SimplifyCFG.cpp revision 623369ac5669a3667a94a3cbba342dea78845615
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include <algorithm>
22#include <functional>
23#include <set>
24#include <map>
25using namespace llvm;
26
27// PropagatePredecessorsForPHIs - This gets "Succ" ready to have the
28// predecessors from "BB".  This is a little tricky because "Succ" has PHI
29// nodes, which need to have extra slots added to them to hold the merge edges
30// from BB's predecessors, and BB itself might have had PHI nodes in it.  This
31// function returns true (failure) if the Succ BB already has a predecessor that
32// is a predecessor of BB and incoming PHI arguments would not be discernible.
33//
34// Assumption: Succ is the single successor for BB.
35//
36static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
37  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
38
39  if (!isa<PHINode>(Succ->front()))
40    return false;  // We can make the transformation, no problem.
41
42  // If there is more than one predecessor, and there are PHI nodes in
43  // the successor, then we need to add incoming edges for the PHI nodes
44  //
45  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
46
47  // Check to see if one of the predecessors of BB is already a predecessor of
48  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
49  // with incompatible values coming in from the two edges!
50  //
51  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
52    if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
53      // Loop over all of the PHI nodes checking to see if there are
54      // incompatible values coming in.
55      for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
56        PHINode *PN = cast<PHINode>(I);
57        // Loop up the entries in the PHI node for BB and for *PI if the values
58        // coming in are non-equal, we cannot merge these two blocks (instead we
59        // should insert a conditional move or something, then merge the
60        // blocks).
61        int Idx1 = PN->getBasicBlockIndex(BB);
62        int Idx2 = PN->getBasicBlockIndex(*PI);
63        assert(Idx1 != -1 && Idx2 != -1 &&
64               "Didn't have entries for my predecessors??");
65        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
66          return true;  // Values are not equal...
67      }
68    }
69
70  // Loop over all of the PHI nodes in the successor BB.
71  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
72    PHINode *PN = cast<PHINode>(I);
73    Value *OldVal = PN->removeIncomingValue(BB, false);
74    assert(OldVal && "No entry in PHI for Pred BB!");
75
76    // If this incoming value is one of the PHI nodes in BB, the new entries in
77    // the PHI node are the entries from the old PHI.
78    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
79      PHINode *OldValPN = cast<PHINode>(OldVal);
80      for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
81        PN->addIncoming(OldValPN->getIncomingValue(i),
82                        OldValPN->getIncomingBlock(i));
83    } else {
84      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
85             End = BBPreds.end(); PredI != End; ++PredI) {
86        // Add an incoming value for each of the new incoming values...
87        PN->addIncoming(OldVal, *PredI);
88      }
89    }
90  }
91  return false;
92}
93
94/// GetIfCondition - Given a basic block (BB) with two predecessors (and
95/// presumably PHI nodes in it), check to see if the merge at this block is due
96/// to an "if condition".  If so, return the boolean condition that determines
97/// which entry into BB will be taken.  Also, return by references the block
98/// that will be entered from if the condition is true, and the block that will
99/// be entered if the condition is false.
100///
101///
102static Value *GetIfCondition(BasicBlock *BB,
103                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
104  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
105         "Function can only handle blocks with 2 predecessors!");
106  BasicBlock *Pred1 = *pred_begin(BB);
107  BasicBlock *Pred2 = *++pred_begin(BB);
108
109  // We can only handle branches.  Other control flow will be lowered to
110  // branches if possible anyway.
111  if (!isa<BranchInst>(Pred1->getTerminator()) ||
112      !isa<BranchInst>(Pred2->getTerminator()))
113    return 0;
114  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
115  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
116
117  // Eliminate code duplication by ensuring that Pred1Br is conditional if
118  // either are.
119  if (Pred2Br->isConditional()) {
120    // If both branches are conditional, we don't have an "if statement".  In
121    // reality, we could transform this case, but since the condition will be
122    // required anyway, we stand no chance of eliminating it, so the xform is
123    // probably not profitable.
124    if (Pred1Br->isConditional())
125      return 0;
126
127    std::swap(Pred1, Pred2);
128    std::swap(Pred1Br, Pred2Br);
129  }
130
131  if (Pred1Br->isConditional()) {
132    // If we found a conditional branch predecessor, make sure that it branches
133    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
134    if (Pred1Br->getSuccessor(0) == BB &&
135        Pred1Br->getSuccessor(1) == Pred2) {
136      IfTrue = Pred1;
137      IfFalse = Pred2;
138    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
139               Pred1Br->getSuccessor(1) == BB) {
140      IfTrue = Pred2;
141      IfFalse = Pred1;
142    } else {
143      // We know that one arm of the conditional goes to BB, so the other must
144      // go somewhere unrelated, and this must not be an "if statement".
145      return 0;
146    }
147
148    // The only thing we have to watch out for here is to make sure that Pred2
149    // doesn't have incoming edges from other blocks.  If it does, the condition
150    // doesn't dominate BB.
151    if (++pred_begin(Pred2) != pred_end(Pred2))
152      return 0;
153
154    return Pred1Br->getCondition();
155  }
156
157  // Ok, if we got here, both predecessors end with an unconditional branch to
158  // BB.  Don't panic!  If both blocks only have a single (identical)
159  // predecessor, and THAT is a conditional branch, then we're all ok!
160  if (pred_begin(Pred1) == pred_end(Pred1) ||
161      ++pred_begin(Pred1) != pred_end(Pred1) ||
162      pred_begin(Pred2) == pred_end(Pred2) ||
163      ++pred_begin(Pred2) != pred_end(Pred2) ||
164      *pred_begin(Pred1) != *pred_begin(Pred2))
165    return 0;
166
167  // Otherwise, if this is a conditional branch, then we can use it!
168  BasicBlock *CommonPred = *pred_begin(Pred1);
169  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
170    assert(BI->isConditional() && "Two successors but not conditional?");
171    if (BI->getSuccessor(0) == Pred1) {
172      IfTrue = Pred1;
173      IfFalse = Pred2;
174    } else {
175      IfTrue = Pred2;
176      IfFalse = Pred1;
177    }
178    return BI->getCondition();
179  }
180  return 0;
181}
182
183
184// If we have a merge point of an "if condition" as accepted above, return true
185// if the specified value dominates the block.  We don't handle the true
186// generality of domination here, just a special case which works well enough
187// for us.
188//
189// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
190// see if V (which must be an instruction) is cheap to compute and is
191// non-trapping.  If both are true, the instruction is inserted into the set and
192// true is returned.
193static bool DominatesMergePoint(Value *V, BasicBlock *BB,
194                                std::set<Instruction*> *AggressiveInsts) {
195  Instruction *I = dyn_cast<Instruction>(V);
196  if (!I) return true;    // Non-instructions all dominate instructions.
197  BasicBlock *PBB = I->getParent();
198
199  // We don't want to allow wierd loops that might have the "if condition" in
200  // the bottom of this block.
201  if (PBB == BB) return false;
202
203  // If this instruction is defined in a block that contains an unconditional
204  // branch to BB, then it must be in the 'conditional' part of the "if
205  // statement".
206  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
207    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
208      if (!AggressiveInsts) return false;
209      // Okay, it looks like the instruction IS in the "condition".  Check to
210      // see if its a cheap instruction to unconditionally compute, and if it
211      // only uses stuff defined outside of the condition.  If so, hoist it out.
212      switch (I->getOpcode()) {
213      default: return false;  // Cannot hoist this out safely.
214      case Instruction::Load:
215        // We can hoist loads that are non-volatile and obviously cannot trap.
216        if (cast<LoadInst>(I)->isVolatile())
217          return false;
218        if (!isa<AllocaInst>(I->getOperand(0)) &&
219            !isa<Constant>(I->getOperand(0)))
220          return false;
221
222        // Finally, we have to check to make sure there are no instructions
223        // before the load in its basic block, as we are going to hoist the loop
224        // out to its predecessor.
225        if (PBB->begin() != BasicBlock::iterator(I))
226          return false;
227        break;
228      case Instruction::Add:
229      case Instruction::Sub:
230      case Instruction::And:
231      case Instruction::Or:
232      case Instruction::Xor:
233      case Instruction::Shl:
234      case Instruction::Shr:
235        break;   // These are all cheap and non-trapping instructions.
236      }
237
238      // Okay, we can only really hoist these out if their operands are not
239      // defined in the conditional region.
240      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
241        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
242          return false;
243      // Okay, it's safe to do this!  Remember this instruction.
244      AggressiveInsts->insert(I);
245    }
246
247  return true;
248}
249
250// GatherConstantSetEQs - Given a potentially 'or'd together collection of seteq
251// instructions that compare a value against a constant, return the value being
252// compared, and stick the constant into the Values vector.
253static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
254  if (Instruction *Inst = dyn_cast<Instruction>(V))
255    if (Inst->getOpcode() == Instruction::SetEQ) {
256      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
257        Values.push_back(C);
258        return Inst->getOperand(0);
259      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
260        Values.push_back(C);
261        return Inst->getOperand(1);
262      }
263    } else if (Inst->getOpcode() == Instruction::Or) {
264      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
265        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
266          if (LHS == RHS)
267            return LHS;
268    }
269  return 0;
270}
271
272// GatherConstantSetNEs - Given a potentially 'and'd together collection of
273// setne instructions that compare a value against a constant, return the value
274// being compared, and stick the constant into the Values vector.
275static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
276  if (Instruction *Inst = dyn_cast<Instruction>(V))
277    if (Inst->getOpcode() == Instruction::SetNE) {
278      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
279        Values.push_back(C);
280        return Inst->getOperand(0);
281      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
282        Values.push_back(C);
283        return Inst->getOperand(1);
284      }
285    } else if (Inst->getOpcode() == Instruction::Cast) {
286      // Cast of X to bool is really a comparison against zero.
287      assert(Inst->getType() == Type::BoolTy && "Can only handle bool values!");
288      Values.push_back(ConstantInt::get(Inst->getOperand(0)->getType(), 0));
289      return Inst->getOperand(0);
290    } else if (Inst->getOpcode() == Instruction::And) {
291      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
292        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
293          if (LHS == RHS)
294            return LHS;
295    }
296  return 0;
297}
298
299
300
301/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
302/// bunch of comparisons of one value against constants, return the value and
303/// the constants being compared.
304static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
305                                   std::vector<ConstantInt*> &Values) {
306  if (Cond->getOpcode() == Instruction::Or) {
307    CompVal = GatherConstantSetEQs(Cond, Values);
308
309    // Return true to indicate that the condition is true if the CompVal is
310    // equal to one of the constants.
311    return true;
312  } else if (Cond->getOpcode() == Instruction::And) {
313    CompVal = GatherConstantSetNEs(Cond, Values);
314
315    // Return false to indicate that the condition is false if the CompVal is
316    // equal to one of the constants.
317    return false;
318  }
319  return false;
320}
321
322/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
323/// has no side effects, nuke it.  If it uses any instructions that become dead
324/// because the instruction is now gone, nuke them too.
325static void ErasePossiblyDeadInstructionTree(Instruction *I) {
326  if (isInstructionTriviallyDead(I)) {
327    std::vector<Value*> Operands(I->op_begin(), I->op_end());
328    I->getParent()->getInstList().erase(I);
329    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
330      if (Instruction *OpI = dyn_cast<Instruction>(Operands[i]))
331        ErasePossiblyDeadInstructionTree(OpI);
332  }
333}
334
335/// SafeToMergeTerminators - Return true if it is safe to merge these two
336/// terminator instructions together.
337///
338static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
339  if (SI1 == SI2) return false;  // Can't merge with self!
340
341  // It is not safe to merge these two switch instructions if they have a common
342  // successor, and if that successor has a PHI node, and if *that* PHI node has
343  // conflicting incoming values from the two switch blocks.
344  BasicBlock *SI1BB = SI1->getParent();
345  BasicBlock *SI2BB = SI2->getParent();
346  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
347
348  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
349    if (SI1Succs.count(*I))
350      for (BasicBlock::iterator BBI = (*I)->begin();
351           isa<PHINode>(BBI); ++BBI) {
352        PHINode *PN = cast<PHINode>(BBI);
353        if (PN->getIncomingValueForBlock(SI1BB) !=
354            PN->getIncomingValueForBlock(SI2BB))
355          return false;
356      }
357
358  return true;
359}
360
361/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
362/// now be entries in it from the 'NewPred' block.  The values that will be
363/// flowing into the PHI nodes will be the same as those coming in from
364/// ExistPred, an existing predecessor of Succ.
365static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
366                                  BasicBlock *ExistPred) {
367  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
368         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
369  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
370
371  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
372    PHINode *PN = cast<PHINode>(I);
373    Value *V = PN->getIncomingValueForBlock(ExistPred);
374    PN->addIncoming(V, NewPred);
375  }
376}
377
378// isValueEqualityComparison - Return true if the specified terminator checks to
379// see if a value is equal to constant integer value.
380static Value *isValueEqualityComparison(TerminatorInst *TI) {
381  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
382    // Do not permit merging of large switch instructions into their
383    // predecessors unless there is only one predecessor.
384    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
385                                               pred_end(SI->getParent())) > 128)
386      return 0;
387
388    return SI->getCondition();
389  }
390  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
391    if (BI->isConditional() && BI->getCondition()->hasOneUse())
392      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
393        if ((SCI->getOpcode() == Instruction::SetEQ ||
394             SCI->getOpcode() == Instruction::SetNE) &&
395            isa<ConstantInt>(SCI->getOperand(1)))
396          return SCI->getOperand(0);
397  return 0;
398}
399
400// Given a value comparison instruction, decode all of the 'cases' that it
401// represents and return the 'default' block.
402static BasicBlock *
403GetValueEqualityComparisonCases(TerminatorInst *TI,
404                                std::vector<std::pair<ConstantInt*,
405                                                      BasicBlock*> > &Cases) {
406  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
407    Cases.reserve(SI->getNumCases());
408    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
409      Cases.push_back(std::make_pair(cast<ConstantInt>(SI->getCaseValue(i)),
410                                     SI->getSuccessor(i)));
411    return SI->getDefaultDest();
412  }
413
414  BranchInst *BI = cast<BranchInst>(TI);
415  SetCondInst *SCI = cast<SetCondInst>(BI->getCondition());
416  Cases.push_back(std::make_pair(cast<ConstantInt>(SCI->getOperand(1)),
417                                 BI->getSuccessor(SCI->getOpcode() ==
418                                                        Instruction::SetNE)));
419  return BI->getSuccessor(SCI->getOpcode() == Instruction::SetEQ);
420}
421
422
423// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
424// in the list that match the specified block.
425static void EliminateBlockCases(BasicBlock *BB,
426               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
427  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
428    if (Cases[i].second == BB) {
429      Cases.erase(Cases.begin()+i);
430      --i; --e;
431    }
432}
433
434// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
435// well.
436static bool
437ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
438              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
439  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
440
441  // Make V1 be smaller than V2.
442  if (V1->size() > V2->size())
443    std::swap(V1, V2);
444
445  if (V1->size() == 0) return false;
446  if (V1->size() == 1) {
447    // Just scan V2.
448    ConstantInt *TheVal = (*V1)[0].first;
449    for (unsigned i = 0, e = V2->size(); i != e; ++i)
450      if (TheVal == (*V2)[i].first)
451        return true;
452  }
453
454  // Otherwise, just sort both lists and compare element by element.
455  std::sort(V1->begin(), V1->end());
456  std::sort(V2->begin(), V2->end());
457  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
458  while (i1 != e1 && i2 != e2) {
459    if ((*V1)[i1].first == (*V2)[i2].first)
460      return true;
461    if ((*V1)[i1].first < (*V2)[i2].first)
462      ++i1;
463    else
464      ++i2;
465  }
466  return false;
467}
468
469// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
470// terminator instruction and its block is known to only have a single
471// predecessor block, check to see if that predecessor is also a value
472// comparison with the same value, and if that comparison determines the outcome
473// of this comparison.  If so, simplify TI.  This does a very limited form of
474// jump threading.
475static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
476                                                          BasicBlock *Pred) {
477  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
478  if (!PredVal) return false;  // Not a value comparison in predecessor.
479
480  Value *ThisVal = isValueEqualityComparison(TI);
481  assert(ThisVal && "This isn't a value comparison!!");
482  if (ThisVal != PredVal) return false;  // Different predicates.
483
484  // Find out information about when control will move from Pred to TI's block.
485  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
486  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
487                                                        PredCases);
488  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
489
490  // Find information about how control leaves this block.
491  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
492  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
493  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
494
495  // If TI's block is the default block from Pred's comparison, potentially
496  // simplify TI based on this knowledge.
497  if (PredDef == TI->getParent()) {
498    // If we are here, we know that the value is none of those cases listed in
499    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
500    // can simplify TI.
501    if (ValuesOverlap(PredCases, ThisCases)) {
502      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
503        // Okay, one of the successors of this condbr is dead.  Convert it to a
504        // uncond br.
505        assert(ThisCases.size() == 1 && "Branch can only have one case!");
506        Value *Cond = BTI->getCondition();
507        // Insert the new branch.
508        Instruction *NI = new BranchInst(ThisDef, TI);
509
510        // Remove PHI node entries for the dead edge.
511        ThisCases[0].second->removePredecessor(TI->getParent());
512
513        DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
514              << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
515
516        TI->eraseFromParent();   // Nuke the old one.
517        // If condition is now dead, nuke it.
518        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
519          ErasePossiblyDeadInstructionTree(CondI);
520        return true;
521
522      } else {
523        SwitchInst *SI = cast<SwitchInst>(TI);
524        // Okay, TI has cases that are statically dead, prune them away.
525        std::set<Constant*> DeadCases;
526        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
527          DeadCases.insert(PredCases[i].first);
528
529        DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
530                  << "Through successor TI: " << *TI);
531
532        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
533          if (DeadCases.count(SI->getCaseValue(i))) {
534            SI->getSuccessor(i)->removePredecessor(TI->getParent());
535            SI->removeCase(i);
536          }
537
538        DEBUG(std::cerr << "Leaving: " << *TI << "\n");
539        return true;
540      }
541    }
542
543  } else {
544    // Otherwise, TI's block must correspond to some matched value.  Find out
545    // which value (or set of values) this is.
546    ConstantInt *TIV = 0;
547    BasicBlock *TIBB = TI->getParent();
548    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
549      if (PredCases[i].second == TIBB)
550        if (TIV == 0)
551          TIV = PredCases[i].first;
552        else
553          return false;  // Cannot handle multiple values coming to this block.
554    assert(TIV && "No edge from pred to succ?");
555
556    // Okay, we found the one constant that our value can be if we get into TI's
557    // BB.  Find out which successor will unconditionally be branched to.
558    BasicBlock *TheRealDest = 0;
559    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
560      if (ThisCases[i].first == TIV) {
561        TheRealDest = ThisCases[i].second;
562        break;
563      }
564
565    // If not handled by any explicit cases, it is handled by the default case.
566    if (TheRealDest == 0) TheRealDest = ThisDef;
567
568    // Remove PHI node entries for dead edges.
569    BasicBlock *CheckEdge = TheRealDest;
570    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
571      if (*SI != CheckEdge)
572        (*SI)->removePredecessor(TIBB);
573      else
574        CheckEdge = 0;
575
576    // Insert the new branch.
577    Instruction *NI = new BranchInst(TheRealDest, TI);
578
579    DEBUG(std::cerr << "Threading pred instr: " << *Pred->getTerminator()
580          << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
581    Instruction *Cond = 0;
582    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
583      Cond = dyn_cast<Instruction>(BI->getCondition());
584    TI->eraseFromParent();   // Nuke the old one.
585
586    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
587    return true;
588  }
589  return false;
590}
591
592// FoldValueComparisonIntoPredecessors - The specified terminator is a value
593// equality comparison instruction (either a switch or a branch on "X == c").
594// See if any of the predecessors of the terminator block are value comparisons
595// on the same value.  If so, and if safe to do so, fold them together.
596static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
597  BasicBlock *BB = TI->getParent();
598  Value *CV = isValueEqualityComparison(TI);  // CondVal
599  assert(CV && "Not a comparison?");
600  bool Changed = false;
601
602  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
603  while (!Preds.empty()) {
604    BasicBlock *Pred = Preds.back();
605    Preds.pop_back();
606
607    // See if the predecessor is a comparison with the same value.
608    TerminatorInst *PTI = Pred->getTerminator();
609    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
610
611    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
612      // Figure out which 'cases' to copy from SI to PSI.
613      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
614      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
615
616      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
617      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
618
619      // Based on whether the default edge from PTI goes to BB or not, fill in
620      // PredCases and PredDefault with the new switch cases we would like to
621      // build.
622      std::vector<BasicBlock*> NewSuccessors;
623
624      if (PredDefault == BB) {
625        // If this is the default destination from PTI, only the edges in TI
626        // that don't occur in PTI, or that branch to BB will be activated.
627        std::set<ConstantInt*> PTIHandled;
628        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
629          if (PredCases[i].second != BB)
630            PTIHandled.insert(PredCases[i].first);
631          else {
632            // The default destination is BB, we don't need explicit targets.
633            std::swap(PredCases[i], PredCases.back());
634            PredCases.pop_back();
635            --i; --e;
636          }
637
638        // Reconstruct the new switch statement we will be building.
639        if (PredDefault != BBDefault) {
640          PredDefault->removePredecessor(Pred);
641          PredDefault = BBDefault;
642          NewSuccessors.push_back(BBDefault);
643        }
644        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
645          if (!PTIHandled.count(BBCases[i].first) &&
646              BBCases[i].second != BBDefault) {
647            PredCases.push_back(BBCases[i]);
648            NewSuccessors.push_back(BBCases[i].second);
649          }
650
651      } else {
652        // If this is not the default destination from PSI, only the edges
653        // in SI that occur in PSI with a destination of BB will be
654        // activated.
655        std::set<ConstantInt*> PTIHandled;
656        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
657          if (PredCases[i].second == BB) {
658            PTIHandled.insert(PredCases[i].first);
659            std::swap(PredCases[i], PredCases.back());
660            PredCases.pop_back();
661            --i; --e;
662          }
663
664        // Okay, now we know which constants were sent to BB from the
665        // predecessor.  Figure out where they will all go now.
666        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
667          if (PTIHandled.count(BBCases[i].first)) {
668            // If this is one we are capable of getting...
669            PredCases.push_back(BBCases[i]);
670            NewSuccessors.push_back(BBCases[i].second);
671            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
672          }
673
674        // If there are any constants vectored to BB that TI doesn't handle,
675        // they must go to the default destination of TI.
676        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
677               E = PTIHandled.end(); I != E; ++I) {
678          PredCases.push_back(std::make_pair(*I, BBDefault));
679          NewSuccessors.push_back(BBDefault);
680        }
681      }
682
683      // Okay, at this point, we know which new successor Pred will get.  Make
684      // sure we update the number of entries in the PHI nodes for these
685      // successors.
686      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
687        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
688
689      // Now that the successors are updated, create the new Switch instruction.
690      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
691      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
692        NewSI->addCase(PredCases[i].first, PredCases[i].second);
693
694      Instruction *DeadCond = 0;
695      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
696        // If PTI is a branch, remember the condition.
697        DeadCond = dyn_cast<Instruction>(BI->getCondition());
698      Pred->getInstList().erase(PTI);
699
700      // If the condition is dead now, remove the instruction tree.
701      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
702
703      // Okay, last check.  If BB is still a successor of PSI, then we must
704      // have an infinite loop case.  If so, add an infinitely looping block
705      // to handle the case to preserve the behavior of the code.
706      BasicBlock *InfLoopBlock = 0;
707      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
708        if (NewSI->getSuccessor(i) == BB) {
709          if (InfLoopBlock == 0) {
710            // Insert it at the end of the loop, because it's either code,
711            // or it won't matter if it's hot. :)
712            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
713            new BranchInst(InfLoopBlock, InfLoopBlock);
714          }
715          NewSI->setSuccessor(i, InfLoopBlock);
716        }
717
718      Changed = true;
719    }
720  }
721  return Changed;
722}
723
724/// HoistThenElseCodeToIf - Given a conditional branch that codes to BB1 and
725/// BB2, hoist any common code in the two blocks up into the branch block.  The
726/// caller of this function guarantees that BI's block dominates BB1 and BB2.
727static bool HoistThenElseCodeToIf(BranchInst *BI) {
728  // This does very trivial matching, with limited scanning, to find identical
729  // instructions in the two blocks.  In particular, we don't want to get into
730  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
731  // such, we currently just scan for obviously identical instructions in an
732  // identical order.
733  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
734  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
735
736  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
737  if (I1->getOpcode() != I2->getOpcode() || !I1->isIdenticalTo(I2))
738    return false;
739
740  // If we get here, we can hoist at least one instruction.
741  BasicBlock *BIParent = BI->getParent();
742
743  do {
744    // If we are hoisting the terminator instruction, don't move one (making a
745    // broken BB), instead clone it, and remove BI.
746    if (isa<TerminatorInst>(I1))
747      goto HoistTerminator;
748
749    // For a normal instruction, we just move one to right before the branch,
750    // then replace all uses of the other with the first.  Finally, we remove
751    // the now redundant second instruction.
752    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
753    if (!I2->use_empty())
754      I2->replaceAllUsesWith(I1);
755    BB2->getInstList().erase(I2);
756
757    I1 = BB1->begin();
758    I2 = BB2->begin();
759  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
760
761  return true;
762
763HoistTerminator:
764  // Okay, it is safe to hoist the terminator.
765  Instruction *NT = I1->clone();
766  BIParent->getInstList().insert(BI, NT);
767  if (NT->getType() != Type::VoidTy) {
768    I1->replaceAllUsesWith(NT);
769    I2->replaceAllUsesWith(NT);
770    NT->setName(I1->getName());
771  }
772
773  // Hoisting one of the terminators from our successor is a great thing.
774  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
775  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
776  // nodes, so we insert select instruction to compute the final result.
777  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
778  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
779    PHINode *PN;
780    for (BasicBlock::iterator BBI = SI->begin();
781         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
782      Value *BB1V = PN->getIncomingValueForBlock(BB1);
783      Value *BB2V = PN->getIncomingValueForBlock(BB2);
784      if (BB1V != BB2V) {
785        // These values do not agree.  Insert a select instruction before NT
786        // that determines the right value.
787        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
788        if (SI == 0)
789          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
790                              BB1V->getName()+"."+BB2V->getName(), NT);
791        // Make the PHI node use the select for all incoming values for BB1/BB2
792        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
793          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
794            PN->setIncomingValue(i, SI);
795      }
796    }
797  }
798
799  // Update any PHI nodes in our new successors.
800  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
801    AddPredecessorToBlock(*SI, BIParent, BB1);
802
803  BI->eraseFromParent();
804  return true;
805}
806
807namespace {
808  /// ConstantIntOrdering - This class implements a stable ordering of constant
809  /// integers that does not depend on their address.  This is important for
810  /// applications that sort ConstantInt's to ensure uniqueness.
811  struct ConstantIntOrdering {
812    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
813      return LHS->getRawValue() < RHS->getRawValue();
814    }
815  };
816}
817
818
819// SimplifyCFG - This function is used to do simplification of a CFG.  For
820// example, it adjusts branches to branches to eliminate the extra hop, it
821// eliminates unreachable basic blocks, and does other "peephole" optimization
822// of the CFG.  It returns true if a modification was made.
823//
824// WARNING:  The entry node of a function may not be simplified.
825//
826bool llvm::SimplifyCFG(BasicBlock *BB) {
827  bool Changed = false;
828  Function *M = BB->getParent();
829
830  assert(BB && BB->getParent() && "Block not embedded in function!");
831  assert(BB->getTerminator() && "Degenerate basic block encountered!");
832  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
833
834  // Remove basic blocks that have no predecessors... which are unreachable.
835  if (pred_begin(BB) == pred_end(BB) ||
836      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
837    DEBUG(std::cerr << "Removing BB: \n" << *BB);
838
839    // Loop through all of our successors and make sure they know that one
840    // of their predecessors is going away.
841    for_each(succ_begin(BB), succ_end(BB),
842	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
843
844    while (!BB->empty()) {
845      Instruction &I = BB->back();
846      // If this instruction is used, replace uses with an arbitrary
847      // constant value.  Because control flow can't get here, we don't care
848      // what we replace the value with.  Note that since this block is
849      // unreachable, and all values contained within it must dominate their
850      // uses, that all uses will eventually be removed.
851      if (!I.use_empty())
852        // Make all users of this instruction reference the constant instead
853        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
854
855      // Remove the instruction from the basic block
856      BB->getInstList().pop_back();
857    }
858    M->getBasicBlockList().erase(BB);
859    return true;
860  }
861
862  // Check to see if we can constant propagate this terminator instruction
863  // away...
864  Changed |= ConstantFoldTerminator(BB);
865
866  // Check to see if this block has no non-phi instructions and only a single
867  // successor.  If so, replace references to this basic block with references
868  // to the successor.
869  succ_iterator SI(succ_begin(BB));
870  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
871    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
872    while (isa<PHINode>(*BBI)) ++BBI;
873
874    BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor.
875    if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
876        Succ != BB) {           // Don't hurt infinite loops!
877      // If our successor has PHI nodes, then we need to update them to include
878      // entries for BB's predecessors, not for BB itself.  Be careful though,
879      // if this transformation fails (returns true) then we cannot do this
880      // transformation!
881      //
882      if (!PropagatePredecessorsForPHIs(BB, Succ)) {
883        DEBUG(std::cerr << "Killing Trivial BB: \n" << *BB);
884
885        if (isa<PHINode>(&BB->front())) {
886          std::vector<BasicBlock*>
887            OldSuccPreds(pred_begin(Succ), pred_end(Succ));
888
889          // Move all PHI nodes in BB to Succ if they are alive, otherwise
890          // delete them.
891          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
892            if (PN->use_empty())
893              BB->getInstList().erase(BB->begin());  // Nuke instruction.
894            else {
895              // The instruction is alive, so this means that Succ must have
896              // *ONLY* had BB as a predecessor, and the PHI node is still valid
897              // now.  Simply move it into Succ, because we know that BB
898              // strictly dominated Succ.
899              BB->getInstList().remove(BB->begin());
900              Succ->getInstList().push_front(PN);
901
902              // We need to add new entries for the PHI node to account for
903              // predecessors of Succ that the PHI node does not take into
904              // account.  At this point, since we know that BB dominated succ,
905              // this means that we should any newly added incoming edges should
906              // use the PHI node as the value for these edges, because they are
907              // loop back edges.
908              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
909                if (OldSuccPreds[i] != BB)
910                  PN->addIncoming(PN, OldSuccPreds[i]);
911            }
912        }
913
914        // Everything that jumped to BB now goes to Succ.
915        std::string OldName = BB->getName();
916        BB->replaceAllUsesWith(Succ);
917        BB->eraseFromParent();              // Delete the old basic block.
918
919        if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
920          Succ->setName(OldName);
921        return true;
922      }
923    }
924  }
925
926  // If this is a returning block with only PHI nodes in it, fold the return
927  // instruction into any unconditional branch predecessors.
928  //
929  // If any predecessor is a conditional branch that just selects among
930  // different return values, fold the replace the branch/return with a select
931  // and return.
932  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
933    BasicBlock::iterator BBI = BB->getTerminator();
934    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
935      // Find predecessors that end with branches.
936      std::vector<BasicBlock*> UncondBranchPreds;
937      std::vector<BranchInst*> CondBranchPreds;
938      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
939        TerminatorInst *PTI = (*PI)->getTerminator();
940        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
941          if (BI->isUnconditional())
942            UncondBranchPreds.push_back(*PI);
943          else
944            CondBranchPreds.push_back(BI);
945      }
946
947      // If we found some, do the transformation!
948      if (!UncondBranchPreds.empty()) {
949        while (!UncondBranchPreds.empty()) {
950          BasicBlock *Pred = UncondBranchPreds.back();
951          UncondBranchPreds.pop_back();
952          Instruction *UncondBranch = Pred->getTerminator();
953          // Clone the return and add it to the end of the predecessor.
954          Instruction *NewRet = RI->clone();
955          Pred->getInstList().push_back(NewRet);
956
957          // If the return instruction returns a value, and if the value was a
958          // PHI node in "BB", propagate the right value into the return.
959          if (NewRet->getNumOperands() == 1)
960            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
961              if (PN->getParent() == BB)
962                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
963          // Update any PHI nodes in the returning block to realize that we no
964          // longer branch to them.
965          BB->removePredecessor(Pred);
966          Pred->getInstList().erase(UncondBranch);
967        }
968
969        // If we eliminated all predecessors of the block, delete the block now.
970        if (pred_begin(BB) == pred_end(BB))
971          // We know there are no successors, so just nuke the block.
972          M->getBasicBlockList().erase(BB);
973
974        return true;
975      }
976
977      // Check out all of the conditional branches going to this return
978      // instruction.  If any of them just select between returns, change the
979      // branch itself into a select/return pair.
980      while (!CondBranchPreds.empty()) {
981        BranchInst *BI = CondBranchPreds.back();
982        CondBranchPreds.pop_back();
983        BasicBlock *TrueSucc = BI->getSuccessor(0);
984        BasicBlock *FalseSucc = BI->getSuccessor(1);
985        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
986
987        // Check to see if the non-BB successor is also a return block.
988        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
989          // Check to see if there are only PHI instructions in this block.
990          BasicBlock::iterator OSI = OtherSucc->getTerminator();
991          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
992            // Okay, we found a branch that is going to two return nodes.  If
993            // there is no return value for this function, just change the
994            // branch into a return.
995            if (RI->getNumOperands() == 0) {
996              TrueSucc->removePredecessor(BI->getParent());
997              FalseSucc->removePredecessor(BI->getParent());
998              new ReturnInst(0, BI);
999              BI->getParent()->getInstList().erase(BI);
1000              return true;
1001            }
1002
1003            // Otherwise, figure out what the true and false return values are
1004            // so we can insert a new select instruction.
1005            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1006            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1007
1008            // Unwrap any PHI nodes in the return blocks.
1009            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1010              if (TVPN->getParent() == TrueSucc)
1011                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1012            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1013              if (FVPN->getParent() == FalseSucc)
1014                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1015
1016            TrueSucc->removePredecessor(BI->getParent());
1017            FalseSucc->removePredecessor(BI->getParent());
1018
1019            // Insert a new select instruction.
1020            Value *NewRetVal;
1021            Value *BrCond = BI->getCondition();
1022            if (TrueValue != FalseValue)
1023              NewRetVal = new SelectInst(BrCond, TrueValue,
1024                                         FalseValue, "retval", BI);
1025            else
1026              NewRetVal = TrueValue;
1027
1028            new ReturnInst(NewRetVal, BI);
1029            BI->getParent()->getInstList().erase(BI);
1030            if (BrCond->use_empty())
1031              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1032                BrCondI->getParent()->getInstList().erase(BrCondI);
1033            return true;
1034          }
1035        }
1036      }
1037    }
1038  } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->begin())) {
1039    // Check to see if the first instruction in this block is just an unwind.
1040    // If so, replace any invoke instructions which use this as an exception
1041    // destination with call instructions, and any unconditional branch
1042    // predecessor with an unwind.
1043    //
1044    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1045    while (!Preds.empty()) {
1046      BasicBlock *Pred = Preds.back();
1047      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1048        if (BI->isUnconditional()) {
1049          Pred->getInstList().pop_back();  // nuke uncond branch
1050          new UnwindInst(Pred);            // Use unwind.
1051          Changed = true;
1052        }
1053      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1054        if (II->getUnwindDest() == BB) {
1055          // Insert a new branch instruction before the invoke, because this
1056          // is now a fall through...
1057          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1058          Pred->getInstList().remove(II);   // Take out of symbol table
1059
1060          // Insert the call now...
1061          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1062          CallInst *CI = new CallInst(II->getCalledValue(), Args,
1063                                      II->getName(), BI);
1064          // If the invoke produced a value, the Call now does instead
1065          II->replaceAllUsesWith(CI);
1066          delete II;
1067          Changed = true;
1068        }
1069
1070      Preds.pop_back();
1071    }
1072
1073    // If this block is now dead, remove it.
1074    if (pred_begin(BB) == pred_end(BB)) {
1075      // We know there are no successors, so just nuke the block.
1076      M->getBasicBlockList().erase(BB);
1077      return true;
1078    }
1079
1080  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1081    if (isValueEqualityComparison(SI)) {
1082      // If we only have one predecessor, and if it is a branch on this value,
1083      // see if that predecessor totally determines the outcome of this switch.
1084      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1085        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1086          return SimplifyCFG(BB) || 1;
1087
1088      // If the block only contains the switch, see if we can fold the block
1089      // away into any preds.
1090      if (SI == &BB->front())
1091        if (FoldValueComparisonIntoPredecessors(SI))
1092          return SimplifyCFG(BB) || 1;
1093    }
1094  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1095    if (BI->isConditional()) {
1096      if (Value *CompVal = isValueEqualityComparison(BI)) {
1097        // If we only have one predecessor, and if it is a branch on this value,
1098        // see if that predecessor totally determines the outcome of this
1099        // switch.
1100        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1101          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1102            return SimplifyCFG(BB) || 1;
1103
1104        // This block must be empty, except for the setcond inst, if it exists.
1105        BasicBlock::iterator I = BB->begin();
1106        if (&*I == BI ||
1107            (&*I == cast<Instruction>(BI->getCondition()) &&
1108             &*++I == BI))
1109          if (FoldValueComparisonIntoPredecessors(BI))
1110            return SimplifyCFG(BB) | true;
1111      }
1112
1113      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1114      // branches to us and one of our successors, fold the setcc into the
1115      // predecessor and use logical operations to pick the right destination.
1116      BasicBlock *TrueDest  = BI->getSuccessor(0);
1117      BasicBlock *FalseDest = BI->getSuccessor(1);
1118      if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(BI->getCondition()))
1119        if (Cond->getParent() == BB && &BB->front() == Cond &&
1120            Cond->getNext() == BI && Cond->hasOneUse() &&
1121            TrueDest != BB && FalseDest != BB)
1122          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1123            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1124              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1125                BasicBlock *PredBlock = *PI;
1126                if (PBI->getSuccessor(0) == FalseDest ||
1127                    PBI->getSuccessor(1) == TrueDest) {
1128                  // Invert the predecessors condition test (xor it with true),
1129                  // which allows us to write this code once.
1130                  Value *NewCond =
1131                    BinaryOperator::createNot(PBI->getCondition(),
1132                                    PBI->getCondition()->getName()+".not", PBI);
1133                  PBI->setCondition(NewCond);
1134                  BasicBlock *OldTrue = PBI->getSuccessor(0);
1135                  BasicBlock *OldFalse = PBI->getSuccessor(1);
1136                  PBI->setSuccessor(0, OldFalse);
1137                  PBI->setSuccessor(1, OldTrue);
1138                }
1139
1140                if (PBI->getSuccessor(0) == TrueDest ||
1141                    PBI->getSuccessor(1) == FalseDest) {
1142                  // Clone Cond into the predecessor basic block, and or/and the
1143                  // two conditions together.
1144                  Instruction *New = Cond->clone();
1145                  New->setName(Cond->getName());
1146                  Cond->setName(Cond->getName()+".old");
1147                  PredBlock->getInstList().insert(PBI, New);
1148                  Instruction::BinaryOps Opcode =
1149                    PBI->getSuccessor(0) == TrueDest ?
1150                    Instruction::Or : Instruction::And;
1151                  Value *NewCond =
1152                    BinaryOperator::create(Opcode, PBI->getCondition(),
1153                                           New, "bothcond", PBI);
1154                  PBI->setCondition(NewCond);
1155                  if (PBI->getSuccessor(0) == BB) {
1156                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
1157                    PBI->setSuccessor(0, TrueDest);
1158                  }
1159                  if (PBI->getSuccessor(1) == BB) {
1160                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
1161                    PBI->setSuccessor(1, FalseDest);
1162                  }
1163                  return SimplifyCFG(BB) | 1;
1164                }
1165              }
1166
1167      // If this block ends with a branch instruction, and if there is one
1168      // predecessor, see if the previous block ended with a branch on the same
1169      // condition, which makes this conditional branch redundant.
1170      pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1171      BasicBlock *OnlyPred = *PI++;
1172      for (; PI != PE; ++PI)// Search all predecessors, see if they are all same
1173        if (*PI != OnlyPred) {
1174          OnlyPred = 0;       // There are multiple different predecessors...
1175          break;
1176        }
1177
1178      if (OnlyPred)
1179        if (BranchInst *PBI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1180          if (PBI->isConditional() &&
1181              PBI->getCondition() == BI->getCondition() &&
1182              (PBI->getSuccessor(0) != BB || PBI->getSuccessor(1) != BB)) {
1183            // Okay, the outcome of this conditional branch is statically
1184            // knowable.  Delete the outgoing CFG edge that is impossible to
1185            // execute.
1186            bool CondIsTrue = PBI->getSuccessor(0) == BB;
1187            BI->getSuccessor(CondIsTrue)->removePredecessor(BB);
1188            new BranchInst(BI->getSuccessor(!CondIsTrue), BB);
1189            BB->getInstList().erase(BI);
1190            return SimplifyCFG(BB) | true;
1191          }
1192    }
1193  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1194    // If there are any instructions immediately before the unreachable that can
1195    // be removed, do so.
1196    Instruction *Unreachable = BB->getTerminator();
1197    while (Unreachable != BB->begin()) {
1198      BasicBlock::iterator BBI = Unreachable;
1199      --BBI;
1200      if (isa<CallInst>(BBI)) break;
1201      // Delete this instruction
1202      BB->getInstList().erase(BBI);
1203      Changed = true;
1204    }
1205
1206    // If the unreachable instruction is the first in the block, take a gander
1207    // at all of the predecessors of this instruction, and simplify them.
1208    if (&BB->front() == Unreachable) {
1209      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1210      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1211        TerminatorInst *TI = Preds[i]->getTerminator();
1212
1213        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1214          if (BI->isUnconditional()) {
1215            if (BI->getSuccessor(0) == BB) {
1216              new UnreachableInst(TI);
1217              TI->eraseFromParent();
1218              Changed = true;
1219            }
1220          } else {
1221            if (BI->getSuccessor(0) == BB) {
1222              new BranchInst(BI->getSuccessor(1), BI);
1223              BI->eraseFromParent();
1224            } else if (BI->getSuccessor(1) == BB) {
1225              new BranchInst(BI->getSuccessor(0), BI);
1226              BI->eraseFromParent();
1227              Changed = true;
1228            }
1229          }
1230        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1231          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1232            if (SI->getSuccessor(i) == BB) {
1233              SI->removeCase(i);
1234              --i; --e;
1235              Changed = true;
1236            }
1237          // If the default value is unreachable, figure out the most popular
1238          // destination and make it the default.
1239          if (SI->getSuccessor(0) == BB) {
1240            std::map<BasicBlock*, unsigned> Popularity;
1241            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1242              Popularity[SI->getSuccessor(i)]++;
1243
1244            // Find the most popular block.
1245            unsigned MaxPop = 0;
1246            BasicBlock *MaxBlock = 0;
1247            for (std::map<BasicBlock*, unsigned>::iterator
1248                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1249              if (I->second > MaxPop) {
1250                MaxPop = I->second;
1251                MaxBlock = I->first;
1252              }
1253            }
1254            if (MaxBlock) {
1255              // Make this the new default, allowing us to delete any explicit
1256              // edges to it.
1257              SI->setSuccessor(0, MaxBlock);
1258              Changed = true;
1259
1260              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1261                if (SI->getSuccessor(i) == MaxBlock) {
1262                  SI->removeCase(i);
1263                  --i; --e;
1264                }
1265            }
1266          }
1267        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1268          if (II->getUnwindDest() == BB) {
1269            // Convert the invoke to a call instruction.  This would be a good
1270            // place to note that the call does not throw though.
1271            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1272            II->removeFromParent();   // Take out of symbol table
1273
1274            // Insert the call now...
1275            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1276            CallInst *CI = new CallInst(II->getCalledValue(), Args,
1277                                        II->getName(), BI);
1278            // If the invoke produced a value, the Call does now instead.
1279            II->replaceAllUsesWith(CI);
1280            delete II;
1281            Changed = true;
1282          }
1283        }
1284      }
1285
1286      // If this block is now dead, remove it.
1287      if (pred_begin(BB) == pred_end(BB)) {
1288        // We know there are no successors, so just nuke the block.
1289        M->getBasicBlockList().erase(BB);
1290        return true;
1291      }
1292    }
1293  }
1294
1295  // Merge basic blocks into their predecessor if there is only one distinct
1296  // pred, and if there is only one distinct successor of the predecessor, and
1297  // if there are no PHI nodes.
1298  //
1299  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1300  BasicBlock *OnlyPred = *PI++;
1301  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1302    if (*PI != OnlyPred) {
1303      OnlyPred = 0;       // There are multiple different predecessors...
1304      break;
1305    }
1306
1307  BasicBlock *OnlySucc = 0;
1308  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
1309      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1310    // Check to see if there is only one distinct successor...
1311    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1312    OnlySucc = BB;
1313    for (; SI != SE; ++SI)
1314      if (*SI != OnlySucc) {
1315        OnlySucc = 0;     // There are multiple distinct successors!
1316        break;
1317      }
1318  }
1319
1320  if (OnlySucc) {
1321    DEBUG(std::cerr << "Merging: " << *BB << "into: " << *OnlyPred);
1322    TerminatorInst *Term = OnlyPred->getTerminator();
1323
1324    // Resolve any PHI nodes at the start of the block.  They are all
1325    // guaranteed to have exactly one entry if they exist, unless there are
1326    // multiple duplicate (but guaranteed to be equal) entries for the
1327    // incoming edges.  This occurs when there are multiple edges from
1328    // OnlyPred to OnlySucc.
1329    //
1330    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1331      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1332      BB->getInstList().pop_front();  // Delete the phi node...
1333    }
1334
1335    // Delete the unconditional branch from the predecessor...
1336    OnlyPred->getInstList().pop_back();
1337
1338    // Move all definitions in the successor to the predecessor...
1339    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1340
1341    // Make all PHI nodes that referred to BB now refer to Pred as their
1342    // source...
1343    BB->replaceAllUsesWith(OnlyPred);
1344
1345    std::string OldName = BB->getName();
1346
1347    // Erase basic block from the function...
1348    M->getBasicBlockList().erase(BB);
1349
1350    // Inherit predecessors name if it exists...
1351    if (!OldName.empty() && !OnlyPred->hasName())
1352      OnlyPred->setName(OldName);
1353
1354    return true;
1355  }
1356
1357  // Otherwise, if this block only has a single predecessor, and if that block
1358  // is a conditional branch, see if we can hoist any code from this block up
1359  // into our predecessor.
1360  if (OnlyPred)
1361    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1362      if (BI->isConditional()) {
1363        // Get the other block.
1364        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1365        PI = pred_begin(OtherBB);
1366        ++PI;
1367        if (PI == pred_end(OtherBB)) {
1368          // We have a conditional branch to two blocks that are only reachable
1369          // from the condbr.  We know that the condbr dominates the two blocks,
1370          // so see if there is any identical code in the "then" and "else"
1371          // blocks.  If so, we can hoist it up to the branching block.
1372          Changed |= HoistThenElseCodeToIf(BI);
1373        }
1374      }
1375
1376  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1377    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1378      // Change br (X == 0 | X == 1), T, F into a switch instruction.
1379      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1380        Instruction *Cond = cast<Instruction>(BI->getCondition());
1381        // If this is a bunch of seteq's or'd together, or if it's a bunch of
1382        // 'setne's and'ed together, collect them.
1383        Value *CompVal = 0;
1384        std::vector<ConstantInt*> Values;
1385        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1386        if (CompVal && CompVal->getType()->isInteger()) {
1387          // There might be duplicate constants in the list, which the switch
1388          // instruction can't handle, remove them now.
1389          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1390          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1391
1392          // Figure out which block is which destination.
1393          BasicBlock *DefaultBB = BI->getSuccessor(1);
1394          BasicBlock *EdgeBB    = BI->getSuccessor(0);
1395          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1396
1397          // Create the new switch instruction now.
1398          SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
1399
1400          // Add all of the 'cases' to the switch instruction.
1401          for (unsigned i = 0, e = Values.size(); i != e; ++i)
1402            New->addCase(Values[i], EdgeBB);
1403
1404          // We added edges from PI to the EdgeBB.  As such, if there were any
1405          // PHI nodes in EdgeBB, they need entries to be added corresponding to
1406          // the number of edges added.
1407          for (BasicBlock::iterator BBI = EdgeBB->begin();
1408               isa<PHINode>(BBI); ++BBI) {
1409            PHINode *PN = cast<PHINode>(BBI);
1410            Value *InVal = PN->getIncomingValueForBlock(*PI);
1411            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1412              PN->addIncoming(InVal, *PI);
1413          }
1414
1415          // Erase the old branch instruction.
1416          (*PI)->getInstList().erase(BI);
1417
1418          // Erase the potentially condition tree that was used to computed the
1419          // branch condition.
1420          ErasePossiblyDeadInstructionTree(Cond);
1421          return true;
1422        }
1423      }
1424
1425  // If there is a trivial two-entry PHI node in this basic block, and we can
1426  // eliminate it, do so now.
1427  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1428    if (PN->getNumIncomingValues() == 2) {
1429      // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1430      // statement", which has a very simple dominance structure.  Basically, we
1431      // are trying to find the condition that is being branched on, which
1432      // subsequently causes this merge to happen.  We really want control
1433      // dependence information for this check, but simplifycfg can't keep it up
1434      // to date, and this catches most of the cases we care about anyway.
1435      //
1436      BasicBlock *IfTrue, *IfFalse;
1437      if (Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse)) {
1438        DEBUG(std::cerr << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1439              << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1440
1441        // Loop over the PHI's seeing if we can promote them all to select
1442        // instructions.  While we are at it, keep track of the instructions
1443        // that need to be moved to the dominating block.
1444        std::set<Instruction*> AggressiveInsts;
1445        bool CanPromote = true;
1446
1447        BasicBlock::iterator AfterPHIIt = BB->begin();
1448        while (isa<PHINode>(AfterPHIIt)) {
1449          PHINode *PN = cast<PHINode>(AfterPHIIt++);
1450          if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
1451            PN->replaceAllUsesWith(PN->getIncomingValue(0));
1452          else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1453                                        &AggressiveInsts) ||
1454                   !DominatesMergePoint(PN->getIncomingValue(1), BB,
1455                                        &AggressiveInsts)) {
1456            CanPromote = false;
1457            break;
1458          }
1459        }
1460
1461        // Did we eliminate all PHI's?
1462        CanPromote |= AfterPHIIt == BB->begin();
1463
1464        // If we all PHI nodes are promotable, check to make sure that all
1465        // instructions in the predecessor blocks can be promoted as well.  If
1466        // not, we won't be able to get rid of the control flow, so it's not
1467        // worth promoting to select instructions.
1468        BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1469        if (CanPromote) {
1470          PN = cast<PHINode>(BB->begin());
1471          BasicBlock *Pred = PN->getIncomingBlock(0);
1472          if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1473            IfBlock1 = Pred;
1474            DomBlock = *pred_begin(Pred);
1475            for (BasicBlock::iterator I = Pred->begin();
1476                 !isa<TerminatorInst>(I); ++I)
1477              if (!AggressiveInsts.count(I)) {
1478                // This is not an aggressive instruction that we can promote.
1479                // Because of this, we won't be able to get rid of the control
1480                // flow, so the xform is not worth it.
1481                CanPromote = false;
1482                break;
1483              }
1484          }
1485
1486          Pred = PN->getIncomingBlock(1);
1487          if (CanPromote &&
1488              cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1489            IfBlock2 = Pred;
1490            DomBlock = *pred_begin(Pred);
1491            for (BasicBlock::iterator I = Pred->begin();
1492                 !isa<TerminatorInst>(I); ++I)
1493              if (!AggressiveInsts.count(I)) {
1494                // This is not an aggressive instruction that we can promote.
1495                // Because of this, we won't be able to get rid of the control
1496                // flow, so the xform is not worth it.
1497                CanPromote = false;
1498                break;
1499              }
1500          }
1501        }
1502
1503        // If we can still promote the PHI nodes after this gauntlet of tests,
1504        // do all of the PHI's now.
1505        if (CanPromote) {
1506          // Move all 'aggressive' instructions, which are defined in the
1507          // conditional parts of the if's up to the dominating block.
1508          if (IfBlock1) {
1509            DomBlock->getInstList().splice(DomBlock->getTerminator(),
1510                                           IfBlock1->getInstList(),
1511                                           IfBlock1->begin(),
1512                                           IfBlock1->getTerminator());
1513          }
1514          if (IfBlock2) {
1515            DomBlock->getInstList().splice(DomBlock->getTerminator(),
1516                                           IfBlock2->getInstList(),
1517                                           IfBlock2->begin(),
1518                                           IfBlock2->getTerminator());
1519          }
1520
1521          while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1522            // Change the PHI node into a select instruction.
1523            Value *TrueVal =
1524              PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1525            Value *FalseVal =
1526              PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1527
1528            std::string Name = PN->getName(); PN->setName("");
1529            PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
1530                                                  Name, AfterPHIIt));
1531            BB->getInstList().erase(PN);
1532          }
1533          Changed = true;
1534        }
1535      }
1536    }
1537
1538  return Changed;
1539}
1540