SimplifyCFG.cpp revision 3bd51b8df3212f765e6ffee06e32b9a670f9b16c
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/IRBuilder.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/MDBuilder.h"
24#include "llvm/Metadata.h"
25#include "llvm/Module.h"
26#include "llvm/Operator.h"
27#include "llvm/Type.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/InstructionSimplify.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/ConstantRange.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/NoFolder.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include <algorithm>
45#include <set>
46#include <map>
47using namespace llvm;
48
49static cl::opt<unsigned>
50PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
51   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
52
53static cl::opt<bool>
54DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
55       cl::desc("Duplicate return instructions into unconditional branches"));
56
57STATISTIC(NumSpeculations, "Number of speculative executed instructions");
58STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
59
60namespace {
61  /// ValueEqualityComparisonCase - Represents a case of a switch.
62  struct ValueEqualityComparisonCase {
63    ConstantInt *Value;
64    BasicBlock *Dest;
65
66    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
67      : Value(Value), Dest(Dest) {}
68
69    bool operator<(ValueEqualityComparisonCase RHS) const {
70      // Comparing pointers is ok as we only rely on the order for uniquing.
71      return Value < RHS.Value;
72    }
73  };
74
75class SimplifyCFGOpt {
76  const TargetData *const TD;
77
78  Value *isValueEqualityComparison(TerminatorInst *TI);
79  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
80                               std::vector<ValueEqualityComparisonCase> &Cases);
81  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
82                                                     BasicBlock *Pred,
83                                                     IRBuilder<> &Builder);
84  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
85                                           IRBuilder<> &Builder);
86
87  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
88  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
89  bool SimplifyUnreachable(UnreachableInst *UI);
90  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
91  bool SimplifyIndirectBr(IndirectBrInst *IBI);
92  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
93  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
94
95public:
96  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
97  bool run(BasicBlock *BB);
98};
99}
100
101/// SafeToMergeTerminators - Return true if it is safe to merge these two
102/// terminator instructions together.
103///
104static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
105  if (SI1 == SI2) return false;  // Can't merge with self!
106
107  // It is not safe to merge these two switch instructions if they have a common
108  // successor, and if that successor has a PHI node, and if *that* PHI node has
109  // conflicting incoming values from the two switch blocks.
110  BasicBlock *SI1BB = SI1->getParent();
111  BasicBlock *SI2BB = SI2->getParent();
112  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
113
114  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
115    if (SI1Succs.count(*I))
116      for (BasicBlock::iterator BBI = (*I)->begin();
117           isa<PHINode>(BBI); ++BBI) {
118        PHINode *PN = cast<PHINode>(BBI);
119        if (PN->getIncomingValueForBlock(SI1BB) !=
120            PN->getIncomingValueForBlock(SI2BB))
121          return false;
122      }
123
124  return true;
125}
126
127/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
128/// to merge these two terminator instructions together, where SI1 is an
129/// unconditional branch. PhiNodes will store all PHI nodes in common
130/// successors.
131///
132static bool isProfitableToFoldUnconditional(BranchInst *SI1,
133                                          BranchInst *SI2,
134                                          Instruction *Cond,
135                                          SmallVectorImpl<PHINode*> &PhiNodes) {
136  if (SI1 == SI2) return false;  // Can't merge with self!
137  assert(SI1->isUnconditional() && SI2->isConditional());
138
139  // We fold the unconditional branch if we can easily update all PHI nodes in
140  // common successors:
141  // 1> We have a constant incoming value for the conditional branch;
142  // 2> We have "Cond" as the incoming value for the unconditional branch;
143  // 3> SI2->getCondition() and Cond have same operands.
144  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
145  if (!Ci2) return false;
146  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
147        Cond->getOperand(1) == Ci2->getOperand(1)) &&
148      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
149        Cond->getOperand(1) == Ci2->getOperand(0)))
150    return false;
151
152  BasicBlock *SI1BB = SI1->getParent();
153  BasicBlock *SI2BB = SI2->getParent();
154  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
155  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
156    if (SI1Succs.count(*I))
157      for (BasicBlock::iterator BBI = (*I)->begin();
158           isa<PHINode>(BBI); ++BBI) {
159        PHINode *PN = cast<PHINode>(BBI);
160        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
161            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
162          return false;
163        PhiNodes.push_back(PN);
164      }
165  return true;
166}
167
168/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
169/// now be entries in it from the 'NewPred' block.  The values that will be
170/// flowing into the PHI nodes will be the same as those coming in from
171/// ExistPred, an existing predecessor of Succ.
172static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
173                                  BasicBlock *ExistPred) {
174  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
175
176  PHINode *PN;
177  for (BasicBlock::iterator I = Succ->begin();
178       (PN = dyn_cast<PHINode>(I)); ++I)
179    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
180}
181
182
183/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
184/// least one PHI node in it), check to see if the merge at this block is due
185/// to an "if condition".  If so, return the boolean condition that determines
186/// which entry into BB will be taken.  Also, return by references the block
187/// that will be entered from if the condition is true, and the block that will
188/// be entered if the condition is false.
189///
190/// This does no checking to see if the true/false blocks have large or unsavory
191/// instructions in them.
192static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
193                             BasicBlock *&IfFalse) {
194  PHINode *SomePHI = cast<PHINode>(BB->begin());
195  assert(SomePHI->getNumIncomingValues() == 2 &&
196         "Function can only handle blocks with 2 predecessors!");
197  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
198  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
199
200  // We can only handle branches.  Other control flow will be lowered to
201  // branches if possible anyway.
202  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
203  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
204  if (Pred1Br == 0 || Pred2Br == 0)
205    return 0;
206
207  // Eliminate code duplication by ensuring that Pred1Br is conditional if
208  // either are.
209  if (Pred2Br->isConditional()) {
210    // If both branches are conditional, we don't have an "if statement".  In
211    // reality, we could transform this case, but since the condition will be
212    // required anyway, we stand no chance of eliminating it, so the xform is
213    // probably not profitable.
214    if (Pred1Br->isConditional())
215      return 0;
216
217    std::swap(Pred1, Pred2);
218    std::swap(Pred1Br, Pred2Br);
219  }
220
221  if (Pred1Br->isConditional()) {
222    // The only thing we have to watch out for here is to make sure that Pred2
223    // doesn't have incoming edges from other blocks.  If it does, the condition
224    // doesn't dominate BB.
225    if (Pred2->getSinglePredecessor() == 0)
226      return 0;
227
228    // If we found a conditional branch predecessor, make sure that it branches
229    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
230    if (Pred1Br->getSuccessor(0) == BB &&
231        Pred1Br->getSuccessor(1) == Pred2) {
232      IfTrue = Pred1;
233      IfFalse = Pred2;
234    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
235               Pred1Br->getSuccessor(1) == BB) {
236      IfTrue = Pred2;
237      IfFalse = Pred1;
238    } else {
239      // We know that one arm of the conditional goes to BB, so the other must
240      // go somewhere unrelated, and this must not be an "if statement".
241      return 0;
242    }
243
244    return Pred1Br->getCondition();
245  }
246
247  // Ok, if we got here, both predecessors end with an unconditional branch to
248  // BB.  Don't panic!  If both blocks only have a single (identical)
249  // predecessor, and THAT is a conditional branch, then we're all ok!
250  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
251  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
252    return 0;
253
254  // Otherwise, if this is a conditional branch, then we can use it!
255  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
256  if (BI == 0) return 0;
257
258  assert(BI->isConditional() && "Two successors but not conditional?");
259  if (BI->getSuccessor(0) == Pred1) {
260    IfTrue = Pred1;
261    IfFalse = Pred2;
262  } else {
263    IfTrue = Pred2;
264    IfFalse = Pred1;
265  }
266  return BI->getCondition();
267}
268
269/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
270/// given instruction, which is assumed to be safe to speculate. 1 means
271/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
272static unsigned ComputeSpeculationCost(const User *I) {
273  assert(isSafeToSpeculativelyExecute(I) &&
274         "Instruction is not safe to speculatively execute!");
275  switch (Operator::getOpcode(I)) {
276  default:
277    // In doubt, be conservative.
278    return UINT_MAX;
279  case Instruction::GetElementPtr:
280    // GEPs are cheap if all indices are constant.
281    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
282      return UINT_MAX;
283    return 1;
284  case Instruction::Load:
285  case Instruction::Add:
286  case Instruction::Sub:
287  case Instruction::And:
288  case Instruction::Or:
289  case Instruction::Xor:
290  case Instruction::Shl:
291  case Instruction::LShr:
292  case Instruction::AShr:
293  case Instruction::ICmp:
294  case Instruction::Trunc:
295  case Instruction::ZExt:
296  case Instruction::SExt:
297    return 1; // These are all cheap.
298
299  case Instruction::Call:
300  case Instruction::Select:
301    return 2;
302  }
303}
304
305/// DominatesMergePoint - If we have a merge point of an "if condition" as
306/// accepted above, return true if the specified value dominates the block.  We
307/// don't handle the true generality of domination here, just a special case
308/// which works well enough for us.
309///
310/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
311/// see if V (which must be an instruction) and its recursive operands
312/// that do not dominate BB have a combined cost lower than CostRemaining and
313/// are non-trapping.  If both are true, the instruction is inserted into the
314/// set and true is returned.
315///
316/// The cost for most non-trapping instructions is defined as 1 except for
317/// Select whose cost is 2.
318///
319/// After this function returns, CostRemaining is decreased by the cost of
320/// V plus its non-dominating operands.  If that cost is greater than
321/// CostRemaining, false is returned and CostRemaining is undefined.
322static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
324                                unsigned &CostRemaining) {
325  Instruction *I = dyn_cast<Instruction>(V);
326  if (!I) {
327    // Non-instructions all dominate instructions, but not all constantexprs
328    // can be executed unconditionally.
329    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
330      if (C->canTrap())
331        return false;
332    return true;
333  }
334  BasicBlock *PBB = I->getParent();
335
336  // We don't want to allow weird loops that might have the "if condition" in
337  // the bottom of this block.
338  if (PBB == BB) return false;
339
340  // If this instruction is defined in a block that contains an unconditional
341  // branch to BB, then it must be in the 'conditional' part of the "if
342  // statement".  If not, it definitely dominates the region.
343  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
344  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
345    return true;
346
347  // If we aren't allowing aggressive promotion anymore, then don't consider
348  // instructions in the 'if region'.
349  if (AggressiveInsts == 0) return false;
350
351  // If we have seen this instruction before, don't count it again.
352  if (AggressiveInsts->count(I)) return true;
353
354  // Okay, it looks like the instruction IS in the "condition".  Check to
355  // see if it's a cheap instruction to unconditionally compute, and if it
356  // only uses stuff defined outside of the condition.  If so, hoist it out.
357  if (!isSafeToSpeculativelyExecute(I))
358    return false;
359
360  unsigned Cost = ComputeSpeculationCost(I);
361
362  if (Cost > CostRemaining)
363    return false;
364
365  CostRemaining -= Cost;
366
367  // Okay, we can only really hoist these out if their operands do
368  // not take us over the cost threshold.
369  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
370    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
371      return false;
372  // Okay, it's safe to do this!  Remember this instruction.
373  AggressiveInsts->insert(I);
374  return true;
375}
376
377/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
378/// and PointerNullValue. Return NULL if value is not a constant int.
379static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
380  // Normal constant int.
381  ConstantInt *CI = dyn_cast<ConstantInt>(V);
382  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
383    return CI;
384
385  // This is some kind of pointer constant. Turn it into a pointer-sized
386  // ConstantInt if possible.
387  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
388
389  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
390  if (isa<ConstantPointerNull>(V))
391    return ConstantInt::get(PtrTy, 0);
392
393  // IntToPtr const int.
394  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
395    if (CE->getOpcode() == Instruction::IntToPtr)
396      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
397        // The constant is very likely to have the right type already.
398        if (CI->getType() == PtrTy)
399          return CI;
400        else
401          return cast<ConstantInt>
402            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
403      }
404  return 0;
405}
406
407/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
408/// collection of icmp eq/ne instructions that compare a value against a
409/// constant, return the value being compared, and stick the constant into the
410/// Values vector.
411static Value *
412GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
413                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
414  Instruction *I = dyn_cast<Instruction>(V);
415  if (I == 0) return 0;
416
417  // If this is an icmp against a constant, handle this as one of the cases.
418  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
419    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
420      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
421        UsedICmps++;
422        Vals.push_back(C);
423        return I->getOperand(0);
424      }
425
426      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
427      // the set.
428      ConstantRange Span =
429        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
430
431      // If this is an and/!= check then we want to optimize "x ugt 2" into
432      // x != 0 && x != 1.
433      if (!isEQ)
434        Span = Span.inverse();
435
436      // If there are a ton of values, we don't want to make a ginormous switch.
437      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
438        return 0;
439
440      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
441        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
442      UsedICmps++;
443      return I->getOperand(0);
444    }
445    return 0;
446  }
447
448  // Otherwise, we can only handle an | or &, depending on isEQ.
449  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
450    return 0;
451
452  unsigned NumValsBeforeLHS = Vals.size();
453  unsigned UsedICmpsBeforeLHS = UsedICmps;
454  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
455                                          isEQ, UsedICmps)) {
456    unsigned NumVals = Vals.size();
457    unsigned UsedICmpsBeforeRHS = UsedICmps;
458    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
459                                            isEQ, UsedICmps)) {
460      if (LHS == RHS)
461        return LHS;
462      Vals.resize(NumVals);
463      UsedICmps = UsedICmpsBeforeRHS;
464    }
465
466    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
467    // set it and return success.
468    if (Extra == 0 || Extra == I->getOperand(1)) {
469      Extra = I->getOperand(1);
470      return LHS;
471    }
472
473    Vals.resize(NumValsBeforeLHS);
474    UsedICmps = UsedICmpsBeforeLHS;
475    return 0;
476  }
477
478  // If the LHS can't be folded in, but Extra is available and RHS can, try to
479  // use LHS as Extra.
480  if (Extra == 0 || Extra == I->getOperand(0)) {
481    Value *OldExtra = Extra;
482    Extra = I->getOperand(0);
483    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
484                                            isEQ, UsedICmps))
485      return RHS;
486    assert(Vals.size() == NumValsBeforeLHS);
487    Extra = OldExtra;
488  }
489
490  return 0;
491}
492
493static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
494  Instruction *Cond = 0;
495  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
496    Cond = dyn_cast<Instruction>(SI->getCondition());
497  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
498    if (BI->isConditional())
499      Cond = dyn_cast<Instruction>(BI->getCondition());
500  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
501    Cond = dyn_cast<Instruction>(IBI->getAddress());
502  }
503
504  TI->eraseFromParent();
505  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
506}
507
508/// isValueEqualityComparison - Return true if the specified terminator checks
509/// to see if a value is equal to constant integer value.
510Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
511  Value *CV = 0;
512  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
513    // Do not permit merging of large switch instructions into their
514    // predecessors unless there is only one predecessor.
515    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
516                                             pred_end(SI->getParent())) <= 128)
517      CV = SI->getCondition();
518  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
519    if (BI->isConditional() && BI->getCondition()->hasOneUse())
520      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
521        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
522             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
523            GetConstantInt(ICI->getOperand(1), TD))
524          CV = ICI->getOperand(0);
525
526  // Unwrap any lossless ptrtoint cast.
527  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
528    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
529      CV = PTII->getOperand(0);
530  return CV;
531}
532
533/// GetValueEqualityComparisonCases - Given a value comparison instruction,
534/// decode all of the 'cases' that it represents and return the 'default' block.
535BasicBlock *SimplifyCFGOpt::
536GetValueEqualityComparisonCases(TerminatorInst *TI,
537                                std::vector<ValueEqualityComparisonCase>
538                                                                       &Cases) {
539  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
540    Cases.reserve(SI->getNumCases());
541    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
542      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
543                                                  i.getCaseSuccessor()));
544    return SI->getDefaultDest();
545  }
546
547  BranchInst *BI = cast<BranchInst>(TI);
548  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
549  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
550  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
551                                                             TD),
552                                              Succ));
553  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
554}
555
556
557/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
558/// in the list that match the specified block.
559static void EliminateBlockCases(BasicBlock *BB,
560                              std::vector<ValueEqualityComparisonCase> &Cases) {
561  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
562    if (Cases[i].Dest == BB) {
563      Cases.erase(Cases.begin()+i);
564      --i; --e;
565    }
566}
567
568/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
569/// well.
570static bool
571ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
572              std::vector<ValueEqualityComparisonCase > &C2) {
573  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
574
575  // Make V1 be smaller than V2.
576  if (V1->size() > V2->size())
577    std::swap(V1, V2);
578
579  if (V1->size() == 0) return false;
580  if (V1->size() == 1) {
581    // Just scan V2.
582    ConstantInt *TheVal = (*V1)[0].Value;
583    for (unsigned i = 0, e = V2->size(); i != e; ++i)
584      if (TheVal == (*V2)[i].Value)
585        return true;
586  }
587
588  // Otherwise, just sort both lists and compare element by element.
589  array_pod_sort(V1->begin(), V1->end());
590  array_pod_sort(V2->begin(), V2->end());
591  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
592  while (i1 != e1 && i2 != e2) {
593    if ((*V1)[i1].Value == (*V2)[i2].Value)
594      return true;
595    if ((*V1)[i1].Value < (*V2)[i2].Value)
596      ++i1;
597    else
598      ++i2;
599  }
600  return false;
601}
602
603/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
604/// terminator instruction and its block is known to only have a single
605/// predecessor block, check to see if that predecessor is also a value
606/// comparison with the same value, and if that comparison determines the
607/// outcome of this comparison.  If so, simplify TI.  This does a very limited
608/// form of jump threading.
609bool SimplifyCFGOpt::
610SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
611                                              BasicBlock *Pred,
612                                              IRBuilder<> &Builder) {
613  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
614  if (!PredVal) return false;  // Not a value comparison in predecessor.
615
616  Value *ThisVal = isValueEqualityComparison(TI);
617  assert(ThisVal && "This isn't a value comparison!!");
618  if (ThisVal != PredVal) return false;  // Different predicates.
619
620  // TODO: Preserve branch weight metadata, similarly to how
621  // FoldValueComparisonIntoPredecessors preserves it.
622
623  // Find out information about when control will move from Pred to TI's block.
624  std::vector<ValueEqualityComparisonCase> PredCases;
625  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
626                                                        PredCases);
627  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
628
629  // Find information about how control leaves this block.
630  std::vector<ValueEqualityComparisonCase> ThisCases;
631  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
632  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
633
634  // If TI's block is the default block from Pred's comparison, potentially
635  // simplify TI based on this knowledge.
636  if (PredDef == TI->getParent()) {
637    // If we are here, we know that the value is none of those cases listed in
638    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
639    // can simplify TI.
640    if (!ValuesOverlap(PredCases, ThisCases))
641      return false;
642
643    if (isa<BranchInst>(TI)) {
644      // Okay, one of the successors of this condbr is dead.  Convert it to a
645      // uncond br.
646      assert(ThisCases.size() == 1 && "Branch can only have one case!");
647      // Insert the new branch.
648      Instruction *NI = Builder.CreateBr(ThisDef);
649      (void) NI;
650
651      // Remove PHI node entries for the dead edge.
652      ThisCases[0].Dest->removePredecessor(TI->getParent());
653
654      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
655           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
656
657      EraseTerminatorInstAndDCECond(TI);
658      return true;
659    }
660
661    SwitchInst *SI = cast<SwitchInst>(TI);
662    // Okay, TI has cases that are statically dead, prune them away.
663    SmallPtrSet<Constant*, 16> DeadCases;
664    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
665      DeadCases.insert(PredCases[i].Value);
666
667    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
668                 << "Through successor TI: " << *TI);
669
670    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
671      --i;
672      if (DeadCases.count(i.getCaseValue())) {
673        i.getCaseSuccessor()->removePredecessor(TI->getParent());
674        SI->removeCase(i);
675      }
676    }
677
678    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
679    return true;
680  }
681
682  // Otherwise, TI's block must correspond to some matched value.  Find out
683  // which value (or set of values) this is.
684  ConstantInt *TIV = 0;
685  BasicBlock *TIBB = TI->getParent();
686  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
687    if (PredCases[i].Dest == TIBB) {
688      if (TIV != 0)
689        return false;  // Cannot handle multiple values coming to this block.
690      TIV = PredCases[i].Value;
691    }
692  assert(TIV && "No edge from pred to succ?");
693
694  // Okay, we found the one constant that our value can be if we get into TI's
695  // BB.  Find out which successor will unconditionally be branched to.
696  BasicBlock *TheRealDest = 0;
697  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
698    if (ThisCases[i].Value == TIV) {
699      TheRealDest = ThisCases[i].Dest;
700      break;
701    }
702
703  // If not handled by any explicit cases, it is handled by the default case.
704  if (TheRealDest == 0) TheRealDest = ThisDef;
705
706  // Remove PHI node entries for dead edges.
707  BasicBlock *CheckEdge = TheRealDest;
708  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
709    if (*SI != CheckEdge)
710      (*SI)->removePredecessor(TIBB);
711    else
712      CheckEdge = 0;
713
714  // Insert the new branch.
715  Instruction *NI = Builder.CreateBr(TheRealDest);
716  (void) NI;
717
718  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
719            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
720
721  EraseTerminatorInstAndDCECond(TI);
722  return true;
723}
724
725namespace {
726  /// ConstantIntOrdering - This class implements a stable ordering of constant
727  /// integers that does not depend on their address.  This is important for
728  /// applications that sort ConstantInt's to ensure uniqueness.
729  struct ConstantIntOrdering {
730    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
731      return LHS->getValue().ult(RHS->getValue());
732    }
733  };
734}
735
736static int ConstantIntSortPredicate(const void *P1, const void *P2) {
737  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
738  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
739  if (LHS->getValue().ult(RHS->getValue()))
740    return 1;
741  if (LHS->getValue() == RHS->getValue())
742    return 0;
743  return -1;
744}
745
746static inline bool HasBranchWeights(const Instruction* I) {
747  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
748  if (ProfMD && ProfMD->getOperand(0))
749    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
750      return MDS->getString().equals("branch_weights");
751
752  return false;
753}
754
755/// Tries to get a branch weight for the given instruction, returns NULL if it
756/// can't. Pos starts at 0.
757static ConstantInt* GetWeight(Instruction* I, int Pos) {
758  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
759  if (ProfMD && ProfMD->getOperand(0)) {
760    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) {
761      if (MDS->getString().equals("branch_weights")) {
762        assert(ProfMD->getNumOperands() >= 3);
763        return dyn_cast<ConstantInt>(ProfMD->getOperand(1 + Pos));
764      }
765    }
766  }
767
768  return 0;
769}
770
771/// Scale the given weights based on the successor TI's metadata. Scaling is
772/// done by multiplying every weight by the sum of the successor's weights.
773static void ScaleWeights(Instruction* STI, MutableArrayRef<uint64_t> Weights) {
774  // Sum the successor's weights
775  assert(HasBranchWeights(STI));
776  unsigned Scale = 0;
777  MDNode* ProfMD = STI->getMetadata(LLVMContext::MD_prof);
778  for (unsigned i = 1; i < ProfMD->getNumOperands(); ++i) {
779    ConstantInt* CI = dyn_cast<ConstantInt>(ProfMD->getOperand(i));
780    assert(CI);
781    Scale += CI->getValue().getZExtValue();
782  }
783
784  // Skip default, as it's replaced during the folding
785  for (unsigned i = 1; i < Weights.size(); ++i) {
786    Weights[i] *= Scale;
787  }
788}
789
790/// Sees if any of the weights are too big for a uint32_t, and halves all the
791/// weights if any are.
792static void FitWeights(MutableArrayRef<uint64_t> Weights) {
793  bool Halve = false;
794  for (unsigned i = 0; i < Weights.size(); ++i)
795    if (Weights[i] > UINT_MAX) {
796      Halve = true;
797      break;
798    }
799
800  if (! Halve)
801    return;
802
803  for (unsigned i = 0; i < Weights.size(); ++i)
804    Weights[i] /= 2;
805}
806
807/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
808/// equality comparison instruction (either a switch or a branch on "X == c").
809/// See if any of the predecessors of the terminator block are value comparisons
810/// on the same value.  If so, and if safe to do so, fold them together.
811bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
812                                                         IRBuilder<> &Builder) {
813  BasicBlock *BB = TI->getParent();
814  Value *CV = isValueEqualityComparison(TI);  // CondVal
815  assert(CV && "Not a comparison?");
816  bool Changed = false;
817
818  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
819  while (!Preds.empty()) {
820    BasicBlock *Pred = Preds.pop_back_val();
821
822    // See if the predecessor is a comparison with the same value.
823    TerminatorInst *PTI = Pred->getTerminator();
824    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
825
826    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
827      // Figure out which 'cases' to copy from SI to PSI.
828      std::vector<ValueEqualityComparisonCase> BBCases;
829      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
830
831      std::vector<ValueEqualityComparisonCase> PredCases;
832      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
833
834      // Based on whether the default edge from PTI goes to BB or not, fill in
835      // PredCases and PredDefault with the new switch cases we would like to
836      // build.
837      SmallVector<BasicBlock*, 8> NewSuccessors;
838
839      // Update the branch weight metadata along the way
840      SmallVector<uint64_t, 8> Weights;
841      uint64_t PredDefaultWeight = 0;
842      bool PredHasWeights = HasBranchWeights(PTI);
843      bool SuccHasWeights = HasBranchWeights(TI);
844
845      if (PredHasWeights) {
846        MDNode* MD = PTI->getMetadata(LLVMContext::MD_prof);
847        assert(MD);
848        for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
849          ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
850          assert(CI);
851          Weights.push_back(CI->getValue().getZExtValue());
852        }
853
854        // If the predecessor is a conditional eq, then swap the default weight
855        // to be the first entry.
856        if (BranchInst* BI = dyn_cast<BranchInst>(PTI)) {
857          assert(Weights.size() == 2);
858          ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
859
860          if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
861            std::swap(Weights.front(), Weights.back());
862          }
863        }
864
865        PredDefaultWeight = Weights.front();
866      } else if (SuccHasWeights) {
867        // If there are no predecessor weights but there are successor weights,
868        // populate Weights with 1, which will later be scaled to the sum of
869        // successor's weights
870        Weights.assign(1 + PredCases.size(), 1);
871        PredDefaultWeight = 1;
872      }
873
874      uint64_t SuccDefaultWeight = 0;
875      if (SuccHasWeights) {
876        int Index = 0;
877        if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
878          ICmpInst* ICI = dyn_cast<ICmpInst>(BI->getCondition());
879          assert(ICI);
880
881          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
882            Index = 1;
883        }
884
885        SuccDefaultWeight = GetWeight(TI, Index)->getValue().getZExtValue();
886      }
887
888      if (PredDefault == BB) {
889        // If this is the default destination from PTI, only the edges in TI
890        // that don't occur in PTI, or that branch to BB will be activated.
891        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
892        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
893          if (PredCases[i].Dest != BB)
894            PTIHandled.insert(PredCases[i].Value);
895          else {
896            // The default destination is BB, we don't need explicit targets.
897            std::swap(PredCases[i], PredCases.back());
898
899            if (PredHasWeights) {
900              std::swap(Weights[i+1], Weights.back());
901              Weights.pop_back();
902            }
903
904            PredCases.pop_back();
905            --i; --e;
906          }
907
908        // Reconstruct the new switch statement we will be building.
909        if (PredDefault != BBDefault) {
910          PredDefault->removePredecessor(Pred);
911          PredDefault = BBDefault;
912          NewSuccessors.push_back(BBDefault);
913        }
914
915        if (SuccHasWeights) {
916          ScaleWeights(TI, Weights);
917          Weights.front() *= SuccDefaultWeight;
918        } else if (PredHasWeights) {
919          Weights.front() /= (1 + BBCases.size());
920        }
921
922        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
923          if (!PTIHandled.count(BBCases[i].Value) &&
924              BBCases[i].Dest != BBDefault) {
925            PredCases.push_back(BBCases[i]);
926            NewSuccessors.push_back(BBCases[i].Dest);
927            if (SuccHasWeights) {
928              Weights.push_back(PredDefaultWeight *
929                                GetWeight(TI, i)->getValue().getZExtValue());
930            } else if (PredHasWeights) {
931              // Split the old default's weight amongst the children
932              assert(PredDefaultWeight != 0);
933              Weights.push_back(PredDefaultWeight / (1 + BBCases.size()));
934            }
935          }
936
937      } else {
938        // FIXME: preserve branch weight metadata, similarly to the 'then'
939        // above. For now, drop it.
940        PredHasWeights = false;
941        SuccHasWeights = false;
942
943        // If this is not the default destination from PSI, only the edges
944        // in SI that occur in PSI with a destination of BB will be
945        // activated.
946        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
947        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
948          if (PredCases[i].Dest == BB) {
949            PTIHandled.insert(PredCases[i].Value);
950            std::swap(PredCases[i], PredCases.back());
951            PredCases.pop_back();
952            --i; --e;
953          }
954
955        // Okay, now we know which constants were sent to BB from the
956        // predecessor.  Figure out where they will all go now.
957        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
958          if (PTIHandled.count(BBCases[i].Value)) {
959            // If this is one we are capable of getting...
960            PredCases.push_back(BBCases[i]);
961            NewSuccessors.push_back(BBCases[i].Dest);
962            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
963          }
964
965        // If there are any constants vectored to BB that TI doesn't handle,
966        // they must go to the default destination of TI.
967        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
968                                    PTIHandled.begin(),
969               E = PTIHandled.end(); I != E; ++I) {
970          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
971          NewSuccessors.push_back(BBDefault);
972        }
973      }
974
975      // Okay, at this point, we know which new successor Pred will get.  Make
976      // sure we update the number of entries in the PHI nodes for these
977      // successors.
978      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
979        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
980
981      Builder.SetInsertPoint(PTI);
982      // Convert pointer to int before we switch.
983      if (CV->getType()->isPointerTy()) {
984        assert(TD && "Cannot switch on pointer without TargetData");
985        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
986                                    "magicptr");
987      }
988
989      // Now that the successors are updated, create the new Switch instruction.
990      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
991                                               PredCases.size());
992      NewSI->setDebugLoc(PTI->getDebugLoc());
993      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
994        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
995
996      if (PredHasWeights || SuccHasWeights) {
997        // Halve the weights if any of them cannot fit in an uint32_t
998        FitWeights(Weights);
999
1000        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1001
1002        NewSI->setMetadata(LLVMContext::MD_prof,
1003                           MDBuilder(BB->getContext()).
1004                           createBranchWeights(MDWeights));
1005      }
1006
1007      EraseTerminatorInstAndDCECond(PTI);
1008
1009      // Okay, last check.  If BB is still a successor of PSI, then we must
1010      // have an infinite loop case.  If so, add an infinitely looping block
1011      // to handle the case to preserve the behavior of the code.
1012      BasicBlock *InfLoopBlock = 0;
1013      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1014        if (NewSI->getSuccessor(i) == BB) {
1015          if (InfLoopBlock == 0) {
1016            // Insert it at the end of the function, because it's either code,
1017            // or it won't matter if it's hot. :)
1018            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1019                                              "infloop", BB->getParent());
1020            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1021          }
1022          NewSI->setSuccessor(i, InfLoopBlock);
1023        }
1024
1025      Changed = true;
1026    }
1027  }
1028  return Changed;
1029}
1030
1031// isSafeToHoistInvoke - If we would need to insert a select that uses the
1032// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1033// would need to do this), we can't hoist the invoke, as there is nowhere
1034// to put the select in this case.
1035static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1036                                Instruction *I1, Instruction *I2) {
1037  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1038    PHINode *PN;
1039    for (BasicBlock::iterator BBI = SI->begin();
1040         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1041      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1042      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1043      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1044        return false;
1045      }
1046    }
1047  }
1048  return true;
1049}
1050
1051/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1052/// BB2, hoist any common code in the two blocks up into the branch block.  The
1053/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1054static bool HoistThenElseCodeToIf(BranchInst *BI) {
1055  // This does very trivial matching, with limited scanning, to find identical
1056  // instructions in the two blocks.  In particular, we don't want to get into
1057  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1058  // such, we currently just scan for obviously identical instructions in an
1059  // identical order.
1060  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1061  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1062
1063  BasicBlock::iterator BB1_Itr = BB1->begin();
1064  BasicBlock::iterator BB2_Itr = BB2->begin();
1065
1066  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1067  // Skip debug info if it is not identical.
1068  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1069  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1070  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1071    while (isa<DbgInfoIntrinsic>(I1))
1072      I1 = BB1_Itr++;
1073    while (isa<DbgInfoIntrinsic>(I2))
1074      I2 = BB2_Itr++;
1075  }
1076  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1077      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1078    return false;
1079
1080  // If we get here, we can hoist at least one instruction.
1081  BasicBlock *BIParent = BI->getParent();
1082
1083  do {
1084    // If we are hoisting the terminator instruction, don't move one (making a
1085    // broken BB), instead clone it, and remove BI.
1086    if (isa<TerminatorInst>(I1))
1087      goto HoistTerminator;
1088
1089    // For a normal instruction, we just move one to right before the branch,
1090    // then replace all uses of the other with the first.  Finally, we remove
1091    // the now redundant second instruction.
1092    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1093    if (!I2->use_empty())
1094      I2->replaceAllUsesWith(I1);
1095    I1->intersectOptionalDataWith(I2);
1096    I2->eraseFromParent();
1097
1098    I1 = BB1_Itr++;
1099    I2 = BB2_Itr++;
1100    // Skip debug info if it is not identical.
1101    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1102    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1103    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1104      while (isa<DbgInfoIntrinsic>(I1))
1105        I1 = BB1_Itr++;
1106      while (isa<DbgInfoIntrinsic>(I2))
1107        I2 = BB2_Itr++;
1108    }
1109  } while (I1->isIdenticalToWhenDefined(I2));
1110
1111  return true;
1112
1113HoistTerminator:
1114  // It may not be possible to hoist an invoke.
1115  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1116    return true;
1117
1118  // Okay, it is safe to hoist the terminator.
1119  Instruction *NT = I1->clone();
1120  BIParent->getInstList().insert(BI, NT);
1121  if (!NT->getType()->isVoidTy()) {
1122    I1->replaceAllUsesWith(NT);
1123    I2->replaceAllUsesWith(NT);
1124    NT->takeName(I1);
1125  }
1126
1127  IRBuilder<true, NoFolder> Builder(NT);
1128  // Hoisting one of the terminators from our successor is a great thing.
1129  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1130  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1131  // nodes, so we insert select instruction to compute the final result.
1132  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1133  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1134    PHINode *PN;
1135    for (BasicBlock::iterator BBI = SI->begin();
1136         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1137      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1138      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1139      if (BB1V == BB2V) continue;
1140
1141      // These values do not agree.  Insert a select instruction before NT
1142      // that determines the right value.
1143      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1144      if (SI == 0)
1145        SI = cast<SelectInst>
1146          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1147                                BB1V->getName()+"."+BB2V->getName()));
1148
1149      // Make the PHI node use the select for all incoming values for BB1/BB2
1150      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1151        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1152          PN->setIncomingValue(i, SI);
1153    }
1154  }
1155
1156  // Update any PHI nodes in our new successors.
1157  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1158    AddPredecessorToBlock(*SI, BIParent, BB1);
1159
1160  EraseTerminatorInstAndDCECond(BI);
1161  return true;
1162}
1163
1164/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1165/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1166/// (for now, restricted to a single instruction that's side effect free) from
1167/// the BB1 into the branch block to speculatively execute it.
1168///
1169/// Turn
1170/// BB:
1171///     %t1 = icmp
1172///     br i1 %t1, label %BB1, label %BB2
1173/// BB1:
1174///     %t3 = add %t2, c
1175///     br label BB2
1176/// BB2:
1177/// =>
1178/// BB:
1179///     %t1 = icmp
1180///     %t4 = add %t2, c
1181///     %t3 = select i1 %t1, %t2, %t3
1182static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1183  // Only speculatively execution a single instruction (not counting the
1184  // terminator) for now.
1185  Instruction *HInst = NULL;
1186  Instruction *Term = BB1->getTerminator();
1187  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1188       BBI != BBE; ++BBI) {
1189    Instruction *I = BBI;
1190    // Skip debug info.
1191    if (isa<DbgInfoIntrinsic>(I)) continue;
1192    if (I == Term) break;
1193
1194    if (HInst)
1195      return false;
1196    HInst = I;
1197  }
1198
1199  BasicBlock *BIParent = BI->getParent();
1200
1201  // Check the instruction to be hoisted, if there is one.
1202  if (HInst) {
1203    // Don't hoist the instruction if it's unsafe or expensive.
1204    if (!isSafeToSpeculativelyExecute(HInst))
1205      return false;
1206    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1207      return false;
1208
1209    // Do not hoist the instruction if any of its operands are defined but not
1210    // used in this BB. The transformation will prevent the operand from
1211    // being sunk into the use block.
1212    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1213         i != e; ++i) {
1214      Instruction *OpI = dyn_cast<Instruction>(*i);
1215      if (OpI && OpI->getParent() == BIParent &&
1216          !OpI->mayHaveSideEffects() &&
1217          !OpI->isUsedInBasicBlock(BIParent))
1218        return false;
1219    }
1220  }
1221
1222  // Be conservative for now. FP select instruction can often be expensive.
1223  Value *BrCond = BI->getCondition();
1224  if (isa<FCmpInst>(BrCond))
1225    return false;
1226
1227  // If BB1 is actually on the false edge of the conditional branch, remember
1228  // to swap the select operands later.
1229  bool Invert = false;
1230  if (BB1 != BI->getSuccessor(0)) {
1231    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1232    Invert = true;
1233  }
1234
1235  // Collect interesting PHIs, and scan for hazards.
1236  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1237  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1238  for (BasicBlock::iterator I = BB2->begin();
1239       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1240    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1241    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1242
1243    // Skip PHIs which are trivial.
1244    if (BB1V == BIParentV)
1245      continue;
1246
1247    // Check for saftey.
1248    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1249      // An unfolded ConstantExpr could end up getting expanded into
1250      // Instructions. Don't speculate this and another instruction at
1251      // the same time.
1252      if (HInst)
1253        return false;
1254      if (!isSafeToSpeculativelyExecute(CE))
1255        return false;
1256      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1257        return false;
1258    }
1259
1260    // Ok, we may insert a select for this PHI.
1261    PHIs.insert(std::make_pair(BB1V, BIParentV));
1262  }
1263
1264  // If there are no PHIs to process, bail early. This helps ensure idempotence
1265  // as well.
1266  if (PHIs.empty())
1267    return false;
1268
1269  // If we get here, we can hoist the instruction and if-convert.
1270  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1271
1272  // Hoist the instruction.
1273  if (HInst)
1274    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1275
1276  // Insert selects and rewrite the PHI operands.
1277  IRBuilder<true, NoFolder> Builder(BI);
1278  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1279    Value *TrueV = PHIs[i].first;
1280    Value *FalseV = PHIs[i].second;
1281
1282    // Create a select whose true value is the speculatively executed value and
1283    // false value is the previously determined FalseV.
1284    SelectInst *SI;
1285    if (Invert)
1286      SI = cast<SelectInst>
1287        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1288                              FalseV->getName() + "." + TrueV->getName()));
1289    else
1290      SI = cast<SelectInst>
1291        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1292                              TrueV->getName() + "." + FalseV->getName()));
1293
1294    // Make the PHI node use the select for all incoming values for "then" and
1295    // "if" blocks.
1296    for (BasicBlock::iterator I = BB2->begin();
1297         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1298      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1299      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1300      Value *BB1V = PN->getIncomingValue(BB1I);
1301      Value *BIParentV = PN->getIncomingValue(BIParentI);
1302      if (TrueV == BB1V && FalseV == BIParentV) {
1303        PN->setIncomingValue(BB1I, SI);
1304        PN->setIncomingValue(BIParentI, SI);
1305      }
1306    }
1307  }
1308
1309  ++NumSpeculations;
1310  return true;
1311}
1312
1313/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1314/// across this block.
1315static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1316  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1317  unsigned Size = 0;
1318
1319  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1320    if (isa<DbgInfoIntrinsic>(BBI))
1321      continue;
1322    if (Size > 10) return false;  // Don't clone large BB's.
1323    ++Size;
1324
1325    // We can only support instructions that do not define values that are
1326    // live outside of the current basic block.
1327    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1328         UI != E; ++UI) {
1329      Instruction *U = cast<Instruction>(*UI);
1330      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1331    }
1332
1333    // Looks ok, continue checking.
1334  }
1335
1336  return true;
1337}
1338
1339/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1340/// that is defined in the same block as the branch and if any PHI entries are
1341/// constants, thread edges corresponding to that entry to be branches to their
1342/// ultimate destination.
1343static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1344  BasicBlock *BB = BI->getParent();
1345  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1346  // NOTE: we currently cannot transform this case if the PHI node is used
1347  // outside of the block.
1348  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1349    return false;
1350
1351  // Degenerate case of a single entry PHI.
1352  if (PN->getNumIncomingValues() == 1) {
1353    FoldSingleEntryPHINodes(PN->getParent());
1354    return true;
1355  }
1356
1357  // Now we know that this block has multiple preds and two succs.
1358  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1359
1360  // Okay, this is a simple enough basic block.  See if any phi values are
1361  // constants.
1362  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1363    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1364    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1365
1366    // Okay, we now know that all edges from PredBB should be revectored to
1367    // branch to RealDest.
1368    BasicBlock *PredBB = PN->getIncomingBlock(i);
1369    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1370
1371    if (RealDest == BB) continue;  // Skip self loops.
1372    // Skip if the predecessor's terminator is an indirect branch.
1373    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1374
1375    // The dest block might have PHI nodes, other predecessors and other
1376    // difficult cases.  Instead of being smart about this, just insert a new
1377    // block that jumps to the destination block, effectively splitting
1378    // the edge we are about to create.
1379    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1380                                            RealDest->getName()+".critedge",
1381                                            RealDest->getParent(), RealDest);
1382    BranchInst::Create(RealDest, EdgeBB);
1383
1384    // Update PHI nodes.
1385    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1386
1387    // BB may have instructions that are being threaded over.  Clone these
1388    // instructions into EdgeBB.  We know that there will be no uses of the
1389    // cloned instructions outside of EdgeBB.
1390    BasicBlock::iterator InsertPt = EdgeBB->begin();
1391    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1392    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1393      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1394        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1395        continue;
1396      }
1397      // Clone the instruction.
1398      Instruction *N = BBI->clone();
1399      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1400
1401      // Update operands due to translation.
1402      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1403           i != e; ++i) {
1404        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1405        if (PI != TranslateMap.end())
1406          *i = PI->second;
1407      }
1408
1409      // Check for trivial simplification.
1410      if (Value *V = SimplifyInstruction(N, TD)) {
1411        TranslateMap[BBI] = V;
1412        delete N;   // Instruction folded away, don't need actual inst
1413      } else {
1414        // Insert the new instruction into its new home.
1415        EdgeBB->getInstList().insert(InsertPt, N);
1416        if (!BBI->use_empty())
1417          TranslateMap[BBI] = N;
1418      }
1419    }
1420
1421    // Loop over all of the edges from PredBB to BB, changing them to branch
1422    // to EdgeBB instead.
1423    TerminatorInst *PredBBTI = PredBB->getTerminator();
1424    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1425      if (PredBBTI->getSuccessor(i) == BB) {
1426        BB->removePredecessor(PredBB);
1427        PredBBTI->setSuccessor(i, EdgeBB);
1428      }
1429
1430    // Recurse, simplifying any other constants.
1431    return FoldCondBranchOnPHI(BI, TD) | true;
1432  }
1433
1434  return false;
1435}
1436
1437/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1438/// PHI node, see if we can eliminate it.
1439static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1440  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1441  // statement", which has a very simple dominance structure.  Basically, we
1442  // are trying to find the condition that is being branched on, which
1443  // subsequently causes this merge to happen.  We really want control
1444  // dependence information for this check, but simplifycfg can't keep it up
1445  // to date, and this catches most of the cases we care about anyway.
1446  BasicBlock *BB = PN->getParent();
1447  BasicBlock *IfTrue, *IfFalse;
1448  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1449  if (!IfCond ||
1450      // Don't bother if the branch will be constant folded trivially.
1451      isa<ConstantInt>(IfCond))
1452    return false;
1453
1454  // Okay, we found that we can merge this two-entry phi node into a select.
1455  // Doing so would require us to fold *all* two entry phi nodes in this block.
1456  // At some point this becomes non-profitable (particularly if the target
1457  // doesn't support cmov's).  Only do this transformation if there are two or
1458  // fewer PHI nodes in this block.
1459  unsigned NumPhis = 0;
1460  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1461    if (NumPhis > 2)
1462      return false;
1463
1464  // Loop over the PHI's seeing if we can promote them all to select
1465  // instructions.  While we are at it, keep track of the instructions
1466  // that need to be moved to the dominating block.
1467  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1468  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1469           MaxCostVal1 = PHINodeFoldingThreshold;
1470
1471  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1472    PHINode *PN = cast<PHINode>(II++);
1473    if (Value *V = SimplifyInstruction(PN, TD)) {
1474      PN->replaceAllUsesWith(V);
1475      PN->eraseFromParent();
1476      continue;
1477    }
1478
1479    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1480                             MaxCostVal0) ||
1481        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1482                             MaxCostVal1))
1483      return false;
1484  }
1485
1486  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1487  // we ran out of PHIs then we simplified them all.
1488  PN = dyn_cast<PHINode>(BB->begin());
1489  if (PN == 0) return true;
1490
1491  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1492  // often be turned into switches and other things.
1493  if (PN->getType()->isIntegerTy(1) &&
1494      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1495       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1496       isa<BinaryOperator>(IfCond)))
1497    return false;
1498
1499  // If we all PHI nodes are promotable, check to make sure that all
1500  // instructions in the predecessor blocks can be promoted as well.  If
1501  // not, we won't be able to get rid of the control flow, so it's not
1502  // worth promoting to select instructions.
1503  BasicBlock *DomBlock = 0;
1504  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1505  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1506  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1507    IfBlock1 = 0;
1508  } else {
1509    DomBlock = *pred_begin(IfBlock1);
1510    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1511      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1512        // This is not an aggressive instruction that we can promote.
1513        // Because of this, we won't be able to get rid of the control
1514        // flow, so the xform is not worth it.
1515        return false;
1516      }
1517  }
1518
1519  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1520    IfBlock2 = 0;
1521  } else {
1522    DomBlock = *pred_begin(IfBlock2);
1523    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1524      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1525        // This is not an aggressive instruction that we can promote.
1526        // Because of this, we won't be able to get rid of the control
1527        // flow, so the xform is not worth it.
1528        return false;
1529      }
1530  }
1531
1532  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1533               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1534
1535  // If we can still promote the PHI nodes after this gauntlet of tests,
1536  // do all of the PHI's now.
1537  Instruction *InsertPt = DomBlock->getTerminator();
1538  IRBuilder<true, NoFolder> Builder(InsertPt);
1539
1540  // Move all 'aggressive' instructions, which are defined in the
1541  // conditional parts of the if's up to the dominating block.
1542  if (IfBlock1)
1543    DomBlock->getInstList().splice(InsertPt,
1544                                   IfBlock1->getInstList(), IfBlock1->begin(),
1545                                   IfBlock1->getTerminator());
1546  if (IfBlock2)
1547    DomBlock->getInstList().splice(InsertPt,
1548                                   IfBlock2->getInstList(), IfBlock2->begin(),
1549                                   IfBlock2->getTerminator());
1550
1551  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1552    // Change the PHI node into a select instruction.
1553    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1554    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1555
1556    SelectInst *NV =
1557      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1558    PN->replaceAllUsesWith(NV);
1559    NV->takeName(PN);
1560    PN->eraseFromParent();
1561  }
1562
1563  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1564  // has been flattened.  Change DomBlock to jump directly to our new block to
1565  // avoid other simplifycfg's kicking in on the diamond.
1566  TerminatorInst *OldTI = DomBlock->getTerminator();
1567  Builder.SetInsertPoint(OldTI);
1568  Builder.CreateBr(BB);
1569  OldTI->eraseFromParent();
1570  return true;
1571}
1572
1573/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1574/// to two returning blocks, try to merge them together into one return,
1575/// introducing a select if the return values disagree.
1576static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1577                                           IRBuilder<> &Builder) {
1578  assert(BI->isConditional() && "Must be a conditional branch");
1579  BasicBlock *TrueSucc = BI->getSuccessor(0);
1580  BasicBlock *FalseSucc = BI->getSuccessor(1);
1581  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1582  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1583
1584  // Check to ensure both blocks are empty (just a return) or optionally empty
1585  // with PHI nodes.  If there are other instructions, merging would cause extra
1586  // computation on one path or the other.
1587  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1588    return false;
1589  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1590    return false;
1591
1592  Builder.SetInsertPoint(BI);
1593  // Okay, we found a branch that is going to two return nodes.  If
1594  // there is no return value for this function, just change the
1595  // branch into a return.
1596  if (FalseRet->getNumOperands() == 0) {
1597    TrueSucc->removePredecessor(BI->getParent());
1598    FalseSucc->removePredecessor(BI->getParent());
1599    Builder.CreateRetVoid();
1600    EraseTerminatorInstAndDCECond(BI);
1601    return true;
1602  }
1603
1604  // Otherwise, figure out what the true and false return values are
1605  // so we can insert a new select instruction.
1606  Value *TrueValue = TrueRet->getReturnValue();
1607  Value *FalseValue = FalseRet->getReturnValue();
1608
1609  // Unwrap any PHI nodes in the return blocks.
1610  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1611    if (TVPN->getParent() == TrueSucc)
1612      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1613  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1614    if (FVPN->getParent() == FalseSucc)
1615      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1616
1617  // In order for this transformation to be safe, we must be able to
1618  // unconditionally execute both operands to the return.  This is
1619  // normally the case, but we could have a potentially-trapping
1620  // constant expression that prevents this transformation from being
1621  // safe.
1622  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1623    if (TCV->canTrap())
1624      return false;
1625  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1626    if (FCV->canTrap())
1627      return false;
1628
1629  // Okay, we collected all the mapped values and checked them for sanity, and
1630  // defined to really do this transformation.  First, update the CFG.
1631  TrueSucc->removePredecessor(BI->getParent());
1632  FalseSucc->removePredecessor(BI->getParent());
1633
1634  // Insert select instructions where needed.
1635  Value *BrCond = BI->getCondition();
1636  if (TrueValue) {
1637    // Insert a select if the results differ.
1638    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1639    } else if (isa<UndefValue>(TrueValue)) {
1640      TrueValue = FalseValue;
1641    } else {
1642      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1643                                       FalseValue, "retval");
1644    }
1645  }
1646
1647  Value *RI = !TrueValue ?
1648    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1649
1650  (void) RI;
1651
1652  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1653               << "\n  " << *BI << "NewRet = " << *RI
1654               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1655
1656  EraseTerminatorInstAndDCECond(BI);
1657
1658  return true;
1659}
1660
1661/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1662/// probabilities of the branch taking each edge. Fills in the two APInt
1663/// parameters and return true, or returns false if no or invalid metadata was
1664/// found.
1665static bool ExtractBranchMetadata(BranchInst *BI,
1666                                  APInt &ProbTrue, APInt &ProbFalse) {
1667  assert(BI->isConditional() &&
1668         "Looking for probabilities on unconditional branch?");
1669  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1670  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1671  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1672  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1673  if (!CITrue || !CIFalse) return false;
1674  ProbTrue = CITrue->getValue();
1675  ProbFalse = CIFalse->getValue();
1676  assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
1677         "Branch probability metadata must be 32-bit integers");
1678  return true;
1679}
1680
1681/// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
1682/// the event of overflow, logically-shifts all four inputs right until the
1683/// multiply fits.
1684static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
1685                                      unsigned &BitsLost) {
1686  BitsLost = 0;
1687  bool Overflow = false;
1688  APInt Result = A.umul_ov(B, Overflow);
1689  if (Overflow) {
1690    APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
1691    do {
1692      B = B.lshr(1);
1693      ++BitsLost;
1694    } while (B.ugt(MaxB));
1695    A = A.lshr(BitsLost);
1696    C = C.lshr(BitsLost);
1697    D = D.lshr(BitsLost);
1698    Result = A * B;
1699  }
1700  return Result;
1701}
1702
1703/// checkCSEInPredecessor - Return true if the given instruction is available
1704/// in its predecessor block. If yes, the instruction will be removed.
1705///
1706static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1707  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1708    return false;
1709  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1710    Instruction *PBI = &*I;
1711    // Check whether Inst and PBI generate the same value.
1712    if (Inst->isIdenticalTo(PBI)) {
1713      Inst->replaceAllUsesWith(PBI);
1714      Inst->eraseFromParent();
1715      return true;
1716    }
1717  }
1718  return false;
1719}
1720
1721/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1722/// predecessor branches to us and one of our successors, fold the block into
1723/// the predecessor and use logical operations to pick the right destination.
1724bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1725  BasicBlock *BB = BI->getParent();
1726
1727  Instruction *Cond = 0;
1728  if (BI->isConditional())
1729    Cond = dyn_cast<Instruction>(BI->getCondition());
1730  else {
1731    // For unconditional branch, check for a simple CFG pattern, where
1732    // BB has a single predecessor and BB's successor is also its predecessor's
1733    // successor. If such pattern exisits, check for CSE between BB and its
1734    // predecessor.
1735    if (BasicBlock *PB = BB->getSinglePredecessor())
1736      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1737        if (PBI->isConditional() &&
1738            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1739             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1740          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1741               I != E; ) {
1742            Instruction *Curr = I++;
1743            if (isa<CmpInst>(Curr)) {
1744              Cond = Curr;
1745              break;
1746            }
1747            // Quit if we can't remove this instruction.
1748            if (!checkCSEInPredecessor(Curr, PB))
1749              return false;
1750          }
1751        }
1752
1753    if (Cond == 0)
1754      return false;
1755  }
1756
1757  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1758    Cond->getParent() != BB || !Cond->hasOneUse())
1759  return false;
1760
1761  // Only allow this if the condition is a simple instruction that can be
1762  // executed unconditionally.  It must be in the same block as the branch, and
1763  // must be at the front of the block.
1764  BasicBlock::iterator FrontIt = BB->front();
1765
1766  // Ignore dbg intrinsics.
1767  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1768
1769  // Allow a single instruction to be hoisted in addition to the compare
1770  // that feeds the branch.  We later ensure that any values that _it_ uses
1771  // were also live in the predecessor, so that we don't unnecessarily create
1772  // register pressure or inhibit out-of-order execution.
1773  Instruction *BonusInst = 0;
1774  if (&*FrontIt != Cond &&
1775      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1776      isSafeToSpeculativelyExecute(FrontIt)) {
1777    BonusInst = &*FrontIt;
1778    ++FrontIt;
1779
1780    // Ignore dbg intrinsics.
1781    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1782  }
1783
1784  // Only a single bonus inst is allowed.
1785  if (&*FrontIt != Cond)
1786    return false;
1787
1788  // Make sure the instruction after the condition is the cond branch.
1789  BasicBlock::iterator CondIt = Cond; ++CondIt;
1790
1791  // Ingore dbg intrinsics.
1792  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1793
1794  if (&*CondIt != BI)
1795    return false;
1796
1797  // Cond is known to be a compare or binary operator.  Check to make sure that
1798  // neither operand is a potentially-trapping constant expression.
1799  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1800    if (CE->canTrap())
1801      return false;
1802  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1803    if (CE->canTrap())
1804      return false;
1805
1806  // Finally, don't infinitely unroll conditional loops.
1807  BasicBlock *TrueDest  = BI->getSuccessor(0);
1808  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1809  if (TrueDest == BB || FalseDest == BB)
1810    return false;
1811
1812  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1813    BasicBlock *PredBlock = *PI;
1814    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1815
1816    // Check that we have two conditional branches.  If there is a PHI node in
1817    // the common successor, verify that the same value flows in from both
1818    // blocks.
1819    SmallVector<PHINode*, 4> PHIs;
1820    if (PBI == 0 || PBI->isUnconditional() ||
1821        (BI->isConditional() &&
1822         !SafeToMergeTerminators(BI, PBI)) ||
1823        (!BI->isConditional() &&
1824         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1825      continue;
1826
1827    // Determine if the two branches share a common destination.
1828    Instruction::BinaryOps Opc;
1829    bool InvertPredCond = false;
1830
1831    if (BI->isConditional()) {
1832      if (PBI->getSuccessor(0) == TrueDest)
1833        Opc = Instruction::Or;
1834      else if (PBI->getSuccessor(1) == FalseDest)
1835        Opc = Instruction::And;
1836      else if (PBI->getSuccessor(0) == FalseDest)
1837        Opc = Instruction::And, InvertPredCond = true;
1838      else if (PBI->getSuccessor(1) == TrueDest)
1839        Opc = Instruction::Or, InvertPredCond = true;
1840      else
1841        continue;
1842    } else {
1843      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1844        continue;
1845    }
1846
1847    // Ensure that any values used in the bonus instruction are also used
1848    // by the terminator of the predecessor.  This means that those values
1849    // must already have been resolved, so we won't be inhibiting the
1850    // out-of-order core by speculating them earlier.
1851    if (BonusInst) {
1852      // Collect the values used by the bonus inst
1853      SmallPtrSet<Value*, 4> UsedValues;
1854      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1855           OE = BonusInst->op_end(); OI != OE; ++OI) {
1856        Value *V = *OI;
1857        if (!isa<Constant>(V))
1858          UsedValues.insert(V);
1859      }
1860
1861      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1862      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1863
1864      // Walk up to four levels back up the use-def chain of the predecessor's
1865      // terminator to see if all those values were used.  The choice of four
1866      // levels is arbitrary, to provide a compile-time-cost bound.
1867      while (!Worklist.empty()) {
1868        std::pair<Value*, unsigned> Pair = Worklist.back();
1869        Worklist.pop_back();
1870
1871        if (Pair.second >= 4) continue;
1872        UsedValues.erase(Pair.first);
1873        if (UsedValues.empty()) break;
1874
1875        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1876          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1877               OI != OE; ++OI)
1878            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1879        }
1880      }
1881
1882      if (!UsedValues.empty()) return false;
1883    }
1884
1885    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1886    IRBuilder<> Builder(PBI);
1887
1888    // If we need to invert the condition in the pred block to match, do so now.
1889    if (InvertPredCond) {
1890      Value *NewCond = PBI->getCondition();
1891
1892      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1893        CmpInst *CI = cast<CmpInst>(NewCond);
1894        CI->setPredicate(CI->getInversePredicate());
1895      } else {
1896        NewCond = Builder.CreateNot(NewCond,
1897                                    PBI->getCondition()->getName()+".not");
1898      }
1899
1900      PBI->setCondition(NewCond);
1901      PBI->swapSuccessors();
1902    }
1903
1904    // If we have a bonus inst, clone it into the predecessor block.
1905    Instruction *NewBonus = 0;
1906    if (BonusInst) {
1907      NewBonus = BonusInst->clone();
1908      PredBlock->getInstList().insert(PBI, NewBonus);
1909      NewBonus->takeName(BonusInst);
1910      BonusInst->setName(BonusInst->getName()+".old");
1911    }
1912
1913    // Clone Cond into the predecessor basic block, and or/and the
1914    // two conditions together.
1915    Instruction *New = Cond->clone();
1916    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1917    PredBlock->getInstList().insert(PBI, New);
1918    New->takeName(Cond);
1919    Cond->setName(New->getName()+".old");
1920
1921    if (BI->isConditional()) {
1922      Instruction *NewCond =
1923        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1924                                            New, "or.cond"));
1925      PBI->setCondition(NewCond);
1926
1927      if (PBI->getSuccessor(0) == BB) {
1928        AddPredecessorToBlock(TrueDest, PredBlock, BB);
1929        PBI->setSuccessor(0, TrueDest);
1930      }
1931      if (PBI->getSuccessor(1) == BB) {
1932        AddPredecessorToBlock(FalseDest, PredBlock, BB);
1933        PBI->setSuccessor(1, FalseDest);
1934      }
1935    } else {
1936      // Update PHI nodes in the common successors.
1937      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1938        ConstantInt *PBI_C = cast<ConstantInt>(
1939          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
1940        assert(PBI_C->getType()->isIntegerTy(1));
1941        Instruction *MergedCond = 0;
1942        if (PBI->getSuccessor(0) == TrueDest) {
1943          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
1944          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
1945          //       is false: !PBI_Cond and BI_Value
1946          Instruction *NotCond =
1947            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1948                                "not.cond"));
1949          MergedCond =
1950            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1951                                NotCond, New,
1952                                "and.cond"));
1953          if (PBI_C->isOne())
1954            MergedCond =
1955              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1956                                  PBI->getCondition(), MergedCond,
1957                                  "or.cond"));
1958        } else {
1959          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
1960          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
1961          //       is false: PBI_Cond and BI_Value
1962          MergedCond =
1963            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
1964                                PBI->getCondition(), New,
1965                                "and.cond"));
1966          if (PBI_C->isOne()) {
1967            Instruction *NotCond =
1968              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
1969                                  "not.cond"));
1970            MergedCond =
1971              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
1972                                  NotCond, MergedCond,
1973                                  "or.cond"));
1974          }
1975        }
1976        // Update PHI Node.
1977        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
1978                                  MergedCond);
1979      }
1980      // Change PBI from Conditional to Unconditional.
1981      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
1982      EraseTerminatorInstAndDCECond(PBI);
1983      PBI = New_PBI;
1984    }
1985
1986    // TODO: If BB is reachable from all paths through PredBlock, then we
1987    // could replace PBI's branch probabilities with BI's.
1988
1989    // Merge probability data into PredBlock's branch.
1990    APInt A, B, C, D;
1991    if (PBI->isConditional() && BI->isConditional() &&
1992        ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
1993      // Given IR which does:
1994      //   bbA:
1995      //     br i1 %x, label %bbB, label %bbC
1996      //   bbB:
1997      //     br i1 %y, label %bbD, label %bbC
1998      // Let's call the probability that we take the edge from %bbA to %bbB
1999      // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
2000      // %bbC probability 'd'.
2001      //
2002      // We transform the IR into:
2003      //   bbA:
2004      //     br i1 %z, label %bbD, label %bbC
2005      // where the probability of going to %bbD is (a*c) and going to bbC is
2006      // (b+a*d).
2007      //
2008      // Probabilities aren't stored as ratios directly. Using branch weights,
2009      // we get:
2010      // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
2011
2012      // In the event of overflow, we want to drop the LSB of the input
2013      // probabilities.
2014      unsigned BitsLost;
2015
2016      // Ignore overflow result on ProbTrue.
2017      APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
2018
2019      APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
2020      if (BitsLost) {
2021        ProbTrue = ProbTrue.lshr(BitsLost*2);
2022      }
2023
2024      APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
2025      if (BitsLost) {
2026        ProbTrue = ProbTrue.lshr(BitsLost*2);
2027        Tmp1 = Tmp1.lshr(BitsLost*2);
2028      }
2029
2030      APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
2031      if (BitsLost) {
2032        ProbTrue = ProbTrue.lshr(BitsLost*2);
2033        Tmp1 = Tmp1.lshr(BitsLost*2);
2034        Tmp2 = Tmp2.lshr(BitsLost*2);
2035      }
2036
2037      bool Overflow1 = false, Overflow2 = false;
2038      APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
2039      APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
2040
2041      if (Overflow1 || Overflow2) {
2042        ProbTrue = ProbTrue.lshr(1);
2043        Tmp1 = Tmp1.lshr(1);
2044        Tmp2 = Tmp2.lshr(1);
2045        Tmp3 = Tmp3.lshr(1);
2046        Tmp4 = Tmp2 + Tmp3;
2047        ProbFalse = Tmp4 + Tmp1;
2048      }
2049
2050      // The sum of branch weights must fit in 32-bits.
2051      if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
2052        ProbTrue = ProbTrue.lshr(1);
2053        ProbFalse = ProbFalse.lshr(1);
2054      }
2055
2056      if (ProbTrue != ProbFalse) {
2057        // Normalize the result.
2058        APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
2059        ProbTrue = ProbTrue.udiv(GCD);
2060        ProbFalse = ProbFalse.udiv(GCD);
2061
2062        MDBuilder MDB(BI->getContext());
2063        MDNode *N = MDB.createBranchWeights(ProbTrue.getZExtValue(),
2064                                            ProbFalse.getZExtValue());
2065        PBI->setMetadata(LLVMContext::MD_prof, N);
2066      } else {
2067        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2068      }
2069    } else {
2070      PBI->setMetadata(LLVMContext::MD_prof, NULL);
2071    }
2072
2073    // Copy any debug value intrinsics into the end of PredBlock.
2074    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2075      if (isa<DbgInfoIntrinsic>(*I))
2076        I->clone()->insertBefore(PBI);
2077
2078    return true;
2079  }
2080  return false;
2081}
2082
2083/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2084/// predecessor of another block, this function tries to simplify it.  We know
2085/// that PBI and BI are both conditional branches, and BI is in one of the
2086/// successor blocks of PBI - PBI branches to BI.
2087static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2088  assert(PBI->isConditional() && BI->isConditional());
2089  BasicBlock *BB = BI->getParent();
2090
2091  // If this block ends with a branch instruction, and if there is a
2092  // predecessor that ends on a branch of the same condition, make
2093  // this conditional branch redundant.
2094  if (PBI->getCondition() == BI->getCondition() &&
2095      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2096    // Okay, the outcome of this conditional branch is statically
2097    // knowable.  If this block had a single pred, handle specially.
2098    if (BB->getSinglePredecessor()) {
2099      // Turn this into a branch on constant.
2100      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2101      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2102                                        CondIsTrue));
2103      return true;  // Nuke the branch on constant.
2104    }
2105
2106    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2107    // in the constant and simplify the block result.  Subsequent passes of
2108    // simplifycfg will thread the block.
2109    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2110      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2111      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2112                                       std::distance(PB, PE),
2113                                       BI->getCondition()->getName() + ".pr",
2114                                       BB->begin());
2115      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2116      // predecessor, compute the PHI'd conditional value for all of the preds.
2117      // Any predecessor where the condition is not computable we keep symbolic.
2118      for (pred_iterator PI = PB; PI != PE; ++PI) {
2119        BasicBlock *P = *PI;
2120        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2121            PBI != BI && PBI->isConditional() &&
2122            PBI->getCondition() == BI->getCondition() &&
2123            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2124          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2125          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2126                                              CondIsTrue), P);
2127        } else {
2128          NewPN->addIncoming(BI->getCondition(), P);
2129        }
2130      }
2131
2132      BI->setCondition(NewPN);
2133      return true;
2134    }
2135  }
2136
2137  // If this is a conditional branch in an empty block, and if any
2138  // predecessors is a conditional branch to one of our destinations,
2139  // fold the conditions into logical ops and one cond br.
2140  BasicBlock::iterator BBI = BB->begin();
2141  // Ignore dbg intrinsics.
2142  while (isa<DbgInfoIntrinsic>(BBI))
2143    ++BBI;
2144  if (&*BBI != BI)
2145    return false;
2146
2147
2148  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2149    if (CE->canTrap())
2150      return false;
2151
2152  int PBIOp, BIOp;
2153  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2154    PBIOp = BIOp = 0;
2155  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2156    PBIOp = 0, BIOp = 1;
2157  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2158    PBIOp = 1, BIOp = 0;
2159  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2160    PBIOp = BIOp = 1;
2161  else
2162    return false;
2163
2164  // Check to make sure that the other destination of this branch
2165  // isn't BB itself.  If so, this is an infinite loop that will
2166  // keep getting unwound.
2167  if (PBI->getSuccessor(PBIOp) == BB)
2168    return false;
2169
2170  // Do not perform this transformation if it would require
2171  // insertion of a large number of select instructions. For targets
2172  // without predication/cmovs, this is a big pessimization.
2173  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2174
2175  unsigned NumPhis = 0;
2176  for (BasicBlock::iterator II = CommonDest->begin();
2177       isa<PHINode>(II); ++II, ++NumPhis)
2178    if (NumPhis > 2) // Disable this xform.
2179      return false;
2180
2181  // Finally, if everything is ok, fold the branches to logical ops.
2182  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2183
2184  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2185               << "AND: " << *BI->getParent());
2186
2187
2188  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2189  // branch in it, where one edge (OtherDest) goes back to itself but the other
2190  // exits.  We don't *know* that the program avoids the infinite loop
2191  // (even though that seems likely).  If we do this xform naively, we'll end up
2192  // recursively unpeeling the loop.  Since we know that (after the xform is
2193  // done) that the block *is* infinite if reached, we just make it an obviously
2194  // infinite loop with no cond branch.
2195  if (OtherDest == BB) {
2196    // Insert it at the end of the function, because it's either code,
2197    // or it won't matter if it's hot. :)
2198    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2199                                                  "infloop", BB->getParent());
2200    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2201    OtherDest = InfLoopBlock;
2202  }
2203
2204  DEBUG(dbgs() << *PBI->getParent()->getParent());
2205
2206  // BI may have other predecessors.  Because of this, we leave
2207  // it alone, but modify PBI.
2208
2209  // Make sure we get to CommonDest on True&True directions.
2210  Value *PBICond = PBI->getCondition();
2211  IRBuilder<true, NoFolder> Builder(PBI);
2212  if (PBIOp)
2213    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2214
2215  Value *BICond = BI->getCondition();
2216  if (BIOp)
2217    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2218
2219  // Merge the conditions.
2220  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2221
2222  // Modify PBI to branch on the new condition to the new dests.
2223  PBI->setCondition(Cond);
2224  PBI->setSuccessor(0, CommonDest);
2225  PBI->setSuccessor(1, OtherDest);
2226
2227  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2228  // block that are identical to the entries for BI's block.
2229  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2230
2231  // We know that the CommonDest already had an edge from PBI to
2232  // it.  If it has PHIs though, the PHIs may have different
2233  // entries for BB and PBI's BB.  If so, insert a select to make
2234  // them agree.
2235  PHINode *PN;
2236  for (BasicBlock::iterator II = CommonDest->begin();
2237       (PN = dyn_cast<PHINode>(II)); ++II) {
2238    Value *BIV = PN->getIncomingValueForBlock(BB);
2239    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2240    Value *PBIV = PN->getIncomingValue(PBBIdx);
2241    if (BIV != PBIV) {
2242      // Insert a select in PBI to pick the right value.
2243      Value *NV = cast<SelectInst>
2244        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2245      PN->setIncomingValue(PBBIdx, NV);
2246    }
2247  }
2248
2249  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2250  DEBUG(dbgs() << *PBI->getParent()->getParent());
2251
2252  // This basic block is probably dead.  We know it has at least
2253  // one fewer predecessor.
2254  return true;
2255}
2256
2257// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2258// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2259// Takes care of updating the successors and removing the old terminator.
2260// Also makes sure not to introduce new successors by assuming that edges to
2261// non-successor TrueBBs and FalseBBs aren't reachable.
2262static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2263                                       BasicBlock *TrueBB, BasicBlock *FalseBB){
2264  // Remove any superfluous successor edges from the CFG.
2265  // First, figure out which successors to preserve.
2266  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2267  // successor.
2268  BasicBlock *KeepEdge1 = TrueBB;
2269  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2270
2271  // Then remove the rest.
2272  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2273    BasicBlock *Succ = OldTerm->getSuccessor(I);
2274    // Make sure only to keep exactly one copy of each edge.
2275    if (Succ == KeepEdge1)
2276      KeepEdge1 = 0;
2277    else if (Succ == KeepEdge2)
2278      KeepEdge2 = 0;
2279    else
2280      Succ->removePredecessor(OldTerm->getParent());
2281  }
2282
2283  IRBuilder<> Builder(OldTerm);
2284  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2285
2286  // Insert an appropriate new terminator.
2287  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2288    if (TrueBB == FalseBB)
2289      // We were only looking for one successor, and it was present.
2290      // Create an unconditional branch to it.
2291      Builder.CreateBr(TrueBB);
2292    else
2293      // We found both of the successors we were looking for.
2294      // Create a conditional branch sharing the condition of the select.
2295      Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2296  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2297    // Neither of the selected blocks were successors, so this
2298    // terminator must be unreachable.
2299    new UnreachableInst(OldTerm->getContext(), OldTerm);
2300  } else {
2301    // One of the selected values was a successor, but the other wasn't.
2302    // Insert an unconditional branch to the one that was found;
2303    // the edge to the one that wasn't must be unreachable.
2304    if (KeepEdge1 == 0)
2305      // Only TrueBB was found.
2306      Builder.CreateBr(TrueBB);
2307    else
2308      // Only FalseBB was found.
2309      Builder.CreateBr(FalseBB);
2310  }
2311
2312  EraseTerminatorInstAndDCECond(OldTerm);
2313  return true;
2314}
2315
2316// SimplifySwitchOnSelect - Replaces
2317//   (switch (select cond, X, Y)) on constant X, Y
2318// with a branch - conditional if X and Y lead to distinct BBs,
2319// unconditional otherwise.
2320static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2321  // Check for constant integer values in the select.
2322  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2323  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2324  if (!TrueVal || !FalseVal)
2325    return false;
2326
2327  // Find the relevant condition and destinations.
2328  Value *Condition = Select->getCondition();
2329  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2330  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2331
2332  // Perform the actual simplification.
2333  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
2334}
2335
2336// SimplifyIndirectBrOnSelect - Replaces
2337//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2338//                             blockaddress(@fn, BlockB)))
2339// with
2340//   (br cond, BlockA, BlockB).
2341static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2342  // Check that both operands of the select are block addresses.
2343  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2344  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2345  if (!TBA || !FBA)
2346    return false;
2347
2348  // Extract the actual blocks.
2349  BasicBlock *TrueBB = TBA->getBasicBlock();
2350  BasicBlock *FalseBB = FBA->getBasicBlock();
2351
2352  // Perform the actual simplification.
2353  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
2354}
2355
2356/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2357/// instruction (a seteq/setne with a constant) as the only instruction in a
2358/// block that ends with an uncond branch.  We are looking for a very specific
2359/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2360/// this case, we merge the first two "or's of icmp" into a switch, but then the
2361/// default value goes to an uncond block with a seteq in it, we get something
2362/// like:
2363///
2364///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2365/// DEFAULT:
2366///   %tmp = icmp eq i8 %A, 92
2367///   br label %end
2368/// end:
2369///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2370///
2371/// We prefer to split the edge to 'end' so that there is a true/false entry to
2372/// the PHI, merging the third icmp into the switch.
2373static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2374                                                  const TargetData *TD,
2375                                                  IRBuilder<> &Builder) {
2376  BasicBlock *BB = ICI->getParent();
2377
2378  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2379  // complex.
2380  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2381
2382  Value *V = ICI->getOperand(0);
2383  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2384
2385  // The pattern we're looking for is where our only predecessor is a switch on
2386  // 'V' and this block is the default case for the switch.  In this case we can
2387  // fold the compared value into the switch to simplify things.
2388  BasicBlock *Pred = BB->getSinglePredecessor();
2389  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2390
2391  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2392  if (SI->getCondition() != V)
2393    return false;
2394
2395  // If BB is reachable on a non-default case, then we simply know the value of
2396  // V in this block.  Substitute it and constant fold the icmp instruction
2397  // away.
2398  if (SI->getDefaultDest() != BB) {
2399    ConstantInt *VVal = SI->findCaseDest(BB);
2400    assert(VVal && "Should have a unique destination value");
2401    ICI->setOperand(0, VVal);
2402
2403    if (Value *V = SimplifyInstruction(ICI, TD)) {
2404      ICI->replaceAllUsesWith(V);
2405      ICI->eraseFromParent();
2406    }
2407    // BB is now empty, so it is likely to simplify away.
2408    return SimplifyCFG(BB) | true;
2409  }
2410
2411  // Ok, the block is reachable from the default dest.  If the constant we're
2412  // comparing exists in one of the other edges, then we can constant fold ICI
2413  // and zap it.
2414  if (SI->findCaseValue(Cst) != SI->case_default()) {
2415    Value *V;
2416    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2417      V = ConstantInt::getFalse(BB->getContext());
2418    else
2419      V = ConstantInt::getTrue(BB->getContext());
2420
2421    ICI->replaceAllUsesWith(V);
2422    ICI->eraseFromParent();
2423    // BB is now empty, so it is likely to simplify away.
2424    return SimplifyCFG(BB) | true;
2425  }
2426
2427  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2428  // the block.
2429  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2430  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2431  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2432      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2433    return false;
2434
2435  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2436  // true in the PHI.
2437  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2438  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2439
2440  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2441    std::swap(DefaultCst, NewCst);
2442
2443  // Replace ICI (which is used by the PHI for the default value) with true or
2444  // false depending on if it is EQ or NE.
2445  ICI->replaceAllUsesWith(DefaultCst);
2446  ICI->eraseFromParent();
2447
2448  // Okay, the switch goes to this block on a default value.  Add an edge from
2449  // the switch to the merge point on the compared value.
2450  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2451                                         BB->getParent(), BB);
2452  SI->addCase(Cst, NewBB);
2453
2454  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2455  Builder.SetInsertPoint(NewBB);
2456  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2457  Builder.CreateBr(SuccBlock);
2458  PHIUse->addIncoming(NewCst, NewBB);
2459  return true;
2460}
2461
2462/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2463/// Check to see if it is branching on an or/and chain of icmp instructions, and
2464/// fold it into a switch instruction if so.
2465static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2466                                      IRBuilder<> &Builder) {
2467  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2468  if (Cond == 0) return false;
2469
2470
2471  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2472  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2473  // 'setne's and'ed together, collect them.
2474  Value *CompVal = 0;
2475  std::vector<ConstantInt*> Values;
2476  bool TrueWhenEqual = true;
2477  Value *ExtraCase = 0;
2478  unsigned UsedICmps = 0;
2479
2480  if (Cond->getOpcode() == Instruction::Or) {
2481    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2482                                     UsedICmps);
2483  } else if (Cond->getOpcode() == Instruction::And) {
2484    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2485                                     UsedICmps);
2486    TrueWhenEqual = false;
2487  }
2488
2489  // If we didn't have a multiply compared value, fail.
2490  if (CompVal == 0) return false;
2491
2492  // Avoid turning single icmps into a switch.
2493  if (UsedICmps <= 1)
2494    return false;
2495
2496  // There might be duplicate constants in the list, which the switch
2497  // instruction can't handle, remove them now.
2498  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2499  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2500
2501  // If Extra was used, we require at least two switch values to do the
2502  // transformation.  A switch with one value is just an cond branch.
2503  if (ExtraCase && Values.size() < 2) return false;
2504
2505  // TODO: Preserve branch weight metadata, similarly to how
2506  // FoldValueComparisonIntoPredecessors preserves it.
2507
2508  // Figure out which block is which destination.
2509  BasicBlock *DefaultBB = BI->getSuccessor(1);
2510  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2511  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2512
2513  BasicBlock *BB = BI->getParent();
2514
2515  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2516               << " cases into SWITCH.  BB is:\n" << *BB);
2517
2518  // If there are any extra values that couldn't be folded into the switch
2519  // then we evaluate them with an explicit branch first.  Split the block
2520  // right before the condbr to handle it.
2521  if (ExtraCase) {
2522    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2523    // Remove the uncond branch added to the old block.
2524    TerminatorInst *OldTI = BB->getTerminator();
2525    Builder.SetInsertPoint(OldTI);
2526
2527    if (TrueWhenEqual)
2528      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2529    else
2530      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2531
2532    OldTI->eraseFromParent();
2533
2534    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2535    // for the edge we just added.
2536    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2537
2538    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2539          << "\nEXTRABB = " << *BB);
2540    BB = NewBB;
2541  }
2542
2543  Builder.SetInsertPoint(BI);
2544  // Convert pointer to int before we switch.
2545  if (CompVal->getType()->isPointerTy()) {
2546    assert(TD && "Cannot switch on pointer without TargetData");
2547    CompVal = Builder.CreatePtrToInt(CompVal,
2548                                     TD->getIntPtrType(CompVal->getContext()),
2549                                     "magicptr");
2550  }
2551
2552  // Create the new switch instruction now.
2553  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2554
2555  // Add all of the 'cases' to the switch instruction.
2556  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2557    New->addCase(Values[i], EdgeBB);
2558
2559  // We added edges from PI to the EdgeBB.  As such, if there were any
2560  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2561  // the number of edges added.
2562  for (BasicBlock::iterator BBI = EdgeBB->begin();
2563       isa<PHINode>(BBI); ++BBI) {
2564    PHINode *PN = cast<PHINode>(BBI);
2565    Value *InVal = PN->getIncomingValueForBlock(BB);
2566    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2567      PN->addIncoming(InVal, BB);
2568  }
2569
2570  // Erase the old branch instruction.
2571  EraseTerminatorInstAndDCECond(BI);
2572
2573  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2574  return true;
2575}
2576
2577bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2578  // If this is a trivial landing pad that just continues unwinding the caught
2579  // exception then zap the landing pad, turning its invokes into calls.
2580  BasicBlock *BB = RI->getParent();
2581  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2582  if (RI->getValue() != LPInst)
2583    // Not a landing pad, or the resume is not unwinding the exception that
2584    // caused control to branch here.
2585    return false;
2586
2587  // Check that there are no other instructions except for debug intrinsics.
2588  BasicBlock::iterator I = LPInst, E = RI;
2589  while (++I != E)
2590    if (!isa<DbgInfoIntrinsic>(I))
2591      return false;
2592
2593  // Turn all invokes that unwind here into calls and delete the basic block.
2594  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2595    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2596    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2597    // Insert a call instruction before the invoke.
2598    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2599    Call->takeName(II);
2600    Call->setCallingConv(II->getCallingConv());
2601    Call->setAttributes(II->getAttributes());
2602    Call->setDebugLoc(II->getDebugLoc());
2603
2604    // Anything that used the value produced by the invoke instruction now uses
2605    // the value produced by the call instruction.  Note that we do this even
2606    // for void functions and calls with no uses so that the callgraph edge is
2607    // updated.
2608    II->replaceAllUsesWith(Call);
2609    BB->removePredecessor(II->getParent());
2610
2611    // Insert a branch to the normal destination right before the invoke.
2612    BranchInst::Create(II->getNormalDest(), II);
2613
2614    // Finally, delete the invoke instruction!
2615    II->eraseFromParent();
2616  }
2617
2618  // The landingpad is now unreachable.  Zap it.
2619  BB->eraseFromParent();
2620  return true;
2621}
2622
2623bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2624  BasicBlock *BB = RI->getParent();
2625  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2626
2627  // Find predecessors that end with branches.
2628  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2629  SmallVector<BranchInst*, 8> CondBranchPreds;
2630  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2631    BasicBlock *P = *PI;
2632    TerminatorInst *PTI = P->getTerminator();
2633    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2634      if (BI->isUnconditional())
2635        UncondBranchPreds.push_back(P);
2636      else
2637        CondBranchPreds.push_back(BI);
2638    }
2639  }
2640
2641  // If we found some, do the transformation!
2642  if (!UncondBranchPreds.empty() && DupRet) {
2643    while (!UncondBranchPreds.empty()) {
2644      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2645      DEBUG(dbgs() << "FOLDING: " << *BB
2646            << "INTO UNCOND BRANCH PRED: " << *Pred);
2647      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2648    }
2649
2650    // If we eliminated all predecessors of the block, delete the block now.
2651    if (pred_begin(BB) == pred_end(BB))
2652      // We know there are no successors, so just nuke the block.
2653      BB->eraseFromParent();
2654
2655    return true;
2656  }
2657
2658  // Check out all of the conditional branches going to this return
2659  // instruction.  If any of them just select between returns, change the
2660  // branch itself into a select/return pair.
2661  while (!CondBranchPreds.empty()) {
2662    BranchInst *BI = CondBranchPreds.pop_back_val();
2663
2664    // Check to see if the non-BB successor is also a return block.
2665    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2666        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2667        SimplifyCondBranchToTwoReturns(BI, Builder))
2668      return true;
2669  }
2670  return false;
2671}
2672
2673bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2674  BasicBlock *BB = UI->getParent();
2675
2676  bool Changed = false;
2677
2678  // If there are any instructions immediately before the unreachable that can
2679  // be removed, do so.
2680  while (UI != BB->begin()) {
2681    BasicBlock::iterator BBI = UI;
2682    --BBI;
2683    // Do not delete instructions that can have side effects which might cause
2684    // the unreachable to not be reachable; specifically, calls and volatile
2685    // operations may have this effect.
2686    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2687
2688    if (BBI->mayHaveSideEffects()) {
2689      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2690        if (SI->isVolatile())
2691          break;
2692      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2693        if (LI->isVolatile())
2694          break;
2695      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2696        if (RMWI->isVolatile())
2697          break;
2698      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2699        if (CXI->isVolatile())
2700          break;
2701      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2702                 !isa<LandingPadInst>(BBI)) {
2703        break;
2704      }
2705      // Note that deleting LandingPad's here is in fact okay, although it
2706      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2707      // all the predecessors of this block will be the unwind edges of Invokes,
2708      // and we can therefore guarantee this block will be erased.
2709    }
2710
2711    // Delete this instruction (any uses are guaranteed to be dead)
2712    if (!BBI->use_empty())
2713      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2714    BBI->eraseFromParent();
2715    Changed = true;
2716  }
2717
2718  // If the unreachable instruction is the first in the block, take a gander
2719  // at all of the predecessors of this instruction, and simplify them.
2720  if (&BB->front() != UI) return Changed;
2721
2722  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2723  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2724    TerminatorInst *TI = Preds[i]->getTerminator();
2725    IRBuilder<> Builder(TI);
2726    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2727      if (BI->isUnconditional()) {
2728        if (BI->getSuccessor(0) == BB) {
2729          new UnreachableInst(TI->getContext(), TI);
2730          TI->eraseFromParent();
2731          Changed = true;
2732        }
2733      } else {
2734        if (BI->getSuccessor(0) == BB) {
2735          Builder.CreateBr(BI->getSuccessor(1));
2736          EraseTerminatorInstAndDCECond(BI);
2737        } else if (BI->getSuccessor(1) == BB) {
2738          Builder.CreateBr(BI->getSuccessor(0));
2739          EraseTerminatorInstAndDCECond(BI);
2740          Changed = true;
2741        }
2742      }
2743    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2744      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2745           i != e; ++i)
2746        if (i.getCaseSuccessor() == BB) {
2747          BB->removePredecessor(SI->getParent());
2748          SI->removeCase(i);
2749          --i; --e;
2750          Changed = true;
2751        }
2752      // If the default value is unreachable, figure out the most popular
2753      // destination and make it the default.
2754      if (SI->getDefaultDest() == BB) {
2755        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2756        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2757             i != e; ++i) {
2758          std::pair<unsigned, unsigned> &entry =
2759              Popularity[i.getCaseSuccessor()];
2760          if (entry.first == 0) {
2761            entry.first = 1;
2762            entry.second = i.getCaseIndex();
2763          } else {
2764            entry.first++;
2765          }
2766        }
2767
2768        // Find the most popular block.
2769        unsigned MaxPop = 0;
2770        unsigned MaxIndex = 0;
2771        BasicBlock *MaxBlock = 0;
2772        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2773             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2774          if (I->second.first > MaxPop ||
2775              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2776            MaxPop = I->second.first;
2777            MaxIndex = I->second.second;
2778            MaxBlock = I->first;
2779          }
2780        }
2781        if (MaxBlock) {
2782          // Make this the new default, allowing us to delete any explicit
2783          // edges to it.
2784          SI->setDefaultDest(MaxBlock);
2785          Changed = true;
2786
2787          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2788          // it.
2789          if (isa<PHINode>(MaxBlock->begin()))
2790            for (unsigned i = 0; i != MaxPop-1; ++i)
2791              MaxBlock->removePredecessor(SI->getParent());
2792
2793          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2794               i != e; ++i)
2795            if (i.getCaseSuccessor() == MaxBlock) {
2796              SI->removeCase(i);
2797              --i; --e;
2798            }
2799        }
2800      }
2801    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2802      if (II->getUnwindDest() == BB) {
2803        // Convert the invoke to a call instruction.  This would be a good
2804        // place to note that the call does not throw though.
2805        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2806        II->removeFromParent();   // Take out of symbol table
2807
2808        // Insert the call now...
2809        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2810        Builder.SetInsertPoint(BI);
2811        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2812                                          Args, II->getName());
2813        CI->setCallingConv(II->getCallingConv());
2814        CI->setAttributes(II->getAttributes());
2815        // If the invoke produced a value, the call does now instead.
2816        II->replaceAllUsesWith(CI);
2817        delete II;
2818        Changed = true;
2819      }
2820    }
2821  }
2822
2823  // If this block is now dead, remove it.
2824  if (pred_begin(BB) == pred_end(BB) &&
2825      BB != &BB->getParent()->getEntryBlock()) {
2826    // We know there are no successors, so just nuke the block.
2827    BB->eraseFromParent();
2828    return true;
2829  }
2830
2831  return Changed;
2832}
2833
2834/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2835/// integer range comparison into a sub, an icmp and a branch.
2836static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2837  assert(SI->getNumCases() > 1 && "Degenerate switch?");
2838
2839  // Make sure all cases point to the same destination and gather the values.
2840  SmallVector<ConstantInt *, 16> Cases;
2841  SwitchInst::CaseIt I = SI->case_begin();
2842  Cases.push_back(I.getCaseValue());
2843  SwitchInst::CaseIt PrevI = I++;
2844  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
2845    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
2846      return false;
2847    Cases.push_back(I.getCaseValue());
2848  }
2849  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
2850
2851  // Sort the case values, then check if they form a range we can transform.
2852  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2853  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2854    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2855      return false;
2856  }
2857
2858  Constant *Offset = ConstantExpr::getNeg(Cases.back());
2859  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
2860
2861  Value *Sub = SI->getCondition();
2862  if (!Offset->isNullValue())
2863    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2864  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2865  Builder.CreateCondBr(
2866      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
2867
2868  // Prune obsolete incoming values off the successor's PHI nodes.
2869  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
2870       isa<PHINode>(BBI); ++BBI) {
2871    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
2872      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2873  }
2874  SI->eraseFromParent();
2875
2876  return true;
2877}
2878
2879/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2880/// and use it to remove dead cases.
2881static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2882  Value *Cond = SI->getCondition();
2883  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2884  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2885  ComputeMaskedBits(Cond, KnownZero, KnownOne);
2886
2887  // Gather dead cases.
2888  SmallVector<ConstantInt*, 8> DeadCases;
2889  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2890    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
2891        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
2892      DeadCases.push_back(I.getCaseValue());
2893      DEBUG(dbgs() << "SimplifyCFG: switch case '"
2894                   << I.getCaseValue() << "' is dead.\n");
2895    }
2896  }
2897
2898  // Remove dead cases from the switch.
2899  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2900    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
2901    assert(Case != SI->case_default() &&
2902           "Case was not found. Probably mistake in DeadCases forming.");
2903    // Prune unused values from PHI nodes.
2904    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
2905    SI->removeCase(Case);
2906  }
2907
2908  return !DeadCases.empty();
2909}
2910
2911/// FindPHIForConditionForwarding - If BB would be eligible for simplification
2912/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2913/// by an unconditional branch), look at the phi node for BB in the successor
2914/// block and see if the incoming value is equal to CaseValue. If so, return
2915/// the phi node, and set PhiIndex to BB's index in the phi node.
2916static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2917                                              BasicBlock *BB,
2918                                              int *PhiIndex) {
2919  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2920    return NULL; // BB must be empty to be a candidate for simplification.
2921  if (!BB->getSinglePredecessor())
2922    return NULL; // BB must be dominated by the switch.
2923
2924  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2925  if (!Branch || !Branch->isUnconditional())
2926    return NULL; // Terminator must be unconditional branch.
2927
2928  BasicBlock *Succ = Branch->getSuccessor(0);
2929
2930  BasicBlock::iterator I = Succ->begin();
2931  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2932    int Idx = PHI->getBasicBlockIndex(BB);
2933    assert(Idx >= 0 && "PHI has no entry for predecessor?");
2934
2935    Value *InValue = PHI->getIncomingValue(Idx);
2936    if (InValue != CaseValue) continue;
2937
2938    *PhiIndex = Idx;
2939    return PHI;
2940  }
2941
2942  return NULL;
2943}
2944
2945/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2946/// instruction to a phi node dominated by the switch, if that would mean that
2947/// some of the destination blocks of the switch can be folded away.
2948/// Returns true if a change is made.
2949static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2950  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2951  ForwardingNodesMap ForwardingNodes;
2952
2953  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
2954    ConstantInt *CaseValue = I.getCaseValue();
2955    BasicBlock *CaseDest = I.getCaseSuccessor();
2956
2957    int PhiIndex;
2958    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2959                                                 &PhiIndex);
2960    if (!PHI) continue;
2961
2962    ForwardingNodes[PHI].push_back(PhiIndex);
2963  }
2964
2965  bool Changed = false;
2966
2967  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2968       E = ForwardingNodes.end(); I != E; ++I) {
2969    PHINode *Phi = I->first;
2970    SmallVector<int,4> &Indexes = I->second;
2971
2972    if (Indexes.size() < 2) continue;
2973
2974    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2975      Phi->setIncomingValue(Indexes[I], SI->getCondition());
2976    Changed = true;
2977  }
2978
2979  return Changed;
2980}
2981
2982/// ValidLookupTableConstant - Return true if the backend will be able to handle
2983/// initializing an array of constants like C.
2984bool ValidLookupTableConstant(Constant *C) {
2985  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2986    return CE->isGEPWithNoNotionalOverIndexing();
2987
2988  return isa<ConstantFP>(C) ||
2989      isa<ConstantInt>(C) ||
2990      isa<ConstantPointerNull>(C) ||
2991      isa<GlobalValue>(C) ||
2992      isa<UndefValue>(C);
2993}
2994
2995/// GetCaseResulsts - Try to determine the resulting constant values in phi
2996/// nodes at the common destination basic block for one of the case
2997/// destinations of a switch instruction.
2998static bool GetCaseResults(SwitchInst *SI,
2999                           BasicBlock *CaseDest,
3000                           BasicBlock **CommonDest,
3001                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3002  // The block from which we enter the common destination.
3003  BasicBlock *Pred = SI->getParent();
3004
3005  // If CaseDest is empty, continue to its successor.
3006  if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() &&
3007      !isa<PHINode>(CaseDest->begin())) {
3008
3009    TerminatorInst *Terminator = CaseDest->getTerminator();
3010    if (Terminator->getNumSuccessors() != 1)
3011      return false;
3012
3013    Pred = CaseDest;
3014    CaseDest = Terminator->getSuccessor(0);
3015  }
3016
3017  // If we did not have a CommonDest before, use the current one.
3018  if (!*CommonDest)
3019    *CommonDest = CaseDest;
3020  // If the destination isn't the common one, abort.
3021  if (CaseDest != *CommonDest)
3022    return false;
3023
3024  // Get the values for this case from phi nodes in the destination block.
3025  BasicBlock::iterator I = (*CommonDest)->begin();
3026  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3027    int Idx = PHI->getBasicBlockIndex(Pred);
3028    if (Idx == -1)
3029      continue;
3030
3031    Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx));
3032    if (!ConstVal)
3033      return false;
3034
3035    // Be conservative about which kinds of constants we support.
3036    if (!ValidLookupTableConstant(ConstVal))
3037      return false;
3038
3039    Res.push_back(std::make_pair(PHI, ConstVal));
3040  }
3041
3042  return true;
3043}
3044
3045/// BuildLookupTable - Build a lookup table with the contents of Results, using
3046/// DefaultResult to fill the holes in the table. If the table ends up
3047/// containing the same result in each element, set *SingleResult to that value
3048/// and return NULL.
3049static GlobalVariable *BuildLookupTable(
3050    Module &M,
3051    uint64_t TableSize,
3052    ConstantInt *Offset,
3053    const std::vector<std::pair<ConstantInt*,Constant*> >& Results,
3054    Constant *DefaultResult,
3055    Constant **SingleResult) {
3056  assert(Results.size() && "Need values to build lookup table");
3057  assert(TableSize >= Results.size() && "Table needs to hold all values");
3058
3059  // If all values in the table are equal, this is that value.
3060  Constant *SameResult = Results.begin()->second;
3061
3062  // Build up the table contents.
3063  std::vector<Constant*> TableContents(TableSize);
3064  for (size_t I = 0, E = Results.size(); I != E; ++I) {
3065    ConstantInt *CaseVal = Results[I].first;
3066    Constant *CaseRes = Results[I].second;
3067
3068    uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
3069    TableContents[Idx] = CaseRes;
3070
3071    if (CaseRes != SameResult)
3072      SameResult = NULL;
3073  }
3074
3075  // Fill in any holes in the table with the default result.
3076  if (Results.size() < TableSize) {
3077    for (unsigned i = 0; i < TableSize; ++i) {
3078      if (!TableContents[i])
3079        TableContents[i] = DefaultResult;
3080    }
3081
3082    if (DefaultResult != SameResult)
3083      SameResult = NULL;
3084  }
3085
3086  // Same result was used in the entire table; just return that.
3087  if (SameResult) {
3088    *SingleResult = SameResult;
3089    return NULL;
3090  }
3091
3092  ArrayType *ArrayTy = ArrayType::get(DefaultResult->getType(), TableSize);
3093  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3094
3095  GlobalVariable *GV = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3096                                          GlobalVariable::PrivateLinkage,
3097                                          Initializer,
3098                                          "switch.table");
3099  GV->setUnnamedAddr(true);
3100  return GV;
3101}
3102
3103/// SwitchToLookupTable - If the switch is only used to initialize one or more
3104/// phi nodes in a common successor block with different constant values,
3105/// replace the switch with lookup tables.
3106static bool SwitchToLookupTable(SwitchInst *SI,
3107                                IRBuilder<> &Builder) {
3108  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3109  // FIXME: Handle unreachable cases.
3110
3111  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3112  // split off a dense part and build a lookup table for that.
3113
3114  // FIXME: If the results are all integers and the lookup table would fit in a
3115  // target-legal register, we should store them as a bitmap and use shift/mask
3116  // to look up the result.
3117
3118  // FIXME: This creates arrays of GEPs to constant strings, which means each
3119  // GEP needs a runtime relocation in PIC code. We should just build one big
3120  // string and lookup indices into that.
3121
3122  // Ignore the switch if the number of cases are too small.
3123  // This is similar to the check when building jump tables in
3124  // SelectionDAGBuilder::handleJTSwitchCase.
3125  // FIXME: Determine the best cut-off.
3126  if (SI->getNumCases() < 4)
3127    return false;
3128
3129  // Figure out the corresponding result for each case value and phi node in the
3130  // common destination, as well as the the min and max case values.
3131  assert(SI->case_begin() != SI->case_end());
3132  SwitchInst::CaseIt CI = SI->case_begin();
3133  ConstantInt *MinCaseVal = CI.getCaseValue();
3134  ConstantInt *MaxCaseVal = CI.getCaseValue();
3135
3136  BasicBlock *CommonDest = NULL;
3137  typedef std::vector<std::pair<ConstantInt*, Constant*> > ResultListTy;
3138  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3139  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3140  SmallDenseMap<PHINode*, Type*> ResultTypes;
3141  SmallVector<PHINode*, 4> PHIs;
3142
3143  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3144    ConstantInt *CaseVal = CI.getCaseValue();
3145    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3146      MinCaseVal = CaseVal;
3147    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3148      MaxCaseVal = CaseVal;
3149
3150    // Resulting value at phi nodes for this case value.
3151    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3152    ResultsTy Results;
3153    if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results))
3154      return false;
3155
3156    // Append the result from this case to the list for each phi.
3157    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3158      if (!ResultLists.count(I->first))
3159        PHIs.push_back(I->first);
3160      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3161    }
3162  }
3163
3164  // Get the resulting values for the default case.
3165  {
3166    SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3167    if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList))
3168      return false;
3169    for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3170      PHINode *PHI = DefaultResultsList[I].first;
3171      Constant *Result = DefaultResultsList[I].second;
3172      DefaultResults[PHI] = Result;
3173      ResultTypes[PHI] = Result->getType();
3174    }
3175  }
3176
3177  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3178  // The table density should be at lest 40%. This is the same criterion as for
3179  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3180  // FIXME: Find the best cut-off.
3181  // Be careful to avoid overlow in the density computation.
3182  if (RangeSpread.zextOrSelf(64).ugt(UINT64_MAX / 4 - 1))
3183    return false;
3184  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3185  if (SI->getNumCases() * 10 < TableSize * 4)
3186    return false;
3187
3188  // Build the lookup tables.
3189  SmallDenseMap<PHINode*, GlobalVariable*> LookupTables;
3190  SmallDenseMap<PHINode*, Constant*> SingleResults;
3191
3192  Module &Mod = *CommonDest->getParent()->getParent();
3193  for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3194       I != E; ++I) {
3195    PHINode *PHI = *I;
3196
3197    Constant *SingleResult = NULL;
3198    LookupTables[PHI] = BuildLookupTable(Mod, TableSize, MinCaseVal,
3199                                         ResultLists[PHI], DefaultResults[PHI],
3200                                         &SingleResult);
3201    SingleResults[PHI] = SingleResult;
3202  }
3203
3204  // Create the BB that does the lookups.
3205  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3206                                            "switch.lookup",
3207                                            CommonDest->getParent(),
3208                                            CommonDest);
3209
3210  // Check whether the condition value is within the case range, and branch to
3211  // the new BB.
3212  Builder.SetInsertPoint(SI);
3213  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3214                                        "switch.tableidx");
3215  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3216      MinCaseVal->getType(), TableSize));
3217  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3218
3219  // Populate the BB that does the lookups.
3220  Builder.SetInsertPoint(LookupBB);
3221  bool ReturnedEarly = false;
3222  for (SmallVector<PHINode*, 4>::iterator I = PHIs.begin(), E = PHIs.end();
3223       I != E; ++I) {
3224    PHINode *PHI = *I;
3225    // There was a single result for this phi; just use that.
3226    if (Constant *SingleResult = SingleResults[PHI]) {
3227      PHI->addIncoming(SingleResult, LookupBB);
3228      continue;
3229    }
3230
3231    Value *GEPIndices[] = { Builder.getInt32(0), TableIndex };
3232    Value *GEP = Builder.CreateInBoundsGEP(LookupTables[PHI], GEPIndices,
3233                                           "switch.gep");
3234    Value *Result = Builder.CreateLoad(GEP, "switch.load");
3235
3236    // If the result is only going to be used to return from the function,
3237    // we want to do that right here.
3238    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin())) {
3239      if (CommonDest->getFirstNonPHIOrDbg() == CommonDest->getTerminator()) {
3240        Builder.CreateRet(Result);
3241        ReturnedEarly = true;
3242      }
3243    }
3244
3245    if (!ReturnedEarly)
3246      PHI->addIncoming(Result, LookupBB);
3247  }
3248
3249  if (!ReturnedEarly)
3250    Builder.CreateBr(CommonDest);
3251
3252  // Remove the switch.
3253  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3254    BasicBlock *Succ = SI->getSuccessor(i);
3255    if (Succ == SI->getDefaultDest()) continue;
3256    Succ->removePredecessor(SI->getParent());
3257  }
3258  SI->eraseFromParent();
3259
3260  ++NumLookupTables;
3261  return true;
3262}
3263
3264bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3265  // If this switch is too complex to want to look at, ignore it.
3266  if (!isValueEqualityComparison(SI))
3267    return false;
3268
3269  BasicBlock *BB = SI->getParent();
3270
3271  // If we only have one predecessor, and if it is a branch on this value,
3272  // see if that predecessor totally determines the outcome of this switch.
3273  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3274    if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3275      return SimplifyCFG(BB) | true;
3276
3277  Value *Cond = SI->getCondition();
3278  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3279    if (SimplifySwitchOnSelect(SI, Select))
3280      return SimplifyCFG(BB) | true;
3281
3282  // If the block only contains the switch, see if we can fold the block
3283  // away into any preds.
3284  BasicBlock::iterator BBI = BB->begin();
3285  // Ignore dbg intrinsics.
3286  while (isa<DbgInfoIntrinsic>(BBI))
3287    ++BBI;
3288  if (SI == &*BBI)
3289    if (FoldValueComparisonIntoPredecessors(SI, Builder))
3290      return SimplifyCFG(BB) | true;
3291
3292  // Try to transform the switch into an icmp and a branch.
3293  if (TurnSwitchRangeIntoICmp(SI, Builder))
3294    return SimplifyCFG(BB) | true;
3295
3296  // Remove unreachable cases.
3297  if (EliminateDeadSwitchCases(SI))
3298    return SimplifyCFG(BB) | true;
3299
3300  if (ForwardSwitchConditionToPHI(SI))
3301    return SimplifyCFG(BB) | true;
3302
3303  if (SwitchToLookupTable(SI, Builder))
3304    return SimplifyCFG(BB) | true;
3305
3306  return false;
3307}
3308
3309bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3310  BasicBlock *BB = IBI->getParent();
3311  bool Changed = false;
3312
3313  // Eliminate redundant destinations.
3314  SmallPtrSet<Value *, 8> Succs;
3315  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3316    BasicBlock *Dest = IBI->getDestination(i);
3317    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3318      Dest->removePredecessor(BB);
3319      IBI->removeDestination(i);
3320      --i; --e;
3321      Changed = true;
3322    }
3323  }
3324
3325  if (IBI->getNumDestinations() == 0) {
3326    // If the indirectbr has no successors, change it to unreachable.
3327    new UnreachableInst(IBI->getContext(), IBI);
3328    EraseTerminatorInstAndDCECond(IBI);
3329    return true;
3330  }
3331
3332  if (IBI->getNumDestinations() == 1) {
3333    // If the indirectbr has one successor, change it to a direct branch.
3334    BranchInst::Create(IBI->getDestination(0), IBI);
3335    EraseTerminatorInstAndDCECond(IBI);
3336    return true;
3337  }
3338
3339  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3340    if (SimplifyIndirectBrOnSelect(IBI, SI))
3341      return SimplifyCFG(BB) | true;
3342  }
3343  return Changed;
3344}
3345
3346bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3347  BasicBlock *BB = BI->getParent();
3348
3349  // If the Terminator is the only non-phi instruction, simplify the block.
3350  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3351  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3352      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3353    return true;
3354
3355  // If the only instruction in the block is a seteq/setne comparison
3356  // against a constant, try to simplify the block.
3357  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3358    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3359      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3360        ;
3361      if (I->isTerminator() &&
3362          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3363        return true;
3364    }
3365
3366  // If this basic block is ONLY a compare and a branch, and if a predecessor
3367  // branches to us and our successor, fold the comparison into the
3368  // predecessor and use logical operations to update the incoming value
3369  // for PHI nodes in common successor.
3370  if (FoldBranchToCommonDest(BI))
3371    return SimplifyCFG(BB) | true;
3372  return false;
3373}
3374
3375
3376bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3377  BasicBlock *BB = BI->getParent();
3378
3379  // Conditional branch
3380  if (isValueEqualityComparison(BI)) {
3381    // If we only have one predecessor, and if it is a branch on this value,
3382    // see if that predecessor totally determines the outcome of this
3383    // switch.
3384    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3385      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3386        return SimplifyCFG(BB) | true;
3387
3388    // This block must be empty, except for the setcond inst, if it exists.
3389    // Ignore dbg intrinsics.
3390    BasicBlock::iterator I = BB->begin();
3391    // Ignore dbg intrinsics.
3392    while (isa<DbgInfoIntrinsic>(I))
3393      ++I;
3394    if (&*I == BI) {
3395      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3396        return SimplifyCFG(BB) | true;
3397    } else if (&*I == cast<Instruction>(BI->getCondition())){
3398      ++I;
3399      // Ignore dbg intrinsics.
3400      while (isa<DbgInfoIntrinsic>(I))
3401        ++I;
3402      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3403        return SimplifyCFG(BB) | true;
3404    }
3405  }
3406
3407  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3408  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3409    return true;
3410
3411  // If this basic block is ONLY a compare and a branch, and if a predecessor
3412  // branches to us and one of our successors, fold the comparison into the
3413  // predecessor and use logical operations to pick the right destination.
3414  if (FoldBranchToCommonDest(BI))
3415    return SimplifyCFG(BB) | true;
3416
3417  // We have a conditional branch to two blocks that are only reachable
3418  // from BI.  We know that the condbr dominates the two blocks, so see if
3419  // there is any identical code in the "then" and "else" blocks.  If so, we
3420  // can hoist it up to the branching block.
3421  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3422    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3423      if (HoistThenElseCodeToIf(BI))
3424        return SimplifyCFG(BB) | true;
3425    } else {
3426      // If Successor #1 has multiple preds, we may be able to conditionally
3427      // execute Successor #0 if it branches to successor #1.
3428      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3429      if (Succ0TI->getNumSuccessors() == 1 &&
3430          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3431        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3432          return SimplifyCFG(BB) | true;
3433    }
3434  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3435    // If Successor #0 has multiple preds, we may be able to conditionally
3436    // execute Successor #1 if it branches to successor #0.
3437    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3438    if (Succ1TI->getNumSuccessors() == 1 &&
3439        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3440      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3441        return SimplifyCFG(BB) | true;
3442  }
3443
3444  // If this is a branch on a phi node in the current block, thread control
3445  // through this block if any PHI node entries are constants.
3446  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3447    if (PN->getParent() == BI->getParent())
3448      if (FoldCondBranchOnPHI(BI, TD))
3449        return SimplifyCFG(BB) | true;
3450
3451  // Scan predecessor blocks for conditional branches.
3452  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3453    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3454      if (PBI != BI && PBI->isConditional())
3455        if (SimplifyCondBranchToCondBranch(PBI, BI))
3456          return SimplifyCFG(BB) | true;
3457
3458  return false;
3459}
3460
3461/// Check if passing a value to an instruction will cause undefined behavior.
3462static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3463  Constant *C = dyn_cast<Constant>(V);
3464  if (!C)
3465    return false;
3466
3467  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3468    return false;
3469
3470  if (C->isNullValue()) {
3471    Instruction *Use = I->use_back();
3472
3473    // Now make sure that there are no instructions in between that can alter
3474    // control flow (eg. calls)
3475    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3476      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3477        return false;
3478
3479    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3480    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3481      if (GEP->getPointerOperand() == I)
3482        return passingValueIsAlwaysUndefined(V, GEP);
3483
3484    // Look through bitcasts.
3485    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3486      return passingValueIsAlwaysUndefined(V, BC);
3487
3488    // Load from null is undefined.
3489    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3490      return LI->getPointerAddressSpace() == 0;
3491
3492    // Store to null is undefined.
3493    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3494      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3495  }
3496  return false;
3497}
3498
3499/// If BB has an incoming value that will always trigger undefined behavior
3500/// (eg. null pointer dereference), remove the branch leading here.
3501static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3502  for (BasicBlock::iterator i = BB->begin();
3503       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3504    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3505      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3506        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3507        IRBuilder<> Builder(T);
3508        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3509          BB->removePredecessor(PHI->getIncomingBlock(i));
3510          // Turn uncoditional branches into unreachables and remove the dead
3511          // destination from conditional branches.
3512          if (BI->isUnconditional())
3513            Builder.CreateUnreachable();
3514          else
3515            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3516                                                         BI->getSuccessor(0));
3517          BI->eraseFromParent();
3518          return true;
3519        }
3520        // TODO: SwitchInst.
3521      }
3522
3523  return false;
3524}
3525
3526bool SimplifyCFGOpt::run(BasicBlock *BB) {
3527  bool Changed = false;
3528
3529  assert(BB && BB->getParent() && "Block not embedded in function!");
3530  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3531
3532  // Remove basic blocks that have no predecessors (except the entry block)...
3533  // or that just have themself as a predecessor.  These are unreachable.
3534  if ((pred_begin(BB) == pred_end(BB) &&
3535       BB != &BB->getParent()->getEntryBlock()) ||
3536      BB->getSinglePredecessor() == BB) {
3537    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3538    DeleteDeadBlock(BB);
3539    return true;
3540  }
3541
3542  // Check to see if we can constant propagate this terminator instruction
3543  // away...
3544  Changed |= ConstantFoldTerminator(BB, true);
3545
3546  // Check for and eliminate duplicate PHI nodes in this block.
3547  Changed |= EliminateDuplicatePHINodes(BB);
3548
3549  // Check for and remove branches that will always cause undefined behavior.
3550  Changed |= removeUndefIntroducingPredecessor(BB);
3551
3552  // Merge basic blocks into their predecessor if there is only one distinct
3553  // pred, and if there is only one distinct successor of the predecessor, and
3554  // if there are no PHI nodes.
3555  //
3556  if (MergeBlockIntoPredecessor(BB))
3557    return true;
3558
3559  IRBuilder<> Builder(BB);
3560
3561  // If there is a trivial two-entry PHI node in this basic block, and we can
3562  // eliminate it, do so now.
3563  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3564    if (PN->getNumIncomingValues() == 2)
3565      Changed |= FoldTwoEntryPHINode(PN, TD);
3566
3567  Builder.SetInsertPoint(BB->getTerminator());
3568  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3569    if (BI->isUnconditional()) {
3570      if (SimplifyUncondBranch(BI, Builder)) return true;
3571    } else {
3572      if (SimplifyCondBranch(BI, Builder)) return true;
3573    }
3574  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3575    if (SimplifyReturn(RI, Builder)) return true;
3576  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3577    if (SimplifyResume(RI, Builder)) return true;
3578  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3579    if (SimplifySwitch(SI, Builder)) return true;
3580  } else if (UnreachableInst *UI =
3581               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3582    if (SimplifyUnreachable(UI)) return true;
3583  } else if (IndirectBrInst *IBI =
3584               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3585    if (SimplifyIndirectBr(IBI)) return true;
3586  }
3587
3588  return Changed;
3589}
3590
3591/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3592/// example, it adjusts branches to branches to eliminate the extra hop, it
3593/// eliminates unreachable basic blocks, and does other "peephole" optimization
3594/// of the CFG.  It returns true if a modification was made.
3595///
3596bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3597  return SimplifyCFGOpt(TD).run(BB);
3598}
3599