SimplifyCFG.cpp revision 6b6b6ef1677fa71b1072c2911b4c1f9524a558c9
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include <algorithm>
23#include <functional>
24#include <set>
25#include <map>
26using namespace llvm;
27
28/// SafeToMergeTerminators - Return true if it is safe to merge these two
29/// terminator instructions together.
30///
31static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
32  if (SI1 == SI2) return false;  // Can't merge with self!
33
34  // It is not safe to merge these two switch instructions if they have a common
35  // successor, and if that successor has a PHI node, and if *that* PHI node has
36  // conflicting incoming values from the two switch blocks.
37  BasicBlock *SI1BB = SI1->getParent();
38  BasicBlock *SI2BB = SI2->getParent();
39  std::set<BasicBlock*> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
40
41  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
42    if (SI1Succs.count(*I))
43      for (BasicBlock::iterator BBI = (*I)->begin();
44           isa<PHINode>(BBI); ++BBI) {
45        PHINode *PN = cast<PHINode>(BBI);
46        if (PN->getIncomingValueForBlock(SI1BB) !=
47            PN->getIncomingValueForBlock(SI2BB))
48          return false;
49      }
50
51  return true;
52}
53
54/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
55/// now be entries in it from the 'NewPred' block.  The values that will be
56/// flowing into the PHI nodes will be the same as those coming in from
57/// ExistPred, an existing predecessor of Succ.
58static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
59                                  BasicBlock *ExistPred) {
60  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
61         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
62  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
63
64  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
65    PHINode *PN = cast<PHINode>(I);
66    Value *V = PN->getIncomingValueForBlock(ExistPred);
67    PN->addIncoming(V, NewPred);
68  }
69}
70
71// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
72// almost-empty BB ending in an unconditional branch to Succ, into succ.
73//
74// Assumption: Succ is the single successor for BB.
75//
76static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
77  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
78
79  // Check to see if one of the predecessors of BB is already a predecessor of
80  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
81  // with incompatible values coming in from the two edges!
82  //
83  if (isa<PHINode>(Succ->front())) {
84    std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
85    for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
86         PI != PE; ++PI)
87      if (std::find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
88        // Loop over all of the PHI nodes checking to see if there are
89        // incompatible values coming in.
90        for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
91          PHINode *PN = cast<PHINode>(I);
92          // Loop up the entries in the PHI node for BB and for *PI if the
93          // values coming in are non-equal, we cannot merge these two blocks
94          // (instead we should insert a conditional move or something, then
95          // merge the blocks).
96          if (PN->getIncomingValueForBlock(BB) !=
97              PN->getIncomingValueForBlock(*PI))
98            return false;  // Values are not equal...
99        }
100      }
101  }
102
103  // Finally, if BB has PHI nodes that are used by things other than the PHIs in
104  // Succ and Succ has predecessors that are not Succ and not Pred, we cannot
105  // fold these blocks, as we don't know whether BB dominates Succ or not to
106  // update the PHI nodes correctly.
107  if (!isa<PHINode>(BB->begin()) || Succ->getSinglePredecessor()) return true;
108
109  // If the predecessors of Succ are only BB and Succ itself, we can handle this.
110  bool IsSafe = true;
111  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
112    if (*PI != Succ && *PI != BB) {
113      IsSafe = false;
114      break;
115    }
116  if (IsSafe) return true;
117
118  // If the PHI nodes in BB are only used by instructions in Succ, we are ok if
119  // BB and Succ have no common predecessors.
120  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
121    PHINode *PN = cast<PHINode>(I);
122    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E;
123         ++UI)
124      if (cast<Instruction>(*UI)->getParent() != Succ)
125        return false;
126  }
127
128  // Scan the predecessor sets of BB and Succ, making sure there are no common
129  // predecessors.  Common predecessors would cause us to build a phi node with
130  // differing incoming values, which is not legal.
131  std::set<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
132  for (pred_iterator PI = pred_begin(Succ), E = pred_end(Succ); PI != E; ++PI)
133    if (BBPreds.count(*PI))
134      return false;
135
136  return true;
137}
138
139/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
140/// branch to Succ, and contains no instructions other than PHI nodes and the
141/// branch.  If possible, eliminate BB.
142static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
143                                                    BasicBlock *Succ) {
144  // If our successor has PHI nodes, then we need to update them to include
145  // entries for BB's predecessors, not for BB itself.  Be careful though,
146  // if this transformation fails (returns true) then we cannot do this
147  // transformation!
148  //
149  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
150
151  DOUT << "Killing Trivial BB: \n" << *BB;
152
153  if (isa<PHINode>(Succ->begin())) {
154    // If there is more than one pred of succ, and there are PHI nodes in
155    // the successor, then we need to add incoming edges for the PHI nodes
156    //
157    const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
158
159    // Loop over all of the PHI nodes in the successor of BB.
160    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
161      PHINode *PN = cast<PHINode>(I);
162      Value *OldVal = PN->removeIncomingValue(BB, false);
163      assert(OldVal && "No entry in PHI for Pred BB!");
164
165      // If this incoming value is one of the PHI nodes in BB, the new entries
166      // in the PHI node are the entries from the old PHI.
167      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
168        PHINode *OldValPN = cast<PHINode>(OldVal);
169        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
170          PN->addIncoming(OldValPN->getIncomingValue(i),
171                          OldValPN->getIncomingBlock(i));
172      } else {
173        for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
174             End = BBPreds.end(); PredI != End; ++PredI) {
175          // Add an incoming value for each of the new incoming values...
176          PN->addIncoming(OldVal, *PredI);
177        }
178      }
179    }
180  }
181
182  if (isa<PHINode>(&BB->front())) {
183    std::vector<BasicBlock*>
184    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
185
186    // Move all PHI nodes in BB to Succ if they are alive, otherwise
187    // delete them.
188    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
189      if (PN->use_empty()) {
190        // Just remove the dead phi.  This happens if Succ's PHIs were the only
191        // users of the PHI nodes.
192        PN->eraseFromParent();
193      } else {
194        // The instruction is alive, so this means that Succ must have
195        // *ONLY* had BB as a predecessor, and the PHI node is still valid
196        // now.  Simply move it into Succ, because we know that BB
197        // strictly dominated Succ.
198        Succ->getInstList().splice(Succ->begin(),
199                                   BB->getInstList(), BB->begin());
200
201        // We need to add new entries for the PHI node to account for
202        // predecessors of Succ that the PHI node does not take into
203        // account.  At this point, since we know that BB dominated succ,
204        // this means that we should any newly added incoming edges should
205        // use the PHI node as the value for these edges, because they are
206        // loop back edges.
207        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
208          if (OldSuccPreds[i] != BB)
209            PN->addIncoming(PN, OldSuccPreds[i]);
210      }
211  }
212
213  // Everything that jumped to BB now goes to Succ.
214  std::string OldName = BB->getName();
215  BB->replaceAllUsesWith(Succ);
216  BB->eraseFromParent();              // Delete the old basic block.
217
218  if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
219    Succ->setName(OldName);
220  return true;
221}
222
223/// GetIfCondition - Given a basic block (BB) with two predecessors (and
224/// presumably PHI nodes in it), check to see if the merge at this block is due
225/// to an "if condition".  If so, return the boolean condition that determines
226/// which entry into BB will be taken.  Also, return by references the block
227/// that will be entered from if the condition is true, and the block that will
228/// be entered if the condition is false.
229///
230///
231static Value *GetIfCondition(BasicBlock *BB,
232                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
233  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
234         "Function can only handle blocks with 2 predecessors!");
235  BasicBlock *Pred1 = *pred_begin(BB);
236  BasicBlock *Pred2 = *++pred_begin(BB);
237
238  // We can only handle branches.  Other control flow will be lowered to
239  // branches if possible anyway.
240  if (!isa<BranchInst>(Pred1->getTerminator()) ||
241      !isa<BranchInst>(Pred2->getTerminator()))
242    return 0;
243  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
244  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
245
246  // Eliminate code duplication by ensuring that Pred1Br is conditional if
247  // either are.
248  if (Pred2Br->isConditional()) {
249    // If both branches are conditional, we don't have an "if statement".  In
250    // reality, we could transform this case, but since the condition will be
251    // required anyway, we stand no chance of eliminating it, so the xform is
252    // probably not profitable.
253    if (Pred1Br->isConditional())
254      return 0;
255
256    std::swap(Pred1, Pred2);
257    std::swap(Pred1Br, Pred2Br);
258  }
259
260  if (Pred1Br->isConditional()) {
261    // If we found a conditional branch predecessor, make sure that it branches
262    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
263    if (Pred1Br->getSuccessor(0) == BB &&
264        Pred1Br->getSuccessor(1) == Pred2) {
265      IfTrue = Pred1;
266      IfFalse = Pred2;
267    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
268               Pred1Br->getSuccessor(1) == BB) {
269      IfTrue = Pred2;
270      IfFalse = Pred1;
271    } else {
272      // We know that one arm of the conditional goes to BB, so the other must
273      // go somewhere unrelated, and this must not be an "if statement".
274      return 0;
275    }
276
277    // The only thing we have to watch out for here is to make sure that Pred2
278    // doesn't have incoming edges from other blocks.  If it does, the condition
279    // doesn't dominate BB.
280    if (++pred_begin(Pred2) != pred_end(Pred2))
281      return 0;
282
283    return Pred1Br->getCondition();
284  }
285
286  // Ok, if we got here, both predecessors end with an unconditional branch to
287  // BB.  Don't panic!  If both blocks only have a single (identical)
288  // predecessor, and THAT is a conditional branch, then we're all ok!
289  if (pred_begin(Pred1) == pred_end(Pred1) ||
290      ++pred_begin(Pred1) != pred_end(Pred1) ||
291      pred_begin(Pred2) == pred_end(Pred2) ||
292      ++pred_begin(Pred2) != pred_end(Pred2) ||
293      *pred_begin(Pred1) != *pred_begin(Pred2))
294    return 0;
295
296  // Otherwise, if this is a conditional branch, then we can use it!
297  BasicBlock *CommonPred = *pred_begin(Pred1);
298  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
299    assert(BI->isConditional() && "Two successors but not conditional?");
300    if (BI->getSuccessor(0) == Pred1) {
301      IfTrue = Pred1;
302      IfFalse = Pred2;
303    } else {
304      IfTrue = Pred2;
305      IfFalse = Pred1;
306    }
307    return BI->getCondition();
308  }
309  return 0;
310}
311
312
313// If we have a merge point of an "if condition" as accepted above, return true
314// if the specified value dominates the block.  We don't handle the true
315// generality of domination here, just a special case which works well enough
316// for us.
317//
318// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
319// see if V (which must be an instruction) is cheap to compute and is
320// non-trapping.  If both are true, the instruction is inserted into the set and
321// true is returned.
322static bool DominatesMergePoint(Value *V, BasicBlock *BB,
323                                std::set<Instruction*> *AggressiveInsts) {
324  Instruction *I = dyn_cast<Instruction>(V);
325  if (!I) {
326    // Non-instructions all dominate instructions, but not all constantexprs
327    // can be executed unconditionally.
328    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
329      if (C->canTrap())
330        return false;
331    return true;
332  }
333  BasicBlock *PBB = I->getParent();
334
335  // We don't want to allow weird loops that might have the "if condition" in
336  // the bottom of this block.
337  if (PBB == BB) return false;
338
339  // If this instruction is defined in a block that contains an unconditional
340  // branch to BB, then it must be in the 'conditional' part of the "if
341  // statement".
342  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
343    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
344      if (!AggressiveInsts) return false;
345      // Okay, it looks like the instruction IS in the "condition".  Check to
346      // see if its a cheap instruction to unconditionally compute, and if it
347      // only uses stuff defined outside of the condition.  If so, hoist it out.
348      switch (I->getOpcode()) {
349      default: return false;  // Cannot hoist this out safely.
350      case Instruction::Load:
351        // We can hoist loads that are non-volatile and obviously cannot trap.
352        if (cast<LoadInst>(I)->isVolatile())
353          return false;
354        if (!isa<AllocaInst>(I->getOperand(0)) &&
355            !isa<Constant>(I->getOperand(0)))
356          return false;
357
358        // Finally, we have to check to make sure there are no instructions
359        // before the load in its basic block, as we are going to hoist the loop
360        // out to its predecessor.
361        if (PBB->begin() != BasicBlock::iterator(I))
362          return false;
363        break;
364      case Instruction::Add:
365      case Instruction::Sub:
366      case Instruction::And:
367      case Instruction::Or:
368      case Instruction::Xor:
369      case Instruction::Shl:
370      case Instruction::LShr:
371      case Instruction::AShr:
372      case Instruction::ICmp:
373      case Instruction::FCmp:
374        break;   // These are all cheap and non-trapping instructions.
375      }
376
377      // Okay, we can only really hoist these out if their operands are not
378      // defined in the conditional region.
379      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
380        if (!DominatesMergePoint(I->getOperand(i), BB, 0))
381          return false;
382      // Okay, it's safe to do this!  Remember this instruction.
383      AggressiveInsts->insert(I);
384    }
385
386  return true;
387}
388
389// GatherConstantSetEQs - Given a potentially 'or'd together collection of
390// icmp_eq instructions that compare a value against a constant, return the
391// value being compared, and stick the constant into the Values vector.
392static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
393  if (Instruction *Inst = dyn_cast<Instruction>(V))
394    if (Inst->getOpcode() == Instruction::ICmp &&
395        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
396      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
397        Values.push_back(C);
398        return Inst->getOperand(0);
399      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
400        Values.push_back(C);
401        return Inst->getOperand(1);
402      }
403    } else if (Inst->getOpcode() == Instruction::Or) {
404      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
405        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
406          if (LHS == RHS)
407            return LHS;
408    }
409  return 0;
410}
411
412// GatherConstantSetNEs - Given a potentially 'and'd together collection of
413// setne instructions that compare a value against a constant, return the value
414// being compared, and stick the constant into the Values vector.
415static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
416  if (Instruction *Inst = dyn_cast<Instruction>(V))
417    if (Inst->getOpcode() == Instruction::ICmp &&
418               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
419      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
420        Values.push_back(C);
421        return Inst->getOperand(0);
422      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
423        Values.push_back(C);
424        return Inst->getOperand(1);
425      }
426    } else if (Inst->getOpcode() == Instruction::And) {
427      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
428        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
429          if (LHS == RHS)
430            return LHS;
431    }
432  return 0;
433}
434
435
436
437/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
438/// bunch of comparisons of one value against constants, return the value and
439/// the constants being compared.
440static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
441                                   std::vector<ConstantInt*> &Values) {
442  if (Cond->getOpcode() == Instruction::Or) {
443    CompVal = GatherConstantSetEQs(Cond, Values);
444
445    // Return true to indicate that the condition is true if the CompVal is
446    // equal to one of the constants.
447    return true;
448  } else if (Cond->getOpcode() == Instruction::And) {
449    CompVal = GatherConstantSetNEs(Cond, Values);
450
451    // Return false to indicate that the condition is false if the CompVal is
452    // equal to one of the constants.
453    return false;
454  }
455  return false;
456}
457
458/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
459/// has no side effects, nuke it.  If it uses any instructions that become dead
460/// because the instruction is now gone, nuke them too.
461static void ErasePossiblyDeadInstructionTree(Instruction *I) {
462  if (!isInstructionTriviallyDead(I)) return;
463
464  std::vector<Instruction*> InstrsToInspect;
465  InstrsToInspect.push_back(I);
466
467  while (!InstrsToInspect.empty()) {
468    I = InstrsToInspect.back();
469    InstrsToInspect.pop_back();
470
471    if (!isInstructionTriviallyDead(I)) continue;
472
473    // If I is in the work list multiple times, remove previous instances.
474    for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
475      if (InstrsToInspect[i] == I) {
476        InstrsToInspect.erase(InstrsToInspect.begin()+i);
477        --i, --e;
478      }
479
480    // Add operands of dead instruction to worklist.
481    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
482      if (Instruction *OpI = dyn_cast<Instruction>(I->getOperand(i)))
483        InstrsToInspect.push_back(OpI);
484
485    // Remove dead instruction.
486    I->eraseFromParent();
487  }
488}
489
490// isValueEqualityComparison - Return true if the specified terminator checks to
491// see if a value is equal to constant integer value.
492static Value *isValueEqualityComparison(TerminatorInst *TI) {
493  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
494    // Do not permit merging of large switch instructions into their
495    // predecessors unless there is only one predecessor.
496    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
497                                               pred_end(SI->getParent())) > 128)
498      return 0;
499
500    return SI->getCondition();
501  }
502  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
503    if (BI->isConditional() && BI->getCondition()->hasOneUse())
504      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
505        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
506             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
507            isa<ConstantInt>(ICI->getOperand(1)))
508          return ICI->getOperand(0);
509  return 0;
510}
511
512// Given a value comparison instruction, decode all of the 'cases' that it
513// represents and return the 'default' block.
514static BasicBlock *
515GetValueEqualityComparisonCases(TerminatorInst *TI,
516                                std::vector<std::pair<ConstantInt*,
517                                                      BasicBlock*> > &Cases) {
518  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
519    Cases.reserve(SI->getNumCases());
520    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
521      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
522    return SI->getDefaultDest();
523  }
524
525  BranchInst *BI = cast<BranchInst>(TI);
526  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
527  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
528                                 BI->getSuccessor(ICI->getPredicate() ==
529                                                  ICmpInst::ICMP_NE)));
530  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
531}
532
533
534// EliminateBlockCases - Given an vector of bb/value pairs, remove any entries
535// in the list that match the specified block.
536static void EliminateBlockCases(BasicBlock *BB,
537               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
538  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
539    if (Cases[i].second == BB) {
540      Cases.erase(Cases.begin()+i);
541      --i; --e;
542    }
543}
544
545// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
546// well.
547static bool
548ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
549              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
550  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
551
552  // Make V1 be smaller than V2.
553  if (V1->size() > V2->size())
554    std::swap(V1, V2);
555
556  if (V1->size() == 0) return false;
557  if (V1->size() == 1) {
558    // Just scan V2.
559    ConstantInt *TheVal = (*V1)[0].first;
560    for (unsigned i = 0, e = V2->size(); i != e; ++i)
561      if (TheVal == (*V2)[i].first)
562        return true;
563  }
564
565  // Otherwise, just sort both lists and compare element by element.
566  std::sort(V1->begin(), V1->end());
567  std::sort(V2->begin(), V2->end());
568  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
569  while (i1 != e1 && i2 != e2) {
570    if ((*V1)[i1].first == (*V2)[i2].first)
571      return true;
572    if ((*V1)[i1].first < (*V2)[i2].first)
573      ++i1;
574    else
575      ++i2;
576  }
577  return false;
578}
579
580// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
581// terminator instruction and its block is known to only have a single
582// predecessor block, check to see if that predecessor is also a value
583// comparison with the same value, and if that comparison determines the outcome
584// of this comparison.  If so, simplify TI.  This does a very limited form of
585// jump threading.
586static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
587                                                          BasicBlock *Pred) {
588  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
589  if (!PredVal) return false;  // Not a value comparison in predecessor.
590
591  Value *ThisVal = isValueEqualityComparison(TI);
592  assert(ThisVal && "This isn't a value comparison!!");
593  if (ThisVal != PredVal) return false;  // Different predicates.
594
595  // Find out information about when control will move from Pred to TI's block.
596  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
597  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
598                                                        PredCases);
599  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
600
601  // Find information about how control leaves this block.
602  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
603  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
604  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
605
606  // If TI's block is the default block from Pred's comparison, potentially
607  // simplify TI based on this knowledge.
608  if (PredDef == TI->getParent()) {
609    // If we are here, we know that the value is none of those cases listed in
610    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
611    // can simplify TI.
612    if (ValuesOverlap(PredCases, ThisCases)) {
613      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
614        // Okay, one of the successors of this condbr is dead.  Convert it to a
615        // uncond br.
616        assert(ThisCases.size() == 1 && "Branch can only have one case!");
617        Value *Cond = BTI->getCondition();
618        // Insert the new branch.
619        Instruction *NI = new BranchInst(ThisDef, TI);
620
621        // Remove PHI node entries for the dead edge.
622        ThisCases[0].second->removePredecessor(TI->getParent());
623
624        DOUT << "Threading pred instr: " << *Pred->getTerminator()
625             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
626
627        TI->eraseFromParent();   // Nuke the old one.
628        // If condition is now dead, nuke it.
629        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
630          ErasePossiblyDeadInstructionTree(CondI);
631        return true;
632
633      } else {
634        SwitchInst *SI = cast<SwitchInst>(TI);
635        // Okay, TI has cases that are statically dead, prune them away.
636        std::set<Constant*> DeadCases;
637        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
638          DeadCases.insert(PredCases[i].first);
639
640        DOUT << "Threading pred instr: " << *Pred->getTerminator()
641             << "Through successor TI: " << *TI;
642
643        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
644          if (DeadCases.count(SI->getCaseValue(i))) {
645            SI->getSuccessor(i)->removePredecessor(TI->getParent());
646            SI->removeCase(i);
647          }
648
649        DOUT << "Leaving: " << *TI << "\n";
650        return true;
651      }
652    }
653
654  } else {
655    // Otherwise, TI's block must correspond to some matched value.  Find out
656    // which value (or set of values) this is.
657    ConstantInt *TIV = 0;
658    BasicBlock *TIBB = TI->getParent();
659    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
660      if (PredCases[i].second == TIBB)
661        if (TIV == 0)
662          TIV = PredCases[i].first;
663        else
664          return false;  // Cannot handle multiple values coming to this block.
665    assert(TIV && "No edge from pred to succ?");
666
667    // Okay, we found the one constant that our value can be if we get into TI's
668    // BB.  Find out which successor will unconditionally be branched to.
669    BasicBlock *TheRealDest = 0;
670    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
671      if (ThisCases[i].first == TIV) {
672        TheRealDest = ThisCases[i].second;
673        break;
674      }
675
676    // If not handled by any explicit cases, it is handled by the default case.
677    if (TheRealDest == 0) TheRealDest = ThisDef;
678
679    // Remove PHI node entries for dead edges.
680    BasicBlock *CheckEdge = TheRealDest;
681    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
682      if (*SI != CheckEdge)
683        (*SI)->removePredecessor(TIBB);
684      else
685        CheckEdge = 0;
686
687    // Insert the new branch.
688    Instruction *NI = new BranchInst(TheRealDest, TI);
689
690    DOUT << "Threading pred instr: " << *Pred->getTerminator()
691         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
692    Instruction *Cond = 0;
693    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
694      Cond = dyn_cast<Instruction>(BI->getCondition());
695    TI->eraseFromParent();   // Nuke the old one.
696
697    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
698    return true;
699  }
700  return false;
701}
702
703// FoldValueComparisonIntoPredecessors - The specified terminator is a value
704// equality comparison instruction (either a switch or a branch on "X == c").
705// See if any of the predecessors of the terminator block are value comparisons
706// on the same value.  If so, and if safe to do so, fold them together.
707static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
708  BasicBlock *BB = TI->getParent();
709  Value *CV = isValueEqualityComparison(TI);  // CondVal
710  assert(CV && "Not a comparison?");
711  bool Changed = false;
712
713  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
714  while (!Preds.empty()) {
715    BasicBlock *Pred = Preds.back();
716    Preds.pop_back();
717
718    // See if the predecessor is a comparison with the same value.
719    TerminatorInst *PTI = Pred->getTerminator();
720    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
721
722    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
723      // Figure out which 'cases' to copy from SI to PSI.
724      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
725      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
726
727      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
728      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
729
730      // Based on whether the default edge from PTI goes to BB or not, fill in
731      // PredCases and PredDefault with the new switch cases we would like to
732      // build.
733      std::vector<BasicBlock*> NewSuccessors;
734
735      if (PredDefault == BB) {
736        // If this is the default destination from PTI, only the edges in TI
737        // that don't occur in PTI, or that branch to BB will be activated.
738        std::set<ConstantInt*> PTIHandled;
739        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
740          if (PredCases[i].second != BB)
741            PTIHandled.insert(PredCases[i].first);
742          else {
743            // The default destination is BB, we don't need explicit targets.
744            std::swap(PredCases[i], PredCases.back());
745            PredCases.pop_back();
746            --i; --e;
747          }
748
749        // Reconstruct the new switch statement we will be building.
750        if (PredDefault != BBDefault) {
751          PredDefault->removePredecessor(Pred);
752          PredDefault = BBDefault;
753          NewSuccessors.push_back(BBDefault);
754        }
755        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
756          if (!PTIHandled.count(BBCases[i].first) &&
757              BBCases[i].second != BBDefault) {
758            PredCases.push_back(BBCases[i]);
759            NewSuccessors.push_back(BBCases[i].second);
760          }
761
762      } else {
763        // If this is not the default destination from PSI, only the edges
764        // in SI that occur in PSI with a destination of BB will be
765        // activated.
766        std::set<ConstantInt*> PTIHandled;
767        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
768          if (PredCases[i].second == BB) {
769            PTIHandled.insert(PredCases[i].first);
770            std::swap(PredCases[i], PredCases.back());
771            PredCases.pop_back();
772            --i; --e;
773          }
774
775        // Okay, now we know which constants were sent to BB from the
776        // predecessor.  Figure out where they will all go now.
777        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
778          if (PTIHandled.count(BBCases[i].first)) {
779            // If this is one we are capable of getting...
780            PredCases.push_back(BBCases[i]);
781            NewSuccessors.push_back(BBCases[i].second);
782            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
783          }
784
785        // If there are any constants vectored to BB that TI doesn't handle,
786        // they must go to the default destination of TI.
787        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
788               E = PTIHandled.end(); I != E; ++I) {
789          PredCases.push_back(std::make_pair(*I, BBDefault));
790          NewSuccessors.push_back(BBDefault);
791        }
792      }
793
794      // Okay, at this point, we know which new successor Pred will get.  Make
795      // sure we update the number of entries in the PHI nodes for these
796      // successors.
797      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
798        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
799
800      // Now that the successors are updated, create the new Switch instruction.
801      SwitchInst *NewSI = new SwitchInst(CV, PredDefault, PredCases.size(),PTI);
802      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
803        NewSI->addCase(PredCases[i].first, PredCases[i].second);
804
805      Instruction *DeadCond = 0;
806      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
807        // If PTI is a branch, remember the condition.
808        DeadCond = dyn_cast<Instruction>(BI->getCondition());
809      Pred->getInstList().erase(PTI);
810
811      // If the condition is dead now, remove the instruction tree.
812      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
813
814      // Okay, last check.  If BB is still a successor of PSI, then we must
815      // have an infinite loop case.  If so, add an infinitely looping block
816      // to handle the case to preserve the behavior of the code.
817      BasicBlock *InfLoopBlock = 0;
818      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
819        if (NewSI->getSuccessor(i) == BB) {
820          if (InfLoopBlock == 0) {
821            // Insert it at the end of the loop, because it's either code,
822            // or it won't matter if it's hot. :)
823            InfLoopBlock = new BasicBlock("infloop", BB->getParent());
824            new BranchInst(InfLoopBlock, InfLoopBlock);
825          }
826          NewSI->setSuccessor(i, InfLoopBlock);
827        }
828
829      Changed = true;
830    }
831  }
832  return Changed;
833}
834
835/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
836/// BB2, hoist any common code in the two blocks up into the branch block.  The
837/// caller of this function guarantees that BI's block dominates BB1 and BB2.
838static bool HoistThenElseCodeToIf(BranchInst *BI) {
839  // This does very trivial matching, with limited scanning, to find identical
840  // instructions in the two blocks.  In particular, we don't want to get into
841  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
842  // such, we currently just scan for obviously identical instructions in an
843  // identical order.
844  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
845  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
846
847  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
848  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
849      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
850    return false;
851
852  // If we get here, we can hoist at least one instruction.
853  BasicBlock *BIParent = BI->getParent();
854
855  do {
856    // If we are hoisting the terminator instruction, don't move one (making a
857    // broken BB), instead clone it, and remove BI.
858    if (isa<TerminatorInst>(I1))
859      goto HoistTerminator;
860
861    // For a normal instruction, we just move one to right before the branch,
862    // then replace all uses of the other with the first.  Finally, we remove
863    // the now redundant second instruction.
864    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
865    if (!I2->use_empty())
866      I2->replaceAllUsesWith(I1);
867    BB2->getInstList().erase(I2);
868
869    I1 = BB1->begin();
870    I2 = BB2->begin();
871  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
872
873  return true;
874
875HoistTerminator:
876  // Okay, it is safe to hoist the terminator.
877  Instruction *NT = I1->clone();
878  BIParent->getInstList().insert(BI, NT);
879  if (NT->getType() != Type::VoidTy) {
880    I1->replaceAllUsesWith(NT);
881    I2->replaceAllUsesWith(NT);
882    NT->setName(I1->getName());
883  }
884
885  // Hoisting one of the terminators from our successor is a great thing.
886  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
887  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
888  // nodes, so we insert select instruction to compute the final result.
889  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
890  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
891    PHINode *PN;
892    for (BasicBlock::iterator BBI = SI->begin();
893         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
894      Value *BB1V = PN->getIncomingValueForBlock(BB1);
895      Value *BB2V = PN->getIncomingValueForBlock(BB2);
896      if (BB1V != BB2V) {
897        // These values do not agree.  Insert a select instruction before NT
898        // that determines the right value.
899        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
900        if (SI == 0)
901          SI = new SelectInst(BI->getCondition(), BB1V, BB2V,
902                              BB1V->getName()+"."+BB2V->getName(), NT);
903        // Make the PHI node use the select for all incoming values for BB1/BB2
904        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
905          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
906            PN->setIncomingValue(i, SI);
907      }
908    }
909  }
910
911  // Update any PHI nodes in our new successors.
912  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
913    AddPredecessorToBlock(*SI, BIParent, BB1);
914
915  BI->eraseFromParent();
916  return true;
917}
918
919/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
920/// across this block.
921static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
922  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
923  unsigned Size = 0;
924
925  // If this basic block contains anything other than a PHI (which controls the
926  // branch) and branch itself, bail out.  FIXME: improve this in the future.
927  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
928    if (Size > 10) return false;  // Don't clone large BB's.
929
930    // We can only support instructions that are do not define values that are
931    // live outside of the current basic block.
932    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
933         UI != E; ++UI) {
934      Instruction *U = cast<Instruction>(*UI);
935      if (U->getParent() != BB || isa<PHINode>(U)) return false;
936    }
937
938    // Looks ok, continue checking.
939  }
940
941  return true;
942}
943
944/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
945/// that is defined in the same block as the branch and if any PHI entries are
946/// constants, thread edges corresponding to that entry to be branches to their
947/// ultimate destination.
948static bool FoldCondBranchOnPHI(BranchInst *BI) {
949  BasicBlock *BB = BI->getParent();
950  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
951  // NOTE: we currently cannot transform this case if the PHI node is used
952  // outside of the block.
953  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
954    return false;
955
956  // Degenerate case of a single entry PHI.
957  if (PN->getNumIncomingValues() == 1) {
958    if (PN->getIncomingValue(0) != PN)
959      PN->replaceAllUsesWith(PN->getIncomingValue(0));
960    else
961      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
962    PN->eraseFromParent();
963    return true;
964  }
965
966  // Now we know that this block has multiple preds and two succs.
967  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
968
969  // Okay, this is a simple enough basic block.  See if any phi values are
970  // constants.
971  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
972    ConstantInt *CB;
973    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
974        CB->getType() == Type::BoolTy) {
975      // Okay, we now know that all edges from PredBB should be revectored to
976      // branch to RealDest.
977      BasicBlock *PredBB = PN->getIncomingBlock(i);
978      BasicBlock *RealDest = BI->getSuccessor(!CB->getBoolValue());
979
980      if (RealDest == BB) continue;  // Skip self loops.
981
982      // The dest block might have PHI nodes, other predecessors and other
983      // difficult cases.  Instead of being smart about this, just insert a new
984      // block that jumps to the destination block, effectively splitting
985      // the edge we are about to create.
986      BasicBlock *EdgeBB = new BasicBlock(RealDest->getName()+".critedge",
987                                          RealDest->getParent(), RealDest);
988      new BranchInst(RealDest, EdgeBB);
989      PHINode *PN;
990      for (BasicBlock::iterator BBI = RealDest->begin();
991           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
992        Value *V = PN->getIncomingValueForBlock(BB);
993        PN->addIncoming(V, EdgeBB);
994      }
995
996      // BB may have instructions that are being threaded over.  Clone these
997      // instructions into EdgeBB.  We know that there will be no uses of the
998      // cloned instructions outside of EdgeBB.
999      BasicBlock::iterator InsertPt = EdgeBB->begin();
1000      std::map<Value*, Value*> TranslateMap;  // Track translated values.
1001      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1002        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1003          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1004        } else {
1005          // Clone the instruction.
1006          Instruction *N = BBI->clone();
1007          if (BBI->hasName()) N->setName(BBI->getName()+".c");
1008
1009          // Update operands due to translation.
1010          for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1011            std::map<Value*, Value*>::iterator PI =
1012              TranslateMap.find(N->getOperand(i));
1013            if (PI != TranslateMap.end())
1014              N->setOperand(i, PI->second);
1015          }
1016
1017          // Check for trivial simplification.
1018          if (Constant *C = ConstantFoldInstruction(N)) {
1019            TranslateMap[BBI] = C;
1020            delete N;   // Constant folded away, don't need actual inst
1021          } else {
1022            // Insert the new instruction into its new home.
1023            EdgeBB->getInstList().insert(InsertPt, N);
1024            if (!BBI->use_empty())
1025              TranslateMap[BBI] = N;
1026          }
1027        }
1028      }
1029
1030      // Loop over all of the edges from PredBB to BB, changing them to branch
1031      // to EdgeBB instead.
1032      TerminatorInst *PredBBTI = PredBB->getTerminator();
1033      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1034        if (PredBBTI->getSuccessor(i) == BB) {
1035          BB->removePredecessor(PredBB);
1036          PredBBTI->setSuccessor(i, EdgeBB);
1037        }
1038
1039      // Recurse, simplifying any other constants.
1040      return FoldCondBranchOnPHI(BI) | true;
1041    }
1042  }
1043
1044  return false;
1045}
1046
1047/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1048/// PHI node, see if we can eliminate it.
1049static bool FoldTwoEntryPHINode(PHINode *PN) {
1050  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1051  // statement", which has a very simple dominance structure.  Basically, we
1052  // are trying to find the condition that is being branched on, which
1053  // subsequently causes this merge to happen.  We really want control
1054  // dependence information for this check, but simplifycfg can't keep it up
1055  // to date, and this catches most of the cases we care about anyway.
1056  //
1057  BasicBlock *BB = PN->getParent();
1058  BasicBlock *IfTrue, *IfFalse;
1059  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1060  if (!IfCond) return false;
1061
1062  // Okay, we found that we can merge this two-entry phi node into a select.
1063  // Doing so would require us to fold *all* two entry phi nodes in this block.
1064  // At some point this becomes non-profitable (particularly if the target
1065  // doesn't support cmov's).  Only do this transformation if there are two or
1066  // fewer PHI nodes in this block.
1067  unsigned NumPhis = 0;
1068  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1069    if (NumPhis > 2)
1070      return false;
1071
1072  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1073       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
1074
1075  // Loop over the PHI's seeing if we can promote them all to select
1076  // instructions.  While we are at it, keep track of the instructions
1077  // that need to be moved to the dominating block.
1078  std::set<Instruction*> AggressiveInsts;
1079
1080  BasicBlock::iterator AfterPHIIt = BB->begin();
1081  while (isa<PHINode>(AfterPHIIt)) {
1082    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1083    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1084      if (PN->getIncomingValue(0) != PN)
1085        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1086      else
1087        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1088    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1089                                    &AggressiveInsts) ||
1090               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1091                                    &AggressiveInsts)) {
1092      return false;
1093    }
1094  }
1095
1096  // If we all PHI nodes are promotable, check to make sure that all
1097  // instructions in the predecessor blocks can be promoted as well.  If
1098  // not, we won't be able to get rid of the control flow, so it's not
1099  // worth promoting to select instructions.
1100  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1101  PN = cast<PHINode>(BB->begin());
1102  BasicBlock *Pred = PN->getIncomingBlock(0);
1103  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1104    IfBlock1 = Pred;
1105    DomBlock = *pred_begin(Pred);
1106    for (BasicBlock::iterator I = Pred->begin();
1107         !isa<TerminatorInst>(I); ++I)
1108      if (!AggressiveInsts.count(I)) {
1109        // This is not an aggressive instruction that we can promote.
1110        // Because of this, we won't be able to get rid of the control
1111        // flow, so the xform is not worth it.
1112        return false;
1113      }
1114  }
1115
1116  Pred = PN->getIncomingBlock(1);
1117  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1118    IfBlock2 = Pred;
1119    DomBlock = *pred_begin(Pred);
1120    for (BasicBlock::iterator I = Pred->begin();
1121         !isa<TerminatorInst>(I); ++I)
1122      if (!AggressiveInsts.count(I)) {
1123        // This is not an aggressive instruction that we can promote.
1124        // Because of this, we won't be able to get rid of the control
1125        // flow, so the xform is not worth it.
1126        return false;
1127      }
1128  }
1129
1130  // If we can still promote the PHI nodes after this gauntlet of tests,
1131  // do all of the PHI's now.
1132
1133  // Move all 'aggressive' instructions, which are defined in the
1134  // conditional parts of the if's up to the dominating block.
1135  if (IfBlock1) {
1136    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1137                                   IfBlock1->getInstList(),
1138                                   IfBlock1->begin(),
1139                                   IfBlock1->getTerminator());
1140  }
1141  if (IfBlock2) {
1142    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1143                                   IfBlock2->getInstList(),
1144                                   IfBlock2->begin(),
1145                                   IfBlock2->getTerminator());
1146  }
1147
1148  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1149    // Change the PHI node into a select instruction.
1150    Value *TrueVal =
1151      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1152    Value *FalseVal =
1153      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1154
1155    std::string Name = PN->getName(); PN->setName("");
1156    PN->replaceAllUsesWith(new SelectInst(IfCond, TrueVal, FalseVal,
1157                                          Name, AfterPHIIt));
1158    BB->getInstList().erase(PN);
1159  }
1160  return true;
1161}
1162
1163namespace {
1164  /// ConstantIntOrdering - This class implements a stable ordering of constant
1165  /// integers that does not depend on their address.  This is important for
1166  /// applications that sort ConstantInt's to ensure uniqueness.
1167  struct ConstantIntOrdering {
1168    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1169      return LHS->getZExtValue() < RHS->getZExtValue();
1170    }
1171  };
1172}
1173
1174// SimplifyCFG - This function is used to do simplification of a CFG.  For
1175// example, it adjusts branches to branches to eliminate the extra hop, it
1176// eliminates unreachable basic blocks, and does other "peephole" optimization
1177// of the CFG.  It returns true if a modification was made.
1178//
1179// WARNING:  The entry node of a function may not be simplified.
1180//
1181bool llvm::SimplifyCFG(BasicBlock *BB) {
1182  bool Changed = false;
1183  Function *M = BB->getParent();
1184
1185  assert(BB && BB->getParent() && "Block not embedded in function!");
1186  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1187  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
1188
1189  // Remove basic blocks that have no predecessors... which are unreachable.
1190  if (pred_begin(BB) == pred_end(BB) ||
1191      *pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB)) {
1192    DOUT << "Removing BB: \n" << *BB;
1193
1194    // Loop through all of our successors and make sure they know that one
1195    // of their predecessors is going away.
1196    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1197      SI->removePredecessor(BB);
1198
1199    while (!BB->empty()) {
1200      Instruction &I = BB->back();
1201      // If this instruction is used, replace uses with an arbitrary
1202      // value.  Because control flow can't get here, we don't care
1203      // what we replace the value with.  Note that since this block is
1204      // unreachable, and all values contained within it must dominate their
1205      // uses, that all uses will eventually be removed.
1206      if (!I.use_empty())
1207        // Make all users of this instruction use undef instead
1208        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1209
1210      // Remove the instruction from the basic block
1211      BB->getInstList().pop_back();
1212    }
1213    M->getBasicBlockList().erase(BB);
1214    return true;
1215  }
1216
1217  // Check to see if we can constant propagate this terminator instruction
1218  // away...
1219  Changed |= ConstantFoldTerminator(BB);
1220
1221  // If this is a returning block with only PHI nodes in it, fold the return
1222  // instruction into any unconditional branch predecessors.
1223  //
1224  // If any predecessor is a conditional branch that just selects among
1225  // different return values, fold the replace the branch/return with a select
1226  // and return.
1227  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1228    BasicBlock::iterator BBI = BB->getTerminator();
1229    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1230      // Find predecessors that end with branches.
1231      std::vector<BasicBlock*> UncondBranchPreds;
1232      std::vector<BranchInst*> CondBranchPreds;
1233      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1234        TerminatorInst *PTI = (*PI)->getTerminator();
1235        if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
1236          if (BI->isUnconditional())
1237            UncondBranchPreds.push_back(*PI);
1238          else
1239            CondBranchPreds.push_back(BI);
1240      }
1241
1242      // If we found some, do the transformation!
1243      if (!UncondBranchPreds.empty()) {
1244        while (!UncondBranchPreds.empty()) {
1245          BasicBlock *Pred = UncondBranchPreds.back();
1246          DOUT << "FOLDING: " << *BB
1247               << "INTO UNCOND BRANCH PRED: " << *Pred;
1248          UncondBranchPreds.pop_back();
1249          Instruction *UncondBranch = Pred->getTerminator();
1250          // Clone the return and add it to the end of the predecessor.
1251          Instruction *NewRet = RI->clone();
1252          Pred->getInstList().push_back(NewRet);
1253
1254          // If the return instruction returns a value, and if the value was a
1255          // PHI node in "BB", propagate the right value into the return.
1256          if (NewRet->getNumOperands() == 1)
1257            if (PHINode *PN = dyn_cast<PHINode>(NewRet->getOperand(0)))
1258              if (PN->getParent() == BB)
1259                NewRet->setOperand(0, PN->getIncomingValueForBlock(Pred));
1260          // Update any PHI nodes in the returning block to realize that we no
1261          // longer branch to them.
1262          BB->removePredecessor(Pred);
1263          Pred->getInstList().erase(UncondBranch);
1264        }
1265
1266        // If we eliminated all predecessors of the block, delete the block now.
1267        if (pred_begin(BB) == pred_end(BB))
1268          // We know there are no successors, so just nuke the block.
1269          M->getBasicBlockList().erase(BB);
1270
1271        return true;
1272      }
1273
1274      // Check out all of the conditional branches going to this return
1275      // instruction.  If any of them just select between returns, change the
1276      // branch itself into a select/return pair.
1277      while (!CondBranchPreds.empty()) {
1278        BranchInst *BI = CondBranchPreds.back();
1279        CondBranchPreds.pop_back();
1280        BasicBlock *TrueSucc = BI->getSuccessor(0);
1281        BasicBlock *FalseSucc = BI->getSuccessor(1);
1282        BasicBlock *OtherSucc = TrueSucc == BB ? FalseSucc : TrueSucc;
1283
1284        // Check to see if the non-BB successor is also a return block.
1285        if (isa<ReturnInst>(OtherSucc->getTerminator())) {
1286          // Check to see if there are only PHI instructions in this block.
1287          BasicBlock::iterator OSI = OtherSucc->getTerminator();
1288          if (OSI == OtherSucc->begin() || isa<PHINode>(--OSI)) {
1289            // Okay, we found a branch that is going to two return nodes.  If
1290            // there is no return value for this function, just change the
1291            // branch into a return.
1292            if (RI->getNumOperands() == 0) {
1293              TrueSucc->removePredecessor(BI->getParent());
1294              FalseSucc->removePredecessor(BI->getParent());
1295              new ReturnInst(0, BI);
1296              BI->getParent()->getInstList().erase(BI);
1297              return true;
1298            }
1299
1300            // Otherwise, figure out what the true and false return values are
1301            // so we can insert a new select instruction.
1302            Value *TrueValue = TrueSucc->getTerminator()->getOperand(0);
1303            Value *FalseValue = FalseSucc->getTerminator()->getOperand(0);
1304
1305            // Unwrap any PHI nodes in the return blocks.
1306            if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1307              if (TVPN->getParent() == TrueSucc)
1308                TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1309            if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1310              if (FVPN->getParent() == FalseSucc)
1311                FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1312
1313            // In order for this transformation to be safe, we must be able to
1314            // unconditionally execute both operands to the return.  This is
1315            // normally the case, but we could have a potentially-trapping
1316            // constant expression that prevents this transformation from being
1317            // safe.
1318            if ((!isa<ConstantExpr>(TrueValue) ||
1319                 !cast<ConstantExpr>(TrueValue)->canTrap()) &&
1320                (!isa<ConstantExpr>(TrueValue) ||
1321                 !cast<ConstantExpr>(TrueValue)->canTrap())) {
1322              TrueSucc->removePredecessor(BI->getParent());
1323              FalseSucc->removePredecessor(BI->getParent());
1324
1325              // Insert a new select instruction.
1326              Value *NewRetVal;
1327              Value *BrCond = BI->getCondition();
1328              if (TrueValue != FalseValue)
1329                NewRetVal = new SelectInst(BrCond, TrueValue,
1330                                           FalseValue, "retval", BI);
1331              else
1332                NewRetVal = TrueValue;
1333
1334              DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1335                   << "\n  " << *BI << "Select = " << *NewRetVal
1336                   << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1337
1338              new ReturnInst(NewRetVal, BI);
1339              BI->eraseFromParent();
1340              if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1341                if (isInstructionTriviallyDead(BrCondI))
1342                  BrCondI->eraseFromParent();
1343              return true;
1344            }
1345          }
1346        }
1347      }
1348    }
1349  } else if (isa<UnwindInst>(BB->begin())) {
1350    // Check to see if the first instruction in this block is just an unwind.
1351    // If so, replace any invoke instructions which use this as an exception
1352    // destination with call instructions, and any unconditional branch
1353    // predecessor with an unwind.
1354    //
1355    std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1356    while (!Preds.empty()) {
1357      BasicBlock *Pred = Preds.back();
1358      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1359        if (BI->isUnconditional()) {
1360          Pred->getInstList().pop_back();  // nuke uncond branch
1361          new UnwindInst(Pred);            // Use unwind.
1362          Changed = true;
1363        }
1364      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1365        if (II->getUnwindDest() == BB) {
1366          // Insert a new branch instruction before the invoke, because this
1367          // is now a fall through...
1368          BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1369          Pred->getInstList().remove(II);   // Take out of symbol table
1370
1371          // Insert the call now...
1372          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1373          CallInst *CI = new CallInst(II->getCalledValue(), Args,
1374                                      II->getName(), BI);
1375          CI->setCallingConv(II->getCallingConv());
1376          // If the invoke produced a value, the Call now does instead
1377          II->replaceAllUsesWith(CI);
1378          delete II;
1379          Changed = true;
1380        }
1381
1382      Preds.pop_back();
1383    }
1384
1385    // If this block is now dead, remove it.
1386    if (pred_begin(BB) == pred_end(BB)) {
1387      // We know there are no successors, so just nuke the block.
1388      M->getBasicBlockList().erase(BB);
1389      return true;
1390    }
1391
1392  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1393    if (isValueEqualityComparison(SI)) {
1394      // If we only have one predecessor, and if it is a branch on this value,
1395      // see if that predecessor totally determines the outcome of this switch.
1396      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1397        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1398          return SimplifyCFG(BB) || 1;
1399
1400      // If the block only contains the switch, see if we can fold the block
1401      // away into any preds.
1402      if (SI == &BB->front())
1403        if (FoldValueComparisonIntoPredecessors(SI))
1404          return SimplifyCFG(BB) || 1;
1405    }
1406  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1407    if (BI->isUnconditional()) {
1408      BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
1409      while (isa<PHINode>(*BBI)) ++BBI;
1410
1411      BasicBlock *Succ = BI->getSuccessor(0);
1412      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1413          Succ != BB)             // Don't hurt infinite loops!
1414        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1415          return 1;
1416
1417    } else {  // Conditional branch
1418      if (isValueEqualityComparison(BI)) {
1419        // If we only have one predecessor, and if it is a branch on this value,
1420        // see if that predecessor totally determines the outcome of this
1421        // switch.
1422        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1423          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1424            return SimplifyCFG(BB) || 1;
1425
1426        // This block must be empty, except for the setcond inst, if it exists.
1427        BasicBlock::iterator I = BB->begin();
1428        if (&*I == BI ||
1429            (&*I == cast<Instruction>(BI->getCondition()) &&
1430             &*++I == BI))
1431          if (FoldValueComparisonIntoPredecessors(BI))
1432            return SimplifyCFG(BB) | true;
1433      }
1434
1435      // If this is a branch on a phi node in the current block, thread control
1436      // through this block if any PHI node entries are constants.
1437      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1438        if (PN->getParent() == BI->getParent())
1439          if (FoldCondBranchOnPHI(BI))
1440            return SimplifyCFG(BB) | true;
1441
1442      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1443      // branches to us and one of our successors, fold the setcc into the
1444      // predecessor and use logical operations to pick the right destination.
1445      BasicBlock *TrueDest  = BI->getSuccessor(0);
1446      BasicBlock *FalseDest = BI->getSuccessor(1);
1447      if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
1448        if ((isa<CmpInst>(Cond) || isa<BinaryOperator>(Cond)) &&
1449            Cond->getParent() == BB && &BB->front() == Cond &&
1450            Cond->getNext() == BI && Cond->hasOneUse() &&
1451            TrueDest != BB && FalseDest != BB)
1452          for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI!=E; ++PI)
1453            if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1454              if (PBI->isConditional() && SafeToMergeTerminators(BI, PBI)) {
1455                BasicBlock *PredBlock = *PI;
1456                if (PBI->getSuccessor(0) == FalseDest ||
1457                    PBI->getSuccessor(1) == TrueDest) {
1458                  // Invert the predecessors condition test (xor it with true),
1459                  // which allows us to write this code once.
1460                  Value *NewCond =
1461                    BinaryOperator::createNot(PBI->getCondition(),
1462                                    PBI->getCondition()->getName()+".not", PBI);
1463                  PBI->setCondition(NewCond);
1464                  BasicBlock *OldTrue = PBI->getSuccessor(0);
1465                  BasicBlock *OldFalse = PBI->getSuccessor(1);
1466                  PBI->setSuccessor(0, OldFalse);
1467                  PBI->setSuccessor(1, OldTrue);
1468                }
1469
1470                if ((PBI->getSuccessor(0) == TrueDest && FalseDest != BB) ||
1471                    (PBI->getSuccessor(1) == FalseDest && TrueDest != BB)) {
1472                  // Clone Cond into the predecessor basic block, and or/and the
1473                  // two conditions together.
1474                  Instruction *New = Cond->clone();
1475                  New->setName(Cond->getName());
1476                  Cond->setName(Cond->getName()+".old");
1477                  PredBlock->getInstList().insert(PBI, New);
1478                  Instruction::BinaryOps Opcode =
1479                    PBI->getSuccessor(0) == TrueDest ?
1480                    Instruction::Or : Instruction::And;
1481                  Value *NewCond =
1482                    BinaryOperator::create(Opcode, PBI->getCondition(),
1483                                           New, "bothcond", PBI);
1484                  PBI->setCondition(NewCond);
1485                  if (PBI->getSuccessor(0) == BB) {
1486                    AddPredecessorToBlock(TrueDest, PredBlock, BB);
1487                    PBI->setSuccessor(0, TrueDest);
1488                  }
1489                  if (PBI->getSuccessor(1) == BB) {
1490                    AddPredecessorToBlock(FalseDest, PredBlock, BB);
1491                    PBI->setSuccessor(1, FalseDest);
1492                  }
1493                  return SimplifyCFG(BB) | 1;
1494                }
1495              }
1496
1497      // Scan predessor blocks for conditional branchs.
1498      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1499        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1500          if (PBI != BI && PBI->isConditional()) {
1501
1502            // If this block ends with a branch instruction, and if there is a
1503            // predecessor that ends on a branch of the same condition, make this
1504            // conditional branch redundant.
1505            if (PBI->getCondition() == BI->getCondition() &&
1506                PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1507              // Okay, the outcome of this conditional branch is statically
1508              // knowable.  If this block had a single pred, handle specially.
1509              if (BB->getSinglePredecessor()) {
1510                // Turn this into a branch on constant.
1511                bool CondIsTrue = PBI->getSuccessor(0) == BB;
1512                BI->setCondition(ConstantInt::get(CondIsTrue));
1513                return SimplifyCFG(BB);  // Nuke the branch on constant.
1514              }
1515
1516              // Otherwise, if there are multiple predecessors, insert a PHI that
1517              // merges in the constant and simplify the block result.
1518              if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1519                PHINode *NewPN = new PHINode(Type::BoolTy,
1520                                             BI->getCondition()->getName()+".pr",
1521                                             BB->begin());
1522                for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1523                  if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1524                      PBI != BI && PBI->isConditional() &&
1525                      PBI->getCondition() == BI->getCondition() &&
1526                      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1527                    bool CondIsTrue = PBI->getSuccessor(0) == BB;
1528                    NewPN->addIncoming(ConstantInt::get(CondIsTrue), *PI);
1529                  } else {
1530                    NewPN->addIncoming(BI->getCondition(), *PI);
1531                  }
1532
1533                BI->setCondition(NewPN);
1534                // This will thread the branch.
1535                return SimplifyCFG(BB) | true;
1536              }
1537            }
1538
1539            // If this is a conditional branch in an empty block, and if any
1540            // predecessors is a conditional branch to one of our destinations,
1541            // fold the conditions into logical ops and one cond br.
1542            if (&BB->front() == BI) {
1543              int PBIOp, BIOp;
1544              if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
1545                PBIOp = BIOp = 0;
1546              } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
1547                PBIOp = 0; BIOp = 1;
1548              } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
1549                PBIOp = 1; BIOp = 0;
1550              } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
1551                PBIOp = BIOp = 1;
1552              } else {
1553                PBIOp = BIOp = -1;
1554              }
1555
1556              // Check to make sure that the other destination of this branch
1557              // isn't BB itself.  If so, this is an infinite loop that will
1558              // keep getting unwound.
1559              if (PBIOp != -1 && PBI->getSuccessor(PBIOp) == BB)
1560                PBIOp = BIOp = -1;
1561
1562              // Do not perform this transformation if it would require
1563              // insertion of a large number of select instructions. For targets
1564              // without predication/cmovs, this is a big pessimization.
1565              if (PBIOp != -1) {
1566                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1567
1568                unsigned NumPhis = 0;
1569                for (BasicBlock::iterator II = CommonDest->begin();
1570                     isa<PHINode>(II); ++II, ++NumPhis) {
1571                  if (NumPhis > 2) {
1572                    // Disable this xform.
1573                    PBIOp = -1;
1574                    break;
1575                  }
1576                }
1577              }
1578
1579              // Finally, if everything is ok, fold the branches to logical ops.
1580              if (PBIOp != -1) {
1581                BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1582                BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1583
1584                // If OtherDest *is* BB, then this is a basic block with just
1585                // a conditional branch in it, where one edge (OtherDesg) goes
1586                // back to the block.  We know that the program doesn't get
1587                // stuck in the infinite loop, so the condition must be such
1588                // that OtherDest isn't branched through. Forward to CommonDest,
1589                // and avoid an infinite loop at optimizer time.
1590                if (OtherDest == BB)
1591                  OtherDest = CommonDest;
1592
1593                DOUT << "FOLDING BRs:" << *PBI->getParent()
1594                     << "AND: " << *BI->getParent();
1595
1596                // BI may have other predecessors.  Because of this, we leave
1597                // it alone, but modify PBI.
1598
1599                // Make sure we get to CommonDest on True&True directions.
1600                Value *PBICond = PBI->getCondition();
1601                if (PBIOp)
1602                  PBICond = BinaryOperator::createNot(PBICond,
1603                                                      PBICond->getName()+".not",
1604                                                      PBI);
1605                Value *BICond = BI->getCondition();
1606                if (BIOp)
1607                  BICond = BinaryOperator::createNot(BICond,
1608                                                     BICond->getName()+".not",
1609                                                     PBI);
1610                // Merge the conditions.
1611                Value *Cond =
1612                  BinaryOperator::createOr(PBICond, BICond, "brmerge", PBI);
1613
1614                // Modify PBI to branch on the new condition to the new dests.
1615                PBI->setCondition(Cond);
1616                PBI->setSuccessor(0, CommonDest);
1617                PBI->setSuccessor(1, OtherDest);
1618
1619                // OtherDest may have phi nodes.  If so, add an entry from PBI's
1620                // block that are identical to the entries for BI's block.
1621                PHINode *PN;
1622                for (BasicBlock::iterator II = OtherDest->begin();
1623                     (PN = dyn_cast<PHINode>(II)); ++II) {
1624                  Value *V = PN->getIncomingValueForBlock(BB);
1625                  PN->addIncoming(V, PBI->getParent());
1626                }
1627
1628                // We know that the CommonDest already had an edge from PBI to
1629                // it.  If it has PHIs though, the PHIs may have different
1630                // entries for BB and PBI's BB.  If so, insert a select to make
1631                // them agree.
1632                for (BasicBlock::iterator II = CommonDest->begin();
1633                     (PN = dyn_cast<PHINode>(II)); ++II) {
1634                  Value * BIV = PN->getIncomingValueForBlock(BB);
1635                  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1636                  Value *PBIV = PN->getIncomingValue(PBBIdx);
1637                  if (BIV != PBIV) {
1638                    // Insert a select in PBI to pick the right value.
1639                    Value *NV = new SelectInst(PBICond, PBIV, BIV,
1640                                               PBIV->getName()+".mux", PBI);
1641                    PN->setIncomingValue(PBBIdx, NV);
1642                  }
1643                }
1644
1645                DOUT << "INTO: " << *PBI->getParent();
1646
1647                // This basic block is probably dead.  We know it has at least
1648                // one fewer predecessor.
1649                return SimplifyCFG(BB) | true;
1650              }
1651            }
1652          }
1653    }
1654  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1655    // If there are any instructions immediately before the unreachable that can
1656    // be removed, do so.
1657    Instruction *Unreachable = BB->getTerminator();
1658    while (Unreachable != BB->begin()) {
1659      BasicBlock::iterator BBI = Unreachable;
1660      --BBI;
1661      if (isa<CallInst>(BBI)) break;
1662      // Delete this instruction
1663      BB->getInstList().erase(BBI);
1664      Changed = true;
1665    }
1666
1667    // If the unreachable instruction is the first in the block, take a gander
1668    // at all of the predecessors of this instruction, and simplify them.
1669    if (&BB->front() == Unreachable) {
1670      std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
1671      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1672        TerminatorInst *TI = Preds[i]->getTerminator();
1673
1674        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1675          if (BI->isUnconditional()) {
1676            if (BI->getSuccessor(0) == BB) {
1677              new UnreachableInst(TI);
1678              TI->eraseFromParent();
1679              Changed = true;
1680            }
1681          } else {
1682            if (BI->getSuccessor(0) == BB) {
1683              new BranchInst(BI->getSuccessor(1), BI);
1684              BI->eraseFromParent();
1685            } else if (BI->getSuccessor(1) == BB) {
1686              new BranchInst(BI->getSuccessor(0), BI);
1687              BI->eraseFromParent();
1688              Changed = true;
1689            }
1690          }
1691        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1692          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1693            if (SI->getSuccessor(i) == BB) {
1694              BB->removePredecessor(SI->getParent());
1695              SI->removeCase(i);
1696              --i; --e;
1697              Changed = true;
1698            }
1699          // If the default value is unreachable, figure out the most popular
1700          // destination and make it the default.
1701          if (SI->getSuccessor(0) == BB) {
1702            std::map<BasicBlock*, unsigned> Popularity;
1703            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1704              Popularity[SI->getSuccessor(i)]++;
1705
1706            // Find the most popular block.
1707            unsigned MaxPop = 0;
1708            BasicBlock *MaxBlock = 0;
1709            for (std::map<BasicBlock*, unsigned>::iterator
1710                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1711              if (I->second > MaxPop) {
1712                MaxPop = I->second;
1713                MaxBlock = I->first;
1714              }
1715            }
1716            if (MaxBlock) {
1717              // Make this the new default, allowing us to delete any explicit
1718              // edges to it.
1719              SI->setSuccessor(0, MaxBlock);
1720              Changed = true;
1721
1722              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1723              // it.
1724              if (isa<PHINode>(MaxBlock->begin()))
1725                for (unsigned i = 0; i != MaxPop-1; ++i)
1726                  MaxBlock->removePredecessor(SI->getParent());
1727
1728              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1729                if (SI->getSuccessor(i) == MaxBlock) {
1730                  SI->removeCase(i);
1731                  --i; --e;
1732                }
1733            }
1734          }
1735        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1736          if (II->getUnwindDest() == BB) {
1737            // Convert the invoke to a call instruction.  This would be a good
1738            // place to note that the call does not throw though.
1739            BranchInst *BI = new BranchInst(II->getNormalDest(), II);
1740            II->removeFromParent();   // Take out of symbol table
1741
1742            // Insert the call now...
1743            std::vector<Value*> Args(II->op_begin()+3, II->op_end());
1744            CallInst *CI = new CallInst(II->getCalledValue(), Args,
1745                                        II->getName(), BI);
1746            CI->setCallingConv(II->getCallingConv());
1747            // If the invoke produced a value, the Call does now instead.
1748            II->replaceAllUsesWith(CI);
1749            delete II;
1750            Changed = true;
1751          }
1752        }
1753      }
1754
1755      // If this block is now dead, remove it.
1756      if (pred_begin(BB) == pred_end(BB)) {
1757        // We know there are no successors, so just nuke the block.
1758        M->getBasicBlockList().erase(BB);
1759        return true;
1760      }
1761    }
1762  }
1763
1764  // Merge basic blocks into their predecessor if there is only one distinct
1765  // pred, and if there is only one distinct successor of the predecessor, and
1766  // if there are no PHI nodes.
1767  //
1768  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
1769  BasicBlock *OnlyPred = *PI++;
1770  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
1771    if (*PI != OnlyPred) {
1772      OnlyPred = 0;       // There are multiple different predecessors...
1773      break;
1774    }
1775
1776  BasicBlock *OnlySucc = 0;
1777  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
1778      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
1779    // Check to see if there is only one distinct successor...
1780    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
1781    OnlySucc = BB;
1782    for (; SI != SE; ++SI)
1783      if (*SI != OnlySucc) {
1784        OnlySucc = 0;     // There are multiple distinct successors!
1785        break;
1786      }
1787  }
1788
1789  if (OnlySucc) {
1790    DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
1791
1792    // Resolve any PHI nodes at the start of the block.  They are all
1793    // guaranteed to have exactly one entry if they exist, unless there are
1794    // multiple duplicate (but guaranteed to be equal) entries for the
1795    // incoming edges.  This occurs when there are multiple edges from
1796    // OnlyPred to OnlySucc.
1797    //
1798    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1799      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1800      BB->getInstList().pop_front();  // Delete the phi node...
1801    }
1802
1803    // Delete the unconditional branch from the predecessor...
1804    OnlyPred->getInstList().pop_back();
1805
1806    // Move all definitions in the successor to the predecessor...
1807    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
1808
1809    // Make all PHI nodes that referred to BB now refer to Pred as their
1810    // source...
1811    BB->replaceAllUsesWith(OnlyPred);
1812
1813    std::string OldName = BB->getName();
1814
1815    // Erase basic block from the function...
1816    M->getBasicBlockList().erase(BB);
1817
1818    // Inherit predecessors name if it exists...
1819    if (!OldName.empty() && !OnlyPred->hasName())
1820      OnlyPred->setName(OldName);
1821
1822    return true;
1823  }
1824
1825  // Otherwise, if this block only has a single predecessor, and if that block
1826  // is a conditional branch, see if we can hoist any code from this block up
1827  // into our predecessor.
1828  if (OnlyPred)
1829    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
1830      if (BI->isConditional()) {
1831        // Get the other block.
1832        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
1833        PI = pred_begin(OtherBB);
1834        ++PI;
1835        if (PI == pred_end(OtherBB)) {
1836          // We have a conditional branch to two blocks that are only reachable
1837          // from the condbr.  We know that the condbr dominates the two blocks,
1838          // so see if there is any identical code in the "then" and "else"
1839          // blocks.  If so, we can hoist it up to the branching block.
1840          Changed |= HoistThenElseCodeToIf(BI);
1841        }
1842      }
1843
1844  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1845    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1846      // Change br (X == 0 | X == 1), T, F into a switch instruction.
1847      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
1848        Instruction *Cond = cast<Instruction>(BI->getCondition());
1849        // If this is a bunch of seteq's or'd together, or if it's a bunch of
1850        // 'setne's and'ed together, collect them.
1851        Value *CompVal = 0;
1852        std::vector<ConstantInt*> Values;
1853        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
1854        if (CompVal && CompVal->getType()->isInteger()) {
1855          // There might be duplicate constants in the list, which the switch
1856          // instruction can't handle, remove them now.
1857          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
1858          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1859
1860          // Figure out which block is which destination.
1861          BasicBlock *DefaultBB = BI->getSuccessor(1);
1862          BasicBlock *EdgeBB    = BI->getSuccessor(0);
1863          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1864
1865          // Create the new switch instruction now.
1866          SwitchInst *New = new SwitchInst(CompVal, DefaultBB,Values.size(),BI);
1867
1868          // Add all of the 'cases' to the switch instruction.
1869          for (unsigned i = 0, e = Values.size(); i != e; ++i)
1870            New->addCase(Values[i], EdgeBB);
1871
1872          // We added edges from PI to the EdgeBB.  As such, if there were any
1873          // PHI nodes in EdgeBB, they need entries to be added corresponding to
1874          // the number of edges added.
1875          for (BasicBlock::iterator BBI = EdgeBB->begin();
1876               isa<PHINode>(BBI); ++BBI) {
1877            PHINode *PN = cast<PHINode>(BBI);
1878            Value *InVal = PN->getIncomingValueForBlock(*PI);
1879            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1880              PN->addIncoming(InVal, *PI);
1881          }
1882
1883          // Erase the old branch instruction.
1884          (*PI)->getInstList().erase(BI);
1885
1886          // Erase the potentially condition tree that was used to computed the
1887          // branch condition.
1888          ErasePossiblyDeadInstructionTree(Cond);
1889          return true;
1890        }
1891      }
1892
1893  // If there is a trivial two-entry PHI node in this basic block, and we can
1894  // eliminate it, do so now.
1895  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1896    if (PN->getNumIncomingValues() == 2)
1897      Changed |= FoldTwoEntryPHINode(PN);
1898
1899  return Changed;
1900}
1901