (Val->getType() != BC->getDestTy()) {
1993    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1994    Val->takeName(BC);
1995  }
1996  BC->replaceAllUsesWith(Val);
1997  DeadInsts.push_back(BC);
1998}
1999
2000/// FindElementAndOffset - Return the index of the element containing Offset
2001/// within the specified type, which must be either a struct or an array.
2002/// Sets T to the type of the element and Offset to the offset within that
2003/// element.  IdxTy is set to the type of the index result to be used in a
2004/// GEP instruction.
2005uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2006                                    Type *&IdxTy) {
2007  uint64_t Idx = 0;
2008  if (StructType *ST = dyn_cast<StructType>(T)) {
2009    const StructLayout *Layout = DL->getStructLayout(ST);
2010    Idx = Layout->getElementContainingOffset(Offset);
2011    T = ST->getContainedType(Idx);
2012    Offset -= Layout->getElementOffset(Idx);
2013    IdxTy = Type::getInt32Ty(T->getContext());
2014    return Idx;
2015  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2016    T = AT->getElementType();
2017    uint64_t EltSize = DL->getTypeAllocSize(T);
2018    Idx = Offset / EltSize;
2019    Offset -= Idx * EltSize;
2020    IdxTy = Type::getInt64Ty(T->getContext());
2021    return Idx;
2022  }
2023  VectorType *VT = cast<VectorType>(T);
2024  T = VT->getElementType();
2025  uint64_t EltSize = DL->getTypeAllocSize(T);
2026  Idx = Offset / EltSize;
2027  Offset -= Idx * EltSize;
2028  IdxTy = Type::getInt64Ty(T->getContext());
2029  return Idx;
2030}
2031
2032/// RewriteGEP - Check if this GEP instruction moves the pointer across
2033/// elements of the alloca that are being split apart, and if so, rewrite
2034/// the GEP to be relative to the new element.
2035void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2036                      SmallVectorImpl<AllocaInst *> &NewElts) {
2037  uint64_t OldOffset = Offset;
2038  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2039  // If the GEP was dynamic then it must have been a dynamic vector lookup.
2040  // In this case, it must be the last GEP operand which is dynamic so keep that
2041  // aside until we've found the constant GEP offset then add it back in at the
2042  // end.
2043  Value* NonConstantIdx = nullptr;
2044  if (!GEPI->hasAllConstantIndices())
2045    NonConstantIdx = Indices.pop_back_val();
2046  Offset += DL->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2047
2048  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2049
2050  Type *T = AI->getAllocatedType();
2051  Type *IdxTy;
2052  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2053  if (GEPI->getOperand(0) == AI)
2054    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2055
2056  T = AI->getAllocatedType();
2057  uint64_t EltOffset = Offset;
2058  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2059
2060  // If this GEP does not move the pointer across elements of the alloca
2061  // being split, then it does not needs to be rewritten.
2062  if (Idx == OldIdx)
2063    return;
2064
2065  Type *i32Ty = Type::getInt32Ty(AI->getContext());
2066  SmallVector<Value*, 8> NewArgs;
2067  NewArgs.push_back(Constant::getNullValue(i32Ty));
2068  while (EltOffset != 0) {
2069    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2070    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2071  }
2072  if (NonConstantIdx) {
2073    Type* GepTy = T;
2074    // This GEP has a dynamic index.  We need to add "i32 0" to index through
2075    // any structs or arrays in the original type until we get to the vector
2076    // to index.
2077    while (!isa<VectorType>(GepTy)) {
2078      NewArgs.push_back(Constant::getNullValue(i32Ty));
2079      GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2080    }
2081    NewArgs.push_back(NonConstantIdx);
2082  }
2083  Instruction *Val = NewElts[Idx];
2084  if (NewArgs.size() > 1) {
2085    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2086    Val->takeName(GEPI);
2087  }
2088  if (Val->getType() != GEPI->getType())
2089    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2090  GEPI->replaceAllUsesWith(Val);
2091  DeadInsts.push_back(GEPI);
2092}
2093
2094/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2095/// to mark the lifetime of the scalarized memory.
2096void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2097                                    uint64_t Offset,
2098                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2099  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2100  // Put matching lifetime markers on everything from Offset up to
2101  // Offset+OldSize.
2102  Type *AIType = AI->getAllocatedType();
2103  uint64_t NewOffset = Offset;
2104  Type *IdxTy;
2105  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
2106
2107  IRBuilder<> Builder(II);
2108  uint64_t Size = OldSize->getLimitedValue();
2109
2110  if (NewOffset) {
2111    // Splice the first element and index 'NewOffset' bytes in.  SROA will
2112    // split the alloca again later.
2113    unsigned AS = AI->getType()->getAddressSpace();
2114    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy(AS));
2115    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
2116
2117    IdxTy = NewElts[Idx]->getAllocatedType();
2118    uint64_t EltSize = DL->getTypeAllocSize(IdxTy) - NewOffset;
2119    if (EltSize > Size) {
2120      EltSize = Size;
2121      Size = 0;
2122    } else {
2123      Size -= EltSize;
2124    }
2125    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2126      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2127    else
2128      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2129    ++Idx;
2130  }
2131
2132  for (; Idx != NewElts.size() && Size; ++Idx) {
2133    IdxTy = NewElts[Idx]->getAllocatedType();
2134    uint64_t EltSize = DL->getTypeAllocSize(IdxTy);
2135    if (EltSize > Size) {
2136      EltSize = Size;
2137      Size = 0;
2138    } else {
2139      Size -= EltSize;
2140    }
2141    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2142      Builder.CreateLifetimeStart(NewElts[Idx],
2143                                  Builder.getInt64(EltSize));
2144    else
2145      Builder.CreateLifetimeEnd(NewElts[Idx],
2146                                Builder.getInt64(EltSize));
2147  }
2148  DeadInsts.push_back(II);
2149}
2150
2151/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2152/// Rewrite it to copy or set the elements of the scalarized memory.
2153void
2154SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2155                                   AllocaInst *AI,
2156                                   SmallVectorImpl<AllocaInst *> &NewElts) {
2157  // If this is a memcpy/memmove, construct the other pointer as the
2158  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2159  // that doesn't have anything to do with the alloca that we are promoting. For
2160  // memset, this Value* stays null.
2161  Value *OtherPtr = nullptr;
2162  unsigned MemAlignment = MI->getAlignment();
2163  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2164    if (Inst == MTI->getRawDest())
2165      OtherPtr = MTI->getRawSource();
2166    else {
2167      assert(Inst == MTI->getRawSource());
2168      OtherPtr = MTI->getRawDest();
2169    }
2170  }
2171
2172  // If there is an other pointer, we want to convert it to the same pointer
2173  // type as AI has, so we can GEP through it safely.
2174  if (OtherPtr) {
2175    unsigned AddrSpace =
2176      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2177
2178    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2179    // optimization, but it's also required to detect the corner case where
2180    // both pointer operands are referencing the same memory, and where
2181    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2182    // function is only called for mem intrinsics that access the whole
2183    // aggregate, so non-zero GEPs are not an issue here.)
2184    OtherPtr = OtherPtr->stripPointerCasts();
2185
2186    // Copying the alloca to itself is a no-op: just delete it.
2187    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2188      // This code will run twice for a no-op memcpy -- once for each operand.
2189      // Put only one reference to MI on the DeadInsts list.
2190      for (SmallVectorImpl<Value *>::const_iterator I = DeadInsts.begin(),
2191             E = DeadInsts.end(); I != E; ++I)
2192        if (*I == MI) return;
2193      DeadInsts.push_back(MI);
2194      return;
2195    }
2196
2197    // If the pointer is not the right type, insert a bitcast to the right
2198    // type.
2199    Type *NewTy =
2200      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2201
2202    if (OtherPtr->getType() != NewTy)
2203      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2204  }
2205
2206  // Process each element of the aggregate.
2207  bool SROADest = MI->getRawDest() == Inst;
2208
2209  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2210
2211  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2212    // If this is a memcpy/memmove, emit a GEP of the other element address.
2213    Value *OtherElt = nullptr;
2214    unsigned OtherEltAlign = MemAlignment;
2215
2216    if (OtherPtr) {
2217      Value *Idx[2] = { Zero,
2218                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2219      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2220                                              OtherPtr->getName()+"."+Twine(i),
2221                                                   MI);
2222      uint64_t EltOffset;
2223      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2224      Type *OtherTy = OtherPtrTy->getElementType();
2225      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2226        EltOffset = DL->getStructLayout(ST)->getElementOffset(i);
2227      } else {
2228        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2229        EltOffset = DL->getTypeAllocSize(EltTy)*i;
2230      }
2231
2232      // The alignment of the other pointer is the guaranteed alignment of the
2233      // element, which is affected by both the known alignment of the whole
2234      // mem intrinsic and the alignment of the element.  If the alignment of
2235      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2236      // known alignment is just 4 bytes.
2237      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2238    }
2239
2240    Value *EltPtr = NewElts[i];
2241    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2242
2243    // If we got down to a scalar, insert a load or store as appropriate.
2244    if (EltTy->isSingleValueType()) {
2245      if (isa<MemTransferInst>(MI)) {
2246        if (SROADest) {
2247          // From Other to Alloca.
2248          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2249          new StoreInst(Elt, EltPtr, MI);
2250        } else {
2251          // From Alloca to Other.
2252          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2253          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2254        }
2255        continue;
2256      }
2257      assert(isa<MemSetInst>(MI));
2258
2259      // If the stored element is zero (common case), just store a null
2260      // constant.
2261      Constant *StoreVal;
2262      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2263        if (CI->isZero()) {
2264          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2265        } else {
2266          // If EltTy is a vector type, get the element type.
2267          Type *ValTy = EltTy->getScalarType();
2268
2269          // Construct an integer with the right value.
2270          unsigned EltSize = DL->getTypeSizeInBits(ValTy);
2271          APInt OneVal(EltSize, CI->getZExtValue());
2272          APInt TotalVal(OneVal);
2273          // Set each byte.
2274          for (unsigned i = 0; 8*i < EltSize; ++i) {
2275            TotalVal = TotalVal.shl(8);
2276            TotalVal |= OneVal;
2277          }
2278
2279          // Convert the integer value to the appropriate type.
2280          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2281          if (ValTy->isPointerTy())
2282            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2283          else if (ValTy->isFloatingPointTy())
2284            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2285          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2286
2287          // If the requested value was a vector constant, create it.
2288          if (EltTy->isVectorTy()) {
2289            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2290            StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2291          }
2292        }
2293        new StoreInst(StoreVal, EltPtr, MI);
2294        continue;
2295      }
2296      // Otherwise, if we're storing a byte variable, use a memset call for
2297      // this element.
2298    }
2299
2300    unsigned EltSize = DL->getTypeAllocSize(EltTy);
2301    if (!EltSize)
2302      continue;
2303
2304    IRBuilder<> Builder(MI);
2305
2306    // Finally, insert the meminst for this element.
2307    if (isa<MemSetInst>(MI)) {
2308      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2309                           MI->isVolatile());
2310    } else {
2311      assert(isa<MemTransferInst>(MI));
2312      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2313      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2314
2315      if (isa<MemCpyInst>(MI))
2316        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2317      else
2318        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2319    }
2320  }
2321  DeadInsts.push_back(MI);
2322}
2323
2324/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2325/// overwrites the entire allocation.  Extract out the pieces of the stored
2326/// integer and store them individually.
2327void
2328SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2329                                    SmallVectorImpl<AllocaInst *> &NewElts) {
2330  // Extract each element out of the integer according to its structure offset
2331  // and store the element value to the individual alloca.
2332  Value *SrcVal = SI->getOperand(0);
2333  Type *AllocaEltTy = AI->getAllocatedType();
2334  uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
2335
2336  IRBuilder<> Builder(SI);
2337
2338  // Handle tail padding by extending the operand
2339  if (DL->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2340    SrcVal = Builder.CreateZExt(SrcVal,
2341                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2342
2343  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2344               << '\n');
2345
2346  // There are two forms here: AI could be an array or struct.  Both cases
2347  // have different ways to compute the element offset.
2348  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2349    const StructLayout *Layout = DL->getStructLayout(EltSTy);
2350
2351    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2352      // Get the number of bits to shift SrcVal to get the value.
2353      Type *FieldTy = EltSTy->getElementType(i);
2354      uint64_t Shift = Layout->getElementOffsetInBits(i);
2355
2356      if (DL->isBigEndian())
2357        Shift = AllocaSizeBits-Shift-DL->getTypeAllocSizeInBits(FieldTy);
2358
2359      Value *EltVal = SrcVal;
2360      if (Shift) {
2361        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2362        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2363      }
2364
2365      // Truncate down to an integer of the right size.
2366      uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
2367
2368      // Ignore zero sized fields like {}, they obviously contain no data.
2369      if (FieldSizeBits == 0) continue;
2370
2371      if (FieldSizeBits != AllocaSizeBits)
2372        EltVal = Builder.CreateTrunc(EltVal,
2373                             IntegerType::get(SI->getContext(), FieldSizeBits));
2374      Value *DestField = NewElts[i];
2375      if (EltVal->getType() == FieldTy) {
2376        // Storing to an integer field of this size, just do it.
2377      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2378        // Bitcast to the right element type (for fp/vector values).
2379        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2380      } else {
2381        // Otherwise, bitcast the dest pointer (for aggregates).
2382        DestField = Builder.CreateBitCast(DestField,
2383                                     PointerType::getUnqual(EltVal->getType()));
2384      }
2385      new StoreInst(EltVal, DestField, SI);
2386    }
2387
2388  } else {
2389    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2390    Type *ArrayEltTy = ATy->getElementType();
2391    uint64_t ElementOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
2392    uint64_t ElementSizeBits = DL->getTypeSizeInBits(ArrayEltTy);
2393
2394    uint64_t Shift;
2395
2396    if (DL->isBigEndian())
2397      Shift = AllocaSizeBits-ElementOffset;
2398    else
2399      Shift = 0;
2400
2401    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2402      // Ignore zero sized fields like {}, they obviously contain no data.
2403      if (ElementSizeBits == 0) continue;
2404
2405      Value *EltVal = SrcVal;
2406      if (Shift) {
2407        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2408        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2409      }
2410
2411      // Truncate down to an integer of the right size.
2412      if (ElementSizeBits != AllocaSizeBits)
2413        EltVal = Builder.CreateTrunc(EltVal,
2414                                     IntegerType::get(SI->getContext(),
2415                                                      ElementSizeBits));
2416      Value *DestField = NewElts[i];
2417      if (EltVal->getType() == ArrayEltTy) {
2418        // Storing to an integer field of this size, just do it.
2419      } else if (ArrayEltTy->isFloatingPointTy() ||
2420                 ArrayEltTy->isVectorTy()) {
2421        // Bitcast to the right element type (for fp/vector values).
2422        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2423      } else {
2424        // Otherwise, bitcast the dest pointer (for aggregates).
2425        DestField = Builder.CreateBitCast(DestField,
2426                                     PointerType::getUnqual(EltVal->getType()));
2427      }
2428      new StoreInst(EltVal, DestField, SI);
2429
2430      if (DL->isBigEndian())
2431        Shift -= ElementOffset;
2432      else
2433        Shift += ElementOffset;
2434    }
2435  }
2436
2437  DeadInsts.push_back(SI);
2438}
2439
2440/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2441/// an integer.  Load the individual pieces to form the aggregate value.
2442void
2443SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2444                                   SmallVectorImpl<AllocaInst *> &NewElts) {
2445  // Extract each element out of the NewElts according to its structure offset
2446  // and form the result value.
2447  Type *AllocaEltTy = AI->getAllocatedType();
2448  uint64_t AllocaSizeBits = DL->getTypeAllocSizeInBits(AllocaEltTy);
2449
2450  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2451               << '\n');
2452
2453  // There are two forms here: AI could be an array or struct.  Both cases
2454  // have different ways to compute the element offset.
2455  const StructLayout *Layout = nullptr;
2456  uint64_t ArrayEltBitOffset = 0;
2457  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2458    Layout = DL->getStructLayout(EltSTy);
2459  } else {
2460    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2461    ArrayEltBitOffset = DL->getTypeAllocSizeInBits(ArrayEltTy);
2462  }
2463
2464  Value *ResultVal =
2465    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2466
2467  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2468    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2469    // the pointer to an integer of the same size before doing the load.
2470    Value *SrcField = NewElts[i];
2471    Type *FieldTy =
2472      cast<PointerType>(SrcField->getType())->getElementType();
2473    uint64_t FieldSizeBits = DL->getTypeSizeInBits(FieldTy);
2474
2475    // Ignore zero sized fields like {}, they obviously contain no data.
2476    if (FieldSizeBits == 0) continue;
2477
2478    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2479                                                     FieldSizeBits);
2480    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2481        !FieldTy->isVectorTy())
2482      SrcField = new BitCastInst(SrcField,
2483                                 PointerType::getUnqual(FieldIntTy),
2484                                 "", LI);
2485    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2486
2487    // If SrcField is a fp or vector of the right size but that isn't an
2488    // integer type, bitcast to an integer so we can shift it.
2489    if (SrcField->getType() != FieldIntTy)
2490      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2491
2492    // Zero extend the field to be the same size as the final alloca so that
2493    // we can shift and insert it.
2494    if (SrcField->getType() != ResultVal->getType())
2495      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2496
2497    // Determine the number of bits to shift SrcField.
2498    uint64_t Shift;
2499    if (Layout) // Struct case.
2500      Shift = Layout->getElementOffsetInBits(i);
2501    else  // Array case.
2502      Shift = i*ArrayEltBitOffset;
2503
2504    if (DL->isBigEndian())
2505      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2506
2507    if (Shift) {
2508      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2509      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2510    }
2511
2512    // Don't create an 'or x, 0' on the first iteration.
2513    if (!isa<Constant>(ResultVal) ||
2514        !cast<Constant>(ResultVal)->isNullValue())
2515      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2516    else
2517      ResultVal = SrcField;
2518  }
2519
2520  // Handle tail padding by truncating the result
2521  if (DL->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2522    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2523
2524  LI->replaceAllUsesWith(ResultVal);
2525  DeadInsts.push_back(LI);
2526}
2527
2528/// HasPadding - Return true if the specified type has any structure or
2529/// alignment padding in between the elements that would be split apart
2530/// by SROA; return false otherwise.
2531static bool HasPadding(Type *Ty, const DataLayout &DL) {
2532  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2533    Ty = ATy->getElementType();
2534    return DL.getTypeSizeInBits(Ty) != DL.getTypeAllocSizeInBits(Ty);
2535  }
2536
2537  // SROA currently handles only Arrays and Structs.
2538  StructType *STy = cast<StructType>(Ty);
2539  const StructLayout *SL = DL.getStructLayout(STy);
2540  unsigned PrevFieldBitOffset = 0;
2541  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2542    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2543
2544    // Check to see if there is any padding between this element and the
2545    // previous one.
2546    if (i) {
2547      unsigned PrevFieldEnd =
2548        PrevFieldBitOffset+DL.getTypeSizeInBits(STy->getElementType(i-1));
2549      if (PrevFieldEnd < FieldBitOffset)
2550        return true;
2551    }
2552    PrevFieldBitOffset = FieldBitOffset;
2553  }
2554  // Check for tail padding.
2555  if (unsigned EltCount = STy->getNumElements()) {
2556    unsigned PrevFieldEnd = PrevFieldBitOffset +
2557      DL.getTypeSizeInBits(STy->getElementType(EltCount-1));
2558    if (PrevFieldEnd < SL->getSizeInBits())
2559      return true;
2560  }
2561  return false;
2562}
2563
2564/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2565/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2566/// or 1 if safe after canonicalization has been performed.
2567bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2568  // Loop over the use list of the alloca.  We can only transform it if all of
2569  // the users are safe to transform.
2570  AllocaInfo Info(AI);
2571
2572  isSafeForScalarRepl(AI, 0, Info);
2573  if (Info.isUnsafe) {
2574    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2575    return false;
2576  }
2577
2578  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2579  // source and destination, we have to be careful.  In particular, the memcpy
2580  // could be moving around elements that live in structure padding of the LLVM
2581  // types, but may actually be used.  In these cases, we refuse to promote the
2582  // struct.
2583  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2584      HasPadding(AI->getAllocatedType(), *DL))
2585    return false;
2586
2587  // If the alloca never has an access to just *part* of it, but is accessed
2588  // via loads and stores, then we should use ConvertToScalarInfo to promote
2589  // the alloca instead of promoting each piece at a time and inserting fission
2590  // and fusion code.
2591  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2592    // If the struct/array just has one element, use basic SRoA.
2593    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2594      if (ST->getNumElements() > 1) return false;
2595    } else {
2596      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2597        return false;
2598    }
2599  }
2600
2601  return true;
2602}
2603