SimplifyCFG.cpp revision ddb97a2bf1f06d7d1b0a1af8e74c67917b43b606
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/IntrinsicInst.h"
19#include "llvm/Type.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Support/CFG.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <set>
35#include <map>
36using namespace llvm;
37
38STATISTIC(NumSpeculations, "Number of speculative executed instructions");
39
40namespace {
41class SimplifyCFGOpt {
42  const TargetData *const TD;
43
44  Value *isValueEqualityComparison(TerminatorInst *TI);
45  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
46    std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
47  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
48                                                     BasicBlock *Pred);
49  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI);
50
51public:
52  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
53  bool run(BasicBlock *BB);
54};
55}
56
57/// SafeToMergeTerminators - Return true if it is safe to merge these two
58/// terminator instructions together.
59///
60static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
61  if (SI1 == SI2) return false;  // Can't merge with self!
62
63  // It is not safe to merge these two switch instructions if they have a common
64  // successor, and if that successor has a PHI node, and if *that* PHI node has
65  // conflicting incoming values from the two switch blocks.
66  BasicBlock *SI1BB = SI1->getParent();
67  BasicBlock *SI2BB = SI2->getParent();
68  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
69
70  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
71    if (SI1Succs.count(*I))
72      for (BasicBlock::iterator BBI = (*I)->begin();
73           isa<PHINode>(BBI); ++BBI) {
74        PHINode *PN = cast<PHINode>(BBI);
75        if (PN->getIncomingValueForBlock(SI1BB) !=
76            PN->getIncomingValueForBlock(SI2BB))
77          return false;
78      }
79
80  return true;
81}
82
83/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
84/// now be entries in it from the 'NewPred' block.  The values that will be
85/// flowing into the PHI nodes will be the same as those coming in from
86/// ExistPred, an existing predecessor of Succ.
87static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
88                                  BasicBlock *ExistPred) {
89  assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
90         succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
91  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
92
93  PHINode *PN;
94  for (BasicBlock::iterator I = Succ->begin();
95       (PN = dyn_cast<PHINode>(I)); ++I)
96    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
97}
98
99
100/// GetIfCondition - Given a basic block (BB) with two predecessors (and
101/// presumably PHI nodes in it), check to see if the merge at this block is due
102/// to an "if condition".  If so, return the boolean condition that determines
103/// which entry into BB will be taken.  Also, return by references the block
104/// that will be entered from if the condition is true, and the block that will
105/// be entered if the condition is false.
106///
107///
108static Value *GetIfCondition(BasicBlock *BB,
109                             BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
110  assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
111         "Function can only handle blocks with 2 predecessors!");
112  BasicBlock *Pred1 = *pred_begin(BB);
113  BasicBlock *Pred2 = *++pred_begin(BB);
114
115  // We can only handle branches.  Other control flow will be lowered to
116  // branches if possible anyway.
117  if (!isa<BranchInst>(Pred1->getTerminator()) ||
118      !isa<BranchInst>(Pred2->getTerminator()))
119    return 0;
120  BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
121  BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
122
123  // Eliminate code duplication by ensuring that Pred1Br is conditional if
124  // either are.
125  if (Pred2Br->isConditional()) {
126    // If both branches are conditional, we don't have an "if statement".  In
127    // reality, we could transform this case, but since the condition will be
128    // required anyway, we stand no chance of eliminating it, so the xform is
129    // probably not profitable.
130    if (Pred1Br->isConditional())
131      return 0;
132
133    std::swap(Pred1, Pred2);
134    std::swap(Pred1Br, Pred2Br);
135  }
136
137  if (Pred1Br->isConditional()) {
138    // If we found a conditional branch predecessor, make sure that it branches
139    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
140    if (Pred1Br->getSuccessor(0) == BB &&
141        Pred1Br->getSuccessor(1) == Pred2) {
142      IfTrue = Pred1;
143      IfFalse = Pred2;
144    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
145               Pred1Br->getSuccessor(1) == BB) {
146      IfTrue = Pred2;
147      IfFalse = Pred1;
148    } else {
149      // We know that one arm of the conditional goes to BB, so the other must
150      // go somewhere unrelated, and this must not be an "if statement".
151      return 0;
152    }
153
154    // The only thing we have to watch out for here is to make sure that Pred2
155    // doesn't have incoming edges from other blocks.  If it does, the condition
156    // doesn't dominate BB.
157    if (++pred_begin(Pred2) != pred_end(Pred2))
158      return 0;
159
160    return Pred1Br->getCondition();
161  }
162
163  // Ok, if we got here, both predecessors end with an unconditional branch to
164  // BB.  Don't panic!  If both blocks only have a single (identical)
165  // predecessor, and THAT is a conditional branch, then we're all ok!
166  if (pred_begin(Pred1) == pred_end(Pred1) ||
167      ++pred_begin(Pred1) != pred_end(Pred1) ||
168      pred_begin(Pred2) == pred_end(Pred2) ||
169      ++pred_begin(Pred2) != pred_end(Pred2) ||
170      *pred_begin(Pred1) != *pred_begin(Pred2))
171    return 0;
172
173  // Otherwise, if this is a conditional branch, then we can use it!
174  BasicBlock *CommonPred = *pred_begin(Pred1);
175  if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
176    assert(BI->isConditional() && "Two successors but not conditional?");
177    if (BI->getSuccessor(0) == Pred1) {
178      IfTrue = Pred1;
179      IfFalse = Pred2;
180    } else {
181      IfTrue = Pred2;
182      IfFalse = Pred1;
183    }
184    return BI->getCondition();
185  }
186  return 0;
187}
188
189/// DominatesMergePoint - If we have a merge point of an "if condition" as
190/// accepted above, return true if the specified value dominates the block.  We
191/// don't handle the true generality of domination here, just a special case
192/// which works well enough for us.
193///
194/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
195/// see if V (which must be an instruction) is cheap to compute and is
196/// non-trapping.  If both are true, the instruction is inserted into the set
197/// and true is returned.
198static bool DominatesMergePoint(Value *V, BasicBlock *BB,
199                                std::set<Instruction*> *AggressiveInsts) {
200  Instruction *I = dyn_cast<Instruction>(V);
201  if (!I) {
202    // Non-instructions all dominate instructions, but not all constantexprs
203    // can be executed unconditionally.
204    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
205      if (C->canTrap())
206        return false;
207    return true;
208  }
209  BasicBlock *PBB = I->getParent();
210
211  // We don't want to allow weird loops that might have the "if condition" in
212  // the bottom of this block.
213  if (PBB == BB) return false;
214
215  // If this instruction is defined in a block that contains an unconditional
216  // branch to BB, then it must be in the 'conditional' part of the "if
217  // statement".
218  if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
219    if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
220      if (!AggressiveInsts) return false;
221      // Okay, it looks like the instruction IS in the "condition".  Check to
222      // see if it's a cheap instruction to unconditionally compute, and if it
223      // only uses stuff defined outside of the condition.  If so, hoist it out.
224      if (!I->isSafeToSpeculativelyExecute())
225        return false;
226
227      switch (I->getOpcode()) {
228      default: return false;  // Cannot hoist this out safely.
229      case Instruction::Load: {
230        // We have to check to make sure there are no instructions before the
231        // load in its basic block, as we are going to hoist the loop out to
232        // its predecessor.
233        BasicBlock::iterator IP = PBB->begin();
234        while (isa<DbgInfoIntrinsic>(IP))
235          IP++;
236        if (IP != BasicBlock::iterator(I))
237          return false;
238        break;
239      }
240      case Instruction::Add:
241      case Instruction::Sub:
242      case Instruction::And:
243      case Instruction::Or:
244      case Instruction::Xor:
245      case Instruction::Shl:
246      case Instruction::LShr:
247      case Instruction::AShr:
248      case Instruction::ICmp:
249        break;   // These are all cheap and non-trapping instructions.
250      }
251
252      // Okay, we can only really hoist these out if their operands are not
253      // defined in the conditional region.
254      for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
255        if (!DominatesMergePoint(*i, BB, 0))
256          return false;
257      // Okay, it's safe to do this!  Remember this instruction.
258      AggressiveInsts->insert(I);
259    }
260
261  return true;
262}
263
264/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
265/// and PointerNullValue. Return NULL if value is not a constant int.
266static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
267  // Normal constant int.
268  ConstantInt *CI = dyn_cast<ConstantInt>(V);
269  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
270    return CI;
271
272  // This is some kind of pointer constant. Turn it into a pointer-sized
273  // ConstantInt if possible.
274  const IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
275
276  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
277  if (isa<ConstantPointerNull>(V))
278    return ConstantInt::get(PtrTy, 0);
279
280  // IntToPtr const int.
281  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
282    if (CE->getOpcode() == Instruction::IntToPtr)
283      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
284        // The constant is very likely to have the right type already.
285        if (CI->getType() == PtrTy)
286          return CI;
287        else
288          return cast<ConstantInt>
289            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
290      }
291  return 0;
292}
293
294/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
295/// collection of icmp eq/ne instructions that compare a value against a
296/// constant, return the value being compared, and stick the constant into the
297/// Values vector.
298static Value *
299GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
300                       const TargetData *TD, bool isEQ) {
301  Instruction *I = dyn_cast<Instruction>(V);
302  if (I == 0) return 0;
303
304  // If this is an icmp against a constant, handle this as one of the cases.
305  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
306    if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE))
307      if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
308        Vals.push_back(C);
309        return I->getOperand(0);
310      }
311    return 0;
312  }
313
314  // Otherwise, we can only handle an | or &, depending on isEQ.
315  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
316    return 0;
317
318  unsigned NumValsBeforeLHS = Vals.size();
319  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
320                                          isEQ)) {
321    unsigned NumVals = Vals.size();
322    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
323                                            isEQ)) {
324      if (LHS == RHS)
325        return LHS;
326    }
327    Vals.resize(NumVals);
328
329    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
330    // set it and return success.
331    if (Extra == 0 || Extra == I->getOperand(1)) {
332      Extra = I->getOperand(1);
333      return LHS;
334    }
335
336    Vals.resize(NumValsBeforeLHS);
337    return 0;
338  }
339
340  // If the LHS can't be folded in, but Extra is available and RHS can, try to
341  // use LHS as Extra.
342  if (Extra == 0 || Extra == I->getOperand(0)) {
343    Extra = I->getOperand(0);
344    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
345                                            isEQ))
346      return RHS;
347    Vals.resize(NumValsBeforeLHS);
348    Extra = 0;
349  }
350
351  return 0;
352}
353
354static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
355  Instruction* Cond = 0;
356  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
357    Cond = dyn_cast<Instruction>(SI->getCondition());
358  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
359    if (BI->isConditional())
360      Cond = dyn_cast<Instruction>(BI->getCondition());
361  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
362    Cond = dyn_cast<Instruction>(IBI->getAddress());
363  }
364
365  TI->eraseFromParent();
366  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
367}
368
369/// isValueEqualityComparison - Return true if the specified terminator checks
370/// to see if a value is equal to constant integer value.
371Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
372  Value *CV = 0;
373  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
374    // Do not permit merging of large switch instructions into their
375    // predecessors unless there is only one predecessor.
376    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
377                                             pred_end(SI->getParent())) <= 128)
378      CV = SI->getCondition();
379  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
380    if (BI->isConditional() && BI->getCondition()->hasOneUse())
381      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
382        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
383             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
384            GetConstantInt(ICI->getOperand(1), TD))
385          CV = ICI->getOperand(0);
386
387  // Unwrap any lossless ptrtoint cast.
388  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
389    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
390      CV = PTII->getOperand(0);
391  return CV;
392}
393
394/// GetValueEqualityComparisonCases - Given a value comparison instruction,
395/// decode all of the 'cases' that it represents and return the 'default' block.
396BasicBlock *SimplifyCFGOpt::
397GetValueEqualityComparisonCases(TerminatorInst *TI,
398                                std::vector<std::pair<ConstantInt*,
399                                                      BasicBlock*> > &Cases) {
400  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
401    Cases.reserve(SI->getNumCases());
402    for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
403      Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
404    return SI->getDefaultDest();
405  }
406
407  BranchInst *BI = cast<BranchInst>(TI);
408  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
409  Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
410                                 BI->getSuccessor(ICI->getPredicate() ==
411                                                  ICmpInst::ICMP_NE)));
412  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
413}
414
415
416/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
417/// in the list that match the specified block.
418static void EliminateBlockCases(BasicBlock *BB,
419               std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
420  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
421    if (Cases[i].second == BB) {
422      Cases.erase(Cases.begin()+i);
423      --i; --e;
424    }
425}
426
427/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
428/// well.
429static bool
430ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
431              std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
432  std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
433
434  // Make V1 be smaller than V2.
435  if (V1->size() > V2->size())
436    std::swap(V1, V2);
437
438  if (V1->size() == 0) return false;
439  if (V1->size() == 1) {
440    // Just scan V2.
441    ConstantInt *TheVal = (*V1)[0].first;
442    for (unsigned i = 0, e = V2->size(); i != e; ++i)
443      if (TheVal == (*V2)[i].first)
444        return true;
445  }
446
447  // Otherwise, just sort both lists and compare element by element.
448  array_pod_sort(V1->begin(), V1->end());
449  array_pod_sort(V2->begin(), V2->end());
450  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
451  while (i1 != e1 && i2 != e2) {
452    if ((*V1)[i1].first == (*V2)[i2].first)
453      return true;
454    if ((*V1)[i1].first < (*V2)[i2].first)
455      ++i1;
456    else
457      ++i2;
458  }
459  return false;
460}
461
462/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
463/// terminator instruction and its block is known to only have a single
464/// predecessor block, check to see if that predecessor is also a value
465/// comparison with the same value, and if that comparison determines the
466/// outcome of this comparison.  If so, simplify TI.  This does a very limited
467/// form of jump threading.
468bool SimplifyCFGOpt::
469SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
470                                              BasicBlock *Pred) {
471  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
472  if (!PredVal) return false;  // Not a value comparison in predecessor.
473
474  Value *ThisVal = isValueEqualityComparison(TI);
475  assert(ThisVal && "This isn't a value comparison!!");
476  if (ThisVal != PredVal) return false;  // Different predicates.
477
478  // Find out information about when control will move from Pred to TI's block.
479  std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
480  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
481                                                        PredCases);
482  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
483
484  // Find information about how control leaves this block.
485  std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
486  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
487  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
488
489  // If TI's block is the default block from Pred's comparison, potentially
490  // simplify TI based on this knowledge.
491  if (PredDef == TI->getParent()) {
492    // If we are here, we know that the value is none of those cases listed in
493    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
494    // can simplify TI.
495    if (!ValuesOverlap(PredCases, ThisCases))
496      return false;
497
498    if (isa<BranchInst>(TI)) {
499      // Okay, one of the successors of this condbr is dead.  Convert it to a
500      // uncond br.
501      assert(ThisCases.size() == 1 && "Branch can only have one case!");
502      // Insert the new branch.
503      Instruction *NI = BranchInst::Create(ThisDef, TI);
504      (void) NI;
505
506      // Remove PHI node entries for the dead edge.
507      ThisCases[0].second->removePredecessor(TI->getParent());
508
509      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
510           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
511
512      EraseTerminatorInstAndDCECond(TI);
513      return true;
514    }
515
516    SwitchInst *SI = cast<SwitchInst>(TI);
517    // Okay, TI has cases that are statically dead, prune them away.
518    SmallPtrSet<Constant*, 16> DeadCases;
519    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
520      DeadCases.insert(PredCases[i].first);
521
522    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
523                 << "Through successor TI: " << *TI);
524
525    for (unsigned i = SI->getNumCases()-1; i != 0; --i)
526      if (DeadCases.count(SI->getCaseValue(i))) {
527        SI->getSuccessor(i)->removePredecessor(TI->getParent());
528        SI->removeCase(i);
529      }
530
531    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
532    return true;
533  }
534
535  // Otherwise, TI's block must correspond to some matched value.  Find out
536  // which value (or set of values) this is.
537  ConstantInt *TIV = 0;
538  BasicBlock *TIBB = TI->getParent();
539  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
540    if (PredCases[i].second == TIBB) {
541      if (TIV != 0)
542        return false;  // Cannot handle multiple values coming to this block.
543      TIV = PredCases[i].first;
544    }
545  assert(TIV && "No edge from pred to succ?");
546
547  // Okay, we found the one constant that our value can be if we get into TI's
548  // BB.  Find out which successor will unconditionally be branched to.
549  BasicBlock *TheRealDest = 0;
550  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
551    if (ThisCases[i].first == TIV) {
552      TheRealDest = ThisCases[i].second;
553      break;
554    }
555
556  // If not handled by any explicit cases, it is handled by the default case.
557  if (TheRealDest == 0) TheRealDest = ThisDef;
558
559  // Remove PHI node entries for dead edges.
560  BasicBlock *CheckEdge = TheRealDest;
561  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
562    if (*SI != CheckEdge)
563      (*SI)->removePredecessor(TIBB);
564    else
565      CheckEdge = 0;
566
567  // Insert the new branch.
568  Instruction *NI = BranchInst::Create(TheRealDest, TI);
569  (void) NI;
570
571  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
572            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
573
574  EraseTerminatorInstAndDCECond(TI);
575  return true;
576}
577
578namespace {
579  /// ConstantIntOrdering - This class implements a stable ordering of constant
580  /// integers that does not depend on their address.  This is important for
581  /// applications that sort ConstantInt's to ensure uniqueness.
582  struct ConstantIntOrdering {
583    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
584      return LHS->getValue().ult(RHS->getValue());
585    }
586  };
587}
588
589static int ConstantIntSortPredicate(const void *P1, const void *P2) {
590  const ConstantInt *LHS = *(const ConstantInt**)P1;
591  const ConstantInt *RHS = *(const ConstantInt**)P2;
592  return LHS->getValue().ult(RHS->getValue());
593}
594
595/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
596/// equality comparison instruction (either a switch or a branch on "X == c").
597/// See if any of the predecessors of the terminator block are value comparisons
598/// on the same value.  If so, and if safe to do so, fold them together.
599bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
600  BasicBlock *BB = TI->getParent();
601  Value *CV = isValueEqualityComparison(TI);  // CondVal
602  assert(CV && "Not a comparison?");
603  bool Changed = false;
604
605  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
606  while (!Preds.empty()) {
607    BasicBlock *Pred = Preds.pop_back_val();
608
609    // See if the predecessor is a comparison with the same value.
610    TerminatorInst *PTI = Pred->getTerminator();
611    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
612
613    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
614      // Figure out which 'cases' to copy from SI to PSI.
615      std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
616      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
617
618      std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
619      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
620
621      // Based on whether the default edge from PTI goes to BB or not, fill in
622      // PredCases and PredDefault with the new switch cases we would like to
623      // build.
624      SmallVector<BasicBlock*, 8> NewSuccessors;
625
626      if (PredDefault == BB) {
627        // If this is the default destination from PTI, only the edges in TI
628        // that don't occur in PTI, or that branch to BB will be activated.
629        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
630        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
631          if (PredCases[i].second != BB)
632            PTIHandled.insert(PredCases[i].first);
633          else {
634            // The default destination is BB, we don't need explicit targets.
635            std::swap(PredCases[i], PredCases.back());
636            PredCases.pop_back();
637            --i; --e;
638          }
639
640        // Reconstruct the new switch statement we will be building.
641        if (PredDefault != BBDefault) {
642          PredDefault->removePredecessor(Pred);
643          PredDefault = BBDefault;
644          NewSuccessors.push_back(BBDefault);
645        }
646        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
647          if (!PTIHandled.count(BBCases[i].first) &&
648              BBCases[i].second != BBDefault) {
649            PredCases.push_back(BBCases[i]);
650            NewSuccessors.push_back(BBCases[i].second);
651          }
652
653      } else {
654        // If this is not the default destination from PSI, only the edges
655        // in SI that occur in PSI with a destination of BB will be
656        // activated.
657        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
658        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
659          if (PredCases[i].second == BB) {
660            PTIHandled.insert(PredCases[i].first);
661            std::swap(PredCases[i], PredCases.back());
662            PredCases.pop_back();
663            --i; --e;
664          }
665
666        // Okay, now we know which constants were sent to BB from the
667        // predecessor.  Figure out where they will all go now.
668        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
669          if (PTIHandled.count(BBCases[i].first)) {
670            // If this is one we are capable of getting...
671            PredCases.push_back(BBCases[i]);
672            NewSuccessors.push_back(BBCases[i].second);
673            PTIHandled.erase(BBCases[i].first);// This constant is taken care of
674          }
675
676        // If there are any constants vectored to BB that TI doesn't handle,
677        // they must go to the default destination of TI.
678        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
679                                    PTIHandled.begin(),
680               E = PTIHandled.end(); I != E; ++I) {
681          PredCases.push_back(std::make_pair(*I, BBDefault));
682          NewSuccessors.push_back(BBDefault);
683        }
684      }
685
686      // Okay, at this point, we know which new successor Pred will get.  Make
687      // sure we update the number of entries in the PHI nodes for these
688      // successors.
689      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
690        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
691
692      // Convert pointer to int before we switch.
693      if (CV->getType()->isPointerTy()) {
694        assert(TD && "Cannot switch on pointer without TargetData");
695        CV = new PtrToIntInst(CV, TD->getIntPtrType(CV->getContext()),
696                              "magicptr", PTI);
697      }
698
699      // Now that the successors are updated, create the new Switch instruction.
700      SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
701                                             PredCases.size(), PTI);
702      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
703        NewSI->addCase(PredCases[i].first, PredCases[i].second);
704
705      EraseTerminatorInstAndDCECond(PTI);
706
707      // Okay, last check.  If BB is still a successor of PSI, then we must
708      // have an infinite loop case.  If so, add an infinitely looping block
709      // to handle the case to preserve the behavior of the code.
710      BasicBlock *InfLoopBlock = 0;
711      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
712        if (NewSI->getSuccessor(i) == BB) {
713          if (InfLoopBlock == 0) {
714            // Insert it at the end of the function, because it's either code,
715            // or it won't matter if it's hot. :)
716            InfLoopBlock = BasicBlock::Create(BB->getContext(),
717                                              "infloop", BB->getParent());
718            BranchInst::Create(InfLoopBlock, InfLoopBlock);
719          }
720          NewSI->setSuccessor(i, InfLoopBlock);
721        }
722
723      Changed = true;
724    }
725  }
726  return Changed;
727}
728
729// isSafeToHoistInvoke - If we would need to insert a select that uses the
730// value of this invoke (comments in HoistThenElseCodeToIf explain why we
731// would need to do this), we can't hoist the invoke, as there is nowhere
732// to put the select in this case.
733static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
734                                Instruction *I1, Instruction *I2) {
735  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
736    PHINode *PN;
737    for (BasicBlock::iterator BBI = SI->begin();
738         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
739      Value *BB1V = PN->getIncomingValueForBlock(BB1);
740      Value *BB2V = PN->getIncomingValueForBlock(BB2);
741      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
742        return false;
743      }
744    }
745  }
746  return true;
747}
748
749/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
750/// BB2, hoist any common code in the two blocks up into the branch block.  The
751/// caller of this function guarantees that BI's block dominates BB1 and BB2.
752static bool HoistThenElseCodeToIf(BranchInst *BI) {
753  // This does very trivial matching, with limited scanning, to find identical
754  // instructions in the two blocks.  In particular, we don't want to get into
755  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
756  // such, we currently just scan for obviously identical instructions in an
757  // identical order.
758  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
759  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
760
761  BasicBlock::iterator BB1_Itr = BB1->begin();
762  BasicBlock::iterator BB2_Itr = BB2->begin();
763
764  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
765  while (isa<DbgInfoIntrinsic>(I1))
766    I1 = BB1_Itr++;
767  while (isa<DbgInfoIntrinsic>(I2))
768    I2 = BB2_Itr++;
769  if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
770      !I1->isIdenticalToWhenDefined(I2) ||
771      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
772    return false;
773
774  // If we get here, we can hoist at least one instruction.
775  BasicBlock *BIParent = BI->getParent();
776
777  do {
778    // If we are hoisting the terminator instruction, don't move one (making a
779    // broken BB), instead clone it, and remove BI.
780    if (isa<TerminatorInst>(I1))
781      goto HoistTerminator;
782
783    // For a normal instruction, we just move one to right before the branch,
784    // then replace all uses of the other with the first.  Finally, we remove
785    // the now redundant second instruction.
786    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
787    if (!I2->use_empty())
788      I2->replaceAllUsesWith(I1);
789    I1->intersectOptionalDataWith(I2);
790    BB2->getInstList().erase(I2);
791
792    I1 = BB1_Itr++;
793    while (isa<DbgInfoIntrinsic>(I1))
794      I1 = BB1_Itr++;
795    I2 = BB2_Itr++;
796    while (isa<DbgInfoIntrinsic>(I2))
797      I2 = BB2_Itr++;
798  } while (I1->getOpcode() == I2->getOpcode() &&
799           I1->isIdenticalToWhenDefined(I2));
800
801  return true;
802
803HoistTerminator:
804  // It may not be possible to hoist an invoke.
805  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
806    return true;
807
808  // Okay, it is safe to hoist the terminator.
809  Instruction *NT = I1->clone();
810  BIParent->getInstList().insert(BI, NT);
811  if (!NT->getType()->isVoidTy()) {
812    I1->replaceAllUsesWith(NT);
813    I2->replaceAllUsesWith(NT);
814    NT->takeName(I1);
815  }
816
817  // Hoisting one of the terminators from our successor is a great thing.
818  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
819  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
820  // nodes, so we insert select instruction to compute the final result.
821  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
822  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
823    PHINode *PN;
824    for (BasicBlock::iterator BBI = SI->begin();
825         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
826      Value *BB1V = PN->getIncomingValueForBlock(BB1);
827      Value *BB2V = PN->getIncomingValueForBlock(BB2);
828      if (BB1V == BB2V) continue;
829
830      // These values do not agree.  Insert a select instruction before NT
831      // that determines the right value.
832      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
833      if (SI == 0)
834        SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
835                                BB1V->getName()+"."+BB2V->getName(), NT);
836      // Make the PHI node use the select for all incoming values for BB1/BB2
837      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
838        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
839          PN->setIncomingValue(i, SI);
840    }
841  }
842
843  // Update any PHI nodes in our new successors.
844  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
845    AddPredecessorToBlock(*SI, BIParent, BB1);
846
847  EraseTerminatorInstAndDCECond(BI);
848  return true;
849}
850
851/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
852/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
853/// (for now, restricted to a single instruction that's side effect free) from
854/// the BB1 into the branch block to speculatively execute it.
855static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
856  // Only speculatively execution a single instruction (not counting the
857  // terminator) for now.
858  Instruction *HInst = NULL;
859  Instruction *Term = BB1->getTerminator();
860  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
861       BBI != BBE; ++BBI) {
862    Instruction *I = BBI;
863    // Skip debug info.
864    if (isa<DbgInfoIntrinsic>(I)) continue;
865    if (I == Term) break;
866
867    if (HInst)
868      return false;
869    HInst = I;
870  }
871  if (!HInst)
872    return false;
873
874  // Be conservative for now. FP select instruction can often be expensive.
875  Value *BrCond = BI->getCondition();
876  if (isa<FCmpInst>(BrCond))
877    return false;
878
879  // If BB1 is actually on the false edge of the conditional branch, remember
880  // to swap the select operands later.
881  bool Invert = false;
882  if (BB1 != BI->getSuccessor(0)) {
883    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
884    Invert = true;
885  }
886
887  // Turn
888  // BB:
889  //     %t1 = icmp
890  //     br i1 %t1, label %BB1, label %BB2
891  // BB1:
892  //     %t3 = add %t2, c
893  //     br label BB2
894  // BB2:
895  // =>
896  // BB:
897  //     %t1 = icmp
898  //     %t4 = add %t2, c
899  //     %t3 = select i1 %t1, %t2, %t3
900  switch (HInst->getOpcode()) {
901  default: return false;  // Not safe / profitable to hoist.
902  case Instruction::Add:
903  case Instruction::Sub:
904    // Not worth doing for vector ops.
905    if (HInst->getType()->isVectorTy())
906      return false;
907    break;
908  case Instruction::And:
909  case Instruction::Or:
910  case Instruction::Xor:
911  case Instruction::Shl:
912  case Instruction::LShr:
913  case Instruction::AShr:
914    // Don't mess with vector operations.
915    if (HInst->getType()->isVectorTy())
916      return false;
917    break;   // These are all cheap and non-trapping instructions.
918  }
919
920  // If the instruction is obviously dead, don't try to predicate it.
921  if (HInst->use_empty()) {
922    HInst->eraseFromParent();
923    return true;
924  }
925
926  // Can we speculatively execute the instruction? And what is the value
927  // if the condition is false? Consider the phi uses, if the incoming value
928  // from the "if" block are all the same V, then V is the value of the
929  // select if the condition is false.
930  BasicBlock *BIParent = BI->getParent();
931  SmallVector<PHINode*, 4> PHIUses;
932  Value *FalseV = NULL;
933
934  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
935  for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
936       UI != E; ++UI) {
937    // Ignore any user that is not a PHI node in BB2.  These can only occur in
938    // unreachable blocks, because they would not be dominated by the instr.
939    PHINode *PN = dyn_cast<PHINode>(*UI);
940    if (!PN || PN->getParent() != BB2)
941      return false;
942    PHIUses.push_back(PN);
943
944    Value *PHIV = PN->getIncomingValueForBlock(BIParent);
945    if (!FalseV)
946      FalseV = PHIV;
947    else if (FalseV != PHIV)
948      return false;  // Inconsistent value when condition is false.
949  }
950
951  assert(FalseV && "Must have at least one user, and it must be a PHI");
952
953  // Do not hoist the instruction if any of its operands are defined but not
954  // used in this BB. The transformation will prevent the operand from
955  // being sunk into the use block.
956  for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
957       i != e; ++i) {
958    Instruction *OpI = dyn_cast<Instruction>(*i);
959    if (OpI && OpI->getParent() == BIParent &&
960        !OpI->isUsedInBasicBlock(BIParent))
961      return false;
962  }
963
964  // If we get here, we can hoist the instruction. Try to place it
965  // before the icmp instruction preceding the conditional branch.
966  BasicBlock::iterator InsertPos = BI;
967  if (InsertPos != BIParent->begin())
968    --InsertPos;
969  // Skip debug info between condition and branch.
970  while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
971    --InsertPos;
972  if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
973    SmallPtrSet<Instruction *, 4> BB1Insns;
974    for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
975        BB1I != BB1E; ++BB1I)
976      BB1Insns.insert(BB1I);
977    for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
978        UI != UE; ++UI) {
979      Instruction *Use = cast<Instruction>(*UI);
980      if (!BB1Insns.count(Use)) continue;
981
982      // If BrCond uses the instruction that place it just before
983      // branch instruction.
984      InsertPos = BI;
985      break;
986    }
987  } else
988    InsertPos = BI;
989  BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
990
991  // Create a select whose true value is the speculatively executed value and
992  // false value is the previously determined FalseV.
993  SelectInst *SI;
994  if (Invert)
995    SI = SelectInst::Create(BrCond, FalseV, HInst,
996                            FalseV->getName() + "." + HInst->getName(), BI);
997  else
998    SI = SelectInst::Create(BrCond, HInst, FalseV,
999                            HInst->getName() + "." + FalseV->getName(), BI);
1000
1001  // Make the PHI node use the select for all incoming values for "then" and
1002  // "if" blocks.
1003  for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1004    PHINode *PN = PHIUses[i];
1005    for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1006      if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1007        PN->setIncomingValue(j, SI);
1008  }
1009
1010  ++NumSpeculations;
1011  return true;
1012}
1013
1014/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1015/// across this block.
1016static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1017  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1018  unsigned Size = 0;
1019
1020  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1021    if (isa<DbgInfoIntrinsic>(BBI))
1022      continue;
1023    if (Size > 10) return false;  // Don't clone large BB's.
1024    ++Size;
1025
1026    // We can only support instructions that do not define values that are
1027    // live outside of the current basic block.
1028    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1029         UI != E; ++UI) {
1030      Instruction *U = cast<Instruction>(*UI);
1031      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1032    }
1033
1034    // Looks ok, continue checking.
1035  }
1036
1037  return true;
1038}
1039
1040/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1041/// that is defined in the same block as the branch and if any PHI entries are
1042/// constants, thread edges corresponding to that entry to be branches to their
1043/// ultimate destination.
1044static bool FoldCondBranchOnPHI(BranchInst *BI) {
1045  BasicBlock *BB = BI->getParent();
1046  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1047  // NOTE: we currently cannot transform this case if the PHI node is used
1048  // outside of the block.
1049  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1050    return false;
1051
1052  // Degenerate case of a single entry PHI.
1053  if (PN->getNumIncomingValues() == 1) {
1054    FoldSingleEntryPHINodes(PN->getParent());
1055    return true;
1056  }
1057
1058  // Now we know that this block has multiple preds and two succs.
1059  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1060
1061  // Okay, this is a simple enough basic block.  See if any phi values are
1062  // constants.
1063  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1064    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1065    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1066
1067    // Okay, we now know that all edges from PredBB should be revectored to
1068    // branch to RealDest.
1069    BasicBlock *PredBB = PN->getIncomingBlock(i);
1070    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1071
1072    if (RealDest == BB) continue;  // Skip self loops.
1073
1074    // The dest block might have PHI nodes, other predecessors and other
1075    // difficult cases.  Instead of being smart about this, just insert a new
1076    // block that jumps to the destination block, effectively splitting
1077    // the edge we are about to create.
1078    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1079                                            RealDest->getName()+".critedge",
1080                                            RealDest->getParent(), RealDest);
1081    BranchInst::Create(RealDest, EdgeBB);
1082    PHINode *PN;
1083    for (BasicBlock::iterator BBI = RealDest->begin();
1084         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1085      Value *V = PN->getIncomingValueForBlock(BB);
1086      PN->addIncoming(V, EdgeBB);
1087    }
1088
1089    // BB may have instructions that are being threaded over.  Clone these
1090    // instructions into EdgeBB.  We know that there will be no uses of the
1091    // cloned instructions outside of EdgeBB.
1092    BasicBlock::iterator InsertPt = EdgeBB->begin();
1093    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1094    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1095      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1096        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1097        continue;
1098      }
1099      // Clone the instruction.
1100      Instruction *N = BBI->clone();
1101      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1102
1103      // Update operands due to translation.
1104      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1105           i != e; ++i) {
1106        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1107        if (PI != TranslateMap.end())
1108          *i = PI->second;
1109      }
1110
1111      // Check for trivial simplification.
1112      if (Constant *C = ConstantFoldInstruction(N)) {
1113        TranslateMap[BBI] = C;
1114        delete N;   // Constant folded away, don't need actual inst
1115      } else {
1116        // Insert the new instruction into its new home.
1117        EdgeBB->getInstList().insert(InsertPt, N);
1118        if (!BBI->use_empty())
1119          TranslateMap[BBI] = N;
1120      }
1121    }
1122
1123    // Loop over all of the edges from PredBB to BB, changing them to branch
1124    // to EdgeBB instead.
1125    TerminatorInst *PredBBTI = PredBB->getTerminator();
1126    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1127      if (PredBBTI->getSuccessor(i) == BB) {
1128        BB->removePredecessor(PredBB);
1129        PredBBTI->setSuccessor(i, EdgeBB);
1130      }
1131
1132    // Recurse, simplifying any other constants.
1133    return FoldCondBranchOnPHI(BI) | true;
1134  }
1135
1136  return false;
1137}
1138
1139/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1140/// PHI node, see if we can eliminate it.
1141static bool FoldTwoEntryPHINode(PHINode *PN) {
1142  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1143  // statement", which has a very simple dominance structure.  Basically, we
1144  // are trying to find the condition that is being branched on, which
1145  // subsequently causes this merge to happen.  We really want control
1146  // dependence information for this check, but simplifycfg can't keep it up
1147  // to date, and this catches most of the cases we care about anyway.
1148  //
1149  BasicBlock *BB = PN->getParent();
1150  BasicBlock *IfTrue, *IfFalse;
1151  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1152  if (!IfCond) return false;
1153
1154  // Okay, we found that we can merge this two-entry phi node into a select.
1155  // Doing so would require us to fold *all* two entry phi nodes in this block.
1156  // At some point this becomes non-profitable (particularly if the target
1157  // doesn't support cmov's).  Only do this transformation if there are two or
1158  // fewer PHI nodes in this block.
1159  unsigned NumPhis = 0;
1160  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1161    if (NumPhis > 2)
1162      return false;
1163
1164  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1165        << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1166
1167  // Loop over the PHI's seeing if we can promote them all to select
1168  // instructions.  While we are at it, keep track of the instructions
1169  // that need to be moved to the dominating block.
1170  std::set<Instruction*> AggressiveInsts;
1171
1172  BasicBlock::iterator AfterPHIIt = BB->begin();
1173  while (isa<PHINode>(AfterPHIIt)) {
1174    PHINode *PN = cast<PHINode>(AfterPHIIt++);
1175    if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1176      if (PN->getIncomingValue(0) != PN)
1177        PN->replaceAllUsesWith(PN->getIncomingValue(0));
1178      else
1179        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1180    } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1181                                    &AggressiveInsts) ||
1182               !DominatesMergePoint(PN->getIncomingValue(1), BB,
1183                                    &AggressiveInsts)) {
1184      return false;
1185    }
1186  }
1187
1188  // If we all PHI nodes are promotable, check to make sure that all
1189  // instructions in the predecessor blocks can be promoted as well.  If
1190  // not, we won't be able to get rid of the control flow, so it's not
1191  // worth promoting to select instructions.
1192  BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1193  PN = cast<PHINode>(BB->begin());
1194  BasicBlock *Pred = PN->getIncomingBlock(0);
1195  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1196    IfBlock1 = Pred;
1197    DomBlock = *pred_begin(Pred);
1198    for (BasicBlock::iterator I = Pred->begin();
1199         !isa<TerminatorInst>(I); ++I)
1200      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1201        // This is not an aggressive instruction that we can promote.
1202        // Because of this, we won't be able to get rid of the control
1203        // flow, so the xform is not worth it.
1204        return false;
1205      }
1206  }
1207
1208  Pred = PN->getIncomingBlock(1);
1209  if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1210    IfBlock2 = Pred;
1211    DomBlock = *pred_begin(Pred);
1212    for (BasicBlock::iterator I = Pred->begin();
1213         !isa<TerminatorInst>(I); ++I)
1214      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1215        // This is not an aggressive instruction that we can promote.
1216        // Because of this, we won't be able to get rid of the control
1217        // flow, so the xform is not worth it.
1218        return false;
1219      }
1220  }
1221
1222  // If we can still promote the PHI nodes after this gauntlet of tests,
1223  // do all of the PHI's now.
1224
1225  // Move all 'aggressive' instructions, which are defined in the
1226  // conditional parts of the if's up to the dominating block.
1227  if (IfBlock1)
1228    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1229                                   IfBlock1->getInstList(), IfBlock1->begin(),
1230                                   IfBlock1->getTerminator());
1231  if (IfBlock2)
1232    DomBlock->getInstList().splice(DomBlock->getTerminator(),
1233                                   IfBlock2->getInstList(), IfBlock2->begin(),
1234                                   IfBlock2->getTerminator());
1235
1236  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1237    // Change the PHI node into a select instruction.
1238    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1239    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1240
1241    Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
1242    PN->replaceAllUsesWith(NV);
1243    NV->takeName(PN);
1244
1245    BB->getInstList().erase(PN);
1246  }
1247  return true;
1248}
1249
1250/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1251/// to two returning blocks, try to merge them together into one return,
1252/// introducing a select if the return values disagree.
1253static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1254  assert(BI->isConditional() && "Must be a conditional branch");
1255  BasicBlock *TrueSucc = BI->getSuccessor(0);
1256  BasicBlock *FalseSucc = BI->getSuccessor(1);
1257  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1258  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1259
1260  // Check to ensure both blocks are empty (just a return) or optionally empty
1261  // with PHI nodes.  If there are other instructions, merging would cause extra
1262  // computation on one path or the other.
1263  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1264    return false;
1265  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1266    return false;
1267
1268  // Okay, we found a branch that is going to two return nodes.  If
1269  // there is no return value for this function, just change the
1270  // branch into a return.
1271  if (FalseRet->getNumOperands() == 0) {
1272    TrueSucc->removePredecessor(BI->getParent());
1273    FalseSucc->removePredecessor(BI->getParent());
1274    ReturnInst::Create(BI->getContext(), 0, BI);
1275    EraseTerminatorInstAndDCECond(BI);
1276    return true;
1277  }
1278
1279  // Otherwise, figure out what the true and false return values are
1280  // so we can insert a new select instruction.
1281  Value *TrueValue = TrueRet->getReturnValue();
1282  Value *FalseValue = FalseRet->getReturnValue();
1283
1284  // Unwrap any PHI nodes in the return blocks.
1285  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1286    if (TVPN->getParent() == TrueSucc)
1287      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1288  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1289    if (FVPN->getParent() == FalseSucc)
1290      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1291
1292  // In order for this transformation to be safe, we must be able to
1293  // unconditionally execute both operands to the return.  This is
1294  // normally the case, but we could have a potentially-trapping
1295  // constant expression that prevents this transformation from being
1296  // safe.
1297  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1298    if (TCV->canTrap())
1299      return false;
1300  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1301    if (FCV->canTrap())
1302      return false;
1303
1304  // Okay, we collected all the mapped values and checked them for sanity, and
1305  // defined to really do this transformation.  First, update the CFG.
1306  TrueSucc->removePredecessor(BI->getParent());
1307  FalseSucc->removePredecessor(BI->getParent());
1308
1309  // Insert select instructions where needed.
1310  Value *BrCond = BI->getCondition();
1311  if (TrueValue) {
1312    // Insert a select if the results differ.
1313    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1314    } else if (isa<UndefValue>(TrueValue)) {
1315      TrueValue = FalseValue;
1316    } else {
1317      TrueValue = SelectInst::Create(BrCond, TrueValue,
1318                                     FalseValue, "retval", BI);
1319    }
1320  }
1321
1322  Value *RI = !TrueValue ?
1323              ReturnInst::Create(BI->getContext(), BI) :
1324              ReturnInst::Create(BI->getContext(), TrueValue, BI);
1325  (void) RI;
1326
1327  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1328               << "\n  " << *BI << "NewRet = " << *RI
1329               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1330
1331  EraseTerminatorInstAndDCECond(BI);
1332
1333  return true;
1334}
1335
1336/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1337/// and if a predecessor branches to us and one of our successors, fold the
1338/// setcc into the predecessor and use logical operations to pick the right
1339/// destination.
1340bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1341  BasicBlock *BB = BI->getParent();
1342  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1343  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1344    Cond->getParent() != BB || !Cond->hasOneUse())
1345  return false;
1346
1347  // Only allow this if the condition is a simple instruction that can be
1348  // executed unconditionally.  It must be in the same block as the branch, and
1349  // must be at the front of the block.
1350  BasicBlock::iterator FrontIt = BB->front();
1351  // Ignore dbg intrinsics.
1352  while(isa<DbgInfoIntrinsic>(FrontIt))
1353    ++FrontIt;
1354
1355  // Allow a single instruction to be hoisted in addition to the compare
1356  // that feeds the branch.  We later ensure that any values that _it_ uses
1357  // were also live in the predecessor, so that we don't unnecessarily create
1358  // register pressure or inhibit out-of-order execution.
1359  Instruction *BonusInst = 0;
1360  if (&*FrontIt != Cond &&
1361      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1362      FrontIt->isSafeToSpeculativelyExecute()) {
1363    BonusInst = &*FrontIt;
1364    ++FrontIt;
1365  }
1366
1367  // Only a single bonus inst is allowed.
1368  if (&*FrontIt != Cond)
1369    return false;
1370
1371  // Make sure the instruction after the condition is the cond branch.
1372  BasicBlock::iterator CondIt = Cond; ++CondIt;
1373  // Ingore dbg intrinsics.
1374  while(isa<DbgInfoIntrinsic>(CondIt))
1375    ++CondIt;
1376  if (&*CondIt != BI) {
1377    assert (!isa<DbgInfoIntrinsic>(CondIt) && "Hey do not forget debug info!");
1378    return false;
1379  }
1380
1381  // Cond is known to be a compare or binary operator.  Check to make sure that
1382  // neither operand is a potentially-trapping constant expression.
1383  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1384    if (CE->canTrap())
1385      return false;
1386  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1387    if (CE->canTrap())
1388      return false;
1389
1390
1391  // Finally, don't infinitely unroll conditional loops.
1392  BasicBlock *TrueDest  = BI->getSuccessor(0);
1393  BasicBlock *FalseDest = BI->getSuccessor(1);
1394  if (TrueDest == BB || FalseDest == BB)
1395    return false;
1396
1397  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1398    BasicBlock *PredBlock = *PI;
1399    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1400
1401    // Check that we have two conditional branches.  If there is a PHI node in
1402    // the common successor, verify that the same value flows in from both
1403    // blocks.
1404    if (PBI == 0 || PBI->isUnconditional() ||
1405        !SafeToMergeTerminators(BI, PBI))
1406      continue;
1407
1408    // Ensure that any values used in the bonus instruction are also used
1409    // by the terminator of the predecessor.  This means that those values
1410    // must already have been resolved, so we won't be inhibiting the
1411    // out-of-order core by speculating them earlier.
1412    if (BonusInst) {
1413      // Collect the values used by the bonus inst
1414      SmallPtrSet<Value*, 4> UsedValues;
1415      for (Instruction::op_iterator OI = BonusInst->op_begin(),
1416           OE = BonusInst->op_end(); OI != OE; ++OI) {
1417        Value* V = *OI;
1418        if (!isa<Constant>(V))
1419          UsedValues.insert(V);
1420      }
1421
1422      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1423      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1424
1425      // Walk up to four levels back up the use-def chain of the predecessor's
1426      // terminator to see if all those values were used.  The choice of four
1427      // levels is arbitrary, to provide a compile-time-cost bound.
1428      while (!Worklist.empty()) {
1429        std::pair<Value*, unsigned> Pair = Worklist.back();
1430        Worklist.pop_back();
1431
1432        if (Pair.second >= 4) continue;
1433        UsedValues.erase(Pair.first);
1434        if (UsedValues.empty()) break;
1435
1436        if (Instruction* I = dyn_cast<Instruction>(Pair.first)) {
1437          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1438               OI != OE; ++OI)
1439            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1440        }
1441      }
1442
1443      if (!UsedValues.empty()) return false;
1444    }
1445
1446    Instruction::BinaryOps Opc;
1447    bool InvertPredCond = false;
1448
1449    if (PBI->getSuccessor(0) == TrueDest)
1450      Opc = Instruction::Or;
1451    else if (PBI->getSuccessor(1) == FalseDest)
1452      Opc = Instruction::And;
1453    else if (PBI->getSuccessor(0) == FalseDest)
1454      Opc = Instruction::And, InvertPredCond = true;
1455    else if (PBI->getSuccessor(1) == TrueDest)
1456      Opc = Instruction::Or, InvertPredCond = true;
1457    else
1458      continue;
1459
1460    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1461
1462    // If we need to invert the condition in the pred block to match, do so now.
1463    if (InvertPredCond) {
1464      Value *NewCond =
1465        BinaryOperator::CreateNot(PBI->getCondition(),
1466                                  PBI->getCondition()->getName()+".not", PBI);
1467      PBI->setCondition(NewCond);
1468      BasicBlock *OldTrue = PBI->getSuccessor(0);
1469      BasicBlock *OldFalse = PBI->getSuccessor(1);
1470      PBI->setSuccessor(0, OldFalse);
1471      PBI->setSuccessor(1, OldTrue);
1472    }
1473
1474    // If we have a bonus inst, clone it into the predecessor block.
1475    Instruction *NewBonus = 0;
1476    if (BonusInst) {
1477      NewBonus = BonusInst->clone();
1478      PredBlock->getInstList().insert(PBI, NewBonus);
1479      NewBonus->takeName(BonusInst);
1480      BonusInst->setName(BonusInst->getName()+".old");
1481    }
1482
1483    // Clone Cond into the predecessor basic block, and or/and the
1484    // two conditions together.
1485    Instruction *New = Cond->clone();
1486    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1487    PredBlock->getInstList().insert(PBI, New);
1488    New->takeName(Cond);
1489    Cond->setName(New->getName()+".old");
1490
1491    Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1492                                            New, "or.cond", PBI);
1493    PBI->setCondition(NewCond);
1494    if (PBI->getSuccessor(0) == BB) {
1495      AddPredecessorToBlock(TrueDest, PredBlock, BB);
1496      PBI->setSuccessor(0, TrueDest);
1497    }
1498    if (PBI->getSuccessor(1) == BB) {
1499      AddPredecessorToBlock(FalseDest, PredBlock, BB);
1500      PBI->setSuccessor(1, FalseDest);
1501    }
1502    return true;
1503  }
1504  return false;
1505}
1506
1507/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1508/// predecessor of another block, this function tries to simplify it.  We know
1509/// that PBI and BI are both conditional branches, and BI is in one of the
1510/// successor blocks of PBI - PBI branches to BI.
1511static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1512  assert(PBI->isConditional() && BI->isConditional());
1513  BasicBlock *BB = BI->getParent();
1514
1515  // If this block ends with a branch instruction, and if there is a
1516  // predecessor that ends on a branch of the same condition, make
1517  // this conditional branch redundant.
1518  if (PBI->getCondition() == BI->getCondition() &&
1519      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1520    // Okay, the outcome of this conditional branch is statically
1521    // knowable.  If this block had a single pred, handle specially.
1522    if (BB->getSinglePredecessor()) {
1523      // Turn this into a branch on constant.
1524      bool CondIsTrue = PBI->getSuccessor(0) == BB;
1525      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1526                                        CondIsTrue));
1527      return true;  // Nuke the branch on constant.
1528    }
1529
1530    // Otherwise, if there are multiple predecessors, insert a PHI that merges
1531    // in the constant and simplify the block result.  Subsequent passes of
1532    // simplifycfg will thread the block.
1533    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1534      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1535                                       BI->getCondition()->getName() + ".pr",
1536                                       BB->begin());
1537      // Okay, we're going to insert the PHI node.  Since PBI is not the only
1538      // predecessor, compute the PHI'd conditional value for all of the preds.
1539      // Any predecessor where the condition is not computable we keep symbolic.
1540      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1541        BasicBlock *P = *PI;
1542        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1543            PBI != BI && PBI->isConditional() &&
1544            PBI->getCondition() == BI->getCondition() &&
1545            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1546          bool CondIsTrue = PBI->getSuccessor(0) == BB;
1547          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1548                                              CondIsTrue), P);
1549        } else {
1550          NewPN->addIncoming(BI->getCondition(), P);
1551        }
1552      }
1553
1554      BI->setCondition(NewPN);
1555      return true;
1556    }
1557  }
1558
1559  // If this is a conditional branch in an empty block, and if any
1560  // predecessors is a conditional branch to one of our destinations,
1561  // fold the conditions into logical ops and one cond br.
1562  BasicBlock::iterator BBI = BB->begin();
1563  // Ignore dbg intrinsics.
1564  while (isa<DbgInfoIntrinsic>(BBI))
1565    ++BBI;
1566  if (&*BBI != BI)
1567    return false;
1568
1569
1570  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1571    if (CE->canTrap())
1572      return false;
1573
1574  int PBIOp, BIOp;
1575  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1576    PBIOp = BIOp = 0;
1577  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1578    PBIOp = 0, BIOp = 1;
1579  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1580    PBIOp = 1, BIOp = 0;
1581  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1582    PBIOp = BIOp = 1;
1583  else
1584    return false;
1585
1586  // Check to make sure that the other destination of this branch
1587  // isn't BB itself.  If so, this is an infinite loop that will
1588  // keep getting unwound.
1589  if (PBI->getSuccessor(PBIOp) == BB)
1590    return false;
1591
1592  // Do not perform this transformation if it would require
1593  // insertion of a large number of select instructions. For targets
1594  // without predication/cmovs, this is a big pessimization.
1595  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1596
1597  unsigned NumPhis = 0;
1598  for (BasicBlock::iterator II = CommonDest->begin();
1599       isa<PHINode>(II); ++II, ++NumPhis)
1600    if (NumPhis > 2) // Disable this xform.
1601      return false;
1602
1603  // Finally, if everything is ok, fold the branches to logical ops.
1604  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
1605
1606  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1607               << "AND: " << *BI->getParent());
1608
1609
1610  // If OtherDest *is* BB, then BB is a basic block with a single conditional
1611  // branch in it, where one edge (OtherDest) goes back to itself but the other
1612  // exits.  We don't *know* that the program avoids the infinite loop
1613  // (even though that seems likely).  If we do this xform naively, we'll end up
1614  // recursively unpeeling the loop.  Since we know that (after the xform is
1615  // done) that the block *is* infinite if reached, we just make it an obviously
1616  // infinite loop with no cond branch.
1617  if (OtherDest == BB) {
1618    // Insert it at the end of the function, because it's either code,
1619    // or it won't matter if it's hot. :)
1620    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1621                                                  "infloop", BB->getParent());
1622    BranchInst::Create(InfLoopBlock, InfLoopBlock);
1623    OtherDest = InfLoopBlock;
1624  }
1625
1626  DEBUG(dbgs() << *PBI->getParent()->getParent());
1627
1628  // BI may have other predecessors.  Because of this, we leave
1629  // it alone, but modify PBI.
1630
1631  // Make sure we get to CommonDest on True&True directions.
1632  Value *PBICond = PBI->getCondition();
1633  if (PBIOp)
1634    PBICond = BinaryOperator::CreateNot(PBICond,
1635                                        PBICond->getName()+".not",
1636                                        PBI);
1637  Value *BICond = BI->getCondition();
1638  if (BIOp)
1639    BICond = BinaryOperator::CreateNot(BICond,
1640                                       BICond->getName()+".not",
1641                                       PBI);
1642  // Merge the conditions.
1643  Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1644
1645  // Modify PBI to branch on the new condition to the new dests.
1646  PBI->setCondition(Cond);
1647  PBI->setSuccessor(0, CommonDest);
1648  PBI->setSuccessor(1, OtherDest);
1649
1650  // OtherDest may have phi nodes.  If so, add an entry from PBI's
1651  // block that are identical to the entries for BI's block.
1652  PHINode *PN;
1653  for (BasicBlock::iterator II = OtherDest->begin();
1654       (PN = dyn_cast<PHINode>(II)); ++II) {
1655    Value *V = PN->getIncomingValueForBlock(BB);
1656    PN->addIncoming(V, PBI->getParent());
1657  }
1658
1659  // We know that the CommonDest already had an edge from PBI to
1660  // it.  If it has PHIs though, the PHIs may have different
1661  // entries for BB and PBI's BB.  If so, insert a select to make
1662  // them agree.
1663  for (BasicBlock::iterator II = CommonDest->begin();
1664       (PN = dyn_cast<PHINode>(II)); ++II) {
1665    Value *BIV = PN->getIncomingValueForBlock(BB);
1666    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1667    Value *PBIV = PN->getIncomingValue(PBBIdx);
1668    if (BIV != PBIV) {
1669      // Insert a select in PBI to pick the right value.
1670      Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1671                                     PBIV->getName()+".mux", PBI);
1672      PN->setIncomingValue(PBBIdx, NV);
1673    }
1674  }
1675
1676  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1677  DEBUG(dbgs() << *PBI->getParent()->getParent());
1678
1679  // This basic block is probably dead.  We know it has at least
1680  // one fewer predecessor.
1681  return true;
1682}
1683
1684// SimplifyIndirectBrOnSelect - Replaces
1685//   (indirectbr (select cond, blockaddress(@fn, BlockA),
1686//                             blockaddress(@fn, BlockB)))
1687// with
1688//   (br cond, BlockA, BlockB).
1689static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1690  // Check that both operands of the select are block addresses.
1691  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1692  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1693  if (!TBA || !FBA)
1694    return false;
1695
1696  // Extract the actual blocks.
1697  BasicBlock *TrueBB = TBA->getBasicBlock();
1698  BasicBlock *FalseBB = FBA->getBasicBlock();
1699
1700  // Remove any superfluous successor edges from the CFG.
1701  // First, figure out which successors to preserve.
1702  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1703  // successor.
1704  BasicBlock *KeepEdge1 = TrueBB;
1705  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1706
1707  // Then remove the rest.
1708  for (unsigned I = 0, E = IBI->getNumSuccessors(); I != E; ++I) {
1709    BasicBlock *Succ = IBI->getSuccessor(I);
1710    // Make sure only to keep exactly one copy of each edge.
1711    if (Succ == KeepEdge1)
1712      KeepEdge1 = 0;
1713    else if (Succ == KeepEdge2)
1714      KeepEdge2 = 0;
1715    else
1716      Succ->removePredecessor(IBI->getParent());
1717  }
1718
1719  // Insert an appropriate new terminator.
1720  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1721    if (TrueBB == FalseBB)
1722      // We were only looking for one successor, and it was present.
1723      // Create an unconditional branch to it.
1724      BranchInst::Create(TrueBB, IBI);
1725    else
1726      // We found both of the successors we were looking for.
1727      // Create a conditional branch sharing the condition of the select.
1728      BranchInst::Create(TrueBB, FalseBB, SI->getCondition(), IBI);
1729  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1730    // Neither of the selected blocks were successors, so this
1731    // indirectbr must be unreachable.
1732    new UnreachableInst(IBI->getContext(), IBI);
1733  } else {
1734    // One of the selected values was a successor, but the other wasn't.
1735    // Insert an unconditional branch to the one that was found;
1736    // the edge to the one that wasn't must be unreachable.
1737    if (KeepEdge1 == 0)
1738      // Only TrueBB was found.
1739      BranchInst::Create(TrueBB, IBI);
1740    else
1741      // Only FalseBB was found.
1742      BranchInst::Create(FalseBB, IBI);
1743  }
1744
1745  EraseTerminatorInstAndDCECond(IBI);
1746  return true;
1747}
1748
1749/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1750/// instruction (a seteq/setne with a constant) as the only instruction in a
1751/// block that ends with an uncond branch.  We are looking for a very specific
1752/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
1753/// this case, we merge the first two "or's of icmp" into a switch, but then the
1754/// default value goes to an uncond block with a seteq in it, we get something
1755/// like:
1756///
1757///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
1758/// DEFAULT:
1759///   %tmp = icmp eq i8 %A, 92
1760///   br label %end
1761/// end:
1762///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1763///
1764/// We prefer to split the edge to 'end' so that there is a true/false entry to
1765/// the PHI, merging the third icmp into the switch.
1766static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI) {
1767  BasicBlock *BB = ICI->getParent();
1768  // If the block has any PHIs in it or the icmp has multiple uses, it is too
1769  // complex.
1770  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1771
1772  Value *V = ICI->getOperand(0);
1773  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1774
1775  // The pattern we're looking for is where our only predecessor is a switch on
1776  // 'V' and this block is the default case for the switch.  In this case we can
1777  // fold the compared value into the switch to simplify things.
1778  BasicBlock *Pred = BB->getSinglePredecessor();
1779  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1780
1781  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1782  if (SI->getCondition() != V)
1783    return false;
1784
1785  // If BB is reachable on a non-default case, then we simply know the value of
1786  // V in this block.  Substitute it and constant fold the icmp instruction
1787  // away.
1788  if (SI->getDefaultDest() != BB) {
1789    ConstantInt *VVal = SI->findCaseDest(BB);
1790    assert(VVal && "Should have a unique destination value");
1791    ICI->setOperand(0, VVal);
1792
1793    if (Constant *C = ConstantFoldInstruction(ICI)) {
1794      ICI->replaceAllUsesWith(C);
1795      ICI->eraseFromParent();
1796    }
1797    // BB is now empty, so it is likely to simplify away.
1798    return SimplifyCFG(BB) | true;
1799  }
1800
1801  // Ok, the block is reachable from the default dest.  If the constant we're
1802  // comparing exists in one of the other edges, then we can constant fold ICI
1803  // and zap it.
1804  if (SI->findCaseValue(Cst) != 0) {
1805    Value *V;
1806    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1807      V = ConstantInt::getFalse(BB->getContext());
1808    else
1809      V = ConstantInt::getTrue(BB->getContext());
1810
1811    ICI->replaceAllUsesWith(V);
1812    ICI->eraseFromParent();
1813    // BB is now empty, so it is likely to simplify away.
1814    return SimplifyCFG(BB) | true;
1815  }
1816
1817  // The use of the icmp has to be in the 'end' block, by the only PHI node in
1818  // the block.
1819  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1820  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1821  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
1822      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
1823    return false;
1824
1825  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
1826  // true in the PHI.
1827  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
1828  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
1829
1830  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1831    std::swap(DefaultCst, NewCst);
1832
1833  // Replace ICI (which is used by the PHI for the default value) with true or
1834  // false depending on if it is EQ or NE.
1835  ICI->replaceAllUsesWith(DefaultCst);
1836  ICI->eraseFromParent();
1837
1838  // Okay, the switch goes to this block on a default value.  Add an edge from
1839  // the switch to the merge point on the compared value.
1840  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
1841                                         BB->getParent(), BB);
1842  SI->addCase(Cst, NewBB);
1843
1844  // NewBB branches to the phi block, add the uncond branch and the phi entry.
1845  BranchInst::Create(SuccBlock, NewBB);
1846  PHIUse->addIncoming(NewCst, NewBB);
1847  return true;
1848}
1849
1850/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
1851/// Check to see if it is branching on an or/and chain of icmp instructions, and
1852/// fold it into a switch instruction if so.
1853static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD) {
1854  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1855  if (Cond == 0) return false;
1856
1857
1858  // Change br (X == 0 | X == 1), T, F into a switch instruction.
1859  // If this is a bunch of seteq's or'd together, or if it's a bunch of
1860  // 'setne's and'ed together, collect them.
1861  Value *CompVal = 0;
1862  std::vector<ConstantInt*> Values;
1863  bool TrueWhenEqual = true;
1864  Value *ExtraCase = 0;
1865
1866  if (Cond->getOpcode() == Instruction::Or) {
1867    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true);
1868  } else if (Cond->getOpcode() == Instruction::And) {
1869    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false);
1870    TrueWhenEqual = false;
1871  }
1872
1873  // If we didn't have a multiply compared value, fail.
1874  if (CompVal == 0) return false;
1875
1876  // There might be duplicate constants in the list, which the switch
1877  // instruction can't handle, remove them now.
1878  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
1879  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
1880
1881  // If Extra was used, we require at least two switch values to do the
1882  // transformation.  A switch with one value is just an cond branch.
1883  if (ExtraCase && Values.size() < 2) return false;
1884
1885  // Figure out which block is which destination.
1886  BasicBlock *DefaultBB = BI->getSuccessor(1);
1887  BasicBlock *EdgeBB    = BI->getSuccessor(0);
1888  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
1889
1890  BasicBlock *BB = BI->getParent();
1891
1892  // If there are any extra values that couldn't be folded into the switch
1893  // then we evaluate them with an explicit branch first.  Split the block
1894  // right before the condbr to handle it.
1895  if (ExtraCase) {
1896    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
1897    // Remove the uncond branch added to the old block.
1898    TerminatorInst *OldTI = BB->getTerminator();
1899
1900    BranchInst::Create(EdgeBB, NewBB, ExtraCase, OldTI);
1901    OldTI->eraseFromParent();
1902    BB = NewBB;
1903  }
1904
1905  // Convert pointer to int before we switch.
1906  if (CompVal->getType()->isPointerTy()) {
1907    assert(TD && "Cannot switch on pointer without TargetData");
1908    CompVal = new PtrToIntInst(CompVal,
1909                               TD->getIntPtrType(CompVal->getContext()),
1910                               "magicptr", BI);
1911  }
1912
1913  // Create the new switch instruction now.
1914  SwitchInst *New =
1915  SwitchInst::Create(CompVal, DefaultBB, Values.size(), BI);
1916
1917  // Add all of the 'cases' to the switch instruction.
1918  for (unsigned i = 0, e = Values.size(); i != e; ++i)
1919    New->addCase(Values[i], EdgeBB);
1920
1921  // We added edges from PI to the EdgeBB.  As such, if there were any
1922  // PHI nodes in EdgeBB, they need entries to be added corresponding to
1923  // the number of edges added.
1924  for (BasicBlock::iterator BBI = EdgeBB->begin();
1925       isa<PHINode>(BBI); ++BBI) {
1926    PHINode *PN = cast<PHINode>(BBI);
1927    Value *InVal = PN->getIncomingValueForBlock(BB);
1928    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
1929      PN->addIncoming(InVal, BB);
1930  }
1931
1932  // Erase the old branch instruction.
1933  EraseTerminatorInstAndDCECond(BI);
1934  return true;
1935}
1936
1937bool SimplifyCFGOpt::run(BasicBlock *BB) {
1938  bool Changed = false;
1939  Function *Fn = BB->getParent();
1940
1941  assert(BB && Fn && "Block not embedded in function!");
1942  assert(BB->getTerminator() && "Degenerate basic block encountered!");
1943
1944  // Remove basic blocks that have no predecessors (except the entry block)...
1945  // or that just have themself as a predecessor.  These are unreachable.
1946  if ((pred_begin(BB) == pred_end(BB) && BB != &Fn->getEntryBlock()) ||
1947      BB->getSinglePredecessor() == BB) {
1948    DEBUG(dbgs() << "Removing BB: \n" << *BB);
1949    DeleteDeadBlock(BB);
1950    return true;
1951  }
1952
1953  // Check to see if we can constant propagate this terminator instruction
1954  // away...
1955  Changed |= ConstantFoldTerminator(BB);
1956
1957  // Check for and eliminate duplicate PHI nodes in this block.
1958  Changed |= EliminateDuplicatePHINodes(BB);
1959
1960  // Merge basic blocks into their predecessor if there is only one distinct
1961  // pred, and if there is only one distinct successor of the predecessor, and
1962  // if there are no PHI nodes.
1963  //
1964  if (MergeBlockIntoPredecessor(BB))
1965    return true;
1966
1967  // If there is a trivial two-entry PHI node in this basic block, and we can
1968  // eliminate it, do so now.
1969  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1970    if (PN->getNumIncomingValues() == 2)
1971      Changed |= FoldTwoEntryPHINode(PN);
1972
1973  // If this is a returning block with only PHI nodes in it, fold the return
1974  // instruction into any unconditional branch predecessors.
1975  //
1976  // If any predecessor is a conditional branch that just selects among
1977  // different return values, fold the replace the branch/return with a select
1978  // and return.
1979  if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1980    if (BB->getFirstNonPHIOrDbg()->isTerminator()) {
1981      // Find predecessors that end with branches.
1982      SmallVector<BasicBlock*, 8> UncondBranchPreds;
1983      SmallVector<BranchInst*, 8> CondBranchPreds;
1984      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1985        BasicBlock *P = *PI;
1986        TerminatorInst *PTI = P->getTerminator();
1987        if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
1988          if (BI->isUnconditional())
1989            UncondBranchPreds.push_back(P);
1990          else
1991            CondBranchPreds.push_back(BI);
1992        }
1993      }
1994
1995      // If we found some, do the transformation!
1996      if (!UncondBranchPreds.empty()) {
1997        while (!UncondBranchPreds.empty()) {
1998          BasicBlock *Pred = UncondBranchPreds.pop_back_val();
1999          DEBUG(dbgs() << "FOLDING: " << *BB
2000                       << "INTO UNCOND BRANCH PRED: " << *Pred);
2001          Instruction *UncondBranch = Pred->getTerminator();
2002          // Clone the return and add it to the end of the predecessor.
2003          Instruction *NewRet = RI->clone();
2004          Pred->getInstList().push_back(NewRet);
2005
2006          // If the return instruction returns a value, and if the value was a
2007          // PHI node in "BB", propagate the right value into the return.
2008          for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
2009               i != e; ++i)
2010            if (PHINode *PN = dyn_cast<PHINode>(*i))
2011              if (PN->getParent() == BB)
2012                *i = PN->getIncomingValueForBlock(Pred);
2013
2014          // Update any PHI nodes in the returning block to realize that we no
2015          // longer branch to them.
2016          BB->removePredecessor(Pred);
2017          Pred->getInstList().erase(UncondBranch);
2018        }
2019
2020        // If we eliminated all predecessors of the block, delete the block now.
2021        if (pred_begin(BB) == pred_end(BB))
2022          // We know there are no successors, so just nuke the block.
2023          Fn->getBasicBlockList().erase(BB);
2024
2025        return true;
2026      }
2027
2028      // Check out all of the conditional branches going to this return
2029      // instruction.  If any of them just select between returns, change the
2030      // branch itself into a select/return pair.
2031      while (!CondBranchPreds.empty()) {
2032        BranchInst *BI = CondBranchPreds.pop_back_val();
2033
2034        // Check to see if the non-BB successor is also a return block.
2035        if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2036            isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2037            SimplifyCondBranchToTwoReturns(BI))
2038          return true;
2039      }
2040    }
2041  } else if (isa<UnwindInst>(BB->begin())) {
2042    // Check to see if the first instruction in this block is just an unwind.
2043    // If so, replace any invoke instructions which use this as an exception
2044    // destination with call instructions.
2045    //
2046    SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2047    while (!Preds.empty()) {
2048      BasicBlock *Pred = Preds.back();
2049      InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2050      if (II && II->getUnwindDest() == BB) {
2051        // Insert a new branch instruction before the invoke, because this
2052        // is now a fall through.
2053        BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2054        Pred->getInstList().remove(II);   // Take out of symbol table
2055
2056        // Insert the call now.
2057        SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2058        CallInst *CI = CallInst::Create(II->getCalledValue(),
2059                                        Args.begin(), Args.end(),
2060                                        II->getName(), BI);
2061        CI->setCallingConv(II->getCallingConv());
2062        CI->setAttributes(II->getAttributes());
2063        // If the invoke produced a value, the Call now does instead.
2064        II->replaceAllUsesWith(CI);
2065        delete II;
2066        Changed = true;
2067      }
2068
2069      Preds.pop_back();
2070    }
2071
2072    // If this block is now dead (and isn't the entry block), remove it.
2073    if (pred_begin(BB) == pred_end(BB) && BB != &Fn->getEntryBlock()) {
2074      // We know there are no successors, so just nuke the block.
2075      Fn->getBasicBlockList().erase(BB);
2076      return true;
2077    }
2078
2079  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2080    if (isValueEqualityComparison(SI)) {
2081      // If we only have one predecessor, and if it is a branch on this value,
2082      // see if that predecessor totally determines the outcome of this switch.
2083      if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2084        if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
2085          return SimplifyCFG(BB) || 1;
2086
2087      // If the block only contains the switch, see if we can fold the block
2088      // away into any preds.
2089      BasicBlock::iterator BBI = BB->begin();
2090      // Ignore dbg intrinsics.
2091      while (isa<DbgInfoIntrinsic>(BBI))
2092        ++BBI;
2093      if (SI == &*BBI)
2094        if (FoldValueComparisonIntoPredecessors(SI))
2095          return SimplifyCFG(BB) || 1;
2096    }
2097  } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2098    if (BI->isUnconditional()) {
2099      // If the Terminator is the only non-phi instruction, simplify the block.
2100      BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
2101      if (I->isTerminator() && BB != &Fn->getEntryBlock() &&
2102          TryToSimplifyUncondBranchFromEmptyBlock(BB))
2103        return true;
2104
2105      // If the only instruction in the block is a seteq/setne comparison
2106      // against a constant, try to simplify the block.
2107      if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2108        if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2109          for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2110            ;
2111          if (I->isTerminator() &&
2112              TryToSimplifyUncondBranchWithICmpInIt(ICI))
2113            return true;
2114        }
2115
2116    } else {  // Conditional branch
2117      if (isValueEqualityComparison(BI)) {
2118        // If we only have one predecessor, and if it is a branch on this value,
2119        // see if that predecessor totally determines the outcome of this
2120        // switch.
2121        if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2122          if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
2123            return SimplifyCFG(BB) | true;
2124
2125        // This block must be empty, except for the setcond inst, if it exists.
2126        // Ignore dbg intrinsics.
2127        BasicBlock::iterator I = BB->begin();
2128        // Ignore dbg intrinsics.
2129        while (isa<DbgInfoIntrinsic>(I))
2130          ++I;
2131        if (&*I == BI) {
2132          if (FoldValueComparisonIntoPredecessors(BI))
2133            return SimplifyCFG(BB) | true;
2134        } else if (&*I == cast<Instruction>(BI->getCondition())){
2135          ++I;
2136          // Ignore dbg intrinsics.
2137          while (isa<DbgInfoIntrinsic>(I))
2138            ++I;
2139          if (&*I == BI && FoldValueComparisonIntoPredecessors(BI))
2140            return SimplifyCFG(BB) | true;
2141        }
2142      }
2143
2144      // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2145      if (SimplifyBranchOnICmpChain(BI, TD))
2146        return true;
2147
2148      // If this is a branch on a phi node in the current block, thread control
2149      // through this block if any PHI node entries are constants.
2150      if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2151        if (PN->getParent() == BI->getParent())
2152          if (FoldCondBranchOnPHI(BI))
2153            return SimplifyCFG(BB) | true;
2154
2155      // If this basic block is ONLY a setcc and a branch, and if a predecessor
2156      // branches to us and one of our successors, fold the setcc into the
2157      // predecessor and use logical operations to pick the right destination.
2158      if (FoldBranchToCommonDest(BI))
2159        return SimplifyCFG(BB) | true;
2160
2161      // Scan predecessor blocks for conditional branches.
2162      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2163        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2164          if (PBI != BI && PBI->isConditional())
2165            if (SimplifyCondBranchToCondBranch(PBI, BI))
2166              return SimplifyCFG(BB) | true;
2167    }
2168  } else if (isa<UnreachableInst>(BB->getTerminator())) {
2169    // If there are any instructions immediately before the unreachable that can
2170    // be removed, do so.
2171    Instruction *Unreachable = BB->getTerminator();
2172    while (Unreachable != BB->begin()) {
2173      BasicBlock::iterator BBI = Unreachable;
2174      --BBI;
2175      // Do not delete instructions that can have side effects, like calls
2176      // (which may never return) and volatile loads and stores.
2177      if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2178
2179      if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
2180        if (SI->isVolatile())
2181          break;
2182
2183      if (LoadInst *LI = dyn_cast<LoadInst>(BBI))
2184        if (LI->isVolatile())
2185          break;
2186
2187      // Delete this instruction
2188      BB->getInstList().erase(BBI);
2189      Changed = true;
2190    }
2191
2192    // If the unreachable instruction is the first in the block, take a gander
2193    // at all of the predecessors of this instruction, and simplify them.
2194    if (&BB->front() == Unreachable) {
2195      SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2196      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2197        TerminatorInst *TI = Preds[i]->getTerminator();
2198
2199        if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2200          if (BI->isUnconditional()) {
2201            if (BI->getSuccessor(0) == BB) {
2202              new UnreachableInst(TI->getContext(), TI);
2203              TI->eraseFromParent();
2204              Changed = true;
2205            }
2206          } else {
2207            if (BI->getSuccessor(0) == BB) {
2208              BranchInst::Create(BI->getSuccessor(1), BI);
2209              EraseTerminatorInstAndDCECond(BI);
2210            } else if (BI->getSuccessor(1) == BB) {
2211              BranchInst::Create(BI->getSuccessor(0), BI);
2212              EraseTerminatorInstAndDCECond(BI);
2213              Changed = true;
2214            }
2215          }
2216        } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2217          for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2218            if (SI->getSuccessor(i) == BB) {
2219              BB->removePredecessor(SI->getParent());
2220              SI->removeCase(i);
2221              --i; --e;
2222              Changed = true;
2223            }
2224          // If the default value is unreachable, figure out the most popular
2225          // destination and make it the default.
2226          if (SI->getSuccessor(0) == BB) {
2227            std::map<BasicBlock*, unsigned> Popularity;
2228            for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2229              Popularity[SI->getSuccessor(i)]++;
2230
2231            // Find the most popular block.
2232            unsigned MaxPop = 0;
2233            BasicBlock *MaxBlock = 0;
2234            for (std::map<BasicBlock*, unsigned>::iterator
2235                   I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2236              if (I->second > MaxPop) {
2237                MaxPop = I->second;
2238                MaxBlock = I->first;
2239              }
2240            }
2241            if (MaxBlock) {
2242              // Make this the new default, allowing us to delete any explicit
2243              // edges to it.
2244              SI->setSuccessor(0, MaxBlock);
2245              Changed = true;
2246
2247              // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2248              // it.
2249              if (isa<PHINode>(MaxBlock->begin()))
2250                for (unsigned i = 0; i != MaxPop-1; ++i)
2251                  MaxBlock->removePredecessor(SI->getParent());
2252
2253              for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2254                if (SI->getSuccessor(i) == MaxBlock) {
2255                  SI->removeCase(i);
2256                  --i; --e;
2257                }
2258            }
2259          }
2260        } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2261          if (II->getUnwindDest() == BB) {
2262            // Convert the invoke to a call instruction.  This would be a good
2263            // place to note that the call does not throw though.
2264            BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
2265            II->removeFromParent();   // Take out of symbol table
2266
2267            // Insert the call now...
2268            SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2269            CallInst *CI = CallInst::Create(II->getCalledValue(),
2270                                            Args.begin(), Args.end(),
2271                                            II->getName(), BI);
2272            CI->setCallingConv(II->getCallingConv());
2273            CI->setAttributes(II->getAttributes());
2274            // If the invoke produced a value, the call does now instead.
2275            II->replaceAllUsesWith(CI);
2276            delete II;
2277            Changed = true;
2278          }
2279        }
2280      }
2281
2282      // If this block is now dead, remove it.
2283      if (pred_begin(BB) == pred_end(BB) && BB != &Fn->getEntryBlock()) {
2284        // We know there are no successors, so just nuke the block.
2285        Fn->getBasicBlockList().erase(BB);
2286        return true;
2287      }
2288    }
2289  } else if (IndirectBrInst *IBI =
2290               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2291    // Eliminate redundant destinations.
2292    SmallPtrSet<Value *, 8> Succs;
2293    for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2294      BasicBlock *Dest = IBI->getDestination(i);
2295      if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2296        Dest->removePredecessor(BB);
2297        IBI->removeDestination(i);
2298        --i; --e;
2299        Changed = true;
2300      }
2301    }
2302
2303    if (IBI->getNumDestinations() == 0) {
2304      // If the indirectbr has no successors, change it to unreachable.
2305      new UnreachableInst(IBI->getContext(), IBI);
2306      EraseTerminatorInstAndDCECond(IBI);
2307      Changed = true;
2308    } else if (IBI->getNumDestinations() == 1) {
2309      // If the indirectbr has one successor, change it to a direct branch.
2310      BranchInst::Create(IBI->getDestination(0), IBI);
2311      EraseTerminatorInstAndDCECond(IBI);
2312      Changed = true;
2313    } else if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2314      if (SimplifyIndirectBrOnSelect(IBI, SI))
2315        return SimplifyCFG(BB) | true;
2316    }
2317  }
2318
2319  // Otherwise, if this block only has a single predecessor, and if that block
2320  // is a conditional branch, see if we can hoist any code from this block up
2321  // into our predecessor.
2322  if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) {
2323    BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator());
2324    if (BI && BI->isConditional()) {
2325      // Get the other block.
2326      BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2327      pred_iterator PI = pred_begin(OtherBB);
2328      ++PI;
2329
2330      if (PI == pred_end(OtherBB)) {
2331        // We have a conditional branch to two blocks that are only reachable
2332        // from the condbr.  We know that the condbr dominates the two blocks,
2333        // so see if there is any identical code in the "then" and "else"
2334        // blocks.  If so, we can hoist it up to the branching block.
2335        Changed |= HoistThenElseCodeToIf(BI);
2336      } else {
2337        BasicBlock* OnlySucc = NULL;
2338        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2339             SI != SE; ++SI) {
2340          if (!OnlySucc)
2341            OnlySucc = *SI;
2342          else if (*SI != OnlySucc) {
2343            OnlySucc = 0;     // There are multiple distinct successors!
2344            break;
2345          }
2346        }
2347
2348        if (OnlySucc == OtherBB) {
2349          // If BB's only successor is the other successor of the predecessor,
2350          // i.e. a triangle, see if we can hoist any code from this block up
2351          // to the "if" block.
2352          Changed |= SpeculativelyExecuteBB(BI, BB);
2353        }
2354      }
2355    }
2356  }
2357
2358  return Changed;
2359}
2360
2361/// SimplifyCFG - This function is used to do simplification of a CFG.  For
2362/// example, it adjusts branches to branches to eliminate the extra hop, it
2363/// eliminates unreachable basic blocks, and does other "peephole" optimization
2364/// of the CFG.  It returns true if a modification was made.
2365///
2366bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2367  return SimplifyCFGOpt(TD).run(BB);
2368}
2369