SimplifyCFG.cpp revision 24473120a253a05f3601cd3373403b47e6d03d41
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/LLVMContext.h"
22#include "llvm/Metadata.h"
23#include "llvm/Operator.h"
24#include "llvm/Type.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Transforms/Utils/BasicBlockUtils.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/ConstantRange.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/NoFolder.h"
41#include "llvm/Support/raw_ostream.h"
42#include <algorithm>
43#include <set>
44#include <map>
45using namespace llvm;
46
47static cl::opt<unsigned>
48PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
49   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
50
51static cl::opt<bool>
52DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
53       cl::desc("Duplicate return instructions into unconditional branches"));
54
55STATISTIC(NumSpeculations, "Number of speculative executed instructions");
56
57namespace {
58class SimplifyCFGOpt {
59  const TargetData *const TD;
60
61  Value *isValueEqualityComparison(TerminatorInst *TI);
62  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
63    std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
64  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
65                                                     BasicBlock *Pred,
66                                                     IRBuilder<> &Builder);
67  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
68                                           IRBuilder<> &Builder);
69
70  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
71  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
72  bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
73  bool SimplifyUnreachable(UnreachableInst *UI);
74  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
75  bool SimplifyIndirectBr(IndirectBrInst *IBI);
76  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
77  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
78
79public:
80  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
81  bool run(BasicBlock *BB);
82};
83}
84
85/// SafeToMergeTerminators - Return true if it is safe to merge these two
86/// terminator instructions together.
87///
88static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
89  if (SI1 == SI2) return false;  // Can't merge with self!
90
91  // It is not safe to merge these two switch instructions if they have a common
92  // successor, and if that successor has a PHI node, and if *that* PHI node has
93  // conflicting incoming values from the two switch blocks.
94  BasicBlock *SI1BB = SI1->getParent();
95  BasicBlock *SI2BB = SI2->getParent();
96  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
97
98  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
99    if (SI1Succs.count(*I))
100      for (BasicBlock::iterator BBI = (*I)->begin();
101           isa<PHINode>(BBI); ++BBI) {
102        PHINode *PN = cast<PHINode>(BBI);
103        if (PN->getIncomingValueForBlock(SI1BB) !=
104            PN->getIncomingValueForBlock(SI2BB))
105          return false;
106      }
107
108  return true;
109}
110
111/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
112/// now be entries in it from the 'NewPred' block.  The values that will be
113/// flowing into the PHI nodes will be the same as those coming in from
114/// ExistPred, an existing predecessor of Succ.
115static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
116                                  BasicBlock *ExistPred) {
117  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
118
119  PHINode *PN;
120  for (BasicBlock::iterator I = Succ->begin();
121       (PN = dyn_cast<PHINode>(I)); ++I)
122    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
123}
124
125
126/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
127/// least one PHI node in it), check to see if the merge at this block is due
128/// to an "if condition".  If so, return the boolean condition that determines
129/// which entry into BB will be taken.  Also, return by references the block
130/// that will be entered from if the condition is true, and the block that will
131/// be entered if the condition is false.
132///
133/// This does no checking to see if the true/false blocks have large or unsavory
134/// instructions in them.
135static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
136                             BasicBlock *&IfFalse) {
137  PHINode *SomePHI = cast<PHINode>(BB->begin());
138  assert(SomePHI->getNumIncomingValues() == 2 &&
139         "Function can only handle blocks with 2 predecessors!");
140  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
141  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
142
143  // We can only handle branches.  Other control flow will be lowered to
144  // branches if possible anyway.
145  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
146  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
147  if (Pred1Br == 0 || Pred2Br == 0)
148    return 0;
149
150  // Eliminate code duplication by ensuring that Pred1Br is conditional if
151  // either are.
152  if (Pred2Br->isConditional()) {
153    // If both branches are conditional, we don't have an "if statement".  In
154    // reality, we could transform this case, but since the condition will be
155    // required anyway, we stand no chance of eliminating it, so the xform is
156    // probably not profitable.
157    if (Pred1Br->isConditional())
158      return 0;
159
160    std::swap(Pred1, Pred2);
161    std::swap(Pred1Br, Pred2Br);
162  }
163
164  if (Pred1Br->isConditional()) {
165    // The only thing we have to watch out for here is to make sure that Pred2
166    // doesn't have incoming edges from other blocks.  If it does, the condition
167    // doesn't dominate BB.
168    if (Pred2->getSinglePredecessor() == 0)
169      return 0;
170
171    // If we found a conditional branch predecessor, make sure that it branches
172    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
173    if (Pred1Br->getSuccessor(0) == BB &&
174        Pred1Br->getSuccessor(1) == Pred2) {
175      IfTrue = Pred1;
176      IfFalse = Pred2;
177    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
178               Pred1Br->getSuccessor(1) == BB) {
179      IfTrue = Pred2;
180      IfFalse = Pred1;
181    } else {
182      // We know that one arm of the conditional goes to BB, so the other must
183      // go somewhere unrelated, and this must not be an "if statement".
184      return 0;
185    }
186
187    return Pred1Br->getCondition();
188  }
189
190  // Ok, if we got here, both predecessors end with an unconditional branch to
191  // BB.  Don't panic!  If both blocks only have a single (identical)
192  // predecessor, and THAT is a conditional branch, then we're all ok!
193  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
194  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
195    return 0;
196
197  // Otherwise, if this is a conditional branch, then we can use it!
198  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
199  if (BI == 0) return 0;
200
201  assert(BI->isConditional() && "Two successors but not conditional?");
202  if (BI->getSuccessor(0) == Pred1) {
203    IfTrue = Pred1;
204    IfFalse = Pred2;
205  } else {
206    IfTrue = Pred2;
207    IfFalse = Pred1;
208  }
209  return BI->getCondition();
210}
211
212/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
213/// given instruction, which is assumed to be safe to speculate. 1 means
214/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
215static unsigned ComputeSpeculationCost(const User *I) {
216  assert(isSafeToSpeculativelyExecute(I) &&
217         "Instruction is not safe to speculatively execute!");
218  switch (Operator::getOpcode(I)) {
219  default:
220    // In doubt, be conservative.
221    return UINT_MAX;
222  case Instruction::GetElementPtr:
223    // GEPs are cheap if all indices are constant.
224    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
225      return UINT_MAX;
226    return 1;
227  case Instruction::Load:
228  case Instruction::Add:
229  case Instruction::Sub:
230  case Instruction::And:
231  case Instruction::Or:
232  case Instruction::Xor:
233  case Instruction::Shl:
234  case Instruction::LShr:
235  case Instruction::AShr:
236  case Instruction::ICmp:
237  case Instruction::Trunc:
238  case Instruction::ZExt:
239  case Instruction::SExt:
240    return 1; // These are all cheap.
241
242  case Instruction::Call:
243  case Instruction::Select:
244    return 2;
245  }
246}
247
248/// DominatesMergePoint - If we have a merge point of an "if condition" as
249/// accepted above, return true if the specified value dominates the block.  We
250/// don't handle the true generality of domination here, just a special case
251/// which works well enough for us.
252///
253/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
254/// see if V (which must be an instruction) and its recursive operands
255/// that do not dominate BB have a combined cost lower than CostRemaining and
256/// are non-trapping.  If both are true, the instruction is inserted into the
257/// set and true is returned.
258///
259/// The cost for most non-trapping instructions is defined as 1 except for
260/// Select whose cost is 2.
261///
262/// After this function returns, CostRemaining is decreased by the cost of
263/// V plus its non-dominating operands.  If that cost is greater than
264/// CostRemaining, false is returned and CostRemaining is undefined.
265static bool DominatesMergePoint(Value *V, BasicBlock *BB,
266                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
267                                unsigned &CostRemaining) {
268  Instruction *I = dyn_cast<Instruction>(V);
269  if (!I) {
270    // Non-instructions all dominate instructions, but not all constantexprs
271    // can be executed unconditionally.
272    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
273      if (C->canTrap())
274        return false;
275    return true;
276  }
277  BasicBlock *PBB = I->getParent();
278
279  // We don't want to allow weird loops that might have the "if condition" in
280  // the bottom of this block.
281  if (PBB == BB) return false;
282
283  // If this instruction is defined in a block that contains an unconditional
284  // branch to BB, then it must be in the 'conditional' part of the "if
285  // statement".  If not, it definitely dominates the region.
286  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
287  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
288    return true;
289
290  // If we aren't allowing aggressive promotion anymore, then don't consider
291  // instructions in the 'if region'.
292  if (AggressiveInsts == 0) return false;
293
294  // If we have seen this instruction before, don't count it again.
295  if (AggressiveInsts->count(I)) return true;
296
297  // Okay, it looks like the instruction IS in the "condition".  Check to
298  // see if it's a cheap instruction to unconditionally compute, and if it
299  // only uses stuff defined outside of the condition.  If so, hoist it out.
300  if (!isSafeToSpeculativelyExecute(I))
301    return false;
302
303  unsigned Cost = ComputeSpeculationCost(I);
304
305  if (Cost > CostRemaining)
306    return false;
307
308  CostRemaining -= Cost;
309
310  // Okay, we can only really hoist these out if their operands do
311  // not take us over the cost threshold.
312  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
313    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
314      return false;
315  // Okay, it's safe to do this!  Remember this instruction.
316  AggressiveInsts->insert(I);
317  return true;
318}
319
320/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
321/// and PointerNullValue. Return NULL if value is not a constant int.
322static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
323  // Normal constant int.
324  ConstantInt *CI = dyn_cast<ConstantInt>(V);
325  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
326    return CI;
327
328  // This is some kind of pointer constant. Turn it into a pointer-sized
329  // ConstantInt if possible.
330  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
331
332  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
333  if (isa<ConstantPointerNull>(V))
334    return ConstantInt::get(PtrTy, 0);
335
336  // IntToPtr const int.
337  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
338    if (CE->getOpcode() == Instruction::IntToPtr)
339      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
340        // The constant is very likely to have the right type already.
341        if (CI->getType() == PtrTy)
342          return CI;
343        else
344          return cast<ConstantInt>
345            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
346      }
347  return 0;
348}
349
350/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
351/// collection of icmp eq/ne instructions that compare a value against a
352/// constant, return the value being compared, and stick the constant into the
353/// Values vector.
354static Value *
355GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
356                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
357  Instruction *I = dyn_cast<Instruction>(V);
358  if (I == 0) return 0;
359
360  // If this is an icmp against a constant, handle this as one of the cases.
361  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
362    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
363      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
364        UsedICmps++;
365        Vals.push_back(C);
366        return I->getOperand(0);
367      }
368
369      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
370      // the set.
371      ConstantRange Span =
372        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
373
374      // If this is an and/!= check then we want to optimize "x ugt 2" into
375      // x != 0 && x != 1.
376      if (!isEQ)
377        Span = Span.inverse();
378
379      // If there are a ton of values, we don't want to make a ginormous switch.
380      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
381        return 0;
382
383      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
384        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
385      UsedICmps++;
386      return I->getOperand(0);
387    }
388    return 0;
389  }
390
391  // Otherwise, we can only handle an | or &, depending on isEQ.
392  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
393    return 0;
394
395  unsigned NumValsBeforeLHS = Vals.size();
396  unsigned UsedICmpsBeforeLHS = UsedICmps;
397  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
398                                          isEQ, UsedICmps)) {
399    unsigned NumVals = Vals.size();
400    unsigned UsedICmpsBeforeRHS = UsedICmps;
401    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
402                                            isEQ, UsedICmps)) {
403      if (LHS == RHS)
404        return LHS;
405      Vals.resize(NumVals);
406      UsedICmps = UsedICmpsBeforeRHS;
407    }
408
409    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
410    // set it and return success.
411    if (Extra == 0 || Extra == I->getOperand(1)) {
412      Extra = I->getOperand(1);
413      return LHS;
414    }
415
416    Vals.resize(NumValsBeforeLHS);
417    UsedICmps = UsedICmpsBeforeLHS;
418    return 0;
419  }
420
421  // If the LHS can't be folded in, but Extra is available and RHS can, try to
422  // use LHS as Extra.
423  if (Extra == 0 || Extra == I->getOperand(0)) {
424    Value *OldExtra = Extra;
425    Extra = I->getOperand(0);
426    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
427                                            isEQ, UsedICmps))
428      return RHS;
429    assert(Vals.size() == NumValsBeforeLHS);
430    Extra = OldExtra;
431  }
432
433  return 0;
434}
435
436static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
437  Instruction *Cond = 0;
438  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
439    Cond = dyn_cast<Instruction>(SI->getCondition());
440  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
441    if (BI->isConditional())
442      Cond = dyn_cast<Instruction>(BI->getCondition());
443  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
444    Cond = dyn_cast<Instruction>(IBI->getAddress());
445  }
446
447  TI->eraseFromParent();
448  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
449}
450
451/// isValueEqualityComparison - Return true if the specified terminator checks
452/// to see if a value is equal to constant integer value.
453Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
454  Value *CV = 0;
455  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
456    // Do not permit merging of large switch instructions into their
457    // predecessors unless there is only one predecessor.
458    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
459                                             pred_end(SI->getParent())) <= 128)
460      CV = SI->getCondition();
461  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
462    if (BI->isConditional() && BI->getCondition()->hasOneUse())
463      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
464        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
465             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
466            GetConstantInt(ICI->getOperand(1), TD))
467          CV = ICI->getOperand(0);
468
469  // Unwrap any lossless ptrtoint cast.
470  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
471    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
472      CV = PTII->getOperand(0);
473  return CV;
474}
475
476/// GetValueEqualityComparisonCases - Given a value comparison instruction,
477/// decode all of the 'cases' that it represents and return the 'default' block.
478BasicBlock *SimplifyCFGOpt::
479GetValueEqualityComparisonCases(TerminatorInst *TI,
480                                std::vector<std::pair<ConstantInt*,
481                                                      BasicBlock*> > &Cases) {
482  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
483    Cases.reserve(SI->getNumCases());
484    for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i)
485      Cases.push_back(std::make_pair(SI->getCaseValue(i),
486                                     SI->getCaseSuccessor(i)));
487    return SI->getDefaultDest();
488  }
489
490  BranchInst *BI = cast<BranchInst>(TI);
491  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
492  Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
493                                 BI->getSuccessor(ICI->getPredicate() ==
494                                                  ICmpInst::ICMP_NE)));
495  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
496}
497
498
499/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
500/// in the list that match the specified block.
501static void EliminateBlockCases(BasicBlock *BB,
502               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
503  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
504    if (Cases[i].second == BB) {
505      Cases.erase(Cases.begin()+i);
506      --i; --e;
507    }
508}
509
510/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
511/// well.
512static bool
513ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
514              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
515  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
516
517  // Make V1 be smaller than V2.
518  if (V1->size() > V2->size())
519    std::swap(V1, V2);
520
521  if (V1->size() == 0) return false;
522  if (V1->size() == 1) {
523    // Just scan V2.
524    ConstantInt *TheVal = (*V1)[0].first;
525    for (unsigned i = 0, e = V2->size(); i != e; ++i)
526      if (TheVal == (*V2)[i].first)
527        return true;
528  }
529
530  // Otherwise, just sort both lists and compare element by element.
531  array_pod_sort(V1->begin(), V1->end());
532  array_pod_sort(V2->begin(), V2->end());
533  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
534  while (i1 != e1 && i2 != e2) {
535    if ((*V1)[i1].first == (*V2)[i2].first)
536      return true;
537    if ((*V1)[i1].first < (*V2)[i2].first)
538      ++i1;
539    else
540      ++i2;
541  }
542  return false;
543}
544
545/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
546/// terminator instruction and its block is known to only have a single
547/// predecessor block, check to see if that predecessor is also a value
548/// comparison with the same value, and if that comparison determines the
549/// outcome of this comparison.  If so, simplify TI.  This does a very limited
550/// form of jump threading.
551bool SimplifyCFGOpt::
552SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
553                                              BasicBlock *Pred,
554                                              IRBuilder<> &Builder) {
555  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
556  if (!PredVal) return false;  // Not a value comparison in predecessor.
557
558  Value *ThisVal = isValueEqualityComparison(TI);
559  assert(ThisVal && "This isn't a value comparison!!");
560  if (ThisVal != PredVal) return false;  // Different predicates.
561
562  // Find out information about when control will move from Pred to TI's block.
563  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
564  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
565                                                        PredCases);
566  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
567
568  // Find information about how control leaves this block.
569  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
570  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
571  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
572
573  // If TI's block is the default block from Pred's comparison, potentially
574  // simplify TI based on this knowledge.
575  if (PredDef == TI->getParent()) {
576    // If we are here, we know that the value is none of those cases listed in
577    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
578    // can simplify TI.
579    if (!ValuesOverlap(PredCases, ThisCases))
580      return false;
581
582    if (isa<BranchInst>(TI)) {
583      // Okay, one of the successors of this condbr is dead.  Convert it to a
584      // uncond br.
585      assert(ThisCases.size() == 1 && "Branch can only have one case!");
586      // Insert the new branch.
587      Instruction *NI = Builder.CreateBr(ThisDef);
588      (void) NI;
589
590      // Remove PHI node entries for the dead edge.
591      ThisCases[0].second->removePredecessor(TI->getParent());
592
593      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
594           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
595
596      EraseTerminatorInstAndDCECond(TI);
597      return true;
598    }
599
600    SwitchInst *SI = cast<SwitchInst>(TI);
601    // Okay, TI has cases that are statically dead, prune them away.
602    SmallPtrSet<Constant*, 16> DeadCases;
603    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
604      DeadCases.insert(PredCases[i].first);
605
606    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
607                 << "Through successor TI: " << *TI);
608
609    for (unsigned i = SI->getNumCases(); i != 0;) {
610      --i;
611      if (DeadCases.count(SI->getCaseValue(i))) {
612        SI->getCaseSuccessor(i)->removePredecessor(TI->getParent());
613        SI->removeCase(i);
614      }
615    }
616
617    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
618    return true;
619  }
620
621  // Otherwise, TI's block must correspond to some matched value.  Find out
622  // which value (or set of values) this is.
623  ConstantInt *TIV = 0;
624  BasicBlock *TIBB = TI->getParent();
625  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
626    if (PredCases[i].second == TIBB) {
627      if (TIV != 0)
628        return false;  // Cannot handle multiple values coming to this block.
629      TIV = PredCases[i].first;
630    }
631  assert(TIV && "No edge from pred to succ?");
632
633  // Okay, we found the one constant that our value can be if we get into TI's
634  // BB.  Find out which successor will unconditionally be branched to.
635  BasicBlock *TheRealDest = 0;
636  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
637    if (ThisCases[i].first == TIV) {
638      TheRealDest = ThisCases[i].second;
639      break;
640    }
641
642  // If not handled by any explicit cases, it is handled by the default case.
643  if (TheRealDest == 0) TheRealDest = ThisDef;
644
645  // Remove PHI node entries for dead edges.
646  BasicBlock *CheckEdge = TheRealDest;
647  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
648    if (*SI != CheckEdge)
649      (*SI)->removePredecessor(TIBB);
650    else
651      CheckEdge = 0;
652
653  // Insert the new branch.
654  Instruction *NI = Builder.CreateBr(TheRealDest);
655  (void) NI;
656
657  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
658            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
659
660  EraseTerminatorInstAndDCECond(TI);
661  return true;
662}
663
664namespace {
665  /// ConstantIntOrdering - This class implements a stable ordering of constant
666  /// integers that does not depend on their address.  This is important for
667  /// applications that sort ConstantInt's to ensure uniqueness.
668  struct ConstantIntOrdering {
669    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
670      return LHS->getValue().ult(RHS->getValue());
671    }
672  };
673}
674
675static int ConstantIntSortPredicate(const void *P1, const void *P2) {
676  const ConstantInt *LHS = *(const ConstantInt**)P1;
677  const ConstantInt *RHS = *(const ConstantInt**)P2;
678  if (LHS->getValue().ult(RHS->getValue()))
679    return 1;
680  if (LHS->getValue() == RHS->getValue())
681    return 0;
682  return -1;
683}
684
685/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
686/// equality comparison instruction (either a switch or a branch on "X == c").
687/// See if any of the predecessors of the terminator block are value comparisons
688/// on the same value.  If so, and if safe to do so, fold them together.
689bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
690                                                         IRBuilder<> &Builder) {
691  BasicBlock *BB = TI->getParent();
692  Value *CV = isValueEqualityComparison(TI);  // CondVal
693  assert(CV && "Not a comparison?");
694  bool Changed = false;
695
696  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
697  while (!Preds.empty()) {
698    BasicBlock *Pred = Preds.pop_back_val();
699
700    // See if the predecessor is a comparison with the same value.
701    TerminatorInst *PTI = Pred->getTerminator();
702    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
703
704    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
705      // Figure out which 'cases' to copy from SI to PSI.
706      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
707      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
708
709      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
710      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
711
712      // Based on whether the default edge from PTI goes to BB or not, fill in
713      // PredCases and PredDefault with the new switch cases we would like to
714      // build.
715      SmallVector<BasicBlock*, 8> NewSuccessors;
716
717      if (PredDefault == BB) {
718        // If this is the default destination from PTI, only the edges in TI
719        // that don't occur in PTI, or that branch to BB will be activated.
720        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
721        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
722          if (PredCases[i].second != BB)
723            PTIHandled.insert(PredCases[i].first);
724          else {
725            // The default destination is BB, we don't need explicit targets.
726            std::swap(PredCases[i], PredCases.back());
727            PredCases.pop_back();
728            --i; --e;
729          }
730
731        // Reconstruct the new switch statement we will be building.
732        if (PredDefault != BBDefault) {
733          PredDefault->removePredecessor(Pred);
734          PredDefault = BBDefault;
735          NewSuccessors.push_back(BBDefault);
736        }
737        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
738          if (!PTIHandled.count(BBCases[i].first) &&
739              BBCases[i].second != BBDefault) {
740            PredCases.push_back(BBCases[i]);
741            NewSuccessors.push_back(BBCases[i].second);
742          }
743
744      } else {
745        // If this is not the default destination from PSI, only the edges
746        // in SI that occur in PSI with a destination of BB will be
747        // activated.
748        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
749        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
750          if (PredCases[i].second == BB) {
751            PTIHandled.insert(PredCases[i].first);
752            std::swap(PredCases[i], PredCases.back());
753            PredCases.pop_back();
754            --i; --e;
755          }
756
757        // Okay, now we know which constants were sent to BB from the
758        // predecessor.  Figure out where they will all go now.
759        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
760          if (PTIHandled.count(BBCases[i].first)) {
761            // If this is one we are capable of getting...
762            PredCases.push_back(BBCases[i]);
763            NewSuccessors.push_back(BBCases[i].second);
764            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
765          }
766
767        // If there are any constants vectored to BB that TI doesn't handle,
768        // they must go to the default destination of TI.
769        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
770                                    PTIHandled.begin(),
771               E = PTIHandled.end(); I != E; ++I) {
772          PredCases.push_back(std::make_pair(*I, BBDefault));
773          NewSuccessors.push_back(BBDefault);
774        }
775      }
776
777      // Okay, at this point, we know which new successor Pred will get.  Make
778      // sure we update the number of entries in the PHI nodes for these
779      // successors.
780      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
781        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
782
783      Builder.SetInsertPoint(PTI);
784      // Convert pointer to int before we switch.
785      if (CV->getType()->isPointerTy()) {
786        assert(TD && "Cannot switch on pointer without TargetData");
787        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
788                                    "magicptr");
789      }
790
791      // Now that the successors are updated, create the new Switch instruction.
792      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
793                                               PredCases.size());
794      NewSI->setDebugLoc(PTI->getDebugLoc());
795      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
796        NewSI->addCase(PredCases[i].first, PredCases[i].second);
797
798      EraseTerminatorInstAndDCECond(PTI);
799
800      // Okay, last check.  If BB is still a successor of PSI, then we must
801      // have an infinite loop case.  If so, add an infinitely looping block
802      // to handle the case to preserve the behavior of the code.
803      BasicBlock *InfLoopBlock = 0;
804      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
805        if (NewSI->getSuccessor(i) == BB) {
806          if (InfLoopBlock == 0) {
807            // Insert it at the end of the function, because it's either code,
808            // or it won't matter if it's hot. :)
809            InfLoopBlock = BasicBlock::Create(BB->getContext(),
810                                              "infloop", BB->getParent());
811            BranchInst::Create(InfLoopBlock, InfLoopBlock);
812          }
813          NewSI->setSuccessor(i, InfLoopBlock);
814        }
815
816      Changed = true;
817    }
818  }
819  return Changed;
820}
821
822// isSafeToHoistInvoke - If we would need to insert a select that uses the
823// value of this invoke (comments in HoistThenElseCodeToIf explain why we
824// would need to do this), we can't hoist the invoke, as there is nowhere
825// to put the select in this case.
826static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
827                                Instruction *I1, Instruction *I2) {
828  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
829    PHINode *PN;
830    for (BasicBlock::iterator BBI = SI->begin();
831         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
832      Value *BB1V = PN->getIncomingValueForBlock(BB1);
833      Value *BB2V = PN->getIncomingValueForBlock(BB2);
834      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
835        return false;
836      }
837    }
838  }
839  return true;
840}
841
842/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
843/// BB2, hoist any common code in the two blocks up into the branch block.  The
844/// caller of this function guarantees that BI's block dominates BB1 and BB2.
845static bool HoistThenElseCodeToIf(BranchInst *BI) {
846  // This does very trivial matching, with limited scanning, to find identical
847  // instructions in the two blocks.  In particular, we don't want to get into
848  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
849  // such, we currently just scan for obviously identical instructions in an
850  // identical order.
851  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
852  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
853
854  BasicBlock::iterator BB1_Itr = BB1->begin();
855  BasicBlock::iterator BB2_Itr = BB2->begin();
856
857  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
858  // Skip debug info if it is not identical.
859  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
860  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
861  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
862    while (isa<DbgInfoIntrinsic>(I1))
863      I1 = BB1_Itr++;
864    while (isa<DbgInfoIntrinsic>(I2))
865      I2 = BB2_Itr++;
866  }
867  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
868      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
869    return false;
870
871  // If we get here, we can hoist at least one instruction.
872  BasicBlock *BIParent = BI->getParent();
873
874  do {
875    // If we are hoisting the terminator instruction, don't move one (making a
876    // broken BB), instead clone it, and remove BI.
877    if (isa<TerminatorInst>(I1))
878      goto HoistTerminator;
879
880    // For a normal instruction, we just move one to right before the branch,
881    // then replace all uses of the other with the first.  Finally, we remove
882    // the now redundant second instruction.
883    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
884    if (!I2->use_empty())
885      I2->replaceAllUsesWith(I1);
886    I1->intersectOptionalDataWith(I2);
887    I2->eraseFromParent();
888
889    I1 = BB1_Itr++;
890    I2 = BB2_Itr++;
891    // Skip debug info if it is not identical.
892    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
893    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
894    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
895      while (isa<DbgInfoIntrinsic>(I1))
896        I1 = BB1_Itr++;
897      while (isa<DbgInfoIntrinsic>(I2))
898        I2 = BB2_Itr++;
899    }
900  } while (I1->isIdenticalToWhenDefined(I2));
901
902  return true;
903
904HoistTerminator:
905  // It may not be possible to hoist an invoke.
906  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
907    return true;
908
909  // Okay, it is safe to hoist the terminator.
910  Instruction *NT = I1->clone();
911  BIParent->getInstList().insert(BI, NT);
912  if (!NT->getType()->isVoidTy()) {
913    I1->replaceAllUsesWith(NT);
914    I2->replaceAllUsesWith(NT);
915    NT->takeName(I1);
916  }
917
918  IRBuilder<true, NoFolder> Builder(NT);
919  // Hoisting one of the terminators from our successor is a great thing.
920  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
921  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
922  // nodes, so we insert select instruction to compute the final result.
923  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
924  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
925    PHINode *PN;
926    for (BasicBlock::iterator BBI = SI->begin();
927         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
928      Value *BB1V = PN->getIncomingValueForBlock(BB1);
929      Value *BB2V = PN->getIncomingValueForBlock(BB2);
930      if (BB1V == BB2V) continue;
931
932      // These values do not agree.  Insert a select instruction before NT
933      // that determines the right value.
934      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
935      if (SI == 0)
936        SI = cast<SelectInst>
937          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
938                                BB1V->getName()+"."+BB2V->getName()));
939
940      // Make the PHI node use the select for all incoming values for BB1/BB2
941      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
942        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
943          PN->setIncomingValue(i, SI);
944    }
945  }
946
947  // Update any PHI nodes in our new successors.
948  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
949    AddPredecessorToBlock(*SI, BIParent, BB1);
950
951  EraseTerminatorInstAndDCECond(BI);
952  return true;
953}
954
955/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
956/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
957/// (for now, restricted to a single instruction that's side effect free) from
958/// the BB1 into the branch block to speculatively execute it.
959///
960/// Turn
961/// BB:
962///     %t1 = icmp
963///     br i1 %t1, label %BB1, label %BB2
964/// BB1:
965///     %t3 = add %t2, c
966///     br label BB2
967/// BB2:
968/// =>
969/// BB:
970///     %t1 = icmp
971///     %t4 = add %t2, c
972///     %t3 = select i1 %t1, %t2, %t3
973static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
974  // Only speculatively execution a single instruction (not counting the
975  // terminator) for now.
976  Instruction *HInst = NULL;
977  Instruction *Term = BB1->getTerminator();
978  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
979       BBI != BBE; ++BBI) {
980    Instruction *I = BBI;
981    // Skip debug info.
982    if (isa<DbgInfoIntrinsic>(I)) continue;
983    if (I == Term) break;
984
985    if (HInst)
986      return false;
987    HInst = I;
988  }
989
990  BasicBlock *BIParent = BI->getParent();
991
992  // Check the instruction to be hoisted, if there is one.
993  if (HInst) {
994    // Don't hoist the instruction if it's unsafe or expensive.
995    if (!isSafeToSpeculativelyExecute(HInst))
996      return false;
997    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
998      return false;
999
1000    // Do not hoist the instruction if any of its operands are defined but not
1001    // used in this BB. The transformation will prevent the operand from
1002    // being sunk into the use block.
1003    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1004         i != e; ++i) {
1005      Instruction *OpI = dyn_cast<Instruction>(*i);
1006      if (OpI && OpI->getParent() == BIParent &&
1007          !OpI->mayHaveSideEffects() &&
1008          !OpI->isUsedInBasicBlock(BIParent))
1009        return false;
1010    }
1011  }
1012
1013  // Be conservative for now. FP select instruction can often be expensive.
1014  Value *BrCond = BI->getCondition();
1015  if (isa<FCmpInst>(BrCond))
1016    return false;
1017
1018  // If BB1 is actually on the false edge of the conditional branch, remember
1019  // to swap the select operands later.
1020  bool Invert = false;
1021  if (BB1 != BI->getSuccessor(0)) {
1022    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1023    Invert = true;
1024  }
1025
1026  // Collect interesting PHIs, and scan for hazards.
1027  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1028  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1029  for (BasicBlock::iterator I = BB2->begin();
1030       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1031    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1032    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1033
1034    // Skip PHIs which are trivial.
1035    if (BB1V == BIParentV)
1036      continue;
1037
1038    // Check for saftey.
1039    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1040      // An unfolded ConstantExpr could end up getting expanded into
1041      // Instructions. Don't speculate this and another instruction at
1042      // the same time.
1043      if (HInst)
1044        return false;
1045      if (!isSafeToSpeculativelyExecute(CE))
1046        return false;
1047      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1048        return false;
1049    }
1050
1051    // Ok, we may insert a select for this PHI.
1052    PHIs.insert(std::make_pair(BB1V, BIParentV));
1053  }
1054
1055  // If there are no PHIs to process, bail early. This helps ensure idempotence
1056  // as well.
1057  if (PHIs.empty())
1058    return false;
1059
1060  // If we get here, we can hoist the instruction and if-convert.
1061  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1062
1063  // Hoist the instruction.
1064  if (HInst)
1065    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1066
1067  // Insert selects and rewrite the PHI operands.
1068  IRBuilder<true, NoFolder> Builder(BI);
1069  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1070    Value *TrueV = PHIs[i].first;
1071    Value *FalseV = PHIs[i].second;
1072
1073    // Create a select whose true value is the speculatively executed value and
1074    // false value is the previously determined FalseV.
1075    SelectInst *SI;
1076    if (Invert)
1077      SI = cast<SelectInst>
1078        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1079                              FalseV->getName() + "." + TrueV->getName()));
1080    else
1081      SI = cast<SelectInst>
1082        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1083                              TrueV->getName() + "." + FalseV->getName()));
1084
1085    // Make the PHI node use the select for all incoming values for "then" and
1086    // "if" blocks.
1087    for (BasicBlock::iterator I = BB2->begin();
1088         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1089      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1090      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1091      Value *BB1V = PN->getIncomingValue(BB1I);
1092      Value *BIParentV = PN->getIncomingValue(BIParentI);
1093      if (TrueV == BB1V && FalseV == BIParentV) {
1094        PN->setIncomingValue(BB1I, SI);
1095        PN->setIncomingValue(BIParentI, SI);
1096      }
1097    }
1098  }
1099
1100  ++NumSpeculations;
1101  return true;
1102}
1103
1104/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1105/// across this block.
1106static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1107  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1108  unsigned Size = 0;
1109
1110  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1111    if (isa<DbgInfoIntrinsic>(BBI))
1112      continue;
1113    if (Size > 10) return false;  // Don't clone large BB's.
1114    ++Size;
1115
1116    // We can only support instructions that do not define values that are
1117    // live outside of the current basic block.
1118    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1119         UI != E; ++UI) {
1120      Instruction *U = cast<Instruction>(*UI);
1121      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1122    }
1123
1124    // Looks ok, continue checking.
1125  }
1126
1127  return true;
1128}
1129
1130/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1131/// that is defined in the same block as the branch and if any PHI entries are
1132/// constants, thread edges corresponding to that entry to be branches to their
1133/// ultimate destination.
1134static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1135  BasicBlock *BB = BI->getParent();
1136  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1137  // NOTE: we currently cannot transform this case if the PHI node is used
1138  // outside of the block.
1139  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1140    return false;
1141
1142  // Degenerate case of a single entry PHI.
1143  if (PN->getNumIncomingValues() == 1) {
1144    FoldSingleEntryPHINodes(PN->getParent());
1145    return true;
1146  }
1147
1148  // Now we know that this block has multiple preds and two succs.
1149  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1150
1151  // Okay, this is a simple enough basic block.  See if any phi values are
1152  // constants.
1153  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1154    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1155    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1156
1157    // Okay, we now know that all edges from PredBB should be revectored to
1158    // branch to RealDest.
1159    BasicBlock *PredBB = PN->getIncomingBlock(i);
1160    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1161
1162    if (RealDest == BB) continue;  // Skip self loops.
1163    // Skip if the predecessor's terminator is an indirect branch.
1164    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1165
1166    // The dest block might have PHI nodes, other predecessors and other
1167    // difficult cases.  Instead of being smart about this, just insert a new
1168    // block that jumps to the destination block, effectively splitting
1169    // the edge we are about to create.
1170    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1171                                            RealDest->getName()+".critedge",
1172                                            RealDest->getParent(), RealDest);
1173    BranchInst::Create(RealDest, EdgeBB);
1174
1175    // Update PHI nodes.
1176    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1177
1178    // BB may have instructions that are being threaded over.  Clone these
1179    // instructions into EdgeBB.  We know that there will be no uses of the
1180    // cloned instructions outside of EdgeBB.
1181    BasicBlock::iterator InsertPt = EdgeBB->begin();
1182    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1183    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1184      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1185        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1186        continue;
1187      }
1188      // Clone the instruction.
1189      Instruction *N = BBI->clone();
1190      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1191
1192      // Update operands due to translation.
1193      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1194           i != e; ++i) {
1195        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1196        if (PI != TranslateMap.end())
1197          *i = PI->second;
1198      }
1199
1200      // Check for trivial simplification.
1201      if (Value *V = SimplifyInstruction(N, TD)) {
1202        TranslateMap[BBI] = V;
1203        delete N;   // Instruction folded away, don't need actual inst
1204      } else {
1205        // Insert the new instruction into its new home.
1206        EdgeBB->getInstList().insert(InsertPt, N);
1207        if (!BBI->use_empty())
1208          TranslateMap[BBI] = N;
1209      }
1210    }
1211
1212    // Loop over all of the edges from PredBB to BB, changing them to branch
1213    // to EdgeBB instead.
1214    TerminatorInst *PredBBTI = PredBB->getTerminator();
1215    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1216      if (PredBBTI->getSuccessor(i) == BB) {
1217        BB->removePredecessor(PredBB);
1218        PredBBTI->setSuccessor(i, EdgeBB);
1219      }
1220
1221    // Recurse, simplifying any other constants.
1222    return FoldCondBranchOnPHI(BI, TD) | true;
1223  }
1224
1225  return false;
1226}
1227
1228/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1229/// PHI node, see if we can eliminate it.
1230static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1231  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1232  // statement", which has a very simple dominance structure.  Basically, we
1233  // are trying to find the condition that is being branched on, which
1234  // subsequently causes this merge to happen.  We really want control
1235  // dependence information for this check, but simplifycfg can't keep it up
1236  // to date, and this catches most of the cases we care about anyway.
1237  BasicBlock *BB = PN->getParent();
1238  BasicBlock *IfTrue, *IfFalse;
1239  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1240  if (!IfCond ||
1241      // Don't bother if the branch will be constant folded trivially.
1242      isa<ConstantInt>(IfCond))
1243    return false;
1244
1245  // Okay, we found that we can merge this two-entry phi node into a select.
1246  // Doing so would require us to fold *all* two entry phi nodes in this block.
1247  // At some point this becomes non-profitable (particularly if the target
1248  // doesn't support cmov's).  Only do this transformation if there are two or
1249  // fewer PHI nodes in this block.
1250  unsigned NumPhis = 0;
1251  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1252    if (NumPhis > 2)
1253      return false;
1254
1255  // Loop over the PHI's seeing if we can promote them all to select
1256  // instructions.  While we are at it, keep track of the instructions
1257  // that need to be moved to the dominating block.
1258  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1259  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1260           MaxCostVal1 = PHINodeFoldingThreshold;
1261
1262  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1263    PHINode *PN = cast<PHINode>(II++);
1264    if (Value *V = SimplifyInstruction(PN, TD)) {
1265      PN->replaceAllUsesWith(V);
1266      PN->eraseFromParent();
1267      continue;
1268    }
1269
1270    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1271                             MaxCostVal0) ||
1272        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1273                             MaxCostVal1))
1274      return false;
1275  }
1276
1277  // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
1278  // we ran out of PHIs then we simplified them all.
1279  PN = dyn_cast<PHINode>(BB->begin());
1280  if (PN == 0) return true;
1281
1282  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1283  // often be turned into switches and other things.
1284  if (PN->getType()->isIntegerTy(1) &&
1285      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1286       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1287       isa<BinaryOperator>(IfCond)))
1288    return false;
1289
1290  // If we all PHI nodes are promotable, check to make sure that all
1291  // instructions in the predecessor blocks can be promoted as well.  If
1292  // not, we won't be able to get rid of the control flow, so it's not
1293  // worth promoting to select instructions.
1294  BasicBlock *DomBlock = 0;
1295  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1296  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1297  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1298    IfBlock1 = 0;
1299  } else {
1300    DomBlock = *pred_begin(IfBlock1);
1301    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1302      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1303        // This is not an aggressive instruction that we can promote.
1304        // Because of this, we won't be able to get rid of the control
1305        // flow, so the xform is not worth it.
1306        return false;
1307      }
1308  }
1309
1310  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1311    IfBlock2 = 0;
1312  } else {
1313    DomBlock = *pred_begin(IfBlock2);
1314    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1315      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1316        // This is not an aggressive instruction that we can promote.
1317        // Because of this, we won't be able to get rid of the control
1318        // flow, so the xform is not worth it.
1319        return false;
1320      }
1321  }
1322
1323  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1324               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1325
1326  // If we can still promote the PHI nodes after this gauntlet of tests,
1327  // do all of the PHI's now.
1328  Instruction *InsertPt = DomBlock->getTerminator();
1329  IRBuilder<true, NoFolder> Builder(InsertPt);
1330
1331  // Move all 'aggressive' instructions, which are defined in the
1332  // conditional parts of the if's up to the dominating block.
1333  if (IfBlock1)
1334    DomBlock->getInstList().splice(InsertPt,
1335                                   IfBlock1->getInstList(), IfBlock1->begin(),
1336                                   IfBlock1->getTerminator());
1337  if (IfBlock2)
1338    DomBlock->getInstList().splice(InsertPt,
1339                                   IfBlock2->getInstList(), IfBlock2->begin(),
1340                                   IfBlock2->getTerminator());
1341
1342  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1343    // Change the PHI node into a select instruction.
1344    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1345    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1346
1347    SelectInst *NV =
1348      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1349    PN->replaceAllUsesWith(NV);
1350    NV->takeName(PN);
1351    PN->eraseFromParent();
1352  }
1353
1354  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1355  // has been flattened.  Change DomBlock to jump directly to our new block to
1356  // avoid other simplifycfg's kicking in on the diamond.
1357  TerminatorInst *OldTI = DomBlock->getTerminator();
1358  Builder.SetInsertPoint(OldTI);
1359  Builder.CreateBr(BB);
1360  OldTI->eraseFromParent();
1361  return true;
1362}
1363
1364/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1365/// to two returning blocks, try to merge them together into one return,
1366/// introducing a select if the return values disagree.
1367static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1368                                           IRBuilder<> &Builder) {
1369  assert(BI->isConditional() && "Must be a conditional branch");
1370  BasicBlock *TrueSucc = BI->getSuccessor(0);
1371  BasicBlock *FalseSucc = BI->getSuccessor(1);
1372  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1373  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1374
1375  // Check to ensure both blocks are empty (just a return) or optionally empty
1376  // with PHI nodes.  If there are other instructions, merging would cause extra
1377  // computation on one path or the other.
1378  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1379    return false;
1380  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1381    return false;
1382
1383  Builder.SetInsertPoint(BI);
1384  // Okay, we found a branch that is going to two return nodes.  If
1385  // there is no return value for this function, just change the
1386  // branch into a return.
1387  if (FalseRet->getNumOperands() == 0) {
1388    TrueSucc->removePredecessor(BI->getParent());
1389    FalseSucc->removePredecessor(BI->getParent());
1390    Builder.CreateRetVoid();
1391    EraseTerminatorInstAndDCECond(BI);
1392    return true;
1393  }
1394
1395  // Otherwise, figure out what the true and false return values are
1396  // so we can insert a new select instruction.
1397  Value *TrueValue = TrueRet->getReturnValue();
1398  Value *FalseValue = FalseRet->getReturnValue();
1399
1400  // Unwrap any PHI nodes in the return blocks.
1401  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1402    if (TVPN->getParent() == TrueSucc)
1403      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1404  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1405    if (FVPN->getParent() == FalseSucc)
1406      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1407
1408  // In order for this transformation to be safe, we must be able to
1409  // unconditionally execute both operands to the return.  This is
1410  // normally the case, but we could have a potentially-trapping
1411  // constant expression that prevents this transformation from being
1412  // safe.
1413  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1414    if (TCV->canTrap())
1415      return false;
1416  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1417    if (FCV->canTrap())
1418      return false;
1419
1420  // Okay, we collected all the mapped values and checked them for sanity, and
1421  // defined to really do this transformation.  First, update the CFG.
1422  TrueSucc->removePredecessor(BI->getParent());
1423  FalseSucc->removePredecessor(BI->getParent());
1424
1425  // Insert select instructions where needed.
1426  Value *BrCond = BI->getCondition();
1427  if (TrueValue) {
1428    // Insert a select if the results differ.
1429    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1430    } else if (isa<UndefValue>(TrueValue)) {
1431      TrueValue = FalseValue;
1432    } else {
1433      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1434                                       FalseValue, "retval");
1435    }
1436  }
1437
1438  Value *RI = !TrueValue ?
1439    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1440
1441  (void) RI;
1442
1443  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1444               << "\n  " << *BI << "NewRet = " << *RI
1445               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1446
1447  EraseTerminatorInstAndDCECond(BI);
1448
1449  return true;
1450}
1451
1452/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1453/// probabilities of the branch taking each edge. Fills in the two APInt
1454/// parameters and return true, or returns false if no or invalid metadata was
1455/// found.
1456static bool ExtractBranchMetadata(BranchInst *BI,
1457                                  APInt &ProbTrue, APInt &ProbFalse) {
1458  assert(BI->isConditional() &&
1459         "Looking for probabilities on unconditional branch?");
1460  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1461  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1462  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1463  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1464  if (!CITrue || !CIFalse) return false;
1465  ProbTrue = CITrue->getValue();
1466  ProbFalse = CIFalse->getValue();
1467  assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1468         "Branch probability metadata must be 32-bit integers");
1469  return true;
1470}
1471
1472/// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
1473/// the event of overflow, logically-shifts all four inputs right until the
1474/// multiply fits.
1475static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
1476                                      unsigned &BitsLost) {
1477  BitsLost = 0;
1478  bool Overflow = false;
1479  APInt Result = A.umul_ov(B, Overflow);
1480  if (Overflow) {
1481    APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
1482    do {
1483      B = B.lshr(1);
1484      ++BitsLost;
1485    } while (B.ugt(MaxB));
1486    A = A.lshr(BitsLost);
1487    C = C.lshr(BitsLost);
1488    D = D.lshr(BitsLost);
1489    Result = A * B;
1490  }
1491  return Result;
1492}
1493
1494
1495/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1496/// predecessor branches to us and one of our successors, fold the block into
1497/// the predecessor and use logical operations to pick the right destination.
1498bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1499  BasicBlock *BB = BI->getParent();
1500
1501  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1502  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1503    Cond->getParent() != BB || !Cond->hasOneUse())
1504  return false;
1505
1506  // Only allow this if the condition is a simple instruction that can be
1507  // executed unconditionally.  It must be in the same block as the branch, and
1508  // must be at the front of the block.
1509  BasicBlock::iterator FrontIt = BB->front();
1510
1511  // Ignore dbg intrinsics.
1512  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1513
1514  // Allow a single instruction to be hoisted in addition to the compare
1515  // that feeds the branch.  We later ensure that any values that _it_ uses
1516  // were also live in the predecessor, so that we don't unnecessarily create
1517  // register pressure or inhibit out-of-order execution.
1518  Instruction *BonusInst = 0;
1519  if (&*FrontIt != Cond &&
1520      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1521      isSafeToSpeculativelyExecute(FrontIt)) {
1522    BonusInst = &*FrontIt;
1523    ++FrontIt;
1524
1525    // Ignore dbg intrinsics.
1526    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1527  }
1528
1529  // Only a single bonus inst is allowed.
1530  if (&*FrontIt != Cond)
1531    return false;
1532
1533  // Make sure the instruction after the condition is the cond branch.
1534  BasicBlock::iterator CondIt = Cond; ++CondIt;
1535
1536  // Ingore dbg intrinsics.
1537  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1538
1539  if (&*CondIt != BI)
1540    return false;
1541
1542  // Cond is known to be a compare or binary operator.  Check to make sure that
1543  // neither operand is a potentially-trapping constant expression.
1544  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1545    if (CE->canTrap())
1546      return false;
1547  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1548    if (CE->canTrap())
1549      return false;
1550
1551  // Finally, don't infinitely unroll conditional loops.
1552  BasicBlock *TrueDest  = BI->getSuccessor(0);
1553  BasicBlock *FalseDest = BI->getSuccessor(1);
1554  if (TrueDest == BB || FalseDest == BB)
1555    return false;
1556
1557  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1558    BasicBlock *PredBlock = *PI;
1559    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1560
1561    // Check that we have two conditional branches.  If there is a PHI node in
1562    // the common successor, verify that the same value flows in from both
1563    // blocks.
1564    if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1565      continue;
1566
1567    // Determine if the two branches share a common destination.
1568    Instruction::BinaryOps Opc;
1569    bool InvertPredCond = false;
1570
1571    if (PBI->getSuccessor(0) == TrueDest)
1572      Opc = Instruction::Or;
1573    else if (PBI->getSuccessor(1) == FalseDest)
1574      Opc = Instruction::And;
1575    else if (PBI->getSuccessor(0) == FalseDest)
1576      Opc = Instruction::And, InvertPredCond = true;
1577    else if (PBI->getSuccessor(1) == TrueDest)
1578      Opc = Instruction::Or, InvertPredCond = true;
1579    else
1580      continue;
1581
1582    // Ensure that any values used in the bonus instruction are also used
1583    // by the terminator of the predecessor.  This means that those values
1584    // must already have been resolved, so we won't be inhibiting the
1585    // out-of-order core by speculating them earlier.
1586    if (BonusInst) {
1587      // Collect the values used by the bonus inst
1588      SmallPtrSet<Value*, 4> UsedValues;
1589      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1590           OE = BonusInst->op_end(); OI != OE; ++OI) {
1591        Value *V = *OI;
1592        if (!isa<Constant>(V))
1593          UsedValues.insert(V);
1594      }
1595
1596      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1597      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1598
1599      // Walk up to four levels back up the use-def chain of the predecessor's
1600      // terminator to see if all those values were used.  The choice of four
1601      // levels is arbitrary, to provide a compile-time-cost bound.
1602      while (!Worklist.empty()) {
1603        std::pair<Value*, unsigned> Pair = Worklist.back();
1604        Worklist.pop_back();
1605
1606        if (Pair.second >= 4) continue;
1607        UsedValues.erase(Pair.first);
1608        if (UsedValues.empty()) break;
1609
1610        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1611          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1612               OI != OE; ++OI)
1613            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1614        }
1615      }
1616
1617      if (!UsedValues.empty()) return false;
1618    }
1619
1620    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1621    IRBuilder<> Builder(PBI);
1622
1623    // If we need to invert the condition in the pred block to match, do so now.
1624    if (InvertPredCond) {
1625      Value *NewCond = PBI->getCondition();
1626
1627      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1628        CmpInst *CI = cast<CmpInst>(NewCond);
1629        CI->setPredicate(CI->getInversePredicate());
1630      } else {
1631        NewCond = Builder.CreateNot(NewCond,
1632                                    PBI->getCondition()->getName()+".not");
1633      }
1634
1635      PBI->setCondition(NewCond);
1636      PBI->swapSuccessors();
1637    }
1638
1639    // If we have a bonus inst, clone it into the predecessor block.
1640    Instruction *NewBonus = 0;
1641    if (BonusInst) {
1642      NewBonus = BonusInst->clone();
1643      PredBlock->getInstList().insert(PBI, NewBonus);
1644      NewBonus->takeName(BonusInst);
1645      BonusInst->setName(BonusInst->getName()+".old");
1646    }
1647
1648    // Clone Cond into the predecessor basic block, and or/and the
1649    // two conditions together.
1650    Instruction *New = Cond->clone();
1651    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1652    PredBlock->getInstList().insert(PBI, New);
1653    New->takeName(Cond);
1654    Cond->setName(New->getName()+".old");
1655
1656    Instruction *NewCond =
1657      cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1658                                            New, "or.cond"));
1659    PBI->setCondition(NewCond);
1660    if (PBI->getSuccessor(0) == BB) {
1661      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1662      PBI->setSuccessor(0, TrueDest);
1663    }
1664    if (PBI->getSuccessor(1) == BB) {
1665      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1666      PBI->setSuccessor(1, FalseDest);
1667    }
1668
1669    // TODO: If BB is reachable from all paths through PredBlock, then we
1670    // could replace PBI's branch probabilities with BI's.
1671
1672    // Merge probability data into PredBlock's branch.
1673    APInt A, B, C, D;
1674    if (ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1675      // Given IR which does:
1676      //   bbA:
1677      //     br i1 %x, label %bbB, label %bbC
1678      //   bbB:
1679      //     br i1 %y, label %bbD, label %bbC
1680      // Let's call the probability that we take the edge from %bbA to %bbB
1681      // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
1682      // %bbC probability 'd'.
1683      //
1684      // We transform the IR into:
1685      //   bbA:
1686      //     br i1 %z, label %bbD, label %bbC
1687      // where the probability of going to %bbD is (a*c) and going to bbC is
1688      // (b+a*d).
1689      //
1690      // Probabilities aren't stored as ratios directly. Using branch weights,
1691      // we get:
1692      // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
1693
1694      // In the event of overflow, we want to drop the LSB of the input
1695      // probabilities.
1696      unsigned BitsLost;
1697
1698      // Ignore overflow result on ProbTrue.
1699      APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
1700
1701      APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
1702      if (BitsLost) {
1703        ProbTrue = ProbTrue.lshr(BitsLost*2);
1704      }
1705
1706      APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
1707      if (BitsLost) {
1708        ProbTrue = ProbTrue.lshr(BitsLost*2);
1709        Tmp1 = Tmp1.lshr(BitsLost*2);
1710      }
1711
1712      APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
1713      if (BitsLost) {
1714        ProbTrue = ProbTrue.lshr(BitsLost*2);
1715        Tmp1 = Tmp1.lshr(BitsLost*2);
1716        Tmp2 = Tmp2.lshr(BitsLost*2);
1717      }
1718
1719      bool Overflow1 = false, Overflow2 = false;
1720      APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
1721      APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
1722
1723      if (Overflow1 || Overflow2) {
1724        ProbTrue = ProbTrue.lshr(1);
1725        Tmp1 = Tmp1.lshr(1);
1726        Tmp2 = Tmp2.lshr(1);
1727        Tmp3 = Tmp3.lshr(1);
1728        Tmp4 = Tmp2 + Tmp3;
1729        ProbFalse = Tmp4 + Tmp1;
1730      }
1731
1732      // The sum of branch weights must fit in 32-bits.
1733      if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
1734        ProbTrue = ProbTrue.lshr(1);
1735        ProbFalse = ProbFalse.lshr(1);
1736      }
1737
1738      if (ProbTrue != ProbFalse) {
1739        // Normalize the result.
1740        APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
1741        ProbTrue = ProbTrue.udiv(GCD);
1742        ProbFalse = ProbFalse.udiv(GCD);
1743
1744        LLVMContext &Context = BI->getContext();
1745        Value *Ops[3];
1746        Ops[0] = BI->getMetadata(LLVMContext::MD_prof)->getOperand(0);
1747        Ops[1] = ConstantInt::get(Context, ProbTrue);
1748        Ops[2] = ConstantInt::get(Context, ProbFalse);
1749        PBI->setMetadata(LLVMContext::MD_prof, MDNode::get(Context, Ops));
1750      } else {
1751        PBI->setMetadata(LLVMContext::MD_prof, NULL);
1752      }
1753    } else {
1754      PBI->setMetadata(LLVMContext::MD_prof, NULL);
1755    }
1756
1757    // Copy any debug value intrinsics into the end of PredBlock.
1758    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1759      if (isa<DbgInfoIntrinsic>(*I))
1760        I->clone()->insertBefore(PBI);
1761
1762    return true;
1763  }
1764  return false;
1765}
1766
1767/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1768/// predecessor of another block, this function tries to simplify it.  We know
1769/// that PBI and BI are both conditional branches, and BI is in one of the
1770/// successor blocks of PBI - PBI branches to BI.
1771static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1772  assert(PBI->isConditional() && BI->isConditional());
1773  BasicBlock *BB = BI->getParent();
1774
1775  // If this block ends with a branch instruction, and if there is a
1776  // predecessor that ends on a branch of the same condition, make
1777  // this conditional branch redundant.
1778  if (PBI->getCondition() == BI->getCondition() &&
1779      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1780    // Okay, the outcome of this conditional branch is statically
1781    // knowable.  If this block had a single pred, handle specially.
1782    if (BB->getSinglePredecessor()) {
1783      // Turn this into a branch on constant.
1784      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1785      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1786                                        CondIsTrue));
1787      return true;  // Nuke the branch on constant.
1788    }
1789
1790    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1791    // in the constant and simplify the block result.  Subsequent passes of
1792    // simplifycfg will thread the block.
1793    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1794      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1795      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1796                                       std::distance(PB, PE),
1797                                       BI->getCondition()->getName() + ".pr",
1798                                       BB->begin());
1799      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1800      // predecessor, compute the PHI'd conditional value for all of the preds.
1801      // Any predecessor where the condition is not computable we keep symbolic.
1802      for (pred_iterator PI = PB; PI != PE; ++PI) {
1803        BasicBlock *P = *PI;
1804        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1805            PBI != BI && PBI->isConditional() &&
1806            PBI->getCondition() == BI->getCondition() &&
1807            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1808          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1809          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1810                                              CondIsTrue), P);
1811        } else {
1812          NewPN->addIncoming(BI->getCondition(), P);
1813        }
1814      }
1815
1816      BI->setCondition(NewPN);
1817      return true;
1818    }
1819  }
1820
1821  // If this is a conditional branch in an empty block, and if any
1822  // predecessors is a conditional branch to one of our destinations,
1823  // fold the conditions into logical ops and one cond br.
1824  BasicBlock::iterator BBI = BB->begin();
1825  // Ignore dbg intrinsics.
1826  while (isa<DbgInfoIntrinsic>(BBI))
1827    ++BBI;
1828  if (&*BBI != BI)
1829    return false;
1830
1831
1832  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1833    if (CE->canTrap())
1834      return false;
1835
1836  int PBIOp, BIOp;
1837  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1838    PBIOp = BIOp = 0;
1839  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1840    PBIOp = 0, BIOp = 1;
1841  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1842    PBIOp = 1, BIOp = 0;
1843  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1844    PBIOp = BIOp = 1;
1845  else
1846    return false;
1847
1848  // Check to make sure that the other destination of this branch
1849  // isn't BB itself.  If so, this is an infinite loop that will
1850  // keep getting unwound.
1851  if (PBI->getSuccessor(PBIOp) == BB)
1852    return false;
1853
1854  // Do not perform this transformation if it would require
1855  // insertion of a large number of select instructions. For targets
1856  // without predication/cmovs, this is a big pessimization.
1857  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1858
1859  unsigned NumPhis = 0;
1860  for (BasicBlock::iterator II = CommonDest->begin();
1861       isa<PHINode>(II); ++II, ++NumPhis)
1862    if (NumPhis > 2) // Disable this xform.
1863      return false;
1864
1865  // Finally, if everything is ok, fold the branches to logical ops.
1866  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1867
1868  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1869               << "AND: " << *BI->getParent());
1870
1871
1872  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1873  // branch in it, where one edge (OtherDest) goes back to itself but the other
1874  // exits.  We don't *know* that the program avoids the infinite loop
1875  // (even though that seems likely).  If we do this xform naively, we'll end up
1876  // recursively unpeeling the loop.  Since we know that (after the xform is
1877  // done) that the block *is* infinite if reached, we just make it an obviously
1878  // infinite loop with no cond branch.
1879  if (OtherDest == BB) {
1880    // Insert it at the end of the function, because it's either code,
1881    // or it won't matter if it's hot. :)
1882    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1883                                                  "infloop", BB->getParent());
1884    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1885    OtherDest = InfLoopBlock;
1886  }
1887
1888  DEBUG(dbgs() << *PBI->getParent()->getParent());
1889
1890  // BI may have other predecessors.  Because of this, we leave
1891  // it alone, but modify PBI.
1892
1893  // Make sure we get to CommonDest on True&True directions.
1894  Value *PBICond = PBI->getCondition();
1895  IRBuilder<true, NoFolder> Builder(PBI);
1896  if (PBIOp)
1897    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1898
1899  Value *BICond = BI->getCondition();
1900  if (BIOp)
1901    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1902
1903  // Merge the conditions.
1904  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1905
1906  // Modify PBI to branch on the new condition to the new dests.
1907  PBI->setCondition(Cond);
1908  PBI->setSuccessor(0, CommonDest);
1909  PBI->setSuccessor(1, OtherDest);
1910
1911  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1912  // block that are identical to the entries for BI's block.
1913  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1914
1915  // We know that the CommonDest already had an edge from PBI to
1916  // it.  If it has PHIs though, the PHIs may have different
1917  // entries for BB and PBI's BB.  If so, insert a select to make
1918  // them agree.
1919  PHINode *PN;
1920  for (BasicBlock::iterator II = CommonDest->begin();
1921       (PN = dyn_cast<PHINode>(II)); ++II) {
1922    Value *BIV = PN->getIncomingValueForBlock(BB);
1923    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1924    Value *PBIV = PN->getIncomingValue(PBBIdx);
1925    if (BIV != PBIV) {
1926      // Insert a select in PBI to pick the right value.
1927      Value *NV = cast<SelectInst>
1928        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1929      PN->setIncomingValue(PBBIdx, NV);
1930    }
1931  }
1932
1933  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1934  DEBUG(dbgs() << *PBI->getParent()->getParent());
1935
1936  // This basic block is probably dead.  We know it has at least
1937  // one fewer predecessor.
1938  return true;
1939}
1940
1941// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1942// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1943// Takes care of updating the successors and removing the old terminator.
1944// Also makes sure not to introduce new successors by assuming that edges to
1945// non-successor TrueBBs and FalseBBs aren't reachable.
1946static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1947                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
1948  // Remove any superfluous successor edges from the CFG.
1949  // First, figure out which successors to preserve.
1950  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1951  // successor.
1952  BasicBlock *KeepEdge1 = TrueBB;
1953  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1954
1955  // Then remove the rest.
1956  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1957    BasicBlock *Succ = OldTerm->getSuccessor(I);
1958    // Make sure only to keep exactly one copy of each edge.
1959    if (Succ == KeepEdge1)
1960      KeepEdge1 = 0;
1961    else if (Succ == KeepEdge2)
1962      KeepEdge2 = 0;
1963    else
1964      Succ->removePredecessor(OldTerm->getParent());
1965  }
1966
1967  IRBuilder<> Builder(OldTerm);
1968  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1969
1970  // Insert an appropriate new terminator.
1971  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1972    if (TrueBB == FalseBB)
1973      // We were only looking for one successor, and it was present.
1974      // Create an unconditional branch to it.
1975      Builder.CreateBr(TrueBB);
1976    else
1977      // We found both of the successors we were looking for.
1978      // Create a conditional branch sharing the condition of the select.
1979      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1980  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1981    // Neither of the selected blocks were successors, so this
1982    // terminator must be unreachable.
1983    new UnreachableInst(OldTerm->getContext(), OldTerm);
1984  } else {
1985    // One of the selected values was a successor, but the other wasn't.
1986    // Insert an unconditional branch to the one that was found;
1987    // the edge to the one that wasn't must be unreachable.
1988    if (KeepEdge1 == 0)
1989      // Only TrueBB was found.
1990      Builder.CreateBr(TrueBB);
1991    else
1992      // Only FalseBB was found.
1993      Builder.CreateBr(FalseBB);
1994  }
1995
1996  EraseTerminatorInstAndDCECond(OldTerm);
1997  return true;
1998}
1999
2000// SimplifySwitchOnSelect - Replaces
2001//   (switch (select cond, X, Y)) on constant X, Y
2002// with a branch - conditional if X and Y lead to distinct BBs,
2003// unconditional otherwise.
2004static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2005  // Check for constant integer values in the select.
2006  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2007  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2008  if (!TrueVal || !FalseVal)
2009    return false;
2010
2011  // Find the relevant condition and destinations.
2012  Value *Condition = Select->getCondition();
2013  unsigned TrueCase = SI->findCaseValue(TrueVal);
2014  unsigned FalseCase = SI->findCaseValue(FalseVal);
2015  BasicBlock *TrueBB = SI->getSuccessor(SI->resolveSuccessorIndex(TrueCase));
2016  BasicBlock *FalseBB = SI->getSuccessor(SI->resolveSuccessorIndex(FalseCase));
2017
2018  // Perform the actual simplification.
2019  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
2020}
2021
2022// SimplifyIndirectBrOnSelect - Replaces
2023//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2024//                             blockaddress(@fn, BlockB)))
2025// with
2026//   (br cond, BlockA, BlockB).
2027static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2028  // Check that both operands of the select are block addresses.
2029  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2030  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2031  if (!TBA || !FBA)
2032    return false;
2033
2034  // Extract the actual blocks.
2035  BasicBlock *TrueBB = TBA->getBasicBlock();
2036  BasicBlock *FalseBB = FBA->getBasicBlock();
2037
2038  // Perform the actual simplification.
2039  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
2040}
2041
2042/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2043/// instruction (a seteq/setne with a constant) as the only instruction in a
2044/// block that ends with an uncond branch.  We are looking for a very specific
2045/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2046/// this case, we merge the first two "or's of icmp" into a switch, but then the
2047/// default value goes to an uncond block with a seteq in it, we get something
2048/// like:
2049///
2050///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2051/// DEFAULT:
2052///   %tmp = icmp eq i8 %A, 92
2053///   br label %end
2054/// end:
2055///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2056///
2057/// We prefer to split the edge to 'end' so that there is a true/false entry to
2058/// the PHI, merging the third icmp into the switch.
2059static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2060                                                  const TargetData *TD,
2061                                                  IRBuilder<> &Builder) {
2062  BasicBlock *BB = ICI->getParent();
2063
2064  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2065  // complex.
2066  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2067
2068  Value *V = ICI->getOperand(0);
2069  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2070
2071  // The pattern we're looking for is where our only predecessor is a switch on
2072  // 'V' and this block is the default case for the switch.  In this case we can
2073  // fold the compared value into the switch to simplify things.
2074  BasicBlock *Pred = BB->getSinglePredecessor();
2075  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2076
2077  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2078  if (SI->getCondition() != V)
2079    return false;
2080
2081  // If BB is reachable on a non-default case, then we simply know the value of
2082  // V in this block.  Substitute it and constant fold the icmp instruction
2083  // away.
2084  if (SI->getDefaultDest() != BB) {
2085    ConstantInt *VVal = SI->findCaseDest(BB);
2086    assert(VVal && "Should have a unique destination value");
2087    ICI->setOperand(0, VVal);
2088
2089    if (Value *V = SimplifyInstruction(ICI, TD)) {
2090      ICI->replaceAllUsesWith(V);
2091      ICI->eraseFromParent();
2092    }
2093    // BB is now empty, so it is likely to simplify away.
2094    return SimplifyCFG(BB) | true;
2095  }
2096
2097  // Ok, the block is reachable from the default dest.  If the constant we're
2098  // comparing exists in one of the other edges, then we can constant fold ICI
2099  // and zap it.
2100  if (SI->findCaseValue(Cst) != SwitchInst::ErrorIndex) {
2101    Value *V;
2102    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2103      V = ConstantInt::getFalse(BB->getContext());
2104    else
2105      V = ConstantInt::getTrue(BB->getContext());
2106
2107    ICI->replaceAllUsesWith(V);
2108    ICI->eraseFromParent();
2109    // BB is now empty, so it is likely to simplify away.
2110    return SimplifyCFG(BB) | true;
2111  }
2112
2113  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2114  // the block.
2115  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2116  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2117  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2118      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2119    return false;
2120
2121  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2122  // true in the PHI.
2123  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2124  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2125
2126  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2127    std::swap(DefaultCst, NewCst);
2128
2129  // Replace ICI (which is used by the PHI for the default value) with true or
2130  // false depending on if it is EQ or NE.
2131  ICI->replaceAllUsesWith(DefaultCst);
2132  ICI->eraseFromParent();
2133
2134  // Okay, the switch goes to this block on a default value.  Add an edge from
2135  // the switch to the merge point on the compared value.
2136  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2137                                         BB->getParent(), BB);
2138  SI->addCase(Cst, NewBB);
2139
2140  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2141  Builder.SetInsertPoint(NewBB);
2142  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2143  Builder.CreateBr(SuccBlock);
2144  PHIUse->addIncoming(NewCst, NewBB);
2145  return true;
2146}
2147
2148/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2149/// Check to see if it is branching on an or/and chain of icmp instructions, and
2150/// fold it into a switch instruction if so.
2151static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2152                                      IRBuilder<> &Builder) {
2153  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2154  if (Cond == 0) return false;
2155
2156
2157  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2158  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2159  // 'setne's and'ed together, collect them.
2160  Value *CompVal = 0;
2161  std::vector<ConstantInt*> Values;
2162  bool TrueWhenEqual = true;
2163  Value *ExtraCase = 0;
2164  unsigned UsedICmps = 0;
2165
2166  if (Cond->getOpcode() == Instruction::Or) {
2167    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2168                                     UsedICmps);
2169  } else if (Cond->getOpcode() == Instruction::And) {
2170    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2171                                     UsedICmps);
2172    TrueWhenEqual = false;
2173  }
2174
2175  // If we didn't have a multiply compared value, fail.
2176  if (CompVal == 0) return false;
2177
2178  // Avoid turning single icmps into a switch.
2179  if (UsedICmps <= 1)
2180    return false;
2181
2182  // There might be duplicate constants in the list, which the switch
2183  // instruction can't handle, remove them now.
2184  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2185  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2186
2187  // If Extra was used, we require at least two switch values to do the
2188  // transformation.  A switch with one value is just an cond branch.
2189  if (ExtraCase && Values.size() < 2) return false;
2190
2191  // Figure out which block is which destination.
2192  BasicBlock *DefaultBB = BI->getSuccessor(1);
2193  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2194  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2195
2196  BasicBlock *BB = BI->getParent();
2197
2198  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2199               << " cases into SWITCH.  BB is:\n" << *BB);
2200
2201  // If there are any extra values that couldn't be folded into the switch
2202  // then we evaluate them with an explicit branch first.  Split the block
2203  // right before the condbr to handle it.
2204  if (ExtraCase) {
2205    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2206    // Remove the uncond branch added to the old block.
2207    TerminatorInst *OldTI = BB->getTerminator();
2208    Builder.SetInsertPoint(OldTI);
2209
2210    if (TrueWhenEqual)
2211      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2212    else
2213      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2214
2215    OldTI->eraseFromParent();
2216
2217    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2218    // for the edge we just added.
2219    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2220
2221    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2222          << "\nEXTRABB = " << *BB);
2223    BB = NewBB;
2224  }
2225
2226  Builder.SetInsertPoint(BI);
2227  // Convert pointer to int before we switch.
2228  if (CompVal->getType()->isPointerTy()) {
2229    assert(TD && "Cannot switch on pointer without TargetData");
2230    CompVal = Builder.CreatePtrToInt(CompVal,
2231                                     TD->getIntPtrType(CompVal->getContext()),
2232                                     "magicptr");
2233  }
2234
2235  // Create the new switch instruction now.
2236  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2237
2238  // Add all of the 'cases' to the switch instruction.
2239  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2240    New->addCase(Values[i], EdgeBB);
2241
2242  // We added edges from PI to the EdgeBB.  As such, if there were any
2243  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2244  // the number of edges added.
2245  for (BasicBlock::iterator BBI = EdgeBB->begin();
2246       isa<PHINode>(BBI); ++BBI) {
2247    PHINode *PN = cast<PHINode>(BBI);
2248    Value *InVal = PN->getIncomingValueForBlock(BB);
2249    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2250      PN->addIncoming(InVal, BB);
2251  }
2252
2253  // Erase the old branch instruction.
2254  EraseTerminatorInstAndDCECond(BI);
2255
2256  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2257  return true;
2258}
2259
2260bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2261  // If this is a trivial landing pad that just continues unwinding the caught
2262  // exception then zap the landing pad, turning its invokes into calls.
2263  BasicBlock *BB = RI->getParent();
2264  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2265  if (RI->getValue() != LPInst)
2266    // Not a landing pad, or the resume is not unwinding the exception that
2267    // caused control to branch here.
2268    return false;
2269
2270  // Check that there are no other instructions except for debug intrinsics.
2271  BasicBlock::iterator I = LPInst, E = RI;
2272  while (++I != E)
2273    if (!isa<DbgInfoIntrinsic>(I))
2274      return false;
2275
2276  // Turn all invokes that unwind here into calls and delete the basic block.
2277  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2278    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2279    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2280    // Insert a call instruction before the invoke.
2281    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2282    Call->takeName(II);
2283    Call->setCallingConv(II->getCallingConv());
2284    Call->setAttributes(II->getAttributes());
2285    Call->setDebugLoc(II->getDebugLoc());
2286
2287    // Anything that used the value produced by the invoke instruction now uses
2288    // the value produced by the call instruction.  Note that we do this even
2289    // for void functions and calls with no uses so that the callgraph edge is
2290    // updated.
2291    II->replaceAllUsesWith(Call);
2292    BB->removePredecessor(II->getParent());
2293
2294    // Insert a branch to the normal destination right before the invoke.
2295    BranchInst::Create(II->getNormalDest(), II);
2296
2297    // Finally, delete the invoke instruction!
2298    II->eraseFromParent();
2299  }
2300
2301  // The landingpad is now unreachable.  Zap it.
2302  BB->eraseFromParent();
2303  return true;
2304}
2305
2306bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2307  BasicBlock *BB = RI->getParent();
2308  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2309
2310  // Find predecessors that end with branches.
2311  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2312  SmallVector<BranchInst*, 8> CondBranchPreds;
2313  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2314    BasicBlock *P = *PI;
2315    TerminatorInst *PTI = P->getTerminator();
2316    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2317      if (BI->isUnconditional())
2318        UncondBranchPreds.push_back(P);
2319      else
2320        CondBranchPreds.push_back(BI);
2321    }
2322  }
2323
2324  // If we found some, do the transformation!
2325  if (!UncondBranchPreds.empty() && DupRet) {
2326    while (!UncondBranchPreds.empty()) {
2327      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2328      DEBUG(dbgs() << "FOLDING: " << *BB
2329            << "INTO UNCOND BRANCH PRED: " << *Pred);
2330      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2331    }
2332
2333    // If we eliminated all predecessors of the block, delete the block now.
2334    if (pred_begin(BB) == pred_end(BB))
2335      // We know there are no successors, so just nuke the block.
2336      BB->eraseFromParent();
2337
2338    return true;
2339  }
2340
2341  // Check out all of the conditional branches going to this return
2342  // instruction.  If any of them just select between returns, change the
2343  // branch itself into a select/return pair.
2344  while (!CondBranchPreds.empty()) {
2345    BranchInst *BI = CondBranchPreds.pop_back_val();
2346
2347    // Check to see if the non-BB successor is also a return block.
2348    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2349        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2350        SimplifyCondBranchToTwoReturns(BI, Builder))
2351      return true;
2352  }
2353  return false;
2354}
2355
2356bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2357  // Check to see if the first instruction in this block is just an unwind.
2358  // If so, replace any invoke instructions which use this as an exception
2359  // destination with call instructions.
2360  BasicBlock *BB = UI->getParent();
2361  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2362
2363  bool Changed = false;
2364  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2365  while (!Preds.empty()) {
2366    BasicBlock *Pred = Preds.back();
2367    InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2368    if (II && II->getUnwindDest() == BB) {
2369      // Insert a new branch instruction before the invoke, because this
2370      // is now a fall through.
2371      Builder.SetInsertPoint(II);
2372      BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2373      Pred->getInstList().remove(II);   // Take out of symbol table
2374
2375      // Insert the call now.
2376      SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2377      Builder.SetInsertPoint(BI);
2378      CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2379                                        Args, II->getName());
2380      CI->setCallingConv(II->getCallingConv());
2381      CI->setAttributes(II->getAttributes());
2382      // If the invoke produced a value, the Call now does instead.
2383      II->replaceAllUsesWith(CI);
2384      delete II;
2385      Changed = true;
2386    }
2387
2388    Preds.pop_back();
2389  }
2390
2391  // If this block is now dead (and isn't the entry block), remove it.
2392  if (pred_begin(BB) == pred_end(BB) &&
2393      BB != &BB->getParent()->getEntryBlock()) {
2394    // We know there are no successors, so just nuke the block.
2395    BB->eraseFromParent();
2396    return true;
2397  }
2398
2399  return Changed;
2400}
2401
2402bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2403  BasicBlock *BB = UI->getParent();
2404
2405  bool Changed = false;
2406
2407  // If there are any instructions immediately before the unreachable that can
2408  // be removed, do so.
2409  while (UI != BB->begin()) {
2410    BasicBlock::iterator BBI = UI;
2411    --BBI;
2412    // Do not delete instructions that can have side effects which might cause
2413    // the unreachable to not be reachable; specifically, calls and volatile
2414    // operations may have this effect.
2415    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2416
2417    if (BBI->mayHaveSideEffects()) {
2418      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2419        if (SI->isVolatile())
2420          break;
2421      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2422        if (LI->isVolatile())
2423          break;
2424      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2425        if (RMWI->isVolatile())
2426          break;
2427      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2428        if (CXI->isVolatile())
2429          break;
2430      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2431                 !isa<LandingPadInst>(BBI)) {
2432        break;
2433      }
2434      // Note that deleting LandingPad's here is in fact okay, although it
2435      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2436      // all the predecessors of this block will be the unwind edges of Invokes,
2437      // and we can therefore guarantee this block will be erased.
2438    }
2439
2440    // Delete this instruction (any uses are guaranteed to be dead)
2441    if (!BBI->use_empty())
2442      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2443    BBI->eraseFromParent();
2444    Changed = true;
2445  }
2446
2447  // If the unreachable instruction is the first in the block, take a gander
2448  // at all of the predecessors of this instruction, and simplify them.
2449  if (&BB->front() != UI) return Changed;
2450
2451  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2452  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2453    TerminatorInst *TI = Preds[i]->getTerminator();
2454    IRBuilder<> Builder(TI);
2455    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2456      if (BI->isUnconditional()) {
2457        if (BI->getSuccessor(0) == BB) {
2458          new UnreachableInst(TI->getContext(), TI);
2459          TI->eraseFromParent();
2460          Changed = true;
2461        }
2462      } else {
2463        if (BI->getSuccessor(0) == BB) {
2464          Builder.CreateBr(BI->getSuccessor(1));
2465          EraseTerminatorInstAndDCECond(BI);
2466        } else if (BI->getSuccessor(1) == BB) {
2467          Builder.CreateBr(BI->getSuccessor(0));
2468          EraseTerminatorInstAndDCECond(BI);
2469          Changed = true;
2470        }
2471      }
2472    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2473      for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i)
2474        if (SI->getCaseSuccessor(i) == BB) {
2475          BB->removePredecessor(SI->getParent());
2476          SI->removeCase(i);
2477          --i; --e;
2478          Changed = true;
2479        }
2480      // If the default value is unreachable, figure out the most popular
2481      // destination and make it the default.
2482      if (SI->getDefaultDest() == BB) {
2483        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2484        for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i) {
2485          std::pair<unsigned, unsigned> &entry =
2486              Popularity[SI->getCaseSuccessor(i)];
2487          if (entry.first == 0) {
2488            entry.first = 1;
2489            entry.second = i;
2490          } else {
2491            entry.first++;
2492          }
2493        }
2494
2495        // Find the most popular block.
2496        unsigned MaxPop = 0;
2497        unsigned MaxIndex = 0;
2498        BasicBlock *MaxBlock = 0;
2499        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2500             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2501          if (I->second.first > MaxPop ||
2502              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2503            MaxPop = I->second.first;
2504            MaxIndex = I->second.second;
2505            MaxBlock = I->first;
2506          }
2507        }
2508        if (MaxBlock) {
2509          // Make this the new default, allowing us to delete any explicit
2510          // edges to it.
2511          SI->setDefaultDest(MaxBlock);
2512          Changed = true;
2513
2514          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2515          // it.
2516          if (isa<PHINode>(MaxBlock->begin()))
2517            for (unsigned i = 0; i != MaxPop-1; ++i)
2518              MaxBlock->removePredecessor(SI->getParent());
2519
2520          for (unsigned i = 0, e = SI->getNumCases(); i != e; ++i)
2521            if (SI->getCaseSuccessor(i) == MaxBlock) {
2522              SI->removeCase(i);
2523              --i; --e;
2524            }
2525        }
2526      }
2527    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2528      if (II->getUnwindDest() == BB) {
2529        // Convert the invoke to a call instruction.  This would be a good
2530        // place to note that the call does not throw though.
2531        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2532        II->removeFromParent();   // Take out of symbol table
2533
2534        // Insert the call now...
2535        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2536        Builder.SetInsertPoint(BI);
2537        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2538                                          Args, II->getName());
2539        CI->setCallingConv(II->getCallingConv());
2540        CI->setAttributes(II->getAttributes());
2541        // If the invoke produced a value, the call does now instead.
2542        II->replaceAllUsesWith(CI);
2543        delete II;
2544        Changed = true;
2545      }
2546    }
2547  }
2548
2549  // If this block is now dead, remove it.
2550  if (pred_begin(BB) == pred_end(BB) &&
2551      BB != &BB->getParent()->getEntryBlock()) {
2552    // We know there are no successors, so just nuke the block.
2553    BB->eraseFromParent();
2554    return true;
2555  }
2556
2557  return Changed;
2558}
2559
2560/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2561/// integer range comparison into a sub, an icmp and a branch.
2562static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2563  assert(SI->getNumCases() > 1 && "Degenerate switch?");
2564
2565  // Make sure all cases point to the same destination and gather the values.
2566  SmallVector<ConstantInt *, 16> Cases;
2567  Cases.push_back(SI->getCaseValue(0));
2568  for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2569    if (SI->getCaseSuccessor(I-1) != SI->getCaseSuccessor(I))
2570      return false;
2571    Cases.push_back(SI->getCaseValue(I));
2572  }
2573  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2574
2575  // Sort the case values, then check if they form a range we can transform.
2576  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2577  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2578    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2579      return false;
2580  }
2581
2582  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2583  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2584
2585  Value *Sub = SI->getCondition();
2586  if (!Offset->isNullValue())
2587    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2588  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2589  Builder.CreateCondBr(Cmp, SI->getCaseSuccessor(0), SI->getDefaultDest());
2590
2591  // Prune obsolete incoming values off the successor's PHI nodes.
2592  for (BasicBlock::iterator BBI = SI->getCaseSuccessor(0)->begin();
2593       isa<PHINode>(BBI); ++BBI) {
2594    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2595      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2596  }
2597  SI->eraseFromParent();
2598
2599  return true;
2600}
2601
2602/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2603/// and use it to remove dead cases.
2604static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2605  Value *Cond = SI->getCondition();
2606  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2607  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2608  ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2609
2610  // Gather dead cases.
2611  SmallVector<ConstantInt*, 8> DeadCases;
2612  for (unsigned I = 0, E = SI->getNumCases(); I != E; ++I) {
2613    if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2614        (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2615      DeadCases.push_back(SI->getCaseValue(I));
2616      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2617                   << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2618    }
2619  }
2620
2621  // Remove dead cases from the switch.
2622  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2623    unsigned Case = SI->findCaseValue(DeadCases[I]);
2624    assert(Case != SwitchInst::ErrorIndex &&
2625           "Case was not found. Probably mistake in DeadCases forming.");
2626    // Prune unused values from PHI nodes.
2627    SI->getCaseSuccessor(Case)->removePredecessor(SI->getParent());
2628    SI->removeCase(Case);
2629  }
2630
2631  return !DeadCases.empty();
2632}
2633
2634/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2635/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2636/// by an unconditional branch), look at the phi node for BB in the successor
2637/// block and see if the incoming value is equal to CaseValue. If so, return
2638/// the phi node, and set PhiIndex to BB's index in the phi node.
2639static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2640                                              BasicBlock *BB,
2641                                              int *PhiIndex) {
2642  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2643    return NULL; // BB must be empty to be a candidate for simplification.
2644  if (!BB->getSinglePredecessor())
2645    return NULL; // BB must be dominated by the switch.
2646
2647  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2648  if (!Branch || !Branch->isUnconditional())
2649    return NULL; // Terminator must be unconditional branch.
2650
2651  BasicBlock *Succ = Branch->getSuccessor(0);
2652
2653  BasicBlock::iterator I = Succ->begin();
2654  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2655    int Idx = PHI->getBasicBlockIndex(BB);
2656    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2657
2658    Value *InValue = PHI->getIncomingValue(Idx);
2659    if (InValue != CaseValue) continue;
2660
2661    *PhiIndex = Idx;
2662    return PHI;
2663  }
2664
2665  return NULL;
2666}
2667
2668/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2669/// instruction to a phi node dominated by the switch, if that would mean that
2670/// some of the destination blocks of the switch can be folded away.
2671/// Returns true if a change is made.
2672static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2673  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2674  ForwardingNodesMap ForwardingNodes;
2675
2676  for (unsigned I = 0; I < SI->getNumCases(); ++I) { // 0 is the default case.
2677    ConstantInt *CaseValue = SI->getCaseValue(I);
2678    BasicBlock *CaseDest = SI->getCaseSuccessor(I);
2679
2680    int PhiIndex;
2681    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2682                                                 &PhiIndex);
2683    if (!PHI) continue;
2684
2685    ForwardingNodes[PHI].push_back(PhiIndex);
2686  }
2687
2688  bool Changed = false;
2689
2690  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2691       E = ForwardingNodes.end(); I != E; ++I) {
2692    PHINode *Phi = I->first;
2693    SmallVector<int,4> &Indexes = I->second;
2694
2695    if (Indexes.size() < 2) continue;
2696
2697    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2698      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2699    Changed = true;
2700  }
2701
2702  return Changed;
2703}
2704
2705bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2706  // If this switch is too complex to want to look at, ignore it.
2707  if (!isValueEqualityComparison(SI))
2708    return false;
2709
2710  BasicBlock *BB = SI->getParent();
2711
2712  // If we only have one predecessor, and if it is a branch on this value,
2713  // see if that predecessor totally determines the outcome of this switch.
2714  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2715    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2716      return SimplifyCFG(BB) | true;
2717
2718  Value *Cond = SI->getCondition();
2719  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2720    if (SimplifySwitchOnSelect(SI, Select))
2721      return SimplifyCFG(BB) | true;
2722
2723  // If the block only contains the switch, see if we can fold the block
2724  // away into any preds.
2725  BasicBlock::iterator BBI = BB->begin();
2726  // Ignore dbg intrinsics.
2727  while (isa<DbgInfoIntrinsic>(BBI))
2728    ++BBI;
2729  if (SI == &*BBI)
2730    if (FoldValueComparisonIntoPredecessors(SI, Builder))
2731      return SimplifyCFG(BB) | true;
2732
2733  // Try to transform the switch into an icmp and a branch.
2734  if (TurnSwitchRangeIntoICmp(SI, Builder))
2735    return SimplifyCFG(BB) | true;
2736
2737  // Remove unreachable cases.
2738  if (EliminateDeadSwitchCases(SI))
2739    return SimplifyCFG(BB) | true;
2740
2741  if (ForwardSwitchConditionToPHI(SI))
2742    return SimplifyCFG(BB) | true;
2743
2744  return false;
2745}
2746
2747bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2748  BasicBlock *BB = IBI->getParent();
2749  bool Changed = false;
2750
2751  // Eliminate redundant destinations.
2752  SmallPtrSet<Value *, 8> Succs;
2753  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2754    BasicBlock *Dest = IBI->getDestination(i);
2755    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2756      Dest->removePredecessor(BB);
2757      IBI->removeDestination(i);
2758      --i; --e;
2759      Changed = true;
2760    }
2761  }
2762
2763  if (IBI->getNumDestinations() == 0) {
2764    // If the indirectbr has no successors, change it to unreachable.
2765    new UnreachableInst(IBI->getContext(), IBI);
2766    EraseTerminatorInstAndDCECond(IBI);
2767    return true;
2768  }
2769
2770  if (IBI->getNumDestinations() == 1) {
2771    // If the indirectbr has one successor, change it to a direct branch.
2772    BranchInst::Create(IBI->getDestination(0), IBI);
2773    EraseTerminatorInstAndDCECond(IBI);
2774    return true;
2775  }
2776
2777  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2778    if (SimplifyIndirectBrOnSelect(IBI, SI))
2779      return SimplifyCFG(BB) | true;
2780  }
2781  return Changed;
2782}
2783
2784bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2785  BasicBlock *BB = BI->getParent();
2786
2787  // If the Terminator is the only non-phi instruction, simplify the block.
2788  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2789  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2790      TryToSimplifyUncondBranchFromEmptyBlock(BB))
2791    return true;
2792
2793  // If the only instruction in the block is a seteq/setne comparison
2794  // against a constant, try to simplify the block.
2795  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2796    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2797      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2798        ;
2799      if (I->isTerminator() &&
2800          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2801        return true;
2802    }
2803
2804  return false;
2805}
2806
2807
2808bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2809  BasicBlock *BB = BI->getParent();
2810
2811  // Conditional branch
2812  if (isValueEqualityComparison(BI)) {
2813    // If we only have one predecessor, and if it is a branch on this value,
2814    // see if that predecessor totally determines the outcome of this
2815    // switch.
2816    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2817      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2818        return SimplifyCFG(BB) | true;
2819
2820    // This block must be empty, except for the setcond inst, if it exists.
2821    // Ignore dbg intrinsics.
2822    BasicBlock::iterator I = BB->begin();
2823    // Ignore dbg intrinsics.
2824    while (isa<DbgInfoIntrinsic>(I))
2825      ++I;
2826    if (&*I == BI) {
2827      if (FoldValueComparisonIntoPredecessors(BI, Builder))
2828        return SimplifyCFG(BB) | true;
2829    } else if (&*I == cast<Instruction>(BI->getCondition())){
2830      ++I;
2831      // Ignore dbg intrinsics.
2832      while (isa<DbgInfoIntrinsic>(I))
2833        ++I;
2834      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2835        return SimplifyCFG(BB) | true;
2836    }
2837  }
2838
2839  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2840  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2841    return true;
2842
2843  // If this basic block is ONLY a compare and a branch, and if a predecessor
2844  // branches to us and one of our successors, fold the comparison into the
2845  // predecessor and use logical operations to pick the right destination.
2846  if (FoldBranchToCommonDest(BI))
2847    return SimplifyCFG(BB) | true;
2848
2849  // We have a conditional branch to two blocks that are only reachable
2850  // from BI.  We know that the condbr dominates the two blocks, so see if
2851  // there is any identical code in the "then" and "else" blocks.  If so, we
2852  // can hoist it up to the branching block.
2853  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2854    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2855      if (HoistThenElseCodeToIf(BI))
2856        return SimplifyCFG(BB) | true;
2857    } else {
2858      // If Successor #1 has multiple preds, we may be able to conditionally
2859      // execute Successor #0 if it branches to successor #1.
2860      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2861      if (Succ0TI->getNumSuccessors() == 1 &&
2862          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2863        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2864          return SimplifyCFG(BB) | true;
2865    }
2866  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2867    // If Successor #0 has multiple preds, we may be able to conditionally
2868    // execute Successor #1 if it branches to successor #0.
2869    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2870    if (Succ1TI->getNumSuccessors() == 1 &&
2871        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2872      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2873        return SimplifyCFG(BB) | true;
2874  }
2875
2876  // If this is a branch on a phi node in the current block, thread control
2877  // through this block if any PHI node entries are constants.
2878  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2879    if (PN->getParent() == BI->getParent())
2880      if (FoldCondBranchOnPHI(BI, TD))
2881        return SimplifyCFG(BB) | true;
2882
2883  // Scan predecessor blocks for conditional branches.
2884  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2885    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2886      if (PBI != BI && PBI->isConditional())
2887        if (SimplifyCondBranchToCondBranch(PBI, BI))
2888          return SimplifyCFG(BB) | true;
2889
2890  return false;
2891}
2892
2893/// Check if passing a value to an instruction will cause undefined behavior.
2894static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
2895  Constant *C = dyn_cast<Constant>(V);
2896  if (!C)
2897    return false;
2898
2899  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
2900    return false;
2901
2902  if (C->isNullValue()) {
2903    Instruction *Use = I->use_back();
2904
2905    // Now make sure that there are no instructions in between that can alter
2906    // control flow (eg. calls)
2907    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
2908      if (i == I->getParent()->end() || i->mayHaveSideEffects())
2909        return false;
2910
2911    // Look through GEPs. A load from a GEP derived from NULL is still undefined
2912    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
2913      if (GEP->getPointerOperand() == I)
2914        return passingValueIsAlwaysUndefined(V, GEP);
2915
2916    // Look through bitcasts.
2917    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
2918      return passingValueIsAlwaysUndefined(V, BC);
2919
2920    // Load from null is undefined.
2921    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
2922      return LI->getPointerAddressSpace() == 0;
2923
2924    // Store to null is undefined.
2925    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
2926      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
2927  }
2928  return false;
2929}
2930
2931/// If BB has an incoming value that will always trigger undefined behavior
2932/// (eg. null pointer dereference), remove the branch leading here.
2933static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
2934  for (BasicBlock::iterator i = BB->begin();
2935       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
2936    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
2937      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
2938        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
2939        IRBuilder<> Builder(T);
2940        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
2941          BB->removePredecessor(PHI->getIncomingBlock(i));
2942          // Turn uncoditional branches into unreachables and remove the dead
2943          // destination from conditional branches.
2944          if (BI->isUnconditional())
2945            Builder.CreateUnreachable();
2946          else
2947            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
2948                                                         BI->getSuccessor(0));
2949          BI->eraseFromParent();
2950          return true;
2951        }
2952        // TODO: SwitchInst.
2953      }
2954
2955  return false;
2956}
2957
2958bool SimplifyCFGOpt::run(BasicBlock *BB) {
2959  bool Changed = false;
2960
2961  assert(BB && BB->getParent() && "Block not embedded in function!");
2962  assert(BB->getTerminator() && "Degenerate basic block encountered!");
2963
2964  // Remove basic blocks that have no predecessors (except the entry block)...
2965  // or that just have themself as a predecessor.  These are unreachable.
2966  if ((pred_begin(BB) == pred_end(BB) &&
2967       BB != &BB->getParent()->getEntryBlock()) ||
2968      BB->getSinglePredecessor() == BB) {
2969    DEBUG(dbgs() << "Removing BB: \n" << *BB);
2970    DeleteDeadBlock(BB);
2971    return true;
2972  }
2973
2974  // Check to see if we can constant propagate this terminator instruction
2975  // away...
2976  Changed |= ConstantFoldTerminator(BB, true);
2977
2978  // Check for and eliminate duplicate PHI nodes in this block.
2979  Changed |= EliminateDuplicatePHINodes(BB);
2980
2981  // Check for and remove branches that will always cause undefined behavior.
2982  Changed |= removeUndefIntroducingPredecessor(BB);
2983
2984  // Merge basic blocks into their predecessor if there is only one distinct
2985  // pred, and if there is only one distinct successor of the predecessor, and
2986  // if there are no PHI nodes.
2987  //
2988  if (MergeBlockIntoPredecessor(BB))
2989    return true;
2990
2991  IRBuilder<> Builder(BB);
2992
2993  // If there is a trivial two-entry PHI node in this basic block, and we can
2994  // eliminate it, do so now.
2995  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2996    if (PN->getNumIncomingValues() == 2)
2997      Changed |= FoldTwoEntryPHINode(PN, TD);
2998
2999  Builder.SetInsertPoint(BB->getTerminator());
3000  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3001    if (BI->isUnconditional()) {
3002      if (SimplifyUncondBranch(BI, Builder)) return true;
3003    } else {
3004      if (SimplifyCondBranch(BI, Builder)) return true;
3005    }
3006  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3007    if (SimplifyResume(RI, Builder)) return true;
3008  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3009    if (SimplifyReturn(RI, Builder)) return true;
3010  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3011    if (SimplifySwitch(SI, Builder)) return true;
3012  } else if (UnreachableInst *UI =
3013               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3014    if (SimplifyUnreachable(UI)) return true;
3015  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
3016    if (SimplifyUnwind(UI, Builder)) return true;
3017  } else if (IndirectBrInst *IBI =
3018               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3019    if (SimplifyIndirectBr(IBI)) return true;
3020  }
3021
3022  return Changed;
3023}
3024
3025/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3026/// example, it adjusts branches to branches to eliminate the extra hop, it
3027/// eliminates unreachable basic blocks, and does other "peephole" optimization
3028/// of the CFG.  It returns true if a modification was made.
3029///
3030bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3031  return SimplifyCFGOpt(TD).run(BB);
3032}
3033