SimplifyCFG.cpp revision 79c23effe22b252060c9bf0ce311f412bc734b7c
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Support/CFG.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include <algorithm>
28#include <functional>
29#include <set>
30#include <map>
31using namespace llvm;
32
33STATISTIC(NumSpeculations, "Number of speculative executed instructions");
34
35/// SafeToMergeTerminators - Return true if it is safe to merge these two
36/// terminator instructions together.
37///
38static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
39  if (SI1 == SI2) return false;  // Can't merge with self!
40
41  // It is not safe to merge these two switch instructions if they have a common
42  // successor, and if that successor has a PHI node, and if *that* PHI node has
43  // conflicting incoming values from the two switch blocks.
44  BasicBlock *SI1BB = SI1->getParent();
45  BasicBlock *SI2BB = SI2->getParent();
46  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
47
48  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
49    if (SI1Succs.count(*I))
50      for (BasicBlock::iterator BBI = (*I)->begin();
51           isa<PHINode>(BBI); ++BBI) {
52        PHINode *PN = cast<PHINode>(BBI);
53        if (PN->getIncomingValueForBlock(SI1BB) !=
54            PN->getIncomingValueForBlock(SI2BB))
55          return false;
56      }
57
58  return true;
59}
60
61/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
62/// now be entries in it from the 'NewPred' block.  The values that will be
63/// flowing into the PHI nodes will be the same as those coming in from
64/// ExistPred, an existing predecessor of Succ.
65static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
66                                  BasicBlock *ExistPred) {
67  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
68         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
69  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
70
71  PHINode *PN;
72  for (BasicBlock::iterator I = Succ->begin();
73       (PN = dyn_cast<PHINode>(I)); ++I)
74    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
75}
76
77// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
78// almost-empty BB ending in an unconditional branch to Succ, into succ.
79//
80// Assumption: Succ is the single successor for BB.
81//
82static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
83  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
84
85  DOUT << "Looking to fold " << BB->getNameStart() << " into "
86       << Succ->getNameStart() << "\n";
87  // Shortcut, if there is only a single predecessor is must be BB and merging
88  // is always safe
89  if (Succ->getSinglePredecessor()) return true;
90
91  typedef SmallPtrSet<Instruction*, 16> InstrSet;
92  InstrSet BBPHIs;
93
94  // Make a list of all phi nodes in BB
95  BasicBlock::iterator BBI = BB->begin();
96  while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
97
98  // Make a list of the predecessors of BB
99  typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
100  BlockSet BBPreds(pred_begin(BB), pred_end(BB));
101
102  // Use that list to make another list of common predecessors of BB and Succ
103  BlockSet CommonPreds;
104  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
105        PI != PE; ++PI)
106    if (BBPreds.count(*PI))
107      CommonPreds.insert(*PI);
108
109  // Shortcut, if there are no common predecessors, merging is always safe
110  if (CommonPreds.begin() == CommonPreds.end())
111    return true;
112
113  // Look at all the phi nodes in Succ, to see if they present a conflict when
114  // merging these blocks
115  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
116    PHINode *PN = cast<PHINode>(I);
117
118    // If the incoming value from BB is again a PHINode in
119    // BB which has the same incoming value for *PI as PN does, we can
120    // merge the phi nodes and then the blocks can still be merged
121    PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
122    if (BBPN && BBPN->getParent() == BB) {
123      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
124            PI != PE; PI++) {
125        if (BBPN->getIncomingValueForBlock(*PI)
126              != PN->getIncomingValueForBlock(*PI)) {
127          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
128               << Succ->getNameStart() << " is conflicting with "
129               << BBPN->getNameStart() << " with regard to common predecessor "
130               << (*PI)->getNameStart() << "\n";
131          return false;
132        }
133      }
134      // Remove this phinode from the list of phis in BB, since it has been
135      // handled.
136      BBPHIs.erase(BBPN);
137    } else {
138      Value* Val = PN->getIncomingValueForBlock(BB);
139      for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
140            PI != PE; PI++) {
141        // See if the incoming value for the common predecessor is equal to the
142        // one for BB, in which case this phi node will not prevent the merging
143        // of the block.
144        if (Val != PN->getIncomingValueForBlock(*PI)) {
145          DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
146          << Succ->getNameStart() << " is conflicting with regard to common "
147          << "predecessor " << (*PI)->getNameStart() << "\n";
148          return false;
149        }
150      }
151    }
152  }
153
154  // If there are any other phi nodes in BB that don't have a phi node in Succ
155  // to merge with, they must be moved to Succ completely. However, for any
156  // predecessors of Succ, branches will be added to the phi node that just
157  // point to itself. So, for any common predecessors, this must not cause
158  // conflicts.
159  for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
160        I != E; I++) {
161    PHINode *PN = cast<PHINode>(*I);
162    for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
163          PI != PE; PI++)
164      if (PN->getIncomingValueForBlock(*PI) != PN) {
165        DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
166             << BB->getNameStart() << " is conflicting with regard to common "
167             << "predecessor " << (*PI)->getNameStart() << "\n";
168        return false;
169      }
170  }
171
172  return true;
173}
174
175/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
176/// branch to Succ, and contains no instructions other than PHI nodes and the
177/// branch.  If possible, eliminate BB.
178static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
179                                                    BasicBlock *Succ) {
180  // Check to see if merging these blocks would cause conflicts for any of the
181  // phi nodes in BB or Succ. If not, we can safely merge.
182  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
183
184  DOUT << "Killing Trivial BB: \n" << *BB;
185
186  if (isa<PHINode>(Succ->begin())) {
187    // If there is more than one pred of succ, and there are PHI nodes in
188    // the successor, then we need to add incoming edges for the PHI nodes
189    //
190    const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
191
192    // Loop over all of the PHI nodes in the successor of BB.
193    for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
194      PHINode *PN = cast<PHINode>(I);
195      Value *OldVal = PN->removeIncomingValue(BB, false);
196      assert(OldVal && "No entry in PHI for Pred BB!");
197
198      // If this incoming value is one of the PHI nodes in BB, the new entries
199      // in the PHI node are the entries from the old PHI.
200      if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
201        PHINode *OldValPN = cast<PHINode>(OldVal);
202        for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
203          // Note that, since we are merging phi nodes and BB and Succ might
204          // have common predecessors, we could end up with a phi node with
205          // identical incoming branches. This will be cleaned up later (and
206          // will trigger asserts if we try to clean it up now, without also
207          // simplifying the corresponding conditional branch).
208          PN->addIncoming(OldValPN->getIncomingValue(i),
209                          OldValPN->getIncomingBlock(i));
210      } else {
211        // Add an incoming value for each of the new incoming values.
212        for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
213          PN->addIncoming(OldVal, BBPreds[i]);
214      }
215    }
216  }
217
218  if (isa<PHINode>(&BB->front())) {
219    SmallVector<BasicBlock*, 16>
220    OldSuccPreds(pred_begin(Succ), pred_end(Succ));
221
222    // Move all PHI nodes in BB to Succ if they are alive, otherwise
223    // delete them.
224    while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
225      if (PN->use_empty()) {
226        // Just remove the dead phi.  This happens if Succ's PHIs were the only
227        // users of the PHI nodes.
228        PN->eraseFromParent();
229      } else {
230        // The instruction is alive, so this means that BB must dominate all
231        // predecessors of Succ (Since all uses of the PN are after its
232        // definition, so in Succ or a block dominated by Succ. If a predecessor
233        // of Succ would not be dominated by BB, PN would violate the def before
234        // use SSA demand). Therefore, we can simply move the phi node to the
235        // next block.
236        Succ->getInstList().splice(Succ->begin(),
237                                   BB->getInstList(), BB->begin());
238
239        // We need to add new entries for the PHI node to account for
240        // predecessors of Succ that the PHI node does not take into
241        // account.  At this point, since we know that BB dominated succ and all
242        // of its predecessors, this means that we should any newly added
243        // incoming edges should use the PHI node itself as the value for these
244        // edges, because they are loop back edges.
245        for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
246          if (OldSuccPreds[i] != BB)
247            PN->addIncoming(PN, OldSuccPreds[i]);
248      }
249  }
250
251  // Everything that jumped to BB now goes to Succ.
252  BB->replaceAllUsesWith(Succ);
253  if (!Succ->hasName()) Succ->takeName(BB);
254  BB->eraseFromParent();              // Delete the old basic block.
255  return true;
256}
257
258/// GetIfCondition - Given a basic block (BB) with two predecessors (and
259/// presumably PHI nodes in it), check to see if the merge at this block is due
260/// to an "if condition".  If so, return the boolean condition that determines
261/// which entry into BB will be taken.  Also, return by references the block
262/// that will be entered from if the condition is true, and the block that will
263/// be entered if the condition is false.
264///
265///
266static Value *GetIfCondition(BasicBlock *BB,
267                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
268  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
269         "Function can only handle blocks with 2 predecessors!");
270  BasicBlock *Pred1 = *pred_begin(BB);
271  BasicBlock *Pred2 = *++pred_begin(BB);
272
273  // We can only handle branches.  Other control flow will be lowered to
274  // branches if possible anyway.
275  if (!isa<BranchInst>(Pred1->getTerminator()) ||
276      !isa<BranchInst>(Pred2->getTerminator()))
277    return 0;
278  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
279  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
280
281  // Eliminate code duplication by ensuring that Pred1Br is conditional if
282  // either are.
283  if (Pred2Br->isConditional()) {
284    // If both branches are conditional, we don't have an "if statement".  In
285    // reality, we could transform this case, but since the condition will be
286    // required anyway, we stand no chance of eliminating it, so the xform is
287    // probably not profitable.
288    if (Pred1Br->isConditional())
289      return 0;
290
291    std::swap(Pred1, Pred2);
292    std::swap(Pred1Br, Pred2Br);
293  }
294
295  if (Pred1Br->isConditional()) {
296    // If we found a conditional branch predecessor, make sure that it branches
297    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
298    if (Pred1Br->getSuccessor(0) == BB &&
299        Pred1Br->getSuccessor(1) == Pred2) {
300      IfTrue = Pred1;
301      IfFalse = Pred2;
302    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
303               Pred1Br->getSuccessor(1) == BB) {
304      IfTrue = Pred2;
305      IfFalse = Pred1;
306    } else {
307      // We know that one arm of the conditional goes to BB, so the other must
308      // go somewhere unrelated, and this must not be an "if statement".
309      return 0;
310    }
311
312    // The only thing we have to watch out for here is to make sure that Pred2
313    // doesn't have incoming edges from other blocks.  If it does, the condition
314    // doesn't dominate BB.
315    if (++pred_begin(Pred2) != pred_end(Pred2))
316      return 0;
317
318    return Pred1Br->getCondition();
319  }
320
321  // Ok, if we got here, both predecessors end with an unconditional branch to
322  // BB.  Don't panic!  If both blocks only have a single (identical)
323  // predecessor, and THAT is a conditional branch, then we're all ok!
324  if (pred_begin(Pred1) == pred_end(Pred1) ||
325      ++pred_begin(Pred1) != pred_end(Pred1) ||
326      pred_begin(Pred2) == pred_end(Pred2) ||
327      ++pred_begin(Pred2) != pred_end(Pred2) ||
328      *pred_begin(Pred1) != *pred_begin(Pred2))
329    return 0;
330
331  // Otherwise, if this is a conditional branch, then we can use it!
332  BasicBlock *CommonPred = *pred_begin(Pred1);
333  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
334    assert(BI->isConditional() && "Two successors but not conditional?");
335    if (BI->getSuccessor(0) == Pred1) {
336      IfTrue = Pred1;
337      IfFalse = Pred2;
338    } else {
339      IfTrue = Pred2;
340      IfFalse = Pred1;
341    }
342    return BI->getCondition();
343  }
344  return 0;
345}
346
347
348// If we have a merge point of an "if condition" as accepted above, return true
349// if the specified value dominates the block.  We don't handle the true
350// generality of domination here, just a special case which works well enough
351// for us.
352//
353// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354// see if V (which must be an instruction) is cheap to compute and is
355// non-trapping.  If both are true, the instruction is inserted into the set and
356// true is returned.
357static bool DominatesMergePoint(Value *V, BasicBlock *BB,
358                                std::set<Instruction*> *AggressiveInsts) {
359  Instruction *I = dyn_cast<Instruction>(V);
360  if (!I) {
361    // Non-instructions all dominate instructions, but not all constantexprs
362    // can be executed unconditionally.
363    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
364      if (C->canTrap())
365        return false;
366    return true;
367  }
368  BasicBlock *PBB = I->getParent();
369
370  // We don't want to allow weird loops that might have the "if condition" in
371  // the bottom of this block.
372  if (PBB == BB) return false;
373
374  // If this instruction is defined in a block that contains an unconditional
375  // branch to BB, then it must be in the 'conditional' part of the "if
376  // statement".
377  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
378    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
379      if (!AggressiveInsts) return false;
380      // Okay, it looks like the instruction IS in the "condition".  Check to
381      // see if its a cheap instruction to unconditionally compute, and if it
382      // only uses stuff defined outside of the condition.  If so, hoist it out.
383      switch (I->getOpcode()) {
384      default: return false;  // Cannot hoist this out safely.
385      case Instruction::Load:
386        // We can hoist loads that are non-volatile and obviously cannot trap.
387        if (cast<LoadInst>(I)->isVolatile())
388          return false;
389        if (!isa<AllocaInst>(I->getOperand(0)) &&
390            !isa<Constant>(I->getOperand(0)))
391          return false;
392
393        // Finally, we have to check to make sure there are no instructions
394        // before the load in its basic block, as we are going to hoist the loop
395        // out to its predecessor.
396        if (PBB->begin() != BasicBlock::iterator(I))
397          return false;
398        break;
399      case Instruction::Add:
400      case Instruction::Sub:
401      case Instruction::And:
402      case Instruction::Or:
403      case Instruction::Xor:
404      case Instruction::Shl:
405      case Instruction::LShr:
406      case Instruction::AShr:
407      case Instruction::ICmp:
408      case Instruction::FCmp:
409        if (I->getOperand(0)->getType()->isFPOrFPVector())
410          return false;  // FP arithmetic might trap.
411        break;   // These are all cheap and non-trapping instructions.
412      }
413
414      // Okay, we can only really hoist these out if their operands are not
415      // defined in the conditional region.
416      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
417        if (!DominatesMergePoint(*i, BB, 0))
418          return false;
419      // Okay, it's safe to do this!  Remember this instruction.
420      AggressiveInsts->insert(I);
421    }
422
423  return true;
424}
425
426// GatherConstantSetEQs - Given a potentially 'or'd together collection of
427// icmp_eq instructions that compare a value against a constant, return the
428// value being compared, and stick the constant into the Values vector.
429static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
430  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
431    if (Inst->getOpcode() == Instruction::ICmp &&
432        cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
433      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
434        Values.push_back(C);
435        return Inst->getOperand(0);
436      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
437        Values.push_back(C);
438        return Inst->getOperand(1);
439      }
440    } else if (Inst->getOpcode() == Instruction::Or) {
441      if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
442        if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
443          if (LHS == RHS)
444            return LHS;
445    }
446  }
447  return 0;
448}
449
450// GatherConstantSetNEs - Given a potentially 'and'd together collection of
451// setne instructions that compare a value against a constant, return the value
452// being compared, and stick the constant into the Values vector.
453static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
454  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
455    if (Inst->getOpcode() == Instruction::ICmp &&
456               cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
457      if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
458        Values.push_back(C);
459        return Inst->getOperand(0);
460      } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
461        Values.push_back(C);
462        return Inst->getOperand(1);
463      }
464    } else if (Inst->getOpcode() == Instruction::And) {
465      if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
466        if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
467          if (LHS == RHS)
468            return LHS;
469    }
470  }
471  return 0;
472}
473
474
475
476/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
477/// bunch of comparisons of one value against constants, return the value and
478/// the constants being compared.
479static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
480                                   std::vector<ConstantInt*> &Values) {
481  if (Cond->getOpcode() == Instruction::Or) {
482    CompVal = GatherConstantSetEQs(Cond, Values);
483
484    // Return true to indicate that the condition is true if the CompVal is
485    // equal to one of the constants.
486    return true;
487  } else if (Cond->getOpcode() == Instruction::And) {
488    CompVal = GatherConstantSetNEs(Cond, Values);
489
490    // Return false to indicate that the condition is false if the CompVal is
491    // equal to one of the constants.
492    return false;
493  }
494  return false;
495}
496
497/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
498/// has no side effects, nuke it.  If it uses any instructions that become dead
499/// because the instruction is now gone, nuke them too.
500static void ErasePossiblyDeadInstructionTree(Instruction *I) {
501  if (!isInstructionTriviallyDead(I)) return;
502
503  SmallVector<Instruction*, 16> InstrsToInspect;
504  InstrsToInspect.push_back(I);
505
506  while (!InstrsToInspect.empty()) {
507    I = InstrsToInspect.back();
508    InstrsToInspect.pop_back();
509
510    if (!isInstructionTriviallyDead(I)) continue;
511
512    // If I is in the work list multiple times, remove previous instances.
513    for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
514      if (InstrsToInspect[i] == I) {
515        InstrsToInspect.erase(InstrsToInspect.begin()+i);
516        --i, --e;
517      }
518
519    // Add operands of dead instruction to worklist.
520    for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
521      if (Instruction *OpI = dyn_cast<Instruction>(*i))
522        InstrsToInspect.push_back(OpI);
523
524    // Remove dead instruction.
525    I->eraseFromParent();
526  }
527}
528
529// isValueEqualityComparison - Return true if the specified terminator checks to
530// see if a value is equal to constant integer value.
531static Value *isValueEqualityComparison(TerminatorInst *TI) {
532  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
533    // Do not permit merging of large switch instructions into their
534    // predecessors unless there is only one predecessor.
535    if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
536                                               pred_end(SI->getParent())) > 128)
537      return 0;
538
539    return SI->getCondition();
540  }
541  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
542    if (BI->isConditional() && BI->getCondition()->hasOneUse())
543      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
544        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
545             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
546            isa<ConstantInt>(ICI->getOperand(1)))
547          return ICI->getOperand(0);
548  return 0;
549}
550
551// Given a value comparison instruction, decode all of the 'cases' that it
552// represents and return the 'default' block.
553static BasicBlock *
554GetValueEqualityComparisonCases(TerminatorInst *TI,
555                                std::vector<std::pair<ConstantInt*,
556                                                      BasicBlock*> > &Cases) {
557  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
558    Cases.reserve(SI->getNumCases());
559    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
560      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
561    return SI->getDefaultDest();
562  }
563
564  BranchInst *BI = cast<BranchInst>(TI);
565  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
566  Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
567                                 BI->getSuccessor(ICI->getPredicate() ==
568                                                  ICmpInst::ICMP_NE)));
569  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
570}
571
572
573// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
574// in the list that match the specified block.
575static void EliminateBlockCases(BasicBlock *BB,
576               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
577  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
578    if (Cases[i].second == BB) {
579      Cases.erase(Cases.begin()+i);
580      --i; --e;
581    }
582}
583
584// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
585// well.
586static bool
587ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
588              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
589  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
590
591  // Make V1 be smaller than V2.
592  if (V1->size() > V2->size())
593    std::swap(V1, V2);
594
595  if (V1->size() == 0) return false;
596  if (V1->size() == 1) {
597    // Just scan V2.
598    ConstantInt *TheVal = (*V1)[0].first;
599    for (unsigned i = 0, e = V2->size(); i != e; ++i)
600      if (TheVal == (*V2)[i].first)
601        return true;
602  }
603
604  // Otherwise, just sort both lists and compare element by element.
605  std::sort(V1->begin(), V1->end());
606  std::sort(V2->begin(), V2->end());
607  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
608  while (i1 != e1 && i2 != e2) {
609    if ((*V1)[i1].first == (*V2)[i2].first)
610      return true;
611    if ((*V1)[i1].first < (*V2)[i2].first)
612      ++i1;
613    else
614      ++i2;
615  }
616  return false;
617}
618
619// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
620// terminator instruction and its block is known to only have a single
621// predecessor block, check to see if that predecessor is also a value
622// comparison with the same value, and if that comparison determines the outcome
623// of this comparison.  If so, simplify TI.  This does a very limited form of
624// jump threading.
625static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
626                                                          BasicBlock *Pred) {
627  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
628  if (!PredVal) return false;  // Not a value comparison in predecessor.
629
630  Value *ThisVal = isValueEqualityComparison(TI);
631  assert(ThisVal && "This isn't a value comparison!!");
632  if (ThisVal != PredVal) return false;  // Different predicates.
633
634  // Find out information about when control will move from Pred to TI's block.
635  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
636  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
637                                                        PredCases);
638  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
639
640  // Find information about how control leaves this block.
641  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
642  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
643  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
644
645  // If TI's block is the default block from Pred's comparison, potentially
646  // simplify TI based on this knowledge.
647  if (PredDef == TI->getParent()) {
648    // If we are here, we know that the value is none of those cases listed in
649    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
650    // can simplify TI.
651    if (ValuesOverlap(PredCases, ThisCases)) {
652      if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
653        // Okay, one of the successors of this condbr is dead.  Convert it to a
654        // uncond br.
655        assert(ThisCases.size() == 1 && "Branch can only have one case!");
656        Value *Cond = BTI->getCondition();
657        // Insert the new branch.
658        Instruction *NI = BranchInst::Create(ThisDef, TI);
659
660        // Remove PHI node entries for the dead edge.
661        ThisCases[0].second->removePredecessor(TI->getParent());
662
663        DOUT << "Threading pred instr: " << *Pred->getTerminator()
664             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
665
666        TI->eraseFromParent();   // Nuke the old one.
667        // If condition is now dead, nuke it.
668        if (Instruction *CondI = dyn_cast<Instruction>(Cond))
669          ErasePossiblyDeadInstructionTree(CondI);
670        return true;
671
672      } else {
673        SwitchInst *SI = cast<SwitchInst>(TI);
674        // Okay, TI has cases that are statically dead, prune them away.
675        SmallPtrSet<Constant*, 16> DeadCases;
676        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
677          DeadCases.insert(PredCases[i].first);
678
679        DOUT << "Threading pred instr: " << *Pred->getTerminator()
680             << "Through successor TI: " << *TI;
681
682        for (unsigned i = SI->getNumCases()-1; i != 0; --i)
683          if (DeadCases.count(SI->getCaseValue(i))) {
684            SI->getSuccessor(i)->removePredecessor(TI->getParent());
685            SI->removeCase(i);
686          }
687
688        DOUT << "Leaving: " << *TI << "\n";
689        return true;
690      }
691    }
692
693  } else {
694    // Otherwise, TI's block must correspond to some matched value.  Find out
695    // which value (or set of values) this is.
696    ConstantInt *TIV = 0;
697    BasicBlock *TIBB = TI->getParent();
698    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
699      if (PredCases[i].second == TIBB) {
700        if (TIV == 0)
701          TIV = PredCases[i].first;
702        else
703          return false;  // Cannot handle multiple values coming to this block.
704      }
705    assert(TIV && "No edge from pred to succ?");
706
707    // Okay, we found the one constant that our value can be if we get into TI's
708    // BB.  Find out which successor will unconditionally be branched to.
709    BasicBlock *TheRealDest = 0;
710    for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
711      if (ThisCases[i].first == TIV) {
712        TheRealDest = ThisCases[i].second;
713        break;
714      }
715
716    // If not handled by any explicit cases, it is handled by the default case.
717    if (TheRealDest == 0) TheRealDest = ThisDef;
718
719    // Remove PHI node entries for dead edges.
720    BasicBlock *CheckEdge = TheRealDest;
721    for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
722      if (*SI != CheckEdge)
723        (*SI)->removePredecessor(TIBB);
724      else
725        CheckEdge = 0;
726
727    // Insert the new branch.
728    Instruction *NI = BranchInst::Create(TheRealDest, TI);
729
730    DOUT << "Threading pred instr: " << *Pred->getTerminator()
731         << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
732    Instruction *Cond = 0;
733    if (BranchInst *BI = dyn_cast<BranchInst>(TI))
734      Cond = dyn_cast<Instruction>(BI->getCondition());
735    TI->eraseFromParent();   // Nuke the old one.
736
737    if (Cond) ErasePossiblyDeadInstructionTree(Cond);
738    return true;
739  }
740  return false;
741}
742
743// FoldValueComparisonIntoPredecessors - The specified terminator is a value
744// equality comparison instruction (either a switch or a branch on "X == c").
745// See if any of the predecessors of the terminator block are value comparisons
746// on the same value.  If so, and if safe to do so, fold them together.
747static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
748  BasicBlock *BB = TI->getParent();
749  Value *CV = isValueEqualityComparison(TI);  // CondVal
750  assert(CV && "Not a comparison?");
751  bool Changed = false;
752
753  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
754  while (!Preds.empty()) {
755    BasicBlock *Pred = Preds.back();
756    Preds.pop_back();
757
758    // See if the predecessor is a comparison with the same value.
759    TerminatorInst *PTI = Pred->getTerminator();
760    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
761
762    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
763      // Figure out which 'cases' to copy from SI to PSI.
764      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
765      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
766
767      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
768      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
769
770      // Based on whether the default edge from PTI goes to BB or not, fill in
771      // PredCases and PredDefault with the new switch cases we would like to
772      // build.
773      SmallVector<BasicBlock*, 8> NewSuccessors;
774
775      if (PredDefault == BB) {
776        // If this is the default destination from PTI, only the edges in TI
777        // that don't occur in PTI, or that branch to BB will be activated.
778        std::set<ConstantInt*> PTIHandled;
779        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
780          if (PredCases[i].second != BB)
781            PTIHandled.insert(PredCases[i].first);
782          else {
783            // The default destination is BB, we don't need explicit targets.
784            std::swap(PredCases[i], PredCases.back());
785            PredCases.pop_back();
786            --i; --e;
787          }
788
789        // Reconstruct the new switch statement we will be building.
790        if (PredDefault != BBDefault) {
791          PredDefault->removePredecessor(Pred);
792          PredDefault = BBDefault;
793          NewSuccessors.push_back(BBDefault);
794        }
795        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
796          if (!PTIHandled.count(BBCases[i].first) &&
797              BBCases[i].second != BBDefault) {
798            PredCases.push_back(BBCases[i]);
799            NewSuccessors.push_back(BBCases[i].second);
800          }
801
802      } else {
803        // If this is not the default destination from PSI, only the edges
804        // in SI that occur in PSI with a destination of BB will be
805        // activated.
806        std::set<ConstantInt*> PTIHandled;
807        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
808          if (PredCases[i].second == BB) {
809            PTIHandled.insert(PredCases[i].first);
810            std::swap(PredCases[i], PredCases.back());
811            PredCases.pop_back();
812            --i; --e;
813          }
814
815        // Okay, now we know which constants were sent to BB from the
816        // predecessor.  Figure out where they will all go now.
817        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
818          if (PTIHandled.count(BBCases[i].first)) {
819            // If this is one we are capable of getting...
820            PredCases.push_back(BBCases[i]);
821            NewSuccessors.push_back(BBCases[i].second);
822            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
823          }
824
825        // If there are any constants vectored to BB that TI doesn't handle,
826        // they must go to the default destination of TI.
827        for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
828               E = PTIHandled.end(); I != E; ++I) {
829          PredCases.push_back(std::make_pair(*I, BBDefault));
830          NewSuccessors.push_back(BBDefault);
831        }
832      }
833
834      // Okay, at this point, we know which new successor Pred will get.  Make
835      // sure we update the number of entries in the PHI nodes for these
836      // successors.
837      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
838        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
839
840      // Now that the successors are updated, create the new Switch instruction.
841      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
842                                             PredCases.size(), PTI);
843      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
844        NewSI->addCase(PredCases[i].first, PredCases[i].second);
845
846      Instruction *DeadCond = 0;
847      if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
848        // If PTI is a branch, remember the condition.
849        DeadCond = dyn_cast<Instruction>(BI->getCondition());
850      Pred->getInstList().erase(PTI);
851
852      // If the condition is dead now, remove the instruction tree.
853      if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
854
855      // Okay, last check.  If BB is still a successor of PSI, then we must
856      // have an infinite loop case.  If so, add an infinitely looping block
857      // to handle the case to preserve the behavior of the code.
858      BasicBlock *InfLoopBlock = 0;
859      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
860        if (NewSI->getSuccessor(i) == BB) {
861          if (InfLoopBlock == 0) {
862            // Insert it at the end of the function, because it's either code,
863            // or it won't matter if it's hot. :)
864            InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
865            BranchInst::Create(InfLoopBlock, InfLoopBlock);
866          }
867          NewSI->setSuccessor(i, InfLoopBlock);
868        }
869
870      Changed = true;
871    }
872  }
873  return Changed;
874}
875
876/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
877/// BB2, hoist any common code in the two blocks up into the branch block.  The
878/// caller of this function guarantees that BI's block dominates BB1 and BB2.
879static bool HoistThenElseCodeToIf(BranchInst *BI) {
880  // This does very trivial matching, with limited scanning, to find identical
881  // instructions in the two blocks.  In particular, we don't want to get into
882  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
883  // such, we currently just scan for obviously identical instructions in an
884  // identical order.
885  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
886  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
887
888  Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
889  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
890      isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
891    return false;
892
893  // If we get here, we can hoist at least one instruction.
894  BasicBlock *BIParent = BI->getParent();
895
896  do {
897    // If we are hoisting the terminator instruction, don't move one (making a
898    // broken BB), instead clone it, and remove BI.
899    if (isa<TerminatorInst>(I1))
900      goto HoistTerminator;
901
902    // For a normal instruction, we just move one to right before the branch,
903    // then replace all uses of the other with the first.  Finally, we remove
904    // the now redundant second instruction.
905    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
906    if (!I2->use_empty())
907      I2->replaceAllUsesWith(I1);
908    BB2->getInstList().erase(I2);
909
910    I1 = BB1->begin();
911    I2 = BB2->begin();
912  } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
913
914  return true;
915
916HoistTerminator:
917  // Okay, it is safe to hoist the terminator.
918  Instruction *NT = I1->clone();
919  BIParent->getInstList().insert(BI, NT);
920  if (NT->getType() != Type::VoidTy) {
921    I1->replaceAllUsesWith(NT);
922    I2->replaceAllUsesWith(NT);
923    NT->takeName(I1);
924  }
925
926  // Hoisting one of the terminators from our successor is a great thing.
927  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
928  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
929  // nodes, so we insert select instruction to compute the final result.
930  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
931  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
932    PHINode *PN;
933    for (BasicBlock::iterator BBI = SI->begin();
934         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
935      Value *BB1V = PN->getIncomingValueForBlock(BB1);
936      Value *BB2V = PN->getIncomingValueForBlock(BB2);
937      if (BB1V != BB2V) {
938        // These values do not agree.  Insert a select instruction before NT
939        // that determines the right value.
940        SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
941        if (SI == 0)
942          SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
943                                  BB1V->getName()+"."+BB2V->getName(), NT);
944        // Make the PHI node use the select for all incoming values for BB1/BB2
945        for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
946          if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
947            PN->setIncomingValue(i, SI);
948      }
949    }
950  }
951
952  // Update any PHI nodes in our new successors.
953  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
954    AddPredecessorToBlock(*SI, BIParent, BB1);
955
956  BI->eraseFromParent();
957  return true;
958}
959
960/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
961/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
962/// (for now, restricted to a single instruction that's side effect free) from
963/// the BB1 into the branch block to speculatively execute it.
964static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
965  // Only speculatively execution a single instruction (not counting the
966  // terminator) for now.
967  BasicBlock::iterator BBI = BB1->begin();
968  ++BBI; // must have at least a terminator
969  if (BBI == BB1->end()) return false; // only one inst
970  ++BBI;
971  if (BBI != BB1->end()) return false; // more than 2 insts.
972
973  // Be conservative for now. FP select instruction can often be expensive.
974  Value *BrCond = BI->getCondition();
975  if (isa<Instruction>(BrCond) &&
976      cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
977    return false;
978
979  // If BB1 is actually on the false edge of the conditional branch, remember
980  // to swap the select operands later.
981  bool Invert = false;
982  if (BB1 != BI->getSuccessor(0)) {
983    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
984    Invert = true;
985  }
986
987  // Turn
988  // BB:
989  //     %t1 = icmp
990  //     br i1 %t1, label %BB1, label %BB2
991  // BB1:
992  //     %t3 = add %t2, c
993  //     br label BB2
994  // BB2:
995  // =>
996  // BB:
997  //     %t1 = icmp
998  //     %t4 = add %t2, c
999  //     %t3 = select i1 %t1, %t2, %t3
1000  Instruction *I = BB1->begin();
1001  switch (I->getOpcode()) {
1002  default: return false;  // Not safe / profitable to hoist.
1003  case Instruction::Add:
1004  case Instruction::Sub:
1005  case Instruction::And:
1006  case Instruction::Or:
1007  case Instruction::Xor:
1008  case Instruction::Shl:
1009  case Instruction::LShr:
1010  case Instruction::AShr:
1011    if (!I->getOperand(0)->getType()->isInteger())
1012      // FP arithmetic might trap. Not worth doing for vector ops.
1013      return false;
1014    break;   // These are all cheap and non-trapping instructions.
1015  }
1016
1017  // Can we speculatively execute the instruction? And what is the value
1018  // if the condition is false? Consider the phi uses, if the incoming value
1019  // from the "if" block are all the same V, then V is the value of the
1020  // select if the condition is false.
1021  BasicBlock *BIParent = BI->getParent();
1022  SmallVector<PHINode*, 4> PHIUses;
1023  Value *FalseV = NULL;
1024  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1025       UI != E; ++UI) {
1026    PHINode *PN = dyn_cast<PHINode>(UI);
1027    if (!PN)
1028      continue;
1029    PHIUses.push_back(PN);
1030    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1031    if (!FalseV)
1032      FalseV = PHIV;
1033    else if (FalseV != PHIV)
1034      return false;  // Don't know the value when condition is false.
1035  }
1036  if (!FalseV)  // Can this happen?
1037    return false;
1038
1039  // Do not hoist the instruction if any of its operands are defined but not
1040  // used in this BB. The transformation will prevent the operand from
1041  // being sunk into the use block.
1042  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1043    Instruction *OpI = dyn_cast<Instruction>(*i);
1044    if (OpI && OpI->getParent() == BIParent &&
1045        !OpI->isUsedInBasicBlock(BIParent))
1046      return false;
1047  }
1048
1049  // If we get here, we can hoist the instruction. Try to place it before the
1050  // icmp instruction preceeding the conditional branch.
1051  BasicBlock::iterator InsertPos = BI;
1052  if (InsertPos != BIParent->begin())
1053    --InsertPos;
1054  if (InsertPos == BrCond && !isa<PHINode>(BrCond))
1055    BIParent->getInstList().splice(InsertPos, BB1->getInstList(), I);
1056  else
1057    BIParent->getInstList().splice(BI, BB1->getInstList(), I);
1058
1059  // Create a select whose true value is the speculatively executed value and
1060  // false value is the previously determined FalseV.
1061  SelectInst *SI;
1062  if (Invert)
1063    SI = SelectInst::Create(BrCond, FalseV, I,
1064                            FalseV->getName() + "." + I->getName(), BI);
1065  else
1066    SI = SelectInst::Create(BrCond, I, FalseV,
1067                            I->getName() + "." + FalseV->getName(), BI);
1068
1069  // Make the PHI node use the select for all incoming values for "then" and
1070  // "if" blocks.
1071  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1072    PHINode *PN = PHIUses[i];
1073    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1074      if (PN->getIncomingBlock(j) == BB1 ||
1075          PN->getIncomingBlock(j) == BIParent)
1076        PN->setIncomingValue(j, SI);
1077  }
1078
1079  ++NumSpeculations;
1080  return true;
1081}
1082
1083/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1084/// across this block.
1085static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1086  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1087  unsigned Size = 0;
1088
1089  // If this basic block contains anything other than a PHI (which controls the
1090  // branch) and branch itself, bail out.  FIXME: improve this in the future.
1091  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
1092    if (Size > 10) return false;  // Don't clone large BB's.
1093
1094    // We can only support instructions that are do not define values that are
1095    // live outside of the current basic block.
1096    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1097         UI != E; ++UI) {
1098      Instruction *U = cast<Instruction>(*UI);
1099      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1100    }
1101
1102    // Looks ok, continue checking.
1103  }
1104
1105  return true;
1106}
1107
1108/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1109/// that is defined in the same block as the branch and if any PHI entries are
1110/// constants, thread edges corresponding to that entry to be branches to their
1111/// ultimate destination.
1112static bool FoldCondBranchOnPHI(BranchInst *BI) {
1113  BasicBlock *BB = BI->getParent();
1114  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1115  // NOTE: we currently cannot transform this case if the PHI node is used
1116  // outside of the block.
1117  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1118    return false;
1119
1120  // Degenerate case of a single entry PHI.
1121  if (PN->getNumIncomingValues() == 1) {
1122    if (PN->getIncomingValue(0) != PN)
1123      PN->replaceAllUsesWith(PN->getIncomingValue(0));
1124    else
1125      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1126    PN->eraseFromParent();
1127    return true;
1128  }
1129
1130  // Now we know that this block has multiple preds and two succs.
1131  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1132
1133  // Okay, this is a simple enough basic block.  See if any phi values are
1134  // constants.
1135  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1136    ConstantInt *CB;
1137    if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1138        CB->getType() == Type::Int1Ty) {
1139      // Okay, we now know that all edges from PredBB should be revectored to
1140      // branch to RealDest.
1141      BasicBlock *PredBB = PN->getIncomingBlock(i);
1142      BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1143
1144      if (RealDest == BB) continue;  // Skip self loops.
1145
1146      // The dest block might have PHI nodes, other predecessors and other
1147      // difficult cases.  Instead of being smart about this, just insert a new
1148      // block that jumps to the destination block, effectively splitting
1149      // the edge we are about to create.
1150      BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
1151                                              RealDest->getParent(), RealDest);
1152      BranchInst::Create(RealDest, EdgeBB);
1153      PHINode *PN;
1154      for (BasicBlock::iterator BBI = RealDest->begin();
1155           (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1156        Value *V = PN->getIncomingValueForBlock(BB);
1157        PN->addIncoming(V, EdgeBB);
1158      }
1159
1160      // BB may have instructions that are being threaded over.  Clone these
1161      // instructions into EdgeBB.  We know that there will be no uses of the
1162      // cloned instructions outside of EdgeBB.
1163      BasicBlock::iterator InsertPt = EdgeBB->begin();
1164      std::map<Value*, Value*> TranslateMap;  // Track translated values.
1165      for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1166        if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1167          TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1168        } else {
1169          // Clone the instruction.
1170          Instruction *N = BBI->clone();
1171          if (BBI->hasName()) N->setName(BBI->getName()+".c");
1172
1173          // Update operands due to translation.
1174          for (User::op_iterator i = N->op_begin(), e = N->op_end();
1175               i != e; ++i) {
1176            std::map<Value*, Value*>::iterator PI =
1177              TranslateMap.find(*i);
1178            if (PI != TranslateMap.end())
1179              *i = PI->second;
1180          }
1181
1182          // Check for trivial simplification.
1183          if (Constant *C = ConstantFoldInstruction(N)) {
1184            TranslateMap[BBI] = C;
1185            delete N;   // Constant folded away, don't need actual inst
1186          } else {
1187            // Insert the new instruction into its new home.
1188            EdgeBB->getInstList().insert(InsertPt, N);
1189            if (!BBI->use_empty())
1190              TranslateMap[BBI] = N;
1191          }
1192        }
1193      }
1194
1195      // Loop over all of the edges from PredBB to BB, changing them to branch
1196      // to EdgeBB instead.
1197      TerminatorInst *PredBBTI = PredBB->getTerminator();
1198      for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1199        if (PredBBTI->getSuccessor(i) == BB) {
1200          BB->removePredecessor(PredBB);
1201          PredBBTI->setSuccessor(i, EdgeBB);
1202        }
1203
1204      // Recurse, simplifying any other constants.
1205      return FoldCondBranchOnPHI(BI) | true;
1206    }
1207  }
1208
1209  return false;
1210}
1211
1212/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1213/// PHI node, see if we can eliminate it.
1214static bool FoldTwoEntryPHINode(PHINode *PN) {
1215  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1216  // statement", which has a very simple dominance structure.  Basically, we
1217  // are trying to find the condition that is being branched on, which
1218  // subsequently causes this merge to happen.  We really want control
1219  // dependence information for this check, but simplifycfg can't keep it up
1220  // to date, and this catches most of the cases we care about anyway.
1221  //
1222  BasicBlock *BB = PN->getParent();
1223  BasicBlock *IfTrue, *IfFalse;
1224  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1225  if (!IfCond) return false;
1226
1227  // Okay, we found that we can merge this two-entry phi node into a select.
1228  // Doing so would require us to fold *all* two entry phi nodes in this block.
1229  // At some point this becomes non-profitable (particularly if the target
1230  // doesn't support cmov's).  Only do this transformation if there are two or
1231  // fewer PHI nodes in this block.
1232  unsigned NumPhis = 0;
1233  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1234    if (NumPhis > 2)
1235      return false;
1236
1237  DOUT << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1238       << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n";
1239
1240  // Loop over the PHI's seeing if we can promote them all to select
1241  // instructions.  While we are at it, keep track of the instructions
1242  // that need to be moved to the dominating block.
1243  std::set<Instruction*> AggressiveInsts;
1244
1245  BasicBlock::iterator AfterPHIIt = BB->begin();
1246  while (isa<PHINode>(AfterPHIIt)) {
1247    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1248    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1249      if (PN->getIncomingValue(0) != PN)
1250        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1251      else
1252        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1253    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1254                                    &AggressiveInsts) ||
1255               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1256                                    &AggressiveInsts)) {
1257      return false;
1258    }
1259  }
1260
1261  // If we all PHI nodes are promotable, check to make sure that all
1262  // instructions in the predecessor blocks can be promoted as well.  If
1263  // not, we won't be able to get rid of the control flow, so it's not
1264  // worth promoting to select instructions.
1265  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1266  PN = cast<PHINode>(BB->begin());
1267  BasicBlock *Pred = PN->getIncomingBlock(0);
1268  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1269    IfBlock1 = Pred;
1270    DomBlock = *pred_begin(Pred);
1271    for (BasicBlock::iterator I = Pred->begin();
1272         !isa<TerminatorInst>(I); ++I)
1273      if (!AggressiveInsts.count(I)) {
1274        // This is not an aggressive instruction that we can promote.
1275        // Because of this, we won't be able to get rid of the control
1276        // flow, so the xform is not worth it.
1277        return false;
1278      }
1279  }
1280
1281  Pred = PN->getIncomingBlock(1);
1282  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1283    IfBlock2 = Pred;
1284    DomBlock = *pred_begin(Pred);
1285    for (BasicBlock::iterator I = Pred->begin();
1286         !isa<TerminatorInst>(I); ++I)
1287      if (!AggressiveInsts.count(I)) {
1288        // This is not an aggressive instruction that we can promote.
1289        // Because of this, we won't be able to get rid of the control
1290        // flow, so the xform is not worth it.
1291        return false;
1292      }
1293  }
1294
1295  // If we can still promote the PHI nodes after this gauntlet of tests,
1296  // do all of the PHI's now.
1297
1298  // Move all 'aggressive' instructions, which are defined in the
1299  // conditional parts of the if's up to the dominating block.
1300  if (IfBlock1) {
1301    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1302                                   IfBlock1->getInstList(),
1303                                   IfBlock1->begin(),
1304                                   IfBlock1->getTerminator());
1305  }
1306  if (IfBlock2) {
1307    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1308                                   IfBlock2->getInstList(),
1309                                   IfBlock2->begin(),
1310                                   IfBlock2->getTerminator());
1311  }
1312
1313  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1314    // Change the PHI node into a select instruction.
1315    Value *TrueVal =
1316      PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1317    Value *FalseVal =
1318      PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1319
1320    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1321    PN->replaceAllUsesWith(NV);
1322    NV->takeName(PN);
1323
1324    BB->getInstList().erase(PN);
1325  }
1326  return true;
1327}
1328
1329/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1330/// to two returning blocks, try to merge them together into one return,
1331/// introducing a select if the return values disagree.
1332static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1333  assert(BI->isConditional() && "Must be a conditional branch");
1334  BasicBlock *TrueSucc = BI->getSuccessor(0);
1335  BasicBlock *FalseSucc = BI->getSuccessor(1);
1336  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1337  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1338
1339  // Check to ensure both blocks are empty (just a return) or optionally empty
1340  // with PHI nodes.  If there are other instructions, merging would cause extra
1341  // computation on one path or the other.
1342  BasicBlock::iterator BBI = TrueRet;
1343  if (BBI != TrueSucc->begin() && !isa<PHINode>(--BBI))
1344    return false;  // Not empty with optional phi nodes.
1345  BBI = FalseRet;
1346  if (BBI != FalseSucc->begin() && !isa<PHINode>(--BBI))
1347    return false;  // Not empty with optional phi nodes.
1348
1349  // Okay, we found a branch that is going to two return nodes.  If
1350  // there is no return value for this function, just change the
1351  // branch into a return.
1352  if (FalseRet->getNumOperands() == 0) {
1353    TrueSucc->removePredecessor(BI->getParent());
1354    FalseSucc->removePredecessor(BI->getParent());
1355    ReturnInst::Create(0, BI);
1356    BI->eraseFromParent();
1357    return true;
1358  }
1359
1360  // Otherwise, build up the result values for the new return.
1361  SmallVector<Value*, 4> TrueResult;
1362  SmallVector<Value*, 4> FalseResult;
1363
1364  for (unsigned i = 0, e = TrueRet->getNumOperands(); i != e; ++i) {
1365    // Otherwise, figure out what the true and false return values are
1366    // so we can insert a new select instruction.
1367    Value *TrueValue = TrueRet->getOperand(i);
1368    Value *FalseValue = FalseRet->getOperand(i);
1369
1370    // Unwrap any PHI nodes in the return blocks.
1371    if (PHINode *TVPN = dyn_cast<PHINode>(TrueValue))
1372      if (TVPN->getParent() == TrueSucc)
1373        TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1374    if (PHINode *FVPN = dyn_cast<PHINode>(FalseValue))
1375      if (FVPN->getParent() == FalseSucc)
1376        FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1377
1378    // In order for this transformation to be safe, we must be able to
1379    // unconditionally execute both operands to the return.  This is
1380    // normally the case, but we could have a potentially-trapping
1381    // constant expression that prevents this transformation from being
1382    // safe.
1383    if (ConstantExpr *TCV = dyn_cast<ConstantExpr>(TrueValue))
1384      if (TCV->canTrap())
1385        return false;
1386    if (ConstantExpr *FCV = dyn_cast<ConstantExpr>(FalseValue))
1387      if (FCV->canTrap())
1388        return false;
1389
1390    TrueResult.push_back(TrueValue);
1391    FalseResult.push_back(FalseValue);
1392  }
1393
1394  // Okay, we collected all the mapped values and checked them for sanity, and
1395  // defined to really do this transformation.  First, update the CFG.
1396  TrueSucc->removePredecessor(BI->getParent());
1397  FalseSucc->removePredecessor(BI->getParent());
1398
1399  // Insert select instructions where needed.
1400  Value *BrCond = BI->getCondition();
1401  for (unsigned i = 0, e = TrueRet->getNumOperands(); i != e; ++i) {
1402    // Insert a select if the results differ.
1403    if (TrueResult[i] == FalseResult[i] || isa<UndefValue>(FalseResult[i]))
1404      continue;
1405    if (isa<UndefValue>(TrueResult[i])) {
1406      TrueResult[i] = FalseResult[i];
1407      continue;
1408    }
1409
1410    TrueResult[i] = SelectInst::Create(BrCond, TrueResult[i],
1411                                       FalseResult[i], "retval", BI);
1412  }
1413
1414  Value *RI = ReturnInst::Create(&TrueResult[0], TrueResult.size(), BI);
1415
1416  DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1417       << "\n  " << *BI << "NewRet = " << *RI
1418       << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1419
1420  BI->eraseFromParent();
1421
1422  if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1423    ErasePossiblyDeadInstructionTree(BrCondI);
1424  return true;
1425}
1426
1427/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1428/// and if a predecessor branches to us and one of our successors, fold the
1429/// setcc into the predecessor and use logical operations to pick the right
1430/// destination.
1431static bool FoldBranchToCommonDest(BranchInst *BI) {
1432  BasicBlock *BB = BI->getParent();
1433  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1434  if (Cond == 0) return false;
1435
1436
1437  // Only allow this if the condition is a simple instruction that can be
1438  // executed unconditionally.  It must be in the same block as the branch, and
1439  // must be at the front of the block.
1440  if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1441      Cond->getParent() != BB || &BB->front() != Cond || !Cond->hasOneUse())
1442    return false;
1443
1444  // Make sure the instruction after the condition is the cond branch.
1445  BasicBlock::iterator CondIt = Cond; ++CondIt;
1446  if (&*CondIt != BI)
1447    return false;
1448
1449  // Finally, don't infinitely unroll conditional loops.
1450  BasicBlock *TrueDest  = BI->getSuccessor(0);
1451  BasicBlock *FalseDest = BI->getSuccessor(1);
1452  if (TrueDest == BB || FalseDest == BB)
1453    return false;
1454
1455  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1456    BasicBlock *PredBlock = *PI;
1457    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1458    // Check that we have two conditional branches.  If there is a PHI node in
1459    // the common successor, verify that the same value flows in from both
1460    // blocks.
1461    if (PBI == 0 || PBI->isUnconditional() ||
1462        !SafeToMergeTerminators(BI, PBI))
1463      continue;
1464
1465    Instruction::BinaryOps Opc;
1466    bool InvertPredCond = false;
1467
1468    if (PBI->getSuccessor(0) == TrueDest)
1469      Opc = Instruction::Or;
1470    else if (PBI->getSuccessor(1) == FalseDest)
1471      Opc = Instruction::And;
1472    else if (PBI->getSuccessor(0) == FalseDest)
1473      Opc = Instruction::And, InvertPredCond = true;
1474    else if (PBI->getSuccessor(1) == TrueDest)
1475      Opc = Instruction::Or, InvertPredCond = true;
1476    else
1477      continue;
1478
1479    // If we need to invert the condition in the pred block to match, do so now.
1480    if (InvertPredCond) {
1481      Value *NewCond =
1482        BinaryOperator::CreateNot(PBI->getCondition(),
1483                                  PBI->getCondition()->getName()+".not", PBI);
1484      PBI->setCondition(NewCond);
1485      BasicBlock *OldTrue = PBI->getSuccessor(0);
1486      BasicBlock *OldFalse = PBI->getSuccessor(1);
1487      PBI->setSuccessor(0, OldFalse);
1488      PBI->setSuccessor(1, OldTrue);
1489    }
1490
1491    // Clone Cond into the predecessor basic block, and or/and the
1492    // two conditions together.
1493    Instruction *New = Cond->clone();
1494    PredBlock->getInstList().insert(PBI, New);
1495    New->takeName(Cond);
1496    Cond->setName(New->getName()+".old");
1497
1498    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1499                                            New, "or.cond", PBI);
1500    PBI->setCondition(NewCond);
1501    if (PBI->getSuccessor(0) == BB) {
1502      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1503      PBI->setSuccessor(0, TrueDest);
1504    }
1505    if (PBI->getSuccessor(1) == BB) {
1506      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1507      PBI->setSuccessor(1, FalseDest);
1508    }
1509    return true;
1510  }
1511  return false;
1512}
1513
1514/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1515/// predecessor of another block, this function tries to simplify it.  We know
1516/// that PBI and BI are both conditional branches, and BI is in one of the
1517/// successor blocks of PBI - PBI branches to BI.
1518static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1519  assert(PBI->isConditional() && BI->isConditional());
1520  BasicBlock *BB = BI->getParent();
1521
1522  // If this block ends with a branch instruction, and if there is a
1523  // predecessor that ends on a branch of the same condition, make
1524  // this conditional branch redundant.
1525  if (PBI->getCondition() == BI->getCondition() &&
1526      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1527    // Okay, the outcome of this conditional branch is statically
1528    // knowable.  If this block had a single pred, handle specially.
1529    if (BB->getSinglePredecessor()) {
1530      // Turn this into a branch on constant.
1531      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1532      BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1533      return true;  // Nuke the branch on constant.
1534    }
1535
1536    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1537    // in the constant and simplify the block result.  Subsequent passes of
1538    // simplifycfg will thread the block.
1539    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1540      PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1541                                       BI->getCondition()->getName() + ".pr",
1542                                       BB->begin());
1543      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1544      // predecessor, compute the PHI'd conditional value for all of the preds.
1545      // Any predecessor where the condition is not computable we keep symbolic.
1546      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1547        if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1548            PBI != BI && PBI->isConditional() &&
1549            PBI->getCondition() == BI->getCondition() &&
1550            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1551          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1552          NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1553                                              CondIsTrue), *PI);
1554        } else {
1555          NewPN->addIncoming(BI->getCondition(), *PI);
1556        }
1557
1558      BI->setCondition(NewPN);
1559      return true;
1560    }
1561  }
1562
1563  // If this is a conditional branch in an empty block, and if any
1564  // predecessors is a conditional branch to one of our destinations,
1565  // fold the conditions into logical ops and one cond br.
1566  if (&BB->front() != BI)
1567    return false;
1568
1569  int PBIOp, BIOp;
1570  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1571    PBIOp = BIOp = 0;
1572  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1573    PBIOp = 0, BIOp = 1;
1574  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1575    PBIOp = 1, BIOp = 0;
1576  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1577    PBIOp = BIOp = 1;
1578  else
1579    return false;
1580
1581  // Check to make sure that the other destination of this branch
1582  // isn't BB itself.  If so, this is an infinite loop that will
1583  // keep getting unwound.
1584  if (PBI->getSuccessor(PBIOp) == BB)
1585    return false;
1586
1587  // Do not perform this transformation if it would require
1588  // insertion of a large number of select instructions. For targets
1589  // without predication/cmovs, this is a big pessimization.
1590  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1591
1592  unsigned NumPhis = 0;
1593  for (BasicBlock::iterator II = CommonDest->begin();
1594       isa<PHINode>(II); ++II, ++NumPhis)
1595    if (NumPhis > 2) // Disable this xform.
1596      return false;
1597
1598  // Finally, if everything is ok, fold the branches to logical ops.
1599  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1600
1601  DOUT << "FOLDING BRs:" << *PBI->getParent()
1602       << "AND: " << *BI->getParent();
1603
1604
1605  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1606  // branch in it, where one edge (OtherDest) goes back to itself but the other
1607  // exits.  We don't *know* that the program avoids the infinite loop
1608  // (even though that seems likely).  If we do this xform naively, we'll end up
1609  // recursively unpeeling the loop.  Since we know that (after the xform is
1610  // done) that the block *is* infinite if reached, we just make it an obviously
1611  // infinite loop with no cond branch.
1612  if (OtherDest == BB) {
1613    // Insert it at the end of the function, because it's either code,
1614    // or it won't matter if it's hot. :)
1615    BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
1616    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1617    OtherDest = InfLoopBlock;
1618  }
1619
1620  DOUT << *PBI->getParent()->getParent();
1621
1622  // BI may have other predecessors.  Because of this, we leave
1623  // it alone, but modify PBI.
1624
1625  // Make sure we get to CommonDest on True&True directions.
1626  Value *PBICond = PBI->getCondition();
1627  if (PBIOp)
1628    PBICond = BinaryOperator::CreateNot(PBICond,
1629                                        PBICond->getName()+".not",
1630                                        PBI);
1631  Value *BICond = BI->getCondition();
1632  if (BIOp)
1633    BICond = BinaryOperator::CreateNot(BICond,
1634                                       BICond->getName()+".not",
1635                                       PBI);
1636  // Merge the conditions.
1637  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1638
1639  // Modify PBI to branch on the new condition to the new dests.
1640  PBI->setCondition(Cond);
1641  PBI->setSuccessor(0, CommonDest);
1642  PBI->setSuccessor(1, OtherDest);
1643
1644  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1645  // block that are identical to the entries for BI's block.
1646  PHINode *PN;
1647  for (BasicBlock::iterator II = OtherDest->begin();
1648       (PN = dyn_cast<PHINode>(II)); ++II) {
1649    Value *V = PN->getIncomingValueForBlock(BB);
1650    PN->addIncoming(V, PBI->getParent());
1651  }
1652
1653  // We know that the CommonDest already had an edge from PBI to
1654  // it.  If it has PHIs though, the PHIs may have different
1655  // entries for BB and PBI's BB.  If so, insert a select to make
1656  // them agree.
1657  for (BasicBlock::iterator II = CommonDest->begin();
1658       (PN = dyn_cast<PHINode>(II)); ++II) {
1659    Value *BIV = PN->getIncomingValueForBlock(BB);
1660    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1661    Value *PBIV = PN->getIncomingValue(PBBIdx);
1662    if (BIV != PBIV) {
1663      // Insert a select in PBI to pick the right value.
1664      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1665                                     PBIV->getName()+".mux", PBI);
1666      PN->setIncomingValue(PBBIdx, NV);
1667    }
1668  }
1669
1670  DOUT << "INTO: " << *PBI->getParent();
1671
1672  DOUT << *PBI->getParent()->getParent();
1673
1674  // This basic block is probably dead.  We know it has at least
1675  // one fewer predecessor.
1676  return true;
1677}
1678
1679
1680namespace {
1681  /// ConstantIntOrdering - This class implements a stable ordering of constant
1682  /// integers that does not depend on their address.  This is important for
1683  /// applications that sort ConstantInt's to ensure uniqueness.
1684  struct ConstantIntOrdering {
1685    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1686      return LHS->getValue().ult(RHS->getValue());
1687    }
1688  };
1689}
1690
1691// SimplifyCFG - This function is used to do simplification of a CFG.  For
1692// example, it adjusts branches to branches to eliminate the extra hop, it
1693// eliminates unreachable basic blocks, and does other "peephole" optimization
1694// of the CFG.  It returns true if a modification was made.
1695//
1696// WARNING:  The entry node of a function may not be simplified.
1697//
1698bool llvm::SimplifyCFG(BasicBlock *BB) {
1699  bool Changed = false;
1700  Function *M = BB->getParent();
1701
1702  assert(BB && BB->getParent() && "Block not embedded in function!");
1703  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1704  assert(&BB->getParent()->getEntryBlock() != BB &&
1705         "Can't Simplify entry block!");
1706
1707  // Remove basic blocks that have no predecessors... which are unreachable.
1708  if ((pred_begin(BB) == pred_end(BB)) ||
1709      (*pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB))) {
1710    DOUT << "Removing BB: \n" << *BB;
1711
1712    // Loop through all of our successors and make sure they know that one
1713    // of their predecessors is going away.
1714    for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1715      SI->removePredecessor(BB);
1716
1717    while (!BB->empty()) {
1718      Instruction &I = BB->back();
1719      // If this instruction is used, replace uses with an arbitrary
1720      // value.  Because control flow can't get here, we don't care
1721      // what we replace the value with.  Note that since this block is
1722      // unreachable, and all values contained within it must dominate their
1723      // uses, that all uses will eventually be removed.
1724      if (!I.use_empty())
1725        // Make all users of this instruction use undef instead
1726        I.replaceAllUsesWith(UndefValue::get(I.getType()));
1727
1728      // Remove the instruction from the basic block
1729      BB->getInstList().pop_back();
1730    }
1731    M->getBasicBlockList().erase(BB);
1732    return true;
1733  }
1734
1735  // Check to see if we can constant propagate this terminator instruction
1736  // away...
1737  Changed |= ConstantFoldTerminator(BB);
1738
1739  // If there is a trivial two-entry PHI node in this basic block, and we can
1740  // eliminate it, do so now.
1741  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1742    if (PN->getNumIncomingValues() == 2)
1743      Changed |= FoldTwoEntryPHINode(PN);
1744
1745  // If this is a returning block with only PHI nodes in it, fold the return
1746  // instruction into any unconditional branch predecessors.
1747  //
1748  // If any predecessor is a conditional branch that just selects among
1749  // different return values, fold the replace the branch/return with a select
1750  // and return.
1751  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1752    BasicBlock::iterator BBI = BB->getTerminator();
1753    if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1754      // Find predecessors that end with branches.
1755      SmallVector<BasicBlock*, 8> UncondBranchPreds;
1756      SmallVector<BranchInst*, 8> CondBranchPreds;
1757      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1758        TerminatorInst *PTI = (*PI)->getTerminator();
1759        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1760          if (BI->isUnconditional())
1761            UncondBranchPreds.push_back(*PI);
1762          else
1763            CondBranchPreds.push_back(BI);
1764        }
1765      }
1766
1767      // If we found some, do the transformation!
1768      if (!UncondBranchPreds.empty()) {
1769        while (!UncondBranchPreds.empty()) {
1770          BasicBlock *Pred = UncondBranchPreds.back();
1771          DOUT << "FOLDING: " << *BB
1772               << "INTO UNCOND BRANCH PRED: " << *Pred;
1773          UncondBranchPreds.pop_back();
1774          Instruction *UncondBranch = Pred->getTerminator();
1775          // Clone the return and add it to the end of the predecessor.
1776          Instruction *NewRet = RI->clone();
1777          Pred->getInstList().push_back(NewRet);
1778
1779          // If the return instruction returns a value, and if the value was a
1780          // PHI node in "BB", propagate the right value into the return.
1781          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1782               i != e; ++i)
1783            if (PHINode *PN = dyn_cast<PHINode>(*i))
1784              if (PN->getParent() == BB)
1785                *i = PN->getIncomingValueForBlock(Pred);
1786
1787          // Update any PHI nodes in the returning block to realize that we no
1788          // longer branch to them.
1789          BB->removePredecessor(Pred);
1790          Pred->getInstList().erase(UncondBranch);
1791        }
1792
1793        // If we eliminated all predecessors of the block, delete the block now.
1794        if (pred_begin(BB) == pred_end(BB))
1795          // We know there are no successors, so just nuke the block.
1796          M->getBasicBlockList().erase(BB);
1797
1798        return true;
1799      }
1800
1801      // Check out all of the conditional branches going to this return
1802      // instruction.  If any of them just select between returns, change the
1803      // branch itself into a select/return pair.
1804      while (!CondBranchPreds.empty()) {
1805        BranchInst *BI = CondBranchPreds.back();
1806        CondBranchPreds.pop_back();
1807
1808        // Check to see if the non-BB successor is also a return block.
1809        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1810            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1811            SimplifyCondBranchToTwoReturns(BI))
1812          return true;
1813      }
1814    }
1815  } else if (isa<UnwindInst>(BB->begin())) {
1816    // Check to see if the first instruction in this block is just an unwind.
1817    // If so, replace any invoke instructions which use this as an exception
1818    // destination with call instructions, and any unconditional branch
1819    // predecessor with an unwind.
1820    //
1821    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1822    while (!Preds.empty()) {
1823      BasicBlock *Pred = Preds.back();
1824      if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
1825        if (BI->isUnconditional()) {
1826          Pred->getInstList().pop_back();  // nuke uncond branch
1827          new UnwindInst(Pred);            // Use unwind.
1828          Changed = true;
1829        }
1830      } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
1831        if (II->getUnwindDest() == BB) {
1832          // Insert a new branch instruction before the invoke, because this
1833          // is now a fall through...
1834          BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
1835          Pred->getInstList().remove(II);   // Take out of symbol table
1836
1837          // Insert the call now...
1838          SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
1839          CallInst *CI = CallInst::Create(II->getCalledValue(),
1840                                          Args.begin(), Args.end(),
1841                                          II->getName(), BI);
1842          CI->setCallingConv(II->getCallingConv());
1843          CI->setParamAttrs(II->getParamAttrs());
1844          // If the invoke produced a value, the Call now does instead
1845          II->replaceAllUsesWith(CI);
1846          delete II;
1847          Changed = true;
1848        }
1849
1850      Preds.pop_back();
1851    }
1852
1853    // If this block is now dead, remove it.
1854    if (pred_begin(BB) == pred_end(BB)) {
1855      // We know there are no successors, so just nuke the block.
1856      M->getBasicBlockList().erase(BB);
1857      return true;
1858    }
1859
1860  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1861    if (isValueEqualityComparison(SI)) {
1862      // If we only have one predecessor, and if it is a branch on this value,
1863      // see if that predecessor totally determines the outcome of this switch.
1864      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1865        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1866          return SimplifyCFG(BB) || 1;
1867
1868      // If the block only contains the switch, see if we can fold the block
1869      // away into any preds.
1870      if (SI == &BB->front())
1871        if (FoldValueComparisonIntoPredecessors(SI))
1872          return SimplifyCFG(BB) || 1;
1873    }
1874  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1875    if (BI->isUnconditional()) {
1876      BasicBlock::iterator BBI = BB->getFirstNonPHI();
1877
1878      BasicBlock *Succ = BI->getSuccessor(0);
1879      if (BBI->isTerminator() &&  // Terminator is the only non-phi instruction!
1880          Succ != BB)             // Don't hurt infinite loops!
1881        if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
1882          return true;
1883
1884    } else {  // Conditional branch
1885      if (isValueEqualityComparison(BI)) {
1886        // If we only have one predecessor, and if it is a branch on this value,
1887        // see if that predecessor totally determines the outcome of this
1888        // switch.
1889        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1890          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1891            return SimplifyCFG(BB) || 1;
1892
1893        // This block must be empty, except for the setcond inst, if it exists.
1894        BasicBlock::iterator I = BB->begin();
1895        if (&*I == BI ||
1896            (&*I == cast<Instruction>(BI->getCondition()) &&
1897             &*++I == BI))
1898          if (FoldValueComparisonIntoPredecessors(BI))
1899            return SimplifyCFG(BB) | true;
1900      }
1901
1902      // If this is a branch on a phi node in the current block, thread control
1903      // through this block if any PHI node entries are constants.
1904      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1905        if (PN->getParent() == BI->getParent())
1906          if (FoldCondBranchOnPHI(BI))
1907            return SimplifyCFG(BB) | true;
1908
1909      // If this basic block is ONLY a setcc and a branch, and if a predecessor
1910      // branches to us and one of our successors, fold the setcc into the
1911      // predecessor and use logical operations to pick the right destination.
1912      if (FoldBranchToCommonDest(BI))
1913        return SimplifyCFG(BB) | 1;
1914
1915
1916      // Scan predecessor blocks for conditional branches.
1917      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1918        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
1919          if (PBI != BI && PBI->isConditional())
1920            if (SimplifyCondBranchToCondBranch(PBI, BI))
1921              return SimplifyCFG(BB) | true;
1922    }
1923  } else if (isa<UnreachableInst>(BB->getTerminator())) {
1924    // If there are any instructions immediately before the unreachable that can
1925    // be removed, do so.
1926    Instruction *Unreachable = BB->getTerminator();
1927    while (Unreachable != BB->begin()) {
1928      BasicBlock::iterator BBI = Unreachable;
1929      --BBI;
1930      if (isa<CallInst>(BBI)) break;
1931      // Delete this instruction
1932      BB->getInstList().erase(BBI);
1933      Changed = true;
1934    }
1935
1936    // If the unreachable instruction is the first in the block, take a gander
1937    // at all of the predecessors of this instruction, and simplify them.
1938    if (&BB->front() == Unreachable) {
1939      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
1940      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1941        TerminatorInst *TI = Preds[i]->getTerminator();
1942
1943        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1944          if (BI->isUnconditional()) {
1945            if (BI->getSuccessor(0) == BB) {
1946              new UnreachableInst(TI);
1947              TI->eraseFromParent();
1948              Changed = true;
1949            }
1950          } else {
1951            if (BI->getSuccessor(0) == BB) {
1952              BranchInst::Create(BI->getSuccessor(1), BI);
1953              BI->eraseFromParent();
1954            } else if (BI->getSuccessor(1) == BB) {
1955              BranchInst::Create(BI->getSuccessor(0), BI);
1956              BI->eraseFromParent();
1957              Changed = true;
1958            }
1959          }
1960        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1961          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1962            if (SI->getSuccessor(i) == BB) {
1963              BB->removePredecessor(SI->getParent());
1964              SI->removeCase(i);
1965              --i; --e;
1966              Changed = true;
1967            }
1968          // If the default value is unreachable, figure out the most popular
1969          // destination and make it the default.
1970          if (SI->getSuccessor(0) == BB) {
1971            std::map<BasicBlock*, unsigned> Popularity;
1972            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1973              Popularity[SI->getSuccessor(i)]++;
1974
1975            // Find the most popular block.
1976            unsigned MaxPop = 0;
1977            BasicBlock *MaxBlock = 0;
1978            for (std::map<BasicBlock*, unsigned>::iterator
1979                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1980              if (I->second > MaxPop) {
1981                MaxPop = I->second;
1982                MaxBlock = I->first;
1983              }
1984            }
1985            if (MaxBlock) {
1986              // Make this the new default, allowing us to delete any explicit
1987              // edges to it.
1988              SI->setSuccessor(0, MaxBlock);
1989              Changed = true;
1990
1991              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1992              // it.
1993              if (isa<PHINode>(MaxBlock->begin()))
1994                for (unsigned i = 0; i != MaxPop-1; ++i)
1995                  MaxBlock->removePredecessor(SI->getParent());
1996
1997              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1998                if (SI->getSuccessor(i) == MaxBlock) {
1999                  SI->removeCase(i);
2000                  --i; --e;
2001                }
2002            }
2003          }
2004        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2005          if (II->getUnwindDest() == BB) {
2006            // Convert the invoke to a call instruction.  This would be a good
2007            // place to note that the call does not throw though.
2008            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2009            II->removeFromParent();   // Take out of symbol table
2010
2011            // Insert the call now...
2012            SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
2013            CallInst *CI = CallInst::Create(II->getCalledValue(),
2014                                            Args.begin(), Args.end(),
2015                                            II->getName(), BI);
2016            CI->setCallingConv(II->getCallingConv());
2017            CI->setParamAttrs(II->getParamAttrs());
2018            // If the invoke produced a value, the Call does now instead.
2019            II->replaceAllUsesWith(CI);
2020            delete II;
2021            Changed = true;
2022          }
2023        }
2024      }
2025
2026      // If this block is now dead, remove it.
2027      if (pred_begin(BB) == pred_end(BB)) {
2028        // We know there are no successors, so just nuke the block.
2029        M->getBasicBlockList().erase(BB);
2030        return true;
2031      }
2032    }
2033  }
2034
2035  // Merge basic blocks into their predecessor if there is only one distinct
2036  // pred, and if there is only one distinct successor of the predecessor, and
2037  // if there are no PHI nodes.
2038  //
2039  pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2040  BasicBlock *OnlyPred = *PI++;
2041  for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
2042    if (*PI != OnlyPred) {
2043      OnlyPred = 0;       // There are multiple different predecessors...
2044      break;
2045    }
2046
2047  BasicBlock *OnlySucc = 0;
2048  if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
2049      OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
2050    // Check to see if there is only one distinct successor...
2051    succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
2052    OnlySucc = BB;
2053    for (; SI != SE; ++SI)
2054      if (*SI != OnlySucc) {
2055        OnlySucc = 0;     // There are multiple distinct successors!
2056        break;
2057      }
2058  }
2059
2060  if (OnlySucc) {
2061    DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
2062
2063    // Resolve any PHI nodes at the start of the block.  They are all
2064    // guaranteed to have exactly one entry if they exist, unless there are
2065    // multiple duplicate (but guaranteed to be equal) entries for the
2066    // incoming edges.  This occurs when there are multiple edges from
2067    // OnlyPred to OnlySucc.
2068    //
2069    while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
2070      PN->replaceAllUsesWith(PN->getIncomingValue(0));
2071      BB->getInstList().pop_front();  // Delete the phi node.
2072    }
2073
2074    // Delete the unconditional branch from the predecessor.
2075    OnlyPred->getInstList().pop_back();
2076
2077    // Move all definitions in the successor to the predecessor.
2078    OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
2079
2080    // Make all PHI nodes that referred to BB now refer to Pred as their
2081    // source.
2082    BB->replaceAllUsesWith(OnlyPred);
2083
2084    // Inherit predecessors name if it exists.
2085    if (!OnlyPred->hasName())
2086      OnlyPred->takeName(BB);
2087
2088    // Erase basic block from the function.
2089    M->getBasicBlockList().erase(BB);
2090
2091    return true;
2092  }
2093
2094  // Otherwise, if this block only has a single predecessor, and if that block
2095  // is a conditional branch, see if we can hoist any code from this block up
2096  // into our predecessor.
2097  if (OnlyPred)
2098    if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2099      if (BI->isConditional()) {
2100        // Get the other block.
2101        BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2102        PI = pred_begin(OtherBB);
2103        ++PI;
2104        if (PI == pred_end(OtherBB)) {
2105          // We have a conditional branch to two blocks that are only reachable
2106          // from the condbr.  We know that the condbr dominates the two blocks,
2107          // so see if there is any identical code in the "then" and "else"
2108          // blocks.  If so, we can hoist it up to the branching block.
2109          Changed |= HoistThenElseCodeToIf(BI);
2110        } else {
2111          OnlySucc = NULL;
2112          for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2113               SI != SE; ++SI) {
2114            if (!OnlySucc)
2115              OnlySucc = *SI;
2116            else if (*SI != OnlySucc) {
2117              OnlySucc = 0;     // There are multiple distinct successors!
2118              break;
2119            }
2120          }
2121
2122          if (OnlySucc == OtherBB) {
2123            // If BB's only successor is the other successor of the predecessor,
2124            // i.e. a triangle, see if we can hoist any code from this block up
2125            // to the "if" block.
2126            Changed |= SpeculativelyExecuteBB(BI, BB);
2127          }
2128        }
2129      }
2130
2131  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2132    if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2133      // Change br (X == 0 | X == 1), T, F into a switch instruction.
2134      if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2135        Instruction *Cond = cast<Instruction>(BI->getCondition());
2136        // If this is a bunch of seteq's or'd together, or if it's a bunch of
2137        // 'setne's and'ed together, collect them.
2138        Value *CompVal = 0;
2139        std::vector<ConstantInt*> Values;
2140        bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2141        if (CompVal && CompVal->getType()->isInteger()) {
2142          // There might be duplicate constants in the list, which the switch
2143          // instruction can't handle, remove them now.
2144          std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2145          Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2146
2147          // Figure out which block is which destination.
2148          BasicBlock *DefaultBB = BI->getSuccessor(1);
2149          BasicBlock *EdgeBB    = BI->getSuccessor(0);
2150          if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2151
2152          // Create the new switch instruction now.
2153          SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2154                                               Values.size(), BI);
2155
2156          // Add all of the 'cases' to the switch instruction.
2157          for (unsigned i = 0, e = Values.size(); i != e; ++i)
2158            New->addCase(Values[i], EdgeBB);
2159
2160          // We added edges from PI to the EdgeBB.  As such, if there were any
2161          // PHI nodes in EdgeBB, they need entries to be added corresponding to
2162          // the number of edges added.
2163          for (BasicBlock::iterator BBI = EdgeBB->begin();
2164               isa<PHINode>(BBI); ++BBI) {
2165            PHINode *PN = cast<PHINode>(BBI);
2166            Value *InVal = PN->getIncomingValueForBlock(*PI);
2167            for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2168              PN->addIncoming(InVal, *PI);
2169          }
2170
2171          // Erase the old branch instruction.
2172          (*PI)->getInstList().erase(BI);
2173
2174          // Erase the potentially condition tree that was used to computed the
2175          // branch condition.
2176          ErasePossiblyDeadInstructionTree(Cond);
2177          return true;
2178        }
2179      }
2180
2181  return Changed;
2182}
2183