SimplifyCFG.cpp revision f7af1987ddcec768d8608d608ce187115510b21d
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/MDBuilder.h"
34#include "llvm/IR/Metadata.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/IR/Type.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/ConstantRange.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/NoFolder.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include <algorithm>
46#include <map>
47#include <set>
48using namespace llvm;
49
50static cl::opt<unsigned>
51PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
52   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
53
54static cl::opt<bool>
55DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
56       cl::desc("Duplicate return instructions into unconditional branches"));
57
58static cl::opt<bool>
59SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
60       cl::desc("Sink common instructions down to the end block"));
61
62static cl::opt<bool>
63HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
64       cl::desc("Hoist conditional stores if an unconditional store preceeds"));
65
66STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
67STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
68STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
69STATISTIC(NumSpeculations, "Number of speculative executed instructions");
70
71namespace {
72  /// ValueEqualityComparisonCase - Represents a case of a switch.
73  struct ValueEqualityComparisonCase {
74    ConstantInt *Value;
75    BasicBlock *Dest;
76
77    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
78      : Value(Value), Dest(Dest) {}
79
80    bool operator<(ValueEqualityComparisonCase RHS) const {
81      // Comparing pointers is ok as we only rely on the order for uniquing.
82      return Value < RHS.Value;
83    }
84
85    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
86  };
87
88class SimplifyCFGOpt {
89  const TargetTransformInfo &TTI;
90  const DataLayout *const TD;
91
92  Value *isValueEqualityComparison(TerminatorInst *TI);
93  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
94                               std::vector<ValueEqualityComparisonCase> &Cases);
95  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
96                                                     BasicBlock *Pred,
97                                                     IRBuilder<> &Builder);
98  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
99                                           IRBuilder<> &Builder);
100
101  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
102  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
103  bool SimplifyUnreachable(UnreachableInst *UI);
104  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
105  bool SimplifyIndirectBr(IndirectBrInst *IBI);
106  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
107  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
108
109public:
110  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
111      : TTI(TTI), TD(TD) {}
112  bool run(BasicBlock *BB);
113};
114}
115
116/// SafeToMergeTerminators - Return true if it is safe to merge these two
117/// terminator instructions together.
118///
119static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
120  if (SI1 == SI2) return false;  // Can't merge with self!
121
122  // It is not safe to merge these two switch instructions if they have a common
123  // successor, and if that successor has a PHI node, and if *that* PHI node has
124  // conflicting incoming values from the two switch blocks.
125  BasicBlock *SI1BB = SI1->getParent();
126  BasicBlock *SI2BB = SI2->getParent();
127  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
128
129  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
130    if (SI1Succs.count(*I))
131      for (BasicBlock::iterator BBI = (*I)->begin();
132           isa<PHINode>(BBI); ++BBI) {
133        PHINode *PN = cast<PHINode>(BBI);
134        if (PN->getIncomingValueForBlock(SI1BB) !=
135            PN->getIncomingValueForBlock(SI2BB))
136          return false;
137      }
138
139  return true;
140}
141
142/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
143/// to merge these two terminator instructions together, where SI1 is an
144/// unconditional branch. PhiNodes will store all PHI nodes in common
145/// successors.
146///
147static bool isProfitableToFoldUnconditional(BranchInst *SI1,
148                                          BranchInst *SI2,
149                                          Instruction *Cond,
150                                          SmallVectorImpl<PHINode*> &PhiNodes) {
151  if (SI1 == SI2) return false;  // Can't merge with self!
152  assert(SI1->isUnconditional() && SI2->isConditional());
153
154  // We fold the unconditional branch if we can easily update all PHI nodes in
155  // common successors:
156  // 1> We have a constant incoming value for the conditional branch;
157  // 2> We have "Cond" as the incoming value for the unconditional branch;
158  // 3> SI2->getCondition() and Cond have same operands.
159  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
160  if (!Ci2) return false;
161  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
162        Cond->getOperand(1) == Ci2->getOperand(1)) &&
163      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
164        Cond->getOperand(1) == Ci2->getOperand(0)))
165    return false;
166
167  BasicBlock *SI1BB = SI1->getParent();
168  BasicBlock *SI2BB = SI2->getParent();
169  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
170  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
171    if (SI1Succs.count(*I))
172      for (BasicBlock::iterator BBI = (*I)->begin();
173           isa<PHINode>(BBI); ++BBI) {
174        PHINode *PN = cast<PHINode>(BBI);
175        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
176            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
177          return false;
178        PhiNodes.push_back(PN);
179      }
180  return true;
181}
182
183/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
184/// now be entries in it from the 'NewPred' block.  The values that will be
185/// flowing into the PHI nodes will be the same as those coming in from
186/// ExistPred, an existing predecessor of Succ.
187static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
188                                  BasicBlock *ExistPred) {
189  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
190
191  PHINode *PN;
192  for (BasicBlock::iterator I = Succ->begin();
193       (PN = dyn_cast<PHINode>(I)); ++I)
194    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
195}
196
197
198/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
199/// least one PHI node in it), check to see if the merge at this block is due
200/// to an "if condition".  If so, return the boolean condition that determines
201/// which entry into BB will be taken.  Also, return by references the block
202/// that will be entered from if the condition is true, and the block that will
203/// be entered if the condition is false.
204///
205/// This does no checking to see if the true/false blocks have large or unsavory
206/// instructions in them.
207static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
208                             BasicBlock *&IfFalse) {
209  PHINode *SomePHI = cast<PHINode>(BB->begin());
210  assert(SomePHI->getNumIncomingValues() == 2 &&
211         "Function can only handle blocks with 2 predecessors!");
212  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
213  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
214
215  // We can only handle branches.  Other control flow will be lowered to
216  // branches if possible anyway.
217  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
218  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
219  if (Pred1Br == 0 || Pred2Br == 0)
220    return 0;
221
222  // Eliminate code duplication by ensuring that Pred1Br is conditional if
223  // either are.
224  if (Pred2Br->isConditional()) {
225    // If both branches are conditional, we don't have an "if statement".  In
226    // reality, we could transform this case, but since the condition will be
227    // required anyway, we stand no chance of eliminating it, so the xform is
228    // probably not profitable.
229    if (Pred1Br->isConditional())
230      return 0;
231
232    std::swap(Pred1, Pred2);
233    std::swap(Pred1Br, Pred2Br);
234  }
235
236  if (Pred1Br->isConditional()) {
237    // The only thing we have to watch out for here is to make sure that Pred2
238    // doesn't have incoming edges from other blocks.  If it does, the condition
239    // doesn't dominate BB.
240    if (Pred2->getSinglePredecessor() == 0)
241      return 0;
242
243    // If we found a conditional branch predecessor, make sure that it branches
244    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
245    if (Pred1Br->getSuccessor(0) == BB &&
246        Pred1Br->getSuccessor(1) == Pred2) {
247      IfTrue = Pred1;
248      IfFalse = Pred2;
249    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
250               Pred1Br->getSuccessor(1) == BB) {
251      IfTrue = Pred2;
252      IfFalse = Pred1;
253    } else {
254      // We know that one arm of the conditional goes to BB, so the other must
255      // go somewhere unrelated, and this must not be an "if statement".
256      return 0;
257    }
258
259    return Pred1Br->getCondition();
260  }
261
262  // Ok, if we got here, both predecessors end with an unconditional branch to
263  // BB.  Don't panic!  If both blocks only have a single (identical)
264  // predecessor, and THAT is a conditional branch, then we're all ok!
265  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
266  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
267    return 0;
268
269  // Otherwise, if this is a conditional branch, then we can use it!
270  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
271  if (BI == 0) return 0;
272
273  assert(BI->isConditional() && "Two successors but not conditional?");
274  if (BI->getSuccessor(0) == Pred1) {
275    IfTrue = Pred1;
276    IfFalse = Pred2;
277  } else {
278    IfTrue = Pred2;
279    IfFalse = Pred1;
280  }
281  return BI->getCondition();
282}
283
284/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
285/// given instruction, which is assumed to be safe to speculate. 1 means
286/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
287static unsigned ComputeSpeculationCost(const User *I) {
288  assert(isSafeToSpeculativelyExecute(I) &&
289         "Instruction is not safe to speculatively execute!");
290  switch (Operator::getOpcode(I)) {
291  default:
292    // In doubt, be conservative.
293    return UINT_MAX;
294  case Instruction::GetElementPtr:
295    // GEPs are cheap if all indices are constant.
296    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
297      return UINT_MAX;
298    return 1;
299  case Instruction::Load:
300  case Instruction::Add:
301  case Instruction::Sub:
302  case Instruction::And:
303  case Instruction::Or:
304  case Instruction::Xor:
305  case Instruction::Shl:
306  case Instruction::LShr:
307  case Instruction::AShr:
308  case Instruction::ICmp:
309  case Instruction::Trunc:
310  case Instruction::ZExt:
311  case Instruction::SExt:
312    return 1; // These are all cheap.
313
314  case Instruction::Call:
315  case Instruction::Select:
316    return 2;
317  }
318}
319
320/// DominatesMergePoint - If we have a merge point of an "if condition" as
321/// accepted above, return true if the specified value dominates the block.  We
322/// don't handle the true generality of domination here, just a special case
323/// which works well enough for us.
324///
325/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
326/// see if V (which must be an instruction) and its recursive operands
327/// that do not dominate BB have a combined cost lower than CostRemaining and
328/// are non-trapping.  If both are true, the instruction is inserted into the
329/// set and true is returned.
330///
331/// The cost for most non-trapping instructions is defined as 1 except for
332/// Select whose cost is 2.
333///
334/// After this function returns, CostRemaining is decreased by the cost of
335/// V plus its non-dominating operands.  If that cost is greater than
336/// CostRemaining, false is returned and CostRemaining is undefined.
337static bool DominatesMergePoint(Value *V, BasicBlock *BB,
338                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
339                                unsigned &CostRemaining) {
340  Instruction *I = dyn_cast<Instruction>(V);
341  if (!I) {
342    // Non-instructions all dominate instructions, but not all constantexprs
343    // can be executed unconditionally.
344    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
345      if (C->canTrap())
346        return false;
347    return true;
348  }
349  BasicBlock *PBB = I->getParent();
350
351  // We don't want to allow weird loops that might have the "if condition" in
352  // the bottom of this block.
353  if (PBB == BB) return false;
354
355  // If this instruction is defined in a block that contains an unconditional
356  // branch to BB, then it must be in the 'conditional' part of the "if
357  // statement".  If not, it definitely dominates the region.
358  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
359  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
360    return true;
361
362  // If we aren't allowing aggressive promotion anymore, then don't consider
363  // instructions in the 'if region'.
364  if (AggressiveInsts == 0) return false;
365
366  // If we have seen this instruction before, don't count it again.
367  if (AggressiveInsts->count(I)) return true;
368
369  // Okay, it looks like the instruction IS in the "condition".  Check to
370  // see if it's a cheap instruction to unconditionally compute, and if it
371  // only uses stuff defined outside of the condition.  If so, hoist it out.
372  if (!isSafeToSpeculativelyExecute(I))
373    return false;
374
375  unsigned Cost = ComputeSpeculationCost(I);
376
377  if (Cost > CostRemaining)
378    return false;
379
380  CostRemaining -= Cost;
381
382  // Okay, we can only really hoist these out if their operands do
383  // not take us over the cost threshold.
384  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
386      return false;
387  // Okay, it's safe to do this!  Remember this instruction.
388  AggressiveInsts->insert(I);
389  return true;
390}
391
392/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
393/// and PointerNullValue. Return NULL if value is not a constant int.
394static ConstantInt *GetConstantInt(Value *V, const DataLayout *TD) {
395  // Normal constant int.
396  ConstantInt *CI = dyn_cast<ConstantInt>(V);
397  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
398    return CI;
399
400  // This is some kind of pointer constant. Turn it into a pointer-sized
401  // ConstantInt if possible.
402  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
403
404  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
405  if (isa<ConstantPointerNull>(V))
406    return ConstantInt::get(PtrTy, 0);
407
408  // IntToPtr const int.
409  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
410    if (CE->getOpcode() == Instruction::IntToPtr)
411      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
412        // The constant is very likely to have the right type already.
413        if (CI->getType() == PtrTy)
414          return CI;
415        else
416          return cast<ConstantInt>
417            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
418      }
419  return 0;
420}
421
422/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
423/// collection of icmp eq/ne instructions that compare a value against a
424/// constant, return the value being compared, and stick the constant into the
425/// Values vector.
426static Value *
427GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
428                       const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
429  Instruction *I = dyn_cast<Instruction>(V);
430  if (I == 0) return 0;
431
432  // If this is an icmp against a constant, handle this as one of the cases.
433  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
434    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
435      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
436        UsedICmps++;
437        Vals.push_back(C);
438        return I->getOperand(0);
439      }
440
441      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
442      // the set.
443      ConstantRange Span =
444        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
445
446      // If this is an and/!= check then we want to optimize "x ugt 2" into
447      // x != 0 && x != 1.
448      if (!isEQ)
449        Span = Span.inverse();
450
451      // If there are a ton of values, we don't want to make a ginormous switch.
452      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
453        return 0;
454
455      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
456        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
457      UsedICmps++;
458      return I->getOperand(0);
459    }
460    return 0;
461  }
462
463  // Otherwise, we can only handle an | or &, depending on isEQ.
464  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
465    return 0;
466
467  unsigned NumValsBeforeLHS = Vals.size();
468  unsigned UsedICmpsBeforeLHS = UsedICmps;
469  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
470                                          isEQ, UsedICmps)) {
471    unsigned NumVals = Vals.size();
472    unsigned UsedICmpsBeforeRHS = UsedICmps;
473    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
474                                            isEQ, UsedICmps)) {
475      if (LHS == RHS)
476        return LHS;
477      Vals.resize(NumVals);
478      UsedICmps = UsedICmpsBeforeRHS;
479    }
480
481    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
482    // set it and return success.
483    if (Extra == 0 || Extra == I->getOperand(1)) {
484      Extra = I->getOperand(1);
485      return LHS;
486    }
487
488    Vals.resize(NumValsBeforeLHS);
489    UsedICmps = UsedICmpsBeforeLHS;
490    return 0;
491  }
492
493  // If the LHS can't be folded in, but Extra is available and RHS can, try to
494  // use LHS as Extra.
495  if (Extra == 0 || Extra == I->getOperand(0)) {
496    Value *OldExtra = Extra;
497    Extra = I->getOperand(0);
498    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
499                                            isEQ, UsedICmps))
500      return RHS;
501    assert(Vals.size() == NumValsBeforeLHS);
502    Extra = OldExtra;
503  }
504
505  return 0;
506}
507
508static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
509  Instruction *Cond = 0;
510  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
511    Cond = dyn_cast<Instruction>(SI->getCondition());
512  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
513    if (BI->isConditional())
514      Cond = dyn_cast<Instruction>(BI->getCondition());
515  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
516    Cond = dyn_cast<Instruction>(IBI->getAddress());
517  }
518
519  TI->eraseFromParent();
520  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
521}
522
523/// isValueEqualityComparison - Return true if the specified terminator checks
524/// to see if a value is equal to constant integer value.
525Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
526  Value *CV = 0;
527  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
528    // Do not permit merging of large switch instructions into their
529    // predecessors unless there is only one predecessor.
530    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
531                                             pred_end(SI->getParent())) <= 128)
532      CV = SI->getCondition();
533  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
534    if (BI->isConditional() && BI->getCondition()->hasOneUse())
535      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
536        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
537             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
538            GetConstantInt(ICI->getOperand(1), TD))
539          CV = ICI->getOperand(0);
540
541  // Unwrap any lossless ptrtoint cast.
542  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
543    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
544      CV = PTII->getOperand(0);
545  return CV;
546}
547
548/// GetValueEqualityComparisonCases - Given a value comparison instruction,
549/// decode all of the 'cases' that it represents and return the 'default' block.
550BasicBlock *SimplifyCFGOpt::
551GetValueEqualityComparisonCases(TerminatorInst *TI,
552                                std::vector<ValueEqualityComparisonCase>
553                                                                       &Cases) {
554  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
555    Cases.reserve(SI->getNumCases());
556    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
557      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
558                                                  i.getCaseSuccessor()));
559    return SI->getDefaultDest();
560  }
561
562  BranchInst *BI = cast<BranchInst>(TI);
563  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
564  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
565  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
566                                                             TD),
567                                              Succ));
568  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
569}
570
571
572/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
573/// in the list that match the specified block.
574static void EliminateBlockCases(BasicBlock *BB,
575                              std::vector<ValueEqualityComparisonCase> &Cases) {
576  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
577}
578
579/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
580/// well.
581static bool
582ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
583              std::vector<ValueEqualityComparisonCase > &C2) {
584  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
585
586  // Make V1 be smaller than V2.
587  if (V1->size() > V2->size())
588    std::swap(V1, V2);
589
590  if (V1->size() == 0) return false;
591  if (V1->size() == 1) {
592    // Just scan V2.
593    ConstantInt *TheVal = (*V1)[0].Value;
594    for (unsigned i = 0, e = V2->size(); i != e; ++i)
595      if (TheVal == (*V2)[i].Value)
596        return true;
597  }
598
599  // Otherwise, just sort both lists and compare element by element.
600  array_pod_sort(V1->begin(), V1->end());
601  array_pod_sort(V2->begin(), V2->end());
602  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
603  while (i1 != e1 && i2 != e2) {
604    if ((*V1)[i1].Value == (*V2)[i2].Value)
605      return true;
606    if ((*V1)[i1].Value < (*V2)[i2].Value)
607      ++i1;
608    else
609      ++i2;
610  }
611  return false;
612}
613
614/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
615/// terminator instruction and its block is known to only have a single
616/// predecessor block, check to see if that predecessor is also a value
617/// comparison with the same value, and if that comparison determines the
618/// outcome of this comparison.  If so, simplify TI.  This does a very limited
619/// form of jump threading.
620bool SimplifyCFGOpt::
621SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
622                                              BasicBlock *Pred,
623                                              IRBuilder<> &Builder) {
624  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
625  if (!PredVal) return false;  // Not a value comparison in predecessor.
626
627  Value *ThisVal = isValueEqualityComparison(TI);
628  assert(ThisVal && "This isn't a value comparison!!");
629  if (ThisVal != PredVal) return false;  // Different predicates.
630
631  // TODO: Preserve branch weight metadata, similarly to how
632  // FoldValueComparisonIntoPredecessors preserves it.
633
634  // Find out information about when control will move from Pred to TI's block.
635  std::vector<ValueEqualityComparisonCase> PredCases;
636  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
637                                                        PredCases);
638  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
639
640  // Find information about how control leaves this block.
641  std::vector<ValueEqualityComparisonCase> ThisCases;
642  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
643  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
644
645  // If TI's block is the default block from Pred's comparison, potentially
646  // simplify TI based on this knowledge.
647  if (PredDef == TI->getParent()) {
648    // If we are here, we know that the value is none of those cases listed in
649    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
650    // can simplify TI.
651    if (!ValuesOverlap(PredCases, ThisCases))
652      return false;
653
654    if (isa<BranchInst>(TI)) {
655      // Okay, one of the successors of this condbr is dead.  Convert it to a
656      // uncond br.
657      assert(ThisCases.size() == 1 && "Branch can only have one case!");
658      // Insert the new branch.
659      Instruction *NI = Builder.CreateBr(ThisDef);
660      (void) NI;
661
662      // Remove PHI node entries for the dead edge.
663      ThisCases[0].Dest->removePredecessor(TI->getParent());
664
665      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
666           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
667
668      EraseTerminatorInstAndDCECond(TI);
669      return true;
670    }
671
672    SwitchInst *SI = cast<SwitchInst>(TI);
673    // Okay, TI has cases that are statically dead, prune them away.
674    SmallPtrSet<Constant*, 16> DeadCases;
675    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
676      DeadCases.insert(PredCases[i].Value);
677
678    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
679                 << "Through successor TI: " << *TI);
680
681    // Collect branch weights into a vector.
682    SmallVector<uint32_t, 8> Weights;
683    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
684    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
685    if (HasWeight)
686      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
687           ++MD_i) {
688        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
689        assert(CI);
690        Weights.push_back(CI->getValue().getZExtValue());
691      }
692    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
693      --i;
694      if (DeadCases.count(i.getCaseValue())) {
695        if (HasWeight) {
696          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
697          Weights.pop_back();
698        }
699        i.getCaseSuccessor()->removePredecessor(TI->getParent());
700        SI->removeCase(i);
701      }
702    }
703    if (HasWeight && Weights.size() >= 2)
704      SI->setMetadata(LLVMContext::MD_prof,
705                      MDBuilder(SI->getParent()->getContext()).
706                      createBranchWeights(Weights));
707
708    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
709    return true;
710  }
711
712  // Otherwise, TI's block must correspond to some matched value.  Find out
713  // which value (or set of values) this is.
714  ConstantInt *TIV = 0;
715  BasicBlock *TIBB = TI->getParent();
716  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
717    if (PredCases[i].Dest == TIBB) {
718      if (TIV != 0)
719        return false;  // Cannot handle multiple values coming to this block.
720      TIV = PredCases[i].Value;
721    }
722  assert(TIV && "No edge from pred to succ?");
723
724  // Okay, we found the one constant that our value can be if we get into TI's
725  // BB.  Find out which successor will unconditionally be branched to.
726  BasicBlock *TheRealDest = 0;
727  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
728    if (ThisCases[i].Value == TIV) {
729      TheRealDest = ThisCases[i].Dest;
730      break;
731    }
732
733  // If not handled by any explicit cases, it is handled by the default case.
734  if (TheRealDest == 0) TheRealDest = ThisDef;
735
736  // Remove PHI node entries for dead edges.
737  BasicBlock *CheckEdge = TheRealDest;
738  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
739    if (*SI != CheckEdge)
740      (*SI)->removePredecessor(TIBB);
741    else
742      CheckEdge = 0;
743
744  // Insert the new branch.
745  Instruction *NI = Builder.CreateBr(TheRealDest);
746  (void) NI;
747
748  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
749            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
750
751  EraseTerminatorInstAndDCECond(TI);
752  return true;
753}
754
755namespace {
756  /// ConstantIntOrdering - This class implements a stable ordering of constant
757  /// integers that does not depend on their address.  This is important for
758  /// applications that sort ConstantInt's to ensure uniqueness.
759  struct ConstantIntOrdering {
760    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
761      return LHS->getValue().ult(RHS->getValue());
762    }
763  };
764}
765
766static int ConstantIntSortPredicate(const void *P1, const void *P2) {
767  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
768  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
769  if (LHS->getValue().ult(RHS->getValue()))
770    return 1;
771  if (LHS->getValue() == RHS->getValue())
772    return 0;
773  return -1;
774}
775
776static inline bool HasBranchWeights(const Instruction* I) {
777  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
778  if (ProfMD && ProfMD->getOperand(0))
779    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
780      return MDS->getString().equals("branch_weights");
781
782  return false;
783}
784
785/// Get Weights of a given TerminatorInst, the default weight is at the front
786/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
787/// metadata.
788static void GetBranchWeights(TerminatorInst *TI,
789                             SmallVectorImpl<uint64_t> &Weights) {
790  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
791  assert(MD);
792  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
793    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
794    assert(CI);
795    Weights.push_back(CI->getValue().getZExtValue());
796  }
797
798  // If TI is a conditional eq, the default case is the false case,
799  // and the corresponding branch-weight data is at index 2. We swap the
800  // default weight to be the first entry.
801  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
802    assert(Weights.size() == 2);
803    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
804    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
805      std::swap(Weights.front(), Weights.back());
806  }
807}
808
809/// Sees if any of the weights are too big for a uint32_t, and halves all the
810/// weights if any are.
811static void FitWeights(MutableArrayRef<uint64_t> Weights) {
812  bool Halve = false;
813  for (unsigned i = 0; i < Weights.size(); ++i)
814    if (Weights[i] > UINT_MAX) {
815      Halve = true;
816      break;
817    }
818
819  if (! Halve)
820    return;
821
822  for (unsigned i = 0; i < Weights.size(); ++i)
823    Weights[i] /= 2;
824}
825
826/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
827/// equality comparison instruction (either a switch or a branch on "X == c").
828/// See if any of the predecessors of the terminator block are value comparisons
829/// on the same value.  If so, and if safe to do so, fold them together.
830bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
831                                                         IRBuilder<> &Builder) {
832  BasicBlock *BB = TI->getParent();
833  Value *CV = isValueEqualityComparison(TI);  // CondVal
834  assert(CV && "Not a comparison?");
835  bool Changed = false;
836
837  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
838  while (!Preds.empty()) {
839    BasicBlock *Pred = Preds.pop_back_val();
840
841    // See if the predecessor is a comparison with the same value.
842    TerminatorInst *PTI = Pred->getTerminator();
843    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
844
845    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
846      // Figure out which 'cases' to copy from SI to PSI.
847      std::vector<ValueEqualityComparisonCase> BBCases;
848      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
849
850      std::vector<ValueEqualityComparisonCase> PredCases;
851      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
852
853      // Based on whether the default edge from PTI goes to BB or not, fill in
854      // PredCases and PredDefault with the new switch cases we would like to
855      // build.
856      SmallVector<BasicBlock*, 8> NewSuccessors;
857
858      // Update the branch weight metadata along the way
859      SmallVector<uint64_t, 8> Weights;
860      bool PredHasWeights = HasBranchWeights(PTI);
861      bool SuccHasWeights = HasBranchWeights(TI);
862
863      if (PredHasWeights) {
864        GetBranchWeights(PTI, Weights);
865        // branch-weight metadata is inconsistent here.
866        if (Weights.size() != 1 + PredCases.size())
867          PredHasWeights = SuccHasWeights = false;
868      } else if (SuccHasWeights)
869        // If there are no predecessor weights but there are successor weights,
870        // populate Weights with 1, which will later be scaled to the sum of
871        // successor's weights
872        Weights.assign(1 + PredCases.size(), 1);
873
874      SmallVector<uint64_t, 8> SuccWeights;
875      if (SuccHasWeights) {
876        GetBranchWeights(TI, SuccWeights);
877        // branch-weight metadata is inconsistent here.
878        if (SuccWeights.size() != 1 + BBCases.size())
879          PredHasWeights = SuccHasWeights = false;
880      } else if (PredHasWeights)
881        SuccWeights.assign(1 + BBCases.size(), 1);
882
883      if (PredDefault == BB) {
884        // If this is the default destination from PTI, only the edges in TI
885        // that don't occur in PTI, or that branch to BB will be activated.
886        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
887        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
888          if (PredCases[i].Dest != BB)
889            PTIHandled.insert(PredCases[i].Value);
890          else {
891            // The default destination is BB, we don't need explicit targets.
892            std::swap(PredCases[i], PredCases.back());
893
894            if (PredHasWeights || SuccHasWeights) {
895              // Increase weight for the default case.
896              Weights[0] += Weights[i+1];
897              std::swap(Weights[i+1], Weights.back());
898              Weights.pop_back();
899            }
900
901            PredCases.pop_back();
902            --i; --e;
903          }
904
905        // Reconstruct the new switch statement we will be building.
906        if (PredDefault != BBDefault) {
907          PredDefault->removePredecessor(Pred);
908          PredDefault = BBDefault;
909          NewSuccessors.push_back(BBDefault);
910        }
911
912        unsigned CasesFromPred = Weights.size();
913        uint64_t ValidTotalSuccWeight = 0;
914        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
915          if (!PTIHandled.count(BBCases[i].Value) &&
916              BBCases[i].Dest != BBDefault) {
917            PredCases.push_back(BBCases[i]);
918            NewSuccessors.push_back(BBCases[i].Dest);
919            if (SuccHasWeights || PredHasWeights) {
920              // The default weight is at index 0, so weight for the ith case
921              // should be at index i+1. Scale the cases from successor by
922              // PredDefaultWeight (Weights[0]).
923              Weights.push_back(Weights[0] * SuccWeights[i+1]);
924              ValidTotalSuccWeight += SuccWeights[i+1];
925            }
926          }
927
928        if (SuccHasWeights || PredHasWeights) {
929          ValidTotalSuccWeight += SuccWeights[0];
930          // Scale the cases from predecessor by ValidTotalSuccWeight.
931          for (unsigned i = 1; i < CasesFromPred; ++i)
932            Weights[i] *= ValidTotalSuccWeight;
933          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
934          Weights[0] *= SuccWeights[0];
935        }
936      } else {
937        // If this is not the default destination from PSI, only the edges
938        // in SI that occur in PSI with a destination of BB will be
939        // activated.
940        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
941        std::map<ConstantInt*, uint64_t> WeightsForHandled;
942        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
943          if (PredCases[i].Dest == BB) {
944            PTIHandled.insert(PredCases[i].Value);
945
946            if (PredHasWeights || SuccHasWeights) {
947              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
948              std::swap(Weights[i+1], Weights.back());
949              Weights.pop_back();
950            }
951
952            std::swap(PredCases[i], PredCases.back());
953            PredCases.pop_back();
954            --i; --e;
955          }
956
957        // Okay, now we know which constants were sent to BB from the
958        // predecessor.  Figure out where they will all go now.
959        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
960          if (PTIHandled.count(BBCases[i].Value)) {
961            // If this is one we are capable of getting...
962            if (PredHasWeights || SuccHasWeights)
963              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
964            PredCases.push_back(BBCases[i]);
965            NewSuccessors.push_back(BBCases[i].Dest);
966            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
967          }
968
969        // If there are any constants vectored to BB that TI doesn't handle,
970        // they must go to the default destination of TI.
971        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
972                                    PTIHandled.begin(),
973               E = PTIHandled.end(); I != E; ++I) {
974          if (PredHasWeights || SuccHasWeights)
975            Weights.push_back(WeightsForHandled[*I]);
976          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
977          NewSuccessors.push_back(BBDefault);
978        }
979      }
980
981      // Okay, at this point, we know which new successor Pred will get.  Make
982      // sure we update the number of entries in the PHI nodes for these
983      // successors.
984      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
985        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
986
987      Builder.SetInsertPoint(PTI);
988      // Convert pointer to int before we switch.
989      if (CV->getType()->isPointerTy()) {
990        assert(TD && "Cannot switch on pointer without DataLayout");
991        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
992                                    "magicptr");
993      }
994
995      // Now that the successors are updated, create the new Switch instruction.
996      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
997                                               PredCases.size());
998      NewSI->setDebugLoc(PTI->getDebugLoc());
999      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1000        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
1001
1002      if (PredHasWeights || SuccHasWeights) {
1003        // Halve the weights if any of them cannot fit in an uint32_t
1004        FitWeights(Weights);
1005
1006        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1007
1008        NewSI->setMetadata(LLVMContext::MD_prof,
1009                           MDBuilder(BB->getContext()).
1010                           createBranchWeights(MDWeights));
1011      }
1012
1013      EraseTerminatorInstAndDCECond(PTI);
1014
1015      // Okay, last check.  If BB is still a successor of PSI, then we must
1016      // have an infinite loop case.  If so, add an infinitely looping block
1017      // to handle the case to preserve the behavior of the code.
1018      BasicBlock *InfLoopBlock = 0;
1019      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1020        if (NewSI->getSuccessor(i) == BB) {
1021          if (InfLoopBlock == 0) {
1022            // Insert it at the end of the function, because it's either code,
1023            // or it won't matter if it's hot. :)
1024            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1025                                              "infloop", BB->getParent());
1026            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1027          }
1028          NewSI->setSuccessor(i, InfLoopBlock);
1029        }
1030
1031      Changed = true;
1032    }
1033  }
1034  return Changed;
1035}
1036
1037// isSafeToHoistInvoke - If we would need to insert a select that uses the
1038// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1039// would need to do this), we can't hoist the invoke, as there is nowhere
1040// to put the select in this case.
1041static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1042                                Instruction *I1, Instruction *I2) {
1043  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1044    PHINode *PN;
1045    for (BasicBlock::iterator BBI = SI->begin();
1046         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1047      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1048      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1049      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1050        return false;
1051      }
1052    }
1053  }
1054  return true;
1055}
1056
1057/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1058/// BB2, hoist any common code in the two blocks up into the branch block.  The
1059/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1060static bool HoistThenElseCodeToIf(BranchInst *BI) {
1061  // This does very trivial matching, with limited scanning, to find identical
1062  // instructions in the two blocks.  In particular, we don't want to get into
1063  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1064  // such, we currently just scan for obviously identical instructions in an
1065  // identical order.
1066  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1067  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1068
1069  BasicBlock::iterator BB1_Itr = BB1->begin();
1070  BasicBlock::iterator BB2_Itr = BB2->begin();
1071
1072  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1073  // Skip debug info if it is not identical.
1074  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1075  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1076  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1077    while (isa<DbgInfoIntrinsic>(I1))
1078      I1 = BB1_Itr++;
1079    while (isa<DbgInfoIntrinsic>(I2))
1080      I2 = BB2_Itr++;
1081  }
1082  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1083      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1084    return false;
1085
1086  // If we get here, we can hoist at least one instruction.
1087  BasicBlock *BIParent = BI->getParent();
1088
1089  do {
1090    // If we are hoisting the terminator instruction, don't move one (making a
1091    // broken BB), instead clone it, and remove BI.
1092    if (isa<TerminatorInst>(I1))
1093      goto HoistTerminator;
1094
1095    // For a normal instruction, we just move one to right before the branch,
1096    // then replace all uses of the other with the first.  Finally, we remove
1097    // the now redundant second instruction.
1098    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1099    if (!I2->use_empty())
1100      I2->replaceAllUsesWith(I1);
1101    I1->intersectOptionalDataWith(I2);
1102    I2->eraseFromParent();
1103
1104    I1 = BB1_Itr++;
1105    I2 = BB2_Itr++;
1106    // Skip debug info if it is not identical.
1107    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1108    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1109    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1110      while (isa<DbgInfoIntrinsic>(I1))
1111        I1 = BB1_Itr++;
1112      while (isa<DbgInfoIntrinsic>(I2))
1113        I2 = BB2_Itr++;
1114    }
1115  } while (I1->isIdenticalToWhenDefined(I2));
1116
1117  return true;
1118
1119HoistTerminator:
1120  // It may not be possible to hoist an invoke.
1121  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1122    return true;
1123
1124  // Okay, it is safe to hoist the terminator.
1125  Instruction *NT = I1->clone();
1126  BIParent->getInstList().insert(BI, NT);
1127  if (!NT->getType()->isVoidTy()) {
1128    I1->replaceAllUsesWith(NT);
1129    I2->replaceAllUsesWith(NT);
1130    NT->takeName(I1);
1131  }
1132
1133  IRBuilder<true, NoFolder> Builder(NT);
1134  // Hoisting one of the terminators from our successor is a great thing.
1135  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1136  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1137  // nodes, so we insert select instruction to compute the final result.
1138  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1139  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1140    PHINode *PN;
1141    for (BasicBlock::iterator BBI = SI->begin();
1142         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1143      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1144      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1145      if (BB1V == BB2V) continue;
1146
1147      // These values do not agree.  Insert a select instruction before NT
1148      // that determines the right value.
1149      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1150      if (SI == 0)
1151        SI = cast<SelectInst>
1152          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1153                                BB1V->getName()+"."+BB2V->getName()));
1154
1155      // Make the PHI node use the select for all incoming values for BB1/BB2
1156      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1157        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1158          PN->setIncomingValue(i, SI);
1159    }
1160  }
1161
1162  // Update any PHI nodes in our new successors.
1163  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1164    AddPredecessorToBlock(*SI, BIParent, BB1);
1165
1166  EraseTerminatorInstAndDCECond(BI);
1167  return true;
1168}
1169
1170/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1171/// check whether BBEnd has only two predecessors and the other predecessor
1172/// ends with an unconditional branch. If it is true, sink any common code
1173/// in the two predecessors to BBEnd.
1174static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1175  assert(BI1->isUnconditional());
1176  BasicBlock *BB1 = BI1->getParent();
1177  BasicBlock *BBEnd = BI1->getSuccessor(0);
1178
1179  // Check that BBEnd has two predecessors and the other predecessor ends with
1180  // an unconditional branch.
1181  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1182  BasicBlock *Pred0 = *PI++;
1183  if (PI == PE) // Only one predecessor.
1184    return false;
1185  BasicBlock *Pred1 = *PI++;
1186  if (PI != PE) // More than two predecessors.
1187    return false;
1188  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1189  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1190  if (!BI2 || !BI2->isUnconditional())
1191    return false;
1192
1193  // Gather the PHI nodes in BBEnd.
1194  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1195  Instruction *FirstNonPhiInBBEnd = 0;
1196  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1197       I != E; ++I) {
1198    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1199      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1200      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1201      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1202    } else {
1203      FirstNonPhiInBBEnd = &*I;
1204      break;
1205    }
1206  }
1207  if (!FirstNonPhiInBBEnd)
1208    return false;
1209
1210
1211  // This does very trivial matching, with limited scanning, to find identical
1212  // instructions in the two blocks.  We scan backward for obviously identical
1213  // instructions in an identical order.
1214  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1215      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1216      RE2 = BB2->getInstList().rend();
1217  // Skip debug info.
1218  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1219  if (RI1 == RE1)
1220    return false;
1221  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1222  if (RI2 == RE2)
1223    return false;
1224  // Skip the unconditional branches.
1225  ++RI1;
1226  ++RI2;
1227
1228  bool Changed = false;
1229  while (RI1 != RE1 && RI2 != RE2) {
1230    // Skip debug info.
1231    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1232    if (RI1 == RE1)
1233      return Changed;
1234    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1235    if (RI2 == RE2)
1236      return Changed;
1237
1238    Instruction *I1 = &*RI1, *I2 = &*RI2;
1239    // I1 and I2 should have a single use in the same PHI node, and they
1240    // perform the same operation.
1241    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1242    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1243        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1244        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1245        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1246        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1247        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1248        !I1->hasOneUse() || !I2->hasOneUse() ||
1249        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1250        MapValueFromBB1ToBB2[I1].first != I2)
1251      return Changed;
1252
1253    // Check whether we should swap the operands of ICmpInst.
1254    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1255    bool SwapOpnds = false;
1256    if (ICmp1 && ICmp2 &&
1257        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1258        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1259        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1260         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1261      ICmp2->swapOperands();
1262      SwapOpnds = true;
1263    }
1264    if (!I1->isSameOperationAs(I2)) {
1265      if (SwapOpnds)
1266        ICmp2->swapOperands();
1267      return Changed;
1268    }
1269
1270    // The operands should be either the same or they need to be generated
1271    // with a PHI node after sinking. We only handle the case where there is
1272    // a single pair of different operands.
1273    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1274    unsigned Op1Idx = 0;
1275    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1276      if (I1->getOperand(I) == I2->getOperand(I))
1277        continue;
1278      // Early exit if we have more-than one pair of different operands or
1279      // the different operand is already in MapValueFromBB1ToBB2.
1280      // Early exit if we need a PHI node to replace a constant.
1281      if (DifferentOp1 ||
1282          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1283          MapValueFromBB1ToBB2.end() ||
1284          isa<Constant>(I1->getOperand(I)) ||
1285          isa<Constant>(I2->getOperand(I))) {
1286        // If we can't sink the instructions, undo the swapping.
1287        if (SwapOpnds)
1288          ICmp2->swapOperands();
1289        return Changed;
1290      }
1291      DifferentOp1 = I1->getOperand(I);
1292      Op1Idx = I;
1293      DifferentOp2 = I2->getOperand(I);
1294    }
1295
1296    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1297    // remove (I1, I2) from MapValueFromBB1ToBB2.
1298    if (DifferentOp1) {
1299      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1300                                       DifferentOp1->getName() + ".sink",
1301                                       BBEnd->begin());
1302      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1303      // I1 should use NewPN instead of DifferentOp1.
1304      I1->setOperand(Op1Idx, NewPN);
1305      NewPN->addIncoming(DifferentOp1, BB1);
1306      NewPN->addIncoming(DifferentOp2, BB2);
1307      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1308    }
1309    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1310    MapValueFromBB1ToBB2.erase(I1);
1311
1312    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1313    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1314    // We need to update RE1 and RE2 if we are going to sink the first
1315    // instruction in the basic block down.
1316    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1317    // Sink the instruction.
1318    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1319    if (!OldPN->use_empty())
1320      OldPN->replaceAllUsesWith(I1);
1321    OldPN->eraseFromParent();
1322
1323    if (!I2->use_empty())
1324      I2->replaceAllUsesWith(I1);
1325    I1->intersectOptionalDataWith(I2);
1326    I2->eraseFromParent();
1327
1328    if (UpdateRE1)
1329      RE1 = BB1->getInstList().rend();
1330    if (UpdateRE2)
1331      RE2 = BB2->getInstList().rend();
1332    FirstNonPhiInBBEnd = I1;
1333    NumSinkCommons++;
1334    Changed = true;
1335  }
1336  return Changed;
1337}
1338
1339/// \brief Determine if we can hoist sink a sole store instruction out of a
1340/// conditional block.
1341///
1342/// We are looking for code like the following:
1343///   BrBB:
1344///     store i32 %add, i32* %arrayidx2
1345///     ... // No other stores or function calls (we could be calling a memory
1346///     ... // function).
1347///     %cmp = icmp ult %x, %y
1348///     br i1 %cmp, label %EndBB, label %ThenBB
1349///   ThenBB:
1350///     store i32 %add5, i32* %arrayidx2
1351///     br label EndBB
1352///   EndBB:
1353///     ...
1354///   We are going to transform this into:
1355///   BrBB:
1356///     store i32 %add, i32* %arrayidx2
1357///     ... //
1358///     %cmp = icmp ult %x, %y
1359///     %add.add5 = select i1 %cmp, i32 %add, %add5
1360///     store i32 %add.add5, i32* %arrayidx2
1361///     ...
1362///
1363/// \return The pointer to the value of the previous store if the store can be
1364///         hoisted into the predecessor block. 0 otherwise.
1365Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1366                              BasicBlock *StoreBB, BasicBlock *EndBB) {
1367  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1368  if (!StoreToHoist)
1369    return 0;
1370
1371  Value *StorePtr = StoreToHoist->getPointerOperand();
1372  StoreInst *PreviousStore = 0;
1373
1374  // Look for a store to the same pointer in BrBB.
1375  unsigned MaxNumInstToLookAt = 10;
1376  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1377       RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1378    Instruction *CurI = &*RI;
1379
1380    // Could be calling an instruction that effects memory like free().
1381    if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1382      return 0;
1383
1384    // Found the previous store make sure it stores to the same location.
1385    if ((PreviousStore = dyn_cast<StoreInst>(CurI))) {
1386      if (PreviousStore->getPointerOperand() == StorePtr)
1387        // Found the previous store, return its value operand.
1388        return PreviousStore->getValueOperand();
1389      else
1390        return 0; // Unknown store.
1391    }
1392  }
1393
1394  return 0;
1395}
1396
1397/// \brief Speculate a conditional basic block flattening the CFG.
1398///
1399/// Note that this is a very risky transform currently. Speculating
1400/// instructions like this is most often not desirable. Instead, there is an MI
1401/// pass which can do it with full awareness of the resource constraints.
1402/// However, some cases are "obvious" and we should do directly. An example of
1403/// this is speculating a single, reasonably cheap instruction.
1404///
1405/// There is only one distinct advantage to flattening the CFG at the IR level:
1406/// it makes very common but simplistic optimizations such as are common in
1407/// instcombine and the DAG combiner more powerful by removing CFG edges and
1408/// modeling their effects with easier to reason about SSA value graphs.
1409///
1410///
1411/// An illustration of this transform is turning this IR:
1412/// \code
1413///   BB:
1414///     %cmp = icmp ult %x, %y
1415///     br i1 %cmp, label %EndBB, label %ThenBB
1416///   ThenBB:
1417///     %sub = sub %x, %y
1418///     br label BB2
1419///   EndBB:
1420///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1421///     ...
1422/// \endcode
1423///
1424/// Into this IR:
1425/// \code
1426///   BB:
1427///     %cmp = icmp ult %x, %y
1428///     %sub = sub %x, %y
1429///     %cond = select i1 %cmp, 0, %sub
1430///     ...
1431/// \endcode
1432///
1433/// \returns true if the conditional block is removed.
1434static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
1435  // Be conservative for now. FP select instruction can often be expensive.
1436  Value *BrCond = BI->getCondition();
1437  if (isa<FCmpInst>(BrCond))
1438    return false;
1439
1440  BasicBlock *BB = BI->getParent();
1441  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1442
1443  // If ThenBB is actually on the false edge of the conditional branch, remember
1444  // to swap the select operands later.
1445  bool Invert = false;
1446  if (ThenBB != BI->getSuccessor(0)) {
1447    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1448    Invert = true;
1449  }
1450  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1451
1452  // Keep a count of how many times instructions are used within CondBB when
1453  // they are candidates for sinking into CondBB. Specifically:
1454  // - They are defined in BB, and
1455  // - They have no side effects, and
1456  // - All of their uses are in CondBB.
1457  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1458
1459  unsigned SpeculationCost = 0;
1460  Value *SpeculatedStoreValue = 0;
1461  StoreInst *SpeculatedStore = 0;
1462  for (BasicBlock::iterator BBI = ThenBB->begin(),
1463                            BBE = llvm::prior(ThenBB->end());
1464       BBI != BBE; ++BBI) {
1465    Instruction *I = BBI;
1466    // Skip debug info.
1467    if (isa<DbgInfoIntrinsic>(I))
1468      continue;
1469
1470    // Only speculatively execution a single instruction (not counting the
1471    // terminator) for now.
1472    ++SpeculationCost;
1473    if (SpeculationCost > 1)
1474      return false;
1475
1476    // Don't hoist the instruction if it's unsafe or expensive.
1477    if (!isSafeToSpeculativelyExecute(I) &&
1478        !(HoistCondStores &&
1479          (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1480                                                         EndBB))))
1481      return false;
1482    if (!SpeculatedStoreValue &&
1483        ComputeSpeculationCost(I) > PHINodeFoldingThreshold)
1484      return false;
1485
1486    // Store the store speculation candidate.
1487    if (SpeculatedStoreValue)
1488      SpeculatedStore = cast<StoreInst>(I);
1489
1490    // Do not hoist the instruction if any of its operands are defined but not
1491    // used in BB. The transformation will prevent the operand from
1492    // being sunk into the use block.
1493    for (User::op_iterator i = I->op_begin(), e = I->op_end();
1494         i != e; ++i) {
1495      Instruction *OpI = dyn_cast<Instruction>(*i);
1496      if (!OpI || OpI->getParent() != BB ||
1497          OpI->mayHaveSideEffects())
1498        continue; // Not a candidate for sinking.
1499
1500      ++SinkCandidateUseCounts[OpI];
1501    }
1502  }
1503
1504  // Consider any sink candidates which are only used in CondBB as costs for
1505  // speculation. Note, while we iterate over a DenseMap here, we are summing
1506  // and so iteration order isn't significant.
1507  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1508           SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1509       I != E; ++I)
1510    if (I->first->getNumUses() == I->second) {
1511      ++SpeculationCost;
1512      if (SpeculationCost > 1)
1513        return false;
1514    }
1515
1516  // Check that the PHI nodes can be converted to selects.
1517  bool HaveRewritablePHIs = false;
1518  for (BasicBlock::iterator I = EndBB->begin();
1519       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1520    Value *OrigV = PN->getIncomingValueForBlock(BB);
1521    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1522
1523    // Skip PHIs which are trivial.
1524    if (ThenV == OrigV)
1525      continue;
1526
1527    HaveRewritablePHIs = true;
1528    ConstantExpr *CE = dyn_cast<ConstantExpr>(ThenV);
1529    if (!CE)
1530      continue; // Known safe and cheap.
1531
1532    if (!isSafeToSpeculativelyExecute(CE))
1533      return false;
1534    if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1535      return false;
1536
1537    // Account for the cost of an unfolded ConstantExpr which could end up
1538    // getting expanded into Instructions.
1539    // FIXME: This doesn't account for how many operations are combined in the
1540    // constant expression.
1541    ++SpeculationCost;
1542    if (SpeculationCost > 1)
1543      return false;
1544  }
1545
1546  // If there are no PHIs to process, bail early. This helps ensure idempotence
1547  // as well.
1548  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1549    return false;
1550
1551  // If we get here, we can hoist the instruction and if-convert.
1552  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1553
1554  // Insert a select of the value of the speculated store.
1555  if (SpeculatedStoreValue) {
1556    IRBuilder<true, NoFolder> Builder(BI);
1557    Value *TrueV = SpeculatedStore->getValueOperand();
1558    Value *FalseV = SpeculatedStoreValue;
1559    if (Invert)
1560      std::swap(TrueV, FalseV);
1561    Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1562                                    "." + FalseV->getName());
1563    SpeculatedStore->setOperand(0, S);
1564  }
1565
1566  // Hoist the instructions.
1567  BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1568                           llvm::prior(ThenBB->end()));
1569
1570  // Insert selects and rewrite the PHI operands.
1571  IRBuilder<true, NoFolder> Builder(BI);
1572  for (BasicBlock::iterator I = EndBB->begin();
1573       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1574    unsigned OrigI = PN->getBasicBlockIndex(BB);
1575    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1576    Value *OrigV = PN->getIncomingValue(OrigI);
1577    Value *ThenV = PN->getIncomingValue(ThenI);
1578
1579    // Skip PHIs which are trivial.
1580    if (OrigV == ThenV)
1581      continue;
1582
1583    // Create a select whose true value is the speculatively executed value and
1584    // false value is the preexisting value. Swap them if the branch
1585    // destinations were inverted.
1586    Value *TrueV = ThenV, *FalseV = OrigV;
1587    if (Invert)
1588      std::swap(TrueV, FalseV);
1589    Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1590                                    TrueV->getName() + "." + FalseV->getName());
1591    PN->setIncomingValue(OrigI, V);
1592    PN->setIncomingValue(ThenI, V);
1593  }
1594
1595  ++NumSpeculations;
1596  return true;
1597}
1598
1599/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1600/// across this block.
1601static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1602  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1603  unsigned Size = 0;
1604
1605  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1606    if (isa<DbgInfoIntrinsic>(BBI))
1607      continue;
1608    if (Size > 10) return false;  // Don't clone large BB's.
1609    ++Size;
1610
1611    // We can only support instructions that do not define values that are
1612    // live outside of the current basic block.
1613    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1614         UI != E; ++UI) {
1615      Instruction *U = cast<Instruction>(*UI);
1616      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1617    }
1618
1619    // Looks ok, continue checking.
1620  }
1621
1622  return true;
1623}
1624
1625/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1626/// that is defined in the same block as the branch and if any PHI entries are
1627/// constants, thread edges corresponding to that entry to be branches to their
1628/// ultimate destination.
1629static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1630  BasicBlock *BB = BI->getParent();
1631  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1632  // NOTE: we currently cannot transform this case if the PHI node is used
1633  // outside of the block.
1634  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1635    return false;
1636
1637  // Degenerate case of a single entry PHI.
1638  if (PN->getNumIncomingValues() == 1) {
1639    FoldSingleEntryPHINodes(PN->getParent());
1640    return true;
1641  }
1642
1643  // Now we know that this block has multiple preds and two succs.
1644  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1645
1646  // Okay, this is a simple enough basic block.  See if any phi values are
1647  // constants.
1648  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1649    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1650    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1651
1652    // Okay, we now know that all edges from PredBB should be revectored to
1653    // branch to RealDest.
1654    BasicBlock *PredBB = PN->getIncomingBlock(i);
1655    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1656
1657    if (RealDest == BB) continue;  // Skip self loops.
1658    // Skip if the predecessor's terminator is an indirect branch.
1659    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1660
1661    // The dest block might have PHI nodes, other predecessors and other
1662    // difficult cases.  Instead of being smart about this, just insert a new
1663    // block that jumps to the destination block, effectively splitting
1664    // the edge we are about to create.
1665    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1666                                            RealDest->getName()+".critedge",
1667                                            RealDest->getParent(), RealDest);
1668    BranchInst::Create(RealDest, EdgeBB);
1669
1670    // Update PHI nodes.
1671    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1672
1673    // BB may have instructions that are being threaded over.  Clone these
1674    // instructions into EdgeBB.  We know that there will be no uses of the
1675    // cloned instructions outside of EdgeBB.
1676    BasicBlock::iterator InsertPt = EdgeBB->begin();
1677    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1678    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1679      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1680        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1681        continue;
1682      }
1683      // Clone the instruction.
1684      Instruction *N = BBI->clone();
1685      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1686
1687      // Update operands due to translation.
1688      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1689           i != e; ++i) {
1690        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1691        if (PI != TranslateMap.end())
1692          *i = PI->second;
1693      }
1694
1695      // Check for trivial simplification.
1696      if (Value *V = SimplifyInstruction(N, TD)) {
1697        TranslateMap[BBI] = V;
1698        delete N;   // Instruction folded away, don't need actual inst
1699      } else {
1700        // Insert the new instruction into its new home.
1701        EdgeBB->getInstList().insert(InsertPt, N);
1702        if (!BBI->use_empty())
1703          TranslateMap[BBI] = N;
1704      }
1705    }
1706
1707    // Loop over all of the edges from PredBB to BB, changing them to branch
1708    // to EdgeBB instead.
1709    TerminatorInst *PredBBTI = PredBB->getTerminator();
1710    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1711      if (PredBBTI->getSuccessor(i) == BB) {
1712        BB->removePredecessor(PredBB);
1713        PredBBTI->setSuccessor(i, EdgeBB);
1714      }
1715
1716    // Recurse, simplifying any other constants.
1717    return FoldCondBranchOnPHI(BI, TD) | true;
1718  }
1719
1720  return false;
1721}
1722
1723/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1724/// PHI node, see if we can eliminate it.
1725static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1726  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1727  // statement", which has a very simple dominance structure.  Basically, we
1728  // are trying to find the condition that is being branched on, which
1729  // subsequently causes this merge to happen.  We really want control
1730  // dependence information for this check, but simplifycfg can't keep it up
1731  // to date, and this catches most of the cases we care about anyway.
1732  BasicBlock *BB = PN->getParent();
1733  BasicBlock *IfTrue, *IfFalse;
1734  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1735  if (!IfCond ||
1736      // Don't bother if the branch will be constant folded trivially.
1737      isa<ConstantInt>(IfCond))
1738    return false;
1739
1740  // Okay, we found that we can merge this two-entry phi node into a select.
1741  // Doing so would require us to fold *all* two entry phi nodes in this block.
1742  // At some point this becomes non-profitable (particularly if the target
1743  // doesn't support cmov's).  Only do this transformation if there are two or
1744  // fewer PHI nodes in this block.
1745  unsigned NumPhis = 0;
1746  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1747    if (NumPhis > 2)
1748      return false;
1749
1750  // Loop over the PHI's seeing if we can promote them all to select
1751  // instructions.  While we are at it, keep track of the instructions
1752  // that need to be moved to the dominating block.
1753  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1754  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1755           MaxCostVal1 = PHINodeFoldingThreshold;
1756
1757  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1758    PHINode *PN = cast<PHINode>(II++);
1759    if (Value *V = SimplifyInstruction(PN, TD)) {
1760      PN->replaceAllUsesWith(V);
1761      PN->eraseFromParent();
1762      continue;
1763    }
1764
1765    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1766                             MaxCostVal0) ||
1767        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1768                             MaxCostVal1))
1769      return false;
1770  }
1771
1772  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1773  // we ran out of PHIs then we simplified them all.
1774  PN = dyn_cast<PHINode>(BB->begin());
1775  if (PN == 0) return true;
1776
1777  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1778  // often be turned into switches and other things.
1779  if (PN->getType()->isIntegerTy(1) &&
1780      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1781       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1782       isa<BinaryOperator>(IfCond)))
1783    return false;
1784
1785  // If we all PHI nodes are promotable, check to make sure that all
1786  // instructions in the predecessor blocks can be promoted as well.  If
1787  // not, we won't be able to get rid of the control flow, so it's not
1788  // worth promoting to select instructions.
1789  BasicBlock *DomBlock = 0;
1790  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1791  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1792  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1793    IfBlock1 = 0;
1794  } else {
1795    DomBlock = *pred_begin(IfBlock1);
1796    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1797      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1798        // This is not an aggressive instruction that we can promote.
1799        // Because of this, we won't be able to get rid of the control
1800        // flow, so the xform is not worth it.
1801        return false;
1802      }
1803  }
1804
1805  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1806    IfBlock2 = 0;
1807  } else {
1808    DomBlock = *pred_begin(IfBlock2);
1809    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1810      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1811        // This is not an aggressive instruction that we can promote.
1812        // Because of this, we won't be able to get rid of the control
1813        // flow, so the xform is not worth it.
1814        return false;
1815      }
1816  }
1817
1818  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1819               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1820
1821  // If we can still promote the PHI nodes after this gauntlet of tests,
1822  // do all of the PHI's now.
1823  Instruction *InsertPt = DomBlock->getTerminator();
1824  IRBuilder<true, NoFolder> Builder(InsertPt);
1825
1826  // Move all 'aggressive' instructions, which are defined in the
1827  // conditional parts of the if's up to the dominating block.
1828  if (IfBlock1)
1829    DomBlock->getInstList().splice(InsertPt,
1830                                   IfBlock1->getInstList(), IfBlock1->begin(),
1831                                   IfBlock1->getTerminator());
1832  if (IfBlock2)
1833    DomBlock->getInstList().splice(InsertPt,
1834                                   IfBlock2->getInstList(), IfBlock2->begin(),
1835                                   IfBlock2->getTerminator());
1836
1837  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1838    // Change the PHI node into a select instruction.
1839    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1840    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1841
1842    SelectInst *NV =
1843      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1844    PN->replaceAllUsesWith(NV);
1845    NV->takeName(PN);
1846    PN->eraseFromParent();
1847  }
1848
1849  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1850  // has been flattened.  Change DomBlock to jump directly to our new block to
1851  // avoid other simplifycfg's kicking in on the diamond.
1852  TerminatorInst *OldTI = DomBlock->getTerminator();
1853  Builder.SetInsertPoint(OldTI);
1854  Builder.CreateBr(BB);
1855  OldTI->eraseFromParent();
1856  return true;
1857}
1858
1859/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1860/// to two returning blocks, try to merge them together into one return,
1861/// introducing a select if the return values disagree.
1862static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1863                                           IRBuilder<> &Builder) {
1864  assert(BI->isConditional() && "Must be a conditional branch");
1865  BasicBlock *TrueSucc = BI->getSuccessor(0);
1866  BasicBlock *FalseSucc = BI->getSuccessor(1);
1867  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1868  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1869
1870  // Check to ensure both blocks are empty (just a return) or optionally empty
1871  // with PHI nodes.  If there are other instructions, merging would cause extra
1872  // computation on one path or the other.
1873  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1874    return false;
1875  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1876    return false;
1877
1878  Builder.SetInsertPoint(BI);
1879  // Okay, we found a branch that is going to two return nodes.  If
1880  // there is no return value for this function, just change the
1881  // branch into a return.
1882  if (FalseRet->getNumOperands() == 0) {
1883    TrueSucc->removePredecessor(BI->getParent());
1884    FalseSucc->removePredecessor(BI->getParent());
1885    Builder.CreateRetVoid();
1886    EraseTerminatorInstAndDCECond(BI);
1887    return true;
1888  }
1889
1890  // Otherwise, figure out what the true and false return values are
1891  // so we can insert a new select instruction.
1892  Value *TrueValue = TrueRet->getReturnValue();
1893  Value *FalseValue = FalseRet->getReturnValue();
1894
1895  // Unwrap any PHI nodes in the return blocks.
1896  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1897    if (TVPN->getParent() == TrueSucc)
1898      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1899  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1900    if (FVPN->getParent() == FalseSucc)
1901      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1902
1903  // In order for this transformation to be safe, we must be able to
1904  // unconditionally execute both operands to the return.  This is
1905  // normally the case, but we could have a potentially-trapping
1906  // constant expression that prevents this transformation from being
1907  // safe.
1908  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1909    if (TCV->canTrap())
1910      return false;
1911  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1912    if (FCV->canTrap())
1913      return false;
1914
1915  // Okay, we collected all the mapped values and checked them for sanity, and
1916  // defined to really do this transformation.  First, update the CFG.
1917  TrueSucc->removePredecessor(BI->getParent());
1918  FalseSucc->removePredecessor(BI->getParent());
1919
1920  // Insert select instructions where needed.
1921  Value *BrCond = BI->getCondition();
1922  if (TrueValue) {
1923    // Insert a select if the results differ.
1924    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1925    } else if (isa<UndefValue>(TrueValue)) {
1926      TrueValue = FalseValue;
1927    } else {
1928      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1929                                       FalseValue, "retval");
1930    }
1931  }
1932
1933  Value *RI = !TrueValue ?
1934    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1935
1936  (void) RI;
1937
1938  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1939               << "\n  " << *BI << "NewRet = " << *RI
1940               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1941
1942  EraseTerminatorInstAndDCECond(BI);
1943
1944  return true;
1945}
1946
1947/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1948/// probabilities of the branch taking each edge. Fills in the two APInt
1949/// parameters and return true, or returns false if no or invalid metadata was
1950/// found.
1951static bool ExtractBranchMetadata(BranchInst *BI,
1952                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1953  assert(BI->isConditional() &&
1954         "Looking for probabilities on unconditional branch?");
1955  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1956  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1957  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1958  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1959  if (!CITrue || !CIFalse) return false;
1960  ProbTrue = CITrue->getValue().getZExtValue();
1961  ProbFalse = CIFalse->getValue().getZExtValue();
1962  return true;
1963}
1964
1965/// checkCSEInPredecessor - Return true if the given instruction is available
1966/// in its predecessor block. If yes, the instruction will be removed.
1967///
1968static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1969  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1970    return false;
1971  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1972    Instruction *PBI = &*I;
1973    // Check whether Inst and PBI generate the same value.
1974    if (Inst->isIdenticalTo(PBI)) {
1975      Inst->replaceAllUsesWith(PBI);
1976      Inst->eraseFromParent();
1977      return true;
1978    }
1979  }
1980  return false;
1981}
1982
1983/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1984/// predecessor branches to us and one of our successors, fold the block into
1985/// the predecessor and use logical operations to pick the right destination.
1986bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1987  BasicBlock *BB = BI->getParent();
1988
1989  Instruction *Cond = 0;
1990  if (BI->isConditional())
1991    Cond = dyn_cast<Instruction>(BI->getCondition());
1992  else {
1993    // For unconditional branch, check for a simple CFG pattern, where
1994    // BB has a single predecessor and BB's successor is also its predecessor's
1995    // successor. If such pattern exisits, check for CSE between BB and its
1996    // predecessor.
1997    if (BasicBlock *PB = BB->getSinglePredecessor())
1998      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1999        if (PBI->isConditional() &&
2000            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2001             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2002          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
2003               I != E; ) {
2004            Instruction *Curr = I++;
2005            if (isa<CmpInst>(Curr)) {
2006              Cond = Curr;
2007              break;
2008            }
2009            // Quit if we can't remove this instruction.
2010            if (!checkCSEInPredecessor(Curr, PB))
2011              return false;
2012          }
2013        }
2014
2015    if (Cond == 0)
2016      return false;
2017  }
2018
2019  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2020    Cond->getParent() != BB || !Cond->hasOneUse())
2021  return false;
2022
2023  // Only allow this if the condition is a simple instruction that can be
2024  // executed unconditionally.  It must be in the same block as the branch, and
2025  // must be at the front of the block.
2026  BasicBlock::iterator FrontIt = BB->front();
2027
2028  // Ignore dbg intrinsics.
2029  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2030
2031  // Allow a single instruction to be hoisted in addition to the compare
2032  // that feeds the branch.  We later ensure that any values that _it_ uses
2033  // were also live in the predecessor, so that we don't unnecessarily create
2034  // register pressure or inhibit out-of-order execution.
2035  Instruction *BonusInst = 0;
2036  if (&*FrontIt != Cond &&
2037      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
2038      isSafeToSpeculativelyExecute(FrontIt)) {
2039    BonusInst = &*FrontIt;
2040    ++FrontIt;
2041
2042    // Ignore dbg intrinsics.
2043    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2044  }
2045
2046  // Only a single bonus inst is allowed.
2047  if (&*FrontIt != Cond)
2048    return false;
2049
2050  // Make sure the instruction after the condition is the cond branch.
2051  BasicBlock::iterator CondIt = Cond; ++CondIt;
2052
2053  // Ingore dbg intrinsics.
2054  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2055
2056  if (&*CondIt != BI)
2057    return false;
2058
2059  // Cond is known to be a compare or binary operator.  Check to make sure that
2060  // neither operand is a potentially-trapping constant expression.
2061  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2062    if (CE->canTrap())
2063      return false;
2064  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2065    if (CE->canTrap())
2066      return false;
2067
2068  // Finally, don't infinitely unroll conditional loops.
2069  BasicBlock *TrueDest  = BI->getSuccessor(0);
2070  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
2071  if (TrueDest == BB || FalseDest == BB)
2072    return false;
2073
2074  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2075    BasicBlock *PredBlock = *PI;
2076    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2077
2078    // Check that we have two conditional branches.  If there is a PHI node in
2079    // the common successor, verify that the same value flows in from both
2080    // blocks.
2081    SmallVector<PHINode*, 4> PHIs;
2082    if (PBI == 0 || PBI->isUnconditional() ||
2083        (BI->isConditional() &&
2084         !SafeToMergeTerminators(BI, PBI)) ||
2085        (!BI->isConditional() &&
2086         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2087      continue;
2088
2089    // Determine if the two branches share a common destination.
2090    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2091    bool InvertPredCond = false;
2092
2093    if (BI->isConditional()) {
2094      if (PBI->getSuccessor(0) == TrueDest)
2095        Opc = Instruction::Or;
2096      else if (PBI->getSuccessor(1) == FalseDest)
2097        Opc = Instruction::And;
2098      else if (PBI->getSuccessor(0) == FalseDest)
2099        Opc = Instruction::And, InvertPredCond = true;
2100      else if (PBI->getSuccessor(1) == TrueDest)
2101        Opc = Instruction::Or, InvertPredCond = true;
2102      else
2103        continue;
2104    } else {
2105      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2106        continue;
2107    }
2108
2109    // Ensure that any values used in the bonus instruction are also used
2110    // by the terminator of the predecessor.  This means that those values
2111    // must already have been resolved, so we won't be inhibiting the
2112    // out-of-order core by speculating them earlier.
2113    if (BonusInst) {
2114      // Collect the values used by the bonus inst
2115      SmallPtrSet<Value*, 4> UsedValues;
2116      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2117           OE = BonusInst->op_end(); OI != OE; ++OI) {
2118        Value *V = *OI;
2119        if (!isa<Constant>(V))
2120          UsedValues.insert(V);
2121      }
2122
2123      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2124      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2125
2126      // Walk up to four levels back up the use-def chain of the predecessor's
2127      // terminator to see if all those values were used.  The choice of four
2128      // levels is arbitrary, to provide a compile-time-cost bound.
2129      while (!Worklist.empty()) {
2130        std::pair<Value*, unsigned> Pair = Worklist.back();
2131        Worklist.pop_back();
2132
2133        if (Pair.second >= 4) continue;
2134        UsedValues.erase(Pair.first);
2135        if (UsedValues.empty()) break;
2136
2137        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2138          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2139               OI != OE; ++OI)
2140            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2141        }
2142      }
2143
2144      if (!UsedValues.empty()) return false;
2145    }
2146
2147    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2148    IRBuilder<> Builder(PBI);
2149
2150    // If we need to invert the condition in the pred block to match, do so now.
2151    if (InvertPredCond) {
2152      Value *NewCond = PBI->getCondition();
2153
2154      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2155        CmpInst *CI = cast<CmpInst>(NewCond);
2156        CI->setPredicate(CI->getInversePredicate());
2157      } else {
2158        NewCond = Builder.CreateNot(NewCond,
2159                                    PBI->getCondition()->getName()+".not");
2160      }
2161
2162      PBI->setCondition(NewCond);
2163      PBI->swapSuccessors();
2164    }
2165
2166    // If we have a bonus inst, clone it into the predecessor block.
2167    Instruction *NewBonus = 0;
2168    if (BonusInst) {
2169      NewBonus = BonusInst->clone();
2170      PredBlock->getInstList().insert(PBI, NewBonus);
2171      NewBonus->takeName(BonusInst);
2172      BonusInst->setName(BonusInst->getName()+".old");
2173    }
2174
2175    // Clone Cond into the predecessor basic block, and or/and the
2176    // two conditions together.
2177    Instruction *New = Cond->clone();
2178    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2179    PredBlock->getInstList().insert(PBI, New);
2180    New->takeName(Cond);
2181    Cond->setName(New->getName()+".old");
2182
2183    if (BI->isConditional()) {
2184      Instruction *NewCond =
2185        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2186                                            New, "or.cond"));
2187      PBI->setCondition(NewCond);
2188
2189      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2190      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2191                                                  PredFalseWeight);
2192      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2193                                                  SuccFalseWeight);
2194      SmallVector<uint64_t, 8> NewWeights;
2195
2196      if (PBI->getSuccessor(0) == BB) {
2197        if (PredHasWeights && SuccHasWeights) {
2198          // PBI: br i1 %x, BB, FalseDest
2199          // BI:  br i1 %y, TrueDest, FalseDest
2200          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2201          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2202          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2203          //               TrueWeight for PBI * FalseWeight for BI.
2204          // We assume that total weights of a BranchInst can fit into 32 bits.
2205          // Therefore, we will not have overflow using 64-bit arithmetic.
2206          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2207               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2208        }
2209        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2210        PBI->setSuccessor(0, TrueDest);
2211      }
2212      if (PBI->getSuccessor(1) == BB) {
2213        if (PredHasWeights && SuccHasWeights) {
2214          // PBI: br i1 %x, TrueDest, BB
2215          // BI:  br i1 %y, TrueDest, FalseDest
2216          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2217          //              FalseWeight for PBI * TrueWeight for BI.
2218          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2219              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2220          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2221          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2222        }
2223        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2224        PBI->setSuccessor(1, FalseDest);
2225      }
2226      if (NewWeights.size() == 2) {
2227        // Halve the weights if any of them cannot fit in an uint32_t
2228        FitWeights(NewWeights);
2229
2230        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2231        PBI->setMetadata(LLVMContext::MD_prof,
2232                         MDBuilder(BI->getContext()).
2233                         createBranchWeights(MDWeights));
2234      } else
2235        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2236    } else {
2237      // Update PHI nodes in the common successors.
2238      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2239        ConstantInt *PBI_C = cast<ConstantInt>(
2240          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2241        assert(PBI_C->getType()->isIntegerTy(1));
2242        Instruction *MergedCond = 0;
2243        if (PBI->getSuccessor(0) == TrueDest) {
2244          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2245          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2246          //       is false: !PBI_Cond and BI_Value
2247          Instruction *NotCond =
2248            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2249                                "not.cond"));
2250          MergedCond =
2251            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2252                                NotCond, New,
2253                                "and.cond"));
2254          if (PBI_C->isOne())
2255            MergedCond =
2256              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2257                                  PBI->getCondition(), MergedCond,
2258                                  "or.cond"));
2259        } else {
2260          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2261          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2262          //       is false: PBI_Cond and BI_Value
2263          MergedCond =
2264            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2265                                PBI->getCondition(), New,
2266                                "and.cond"));
2267          if (PBI_C->isOne()) {
2268            Instruction *NotCond =
2269              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2270                                  "not.cond"));
2271            MergedCond =
2272              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2273                                  NotCond, MergedCond,
2274                                  "or.cond"));
2275          }
2276        }
2277        // Update PHI Node.
2278        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2279                                  MergedCond);
2280      }
2281      // Change PBI from Conditional to Unconditional.
2282      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2283      EraseTerminatorInstAndDCECond(PBI);
2284      PBI = New_PBI;
2285    }
2286
2287    // TODO: If BB is reachable from all paths through PredBlock, then we
2288    // could replace PBI's branch probabilities with BI's.
2289
2290    // Copy any debug value intrinsics into the end of PredBlock.
2291    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2292      if (isa<DbgInfoIntrinsic>(*I))
2293        I->clone()->insertBefore(PBI);
2294
2295    return true;
2296  }
2297  return false;
2298}
2299
2300/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2301/// predecessor of another block, this function tries to simplify it.  We know
2302/// that PBI and BI are both conditional branches, and BI is in one of the
2303/// successor blocks of PBI - PBI branches to BI.
2304static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2305  assert(PBI->isConditional() && BI->isConditional());
2306  BasicBlock *BB = BI->getParent();
2307
2308  // If this block ends with a branch instruction, and if there is a
2309  // predecessor that ends on a branch of the same condition, make
2310  // this conditional branch redundant.
2311  if (PBI->getCondition() == BI->getCondition() &&
2312      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2313    // Okay, the outcome of this conditional branch is statically
2314    // knowable.  If this block had a single pred, handle specially.
2315    if (BB->getSinglePredecessor()) {
2316      // Turn this into a branch on constant.
2317      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2318      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2319                                        CondIsTrue));
2320      return true;  // Nuke the branch on constant.
2321    }
2322
2323    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2324    // in the constant and simplify the block result.  Subsequent passes of
2325    // simplifycfg will thread the block.
2326    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2327      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2328      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2329                                       std::distance(PB, PE),
2330                                       BI->getCondition()->getName() + ".pr",
2331                                       BB->begin());
2332      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2333      // predecessor, compute the PHI'd conditional value for all of the preds.
2334      // Any predecessor where the condition is not computable we keep symbolic.
2335      for (pred_iterator PI = PB; PI != PE; ++PI) {
2336        BasicBlock *P = *PI;
2337        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2338            PBI != BI && PBI->isConditional() &&
2339            PBI->getCondition() == BI->getCondition() &&
2340            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2341          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2342          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2343                                              CondIsTrue), P);
2344        } else {
2345          NewPN->addIncoming(BI->getCondition(), P);
2346        }
2347      }
2348
2349      BI->setCondition(NewPN);
2350      return true;
2351    }
2352  }
2353
2354  // If this is a conditional branch in an empty block, and if any
2355  // predecessors is a conditional branch to one of our destinations,
2356  // fold the conditions into logical ops and one cond br.
2357  BasicBlock::iterator BBI = BB->begin();
2358  // Ignore dbg intrinsics.
2359  while (isa<DbgInfoIntrinsic>(BBI))
2360    ++BBI;
2361  if (&*BBI != BI)
2362    return false;
2363
2364
2365  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2366    if (CE->canTrap())
2367      return false;
2368
2369  int PBIOp, BIOp;
2370  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2371    PBIOp = BIOp = 0;
2372  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2373    PBIOp = 0, BIOp = 1;
2374  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2375    PBIOp = 1, BIOp = 0;
2376  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2377    PBIOp = BIOp = 1;
2378  else
2379    return false;
2380
2381  // Check to make sure that the other destination of this branch
2382  // isn't BB itself.  If so, this is an infinite loop that will
2383  // keep getting unwound.
2384  if (PBI->getSuccessor(PBIOp) == BB)
2385    return false;
2386
2387  // Do not perform this transformation if it would require
2388  // insertion of a large number of select instructions. For targets
2389  // without predication/cmovs, this is a big pessimization.
2390  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2391
2392  unsigned NumPhis = 0;
2393  for (BasicBlock::iterator II = CommonDest->begin();
2394       isa<PHINode>(II); ++II, ++NumPhis)
2395    if (NumPhis > 2) // Disable this xform.
2396      return false;
2397
2398  // Finally, if everything is ok, fold the branches to logical ops.
2399  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2400
2401  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2402               << "AND: " << *BI->getParent());
2403
2404
2405  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2406  // branch in it, where one edge (OtherDest) goes back to itself but the other
2407  // exits.  We don't *know* that the program avoids the infinite loop
2408  // (even though that seems likely).  If we do this xform naively, we'll end up
2409  // recursively unpeeling the loop.  Since we know that (after the xform is
2410  // done) that the block *is* infinite if reached, we just make it an obviously
2411  // infinite loop with no cond branch.
2412  if (OtherDest == BB) {
2413    // Insert it at the end of the function, because it's either code,
2414    // or it won't matter if it's hot. :)
2415    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2416                                                  "infloop", BB->getParent());
2417    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2418    OtherDest = InfLoopBlock;
2419  }
2420
2421  DEBUG(dbgs() << *PBI->getParent()->getParent());
2422
2423  // BI may have other predecessors.  Because of this, we leave
2424  // it alone, but modify PBI.
2425
2426  // Make sure we get to CommonDest on True&True directions.
2427  Value *PBICond = PBI->getCondition();
2428  IRBuilder<true, NoFolder> Builder(PBI);
2429  if (PBIOp)
2430    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2431
2432  Value *BICond = BI->getCondition();
2433  if (BIOp)
2434    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2435
2436  // Merge the conditions.
2437  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2438
2439  // Modify PBI to branch on the new condition to the new dests.
2440  PBI->setCondition(Cond);
2441  PBI->setSuccessor(0, CommonDest);
2442  PBI->setSuccessor(1, OtherDest);
2443
2444  // Update branch weight for PBI.
2445  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2446  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2447                                              PredFalseWeight);
2448  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2449                                              SuccFalseWeight);
2450  if (PredHasWeights && SuccHasWeights) {
2451    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2452    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2453    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2454    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2455    // The weight to CommonDest should be PredCommon * SuccTotal +
2456    //                                    PredOther * SuccCommon.
2457    // The weight to OtherDest should be PredOther * SuccOther.
2458    SmallVector<uint64_t, 2> NewWeights;
2459    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2460                         PredOther * SuccCommon);
2461    NewWeights.push_back(PredOther * SuccOther);
2462    // Halve the weights if any of them cannot fit in an uint32_t
2463    FitWeights(NewWeights);
2464
2465    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2466    PBI->setMetadata(LLVMContext::MD_prof,
2467                     MDBuilder(BI->getContext()).
2468                     createBranchWeights(MDWeights));
2469  }
2470
2471  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2472  // block that are identical to the entries for BI's block.
2473  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2474
2475  // We know that the CommonDest already had an edge from PBI to
2476  // it.  If it has PHIs though, the PHIs may have different
2477  // entries for BB and PBI's BB.  If so, insert a select to make
2478  // them agree.
2479  PHINode *PN;
2480  for (BasicBlock::iterator II = CommonDest->begin();
2481       (PN = dyn_cast<PHINode>(II)); ++II) {
2482    Value *BIV = PN->getIncomingValueForBlock(BB);
2483    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2484    Value *PBIV = PN->getIncomingValue(PBBIdx);
2485    if (BIV != PBIV) {
2486      // Insert a select in PBI to pick the right value.
2487      Value *NV = cast<SelectInst>
2488        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2489      PN->setIncomingValue(PBBIdx, NV);
2490    }
2491  }
2492
2493  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2494  DEBUG(dbgs() << *PBI->getParent()->getParent());
2495
2496  // This basic block is probably dead.  We know it has at least
2497  // one fewer predecessor.
2498  return true;
2499}
2500
2501// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2502// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2503// Takes care of updating the successors and removing the old terminator.
2504// Also makes sure not to introduce new successors by assuming that edges to
2505// non-successor TrueBBs and FalseBBs aren't reachable.
2506static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2507                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2508                                       uint32_t TrueWeight,
2509                                       uint32_t FalseWeight){
2510  // Remove any superfluous successor edges from the CFG.
2511  // First, figure out which successors to preserve.
2512  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2513  // successor.
2514  BasicBlock *KeepEdge1 = TrueBB;
2515  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2516
2517  // Then remove the rest.
2518  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2519    BasicBlock *Succ = OldTerm->getSuccessor(I);
2520    // Make sure only to keep exactly one copy of each edge.
2521    if (Succ == KeepEdge1)
2522      KeepEdge1 = 0;
2523    else if (Succ == KeepEdge2)
2524      KeepEdge2 = 0;
2525    else
2526      Succ->removePredecessor(OldTerm->getParent());
2527  }
2528
2529  IRBuilder<> Builder(OldTerm);
2530  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2531
2532  // Insert an appropriate new terminator.
2533  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2534    if (TrueBB == FalseBB)
2535      // We were only looking for one successor, and it was present.
2536      // Create an unconditional branch to it.
2537      Builder.CreateBr(TrueBB);
2538    else {
2539      // We found both of the successors we were looking for.
2540      // Create a conditional branch sharing the condition of the select.
2541      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2542      if (TrueWeight != FalseWeight)
2543        NewBI->setMetadata(LLVMContext::MD_prof,
2544                           MDBuilder(OldTerm->getContext()).
2545                           createBranchWeights(TrueWeight, FalseWeight));
2546    }
2547  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2548    // Neither of the selected blocks were successors, so this
2549    // terminator must be unreachable.
2550    new UnreachableInst(OldTerm->getContext(), OldTerm);
2551  } else {
2552    // One of the selected values was a successor, but the other wasn't.
2553    // Insert an unconditional branch to the one that was found;
2554    // the edge to the one that wasn't must be unreachable.
2555    if (KeepEdge1 == 0)
2556      // Only TrueBB was found.
2557      Builder.CreateBr(TrueBB);
2558    else
2559      // Only FalseBB was found.
2560      Builder.CreateBr(FalseBB);
2561  }
2562
2563  EraseTerminatorInstAndDCECond(OldTerm);
2564  return true;
2565}
2566
2567// SimplifySwitchOnSelect - Replaces
2568//   (switch (select cond, X, Y)) on constant X, Y
2569// with a branch - conditional if X and Y lead to distinct BBs,
2570// unconditional otherwise.
2571static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2572  // Check for constant integer values in the select.
2573  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2574  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2575  if (!TrueVal || !FalseVal)
2576    return false;
2577
2578  // Find the relevant condition and destinations.
2579  Value *Condition = Select->getCondition();
2580  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2581  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2582
2583  // Get weight for TrueBB and FalseBB.
2584  uint32_t TrueWeight = 0, FalseWeight = 0;
2585  SmallVector<uint64_t, 8> Weights;
2586  bool HasWeights = HasBranchWeights(SI);
2587  if (HasWeights) {
2588    GetBranchWeights(SI, Weights);
2589    if (Weights.size() == 1 + SI->getNumCases()) {
2590      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2591                                     getSuccessorIndex()];
2592      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2593                                      getSuccessorIndex()];
2594    }
2595  }
2596
2597  // Perform the actual simplification.
2598  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2599                                    TrueWeight, FalseWeight);
2600}
2601
2602// SimplifyIndirectBrOnSelect - Replaces
2603//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2604//                             blockaddress(@fn, BlockB)))
2605// with
2606//   (br cond, BlockA, BlockB).
2607static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2608  // Check that both operands of the select are block addresses.
2609  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2610  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2611  if (!TBA || !FBA)
2612    return false;
2613
2614  // Extract the actual blocks.
2615  BasicBlock *TrueBB = TBA->getBasicBlock();
2616  BasicBlock *FalseBB = FBA->getBasicBlock();
2617
2618  // Perform the actual simplification.
2619  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2620                                    0, 0);
2621}
2622
2623/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2624/// instruction (a seteq/setne with a constant) as the only instruction in a
2625/// block that ends with an uncond branch.  We are looking for a very specific
2626/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2627/// this case, we merge the first two "or's of icmp" into a switch, but then the
2628/// default value goes to an uncond block with a seteq in it, we get something
2629/// like:
2630///
2631///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2632/// DEFAULT:
2633///   %tmp = icmp eq i8 %A, 92
2634///   br label %end
2635/// end:
2636///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2637///
2638/// We prefer to split the edge to 'end' so that there is a true/false entry to
2639/// the PHI, merging the third icmp into the switch.
2640static bool TryToSimplifyUncondBranchWithICmpInIt(
2641    ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2642    const DataLayout *TD) {
2643  BasicBlock *BB = ICI->getParent();
2644
2645  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2646  // complex.
2647  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2648
2649  Value *V = ICI->getOperand(0);
2650  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2651
2652  // The pattern we're looking for is where our only predecessor is a switch on
2653  // 'V' and this block is the default case for the switch.  In this case we can
2654  // fold the compared value into the switch to simplify things.
2655  BasicBlock *Pred = BB->getSinglePredecessor();
2656  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2657
2658  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2659  if (SI->getCondition() != V)
2660    return false;
2661
2662  // If BB is reachable on a non-default case, then we simply know the value of
2663  // V in this block.  Substitute it and constant fold the icmp instruction
2664  // away.
2665  if (SI->getDefaultDest() != BB) {
2666    ConstantInt *VVal = SI->findCaseDest(BB);
2667    assert(VVal && "Should have a unique destination value");
2668    ICI->setOperand(0, VVal);
2669
2670    if (Value *V = SimplifyInstruction(ICI, TD)) {
2671      ICI->replaceAllUsesWith(V);
2672      ICI->eraseFromParent();
2673    }
2674    // BB is now empty, so it is likely to simplify away.
2675    return SimplifyCFG(BB, TTI, TD) | true;
2676  }
2677
2678  // Ok, the block is reachable from the default dest.  If the constant we're
2679  // comparing exists in one of the other edges, then we can constant fold ICI
2680  // and zap it.
2681  if (SI->findCaseValue(Cst) != SI->case_default()) {
2682    Value *V;
2683    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2684      V = ConstantInt::getFalse(BB->getContext());
2685    else
2686      V = ConstantInt::getTrue(BB->getContext());
2687
2688    ICI->replaceAllUsesWith(V);
2689    ICI->eraseFromParent();
2690    // BB is now empty, so it is likely to simplify away.
2691    return SimplifyCFG(BB, TTI, TD) | true;
2692  }
2693
2694  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2695  // the block.
2696  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2697  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2698  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2699      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2700    return false;
2701
2702  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2703  // true in the PHI.
2704  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2705  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2706
2707  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2708    std::swap(DefaultCst, NewCst);
2709
2710  // Replace ICI (which is used by the PHI for the default value) with true or
2711  // false depending on if it is EQ or NE.
2712  ICI->replaceAllUsesWith(DefaultCst);
2713  ICI->eraseFromParent();
2714
2715  // Okay, the switch goes to this block on a default value.  Add an edge from
2716  // the switch to the merge point on the compared value.
2717  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2718                                         BB->getParent(), BB);
2719  SmallVector<uint64_t, 8> Weights;
2720  bool HasWeights = HasBranchWeights(SI);
2721  if (HasWeights) {
2722    GetBranchWeights(SI, Weights);
2723    if (Weights.size() == 1 + SI->getNumCases()) {
2724      // Split weight for default case to case for "Cst".
2725      Weights[0] = (Weights[0]+1) >> 1;
2726      Weights.push_back(Weights[0]);
2727
2728      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2729      SI->setMetadata(LLVMContext::MD_prof,
2730                      MDBuilder(SI->getContext()).
2731                      createBranchWeights(MDWeights));
2732    }
2733  }
2734  SI->addCase(Cst, NewBB);
2735
2736  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2737  Builder.SetInsertPoint(NewBB);
2738  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2739  Builder.CreateBr(SuccBlock);
2740  PHIUse->addIncoming(NewCst, NewBB);
2741  return true;
2742}
2743
2744/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2745/// Check to see if it is branching on an or/and chain of icmp instructions, and
2746/// fold it into a switch instruction if so.
2747static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD,
2748                                      IRBuilder<> &Builder) {
2749  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2750  if (Cond == 0) return false;
2751
2752
2753  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2754  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2755  // 'setne's and'ed together, collect them.
2756  Value *CompVal = 0;
2757  std::vector<ConstantInt*> Values;
2758  bool TrueWhenEqual = true;
2759  Value *ExtraCase = 0;
2760  unsigned UsedICmps = 0;
2761
2762  if (Cond->getOpcode() == Instruction::Or) {
2763    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2764                                     UsedICmps);
2765  } else if (Cond->getOpcode() == Instruction::And) {
2766    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2767                                     UsedICmps);
2768    TrueWhenEqual = false;
2769  }
2770
2771  // If we didn't have a multiply compared value, fail.
2772  if (CompVal == 0) return false;
2773
2774  // Avoid turning single icmps into a switch.
2775  if (UsedICmps <= 1)
2776    return false;
2777
2778  // There might be duplicate constants in the list, which the switch
2779  // instruction can't handle, remove them now.
2780  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2781  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2782
2783  // If Extra was used, we require at least two switch values to do the
2784  // transformation.  A switch with one value is just an cond branch.
2785  if (ExtraCase && Values.size() < 2) return false;
2786
2787  // TODO: Preserve branch weight metadata, similarly to how
2788  // FoldValueComparisonIntoPredecessors preserves it.
2789
2790  // Figure out which block is which destination.
2791  BasicBlock *DefaultBB = BI->getSuccessor(1);
2792  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2793  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2794
2795  BasicBlock *BB = BI->getParent();
2796
2797  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2798               << " cases into SWITCH.  BB is:\n" << *BB);
2799
2800  // If there are any extra values that couldn't be folded into the switch
2801  // then we evaluate them with an explicit branch first.  Split the block
2802  // right before the condbr to handle it.
2803  if (ExtraCase) {
2804    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2805    // Remove the uncond branch added to the old block.
2806    TerminatorInst *OldTI = BB->getTerminator();
2807    Builder.SetInsertPoint(OldTI);
2808
2809    if (TrueWhenEqual)
2810      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2811    else
2812      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2813
2814    OldTI->eraseFromParent();
2815
2816    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2817    // for the edge we just added.
2818    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2819
2820    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2821          << "\nEXTRABB = " << *BB);
2822    BB = NewBB;
2823  }
2824
2825  Builder.SetInsertPoint(BI);
2826  // Convert pointer to int before we switch.
2827  if (CompVal->getType()->isPointerTy()) {
2828    assert(TD && "Cannot switch on pointer without DataLayout");
2829    CompVal = Builder.CreatePtrToInt(CompVal,
2830                                     TD->getIntPtrType(CompVal->getContext()),
2831                                     "magicptr");
2832  }
2833
2834  // Create the new switch instruction now.
2835  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2836
2837  // Add all of the 'cases' to the switch instruction.
2838  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2839    New->addCase(Values[i], EdgeBB);
2840
2841  // We added edges from PI to the EdgeBB.  As such, if there were any
2842  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2843  // the number of edges added.
2844  for (BasicBlock::iterator BBI = EdgeBB->begin();
2845       isa<PHINode>(BBI); ++BBI) {
2846    PHINode *PN = cast<PHINode>(BBI);
2847    Value *InVal = PN->getIncomingValueForBlock(BB);
2848    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2849      PN->addIncoming(InVal, BB);
2850  }
2851
2852  // Erase the old branch instruction.
2853  EraseTerminatorInstAndDCECond(BI);
2854
2855  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2856  return true;
2857}
2858
2859bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2860  // If this is a trivial landing pad that just continues unwinding the caught
2861  // exception then zap the landing pad, turning its invokes into calls.
2862  BasicBlock *BB = RI->getParent();
2863  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2864  if (RI->getValue() != LPInst)
2865    // Not a landing pad, or the resume is not unwinding the exception that
2866    // caused control to branch here.
2867    return false;
2868
2869  // Check that there are no other instructions except for debug intrinsics.
2870  BasicBlock::iterator I = LPInst, E = RI;
2871  while (++I != E)
2872    if (!isa<DbgInfoIntrinsic>(I))
2873      return false;
2874
2875  // Turn all invokes that unwind here into calls and delete the basic block.
2876  bool InvokeRequiresTableEntry = false;
2877  bool Changed = false;
2878  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2879    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2880
2881    if (II->hasFnAttr(Attribute::UWTable)) {
2882      // Don't remove an `invoke' instruction if the ABI requires an entry into
2883      // the table.
2884      InvokeRequiresTableEntry = true;
2885      continue;
2886    }
2887
2888    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2889
2890    // Insert a call instruction before the invoke.
2891    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2892    Call->takeName(II);
2893    Call->setCallingConv(II->getCallingConv());
2894    Call->setAttributes(II->getAttributes());
2895    Call->setDebugLoc(II->getDebugLoc());
2896
2897    // Anything that used the value produced by the invoke instruction now uses
2898    // the value produced by the call instruction.  Note that we do this even
2899    // for void functions and calls with no uses so that the callgraph edge is
2900    // updated.
2901    II->replaceAllUsesWith(Call);
2902    BB->removePredecessor(II->getParent());
2903
2904    // Insert a branch to the normal destination right before the invoke.
2905    BranchInst::Create(II->getNormalDest(), II);
2906
2907    // Finally, delete the invoke instruction!
2908    II->eraseFromParent();
2909    Changed = true;
2910  }
2911
2912  if (!InvokeRequiresTableEntry)
2913    // The landingpad is now unreachable.  Zap it.
2914    BB->eraseFromParent();
2915
2916  return Changed;
2917}
2918
2919bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2920  BasicBlock *BB = RI->getParent();
2921  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2922
2923  // Find predecessors that end with branches.
2924  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2925  SmallVector<BranchInst*, 8> CondBranchPreds;
2926  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2927    BasicBlock *P = *PI;
2928    TerminatorInst *PTI = P->getTerminator();
2929    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2930      if (BI->isUnconditional())
2931        UncondBranchPreds.push_back(P);
2932      else
2933        CondBranchPreds.push_back(BI);
2934    }
2935  }
2936
2937  // If we found some, do the transformation!
2938  if (!UncondBranchPreds.empty() && DupRet) {
2939    while (!UncondBranchPreds.empty()) {
2940      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2941      DEBUG(dbgs() << "FOLDING: " << *BB
2942            << "INTO UNCOND BRANCH PRED: " << *Pred);
2943      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2944    }
2945
2946    // If we eliminated all predecessors of the block, delete the block now.
2947    if (pred_begin(BB) == pred_end(BB))
2948      // We know there are no successors, so just nuke the block.
2949      BB->eraseFromParent();
2950
2951    return true;
2952  }
2953
2954  // Check out all of the conditional branches going to this return
2955  // instruction.  If any of them just select between returns, change the
2956  // branch itself into a select/return pair.
2957  while (!CondBranchPreds.empty()) {
2958    BranchInst *BI = CondBranchPreds.pop_back_val();
2959
2960    // Check to see if the non-BB successor is also a return block.
2961    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2962        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2963        SimplifyCondBranchToTwoReturns(BI, Builder))
2964      return true;
2965  }
2966  return false;
2967}
2968
2969bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2970  BasicBlock *BB = UI->getParent();
2971
2972  bool Changed = false;
2973
2974  // If there are any instructions immediately before the unreachable that can
2975  // be removed, do so.
2976  while (UI != BB->begin()) {
2977    BasicBlock::iterator BBI = UI;
2978    --BBI;
2979    // Do not delete instructions that can have side effects which might cause
2980    // the unreachable to not be reachable; specifically, calls and volatile
2981    // operations may have this effect.
2982    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2983
2984    if (BBI->mayHaveSideEffects()) {
2985      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2986        if (SI->isVolatile())
2987          break;
2988      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2989        if (LI->isVolatile())
2990          break;
2991      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2992        if (RMWI->isVolatile())
2993          break;
2994      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2995        if (CXI->isVolatile())
2996          break;
2997      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2998                 !isa<LandingPadInst>(BBI)) {
2999        break;
3000      }
3001      // Note that deleting LandingPad's here is in fact okay, although it
3002      // involves a bit of subtle reasoning. If this inst is a LandingPad,
3003      // all the predecessors of this block will be the unwind edges of Invokes,
3004      // and we can therefore guarantee this block will be erased.
3005    }
3006
3007    // Delete this instruction (any uses are guaranteed to be dead)
3008    if (!BBI->use_empty())
3009      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3010    BBI->eraseFromParent();
3011    Changed = true;
3012  }
3013
3014  // If the unreachable instruction is the first in the block, take a gander
3015  // at all of the predecessors of this instruction, and simplify them.
3016  if (&BB->front() != UI) return Changed;
3017
3018  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3019  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3020    TerminatorInst *TI = Preds[i]->getTerminator();
3021    IRBuilder<> Builder(TI);
3022    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3023      if (BI->isUnconditional()) {
3024        if (BI->getSuccessor(0) == BB) {
3025          new UnreachableInst(TI->getContext(), TI);
3026          TI->eraseFromParent();
3027          Changed = true;
3028        }
3029      } else {
3030        if (BI->getSuccessor(0) == BB) {
3031          Builder.CreateBr(BI->getSuccessor(1));
3032          EraseTerminatorInstAndDCECond(BI);
3033        } else if (BI->getSuccessor(1) == BB) {
3034          Builder.CreateBr(BI->getSuccessor(0));
3035          EraseTerminatorInstAndDCECond(BI);
3036          Changed = true;
3037        }
3038      }
3039    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3040      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3041           i != e; ++i)
3042        if (i.getCaseSuccessor() == BB) {
3043          BB->removePredecessor(SI->getParent());
3044          SI->removeCase(i);
3045          --i; --e;
3046          Changed = true;
3047        }
3048      // If the default value is unreachable, figure out the most popular
3049      // destination and make it the default.
3050      if (SI->getDefaultDest() == BB) {
3051        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3052        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3053             i != e; ++i) {
3054          std::pair<unsigned, unsigned> &entry =
3055              Popularity[i.getCaseSuccessor()];
3056          if (entry.first == 0) {
3057            entry.first = 1;
3058            entry.second = i.getCaseIndex();
3059          } else {
3060            entry.first++;
3061          }
3062        }
3063
3064        // Find the most popular block.
3065        unsigned MaxPop = 0;
3066        unsigned MaxIndex = 0;
3067        BasicBlock *MaxBlock = 0;
3068        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3069             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3070          if (I->second.first > MaxPop ||
3071              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3072            MaxPop = I->second.first;
3073            MaxIndex = I->second.second;
3074            MaxBlock = I->first;
3075          }
3076        }
3077        if (MaxBlock) {
3078          // Make this the new default, allowing us to delete any explicit
3079          // edges to it.
3080          SI->setDefaultDest(MaxBlock);
3081          Changed = true;
3082
3083          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3084          // it.
3085          if (isa<PHINode>(MaxBlock->begin()))
3086            for (unsigned i = 0; i != MaxPop-1; ++i)
3087              MaxBlock->removePredecessor(SI->getParent());
3088
3089          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3090               i != e; ++i)
3091            if (i.getCaseSuccessor() == MaxBlock) {
3092              SI->removeCase(i);
3093              --i; --e;
3094            }
3095        }
3096      }
3097    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3098      if (II->getUnwindDest() == BB) {
3099        // Convert the invoke to a call instruction.  This would be a good
3100        // place to note that the call does not throw though.
3101        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3102        II->removeFromParent();   // Take out of symbol table
3103
3104        // Insert the call now...
3105        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3106        Builder.SetInsertPoint(BI);
3107        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3108                                          Args, II->getName());
3109        CI->setCallingConv(II->getCallingConv());
3110        CI->setAttributes(II->getAttributes());
3111        // If the invoke produced a value, the call does now instead.
3112        II->replaceAllUsesWith(CI);
3113        delete II;
3114        Changed = true;
3115      }
3116    }
3117  }
3118
3119  // If this block is now dead, remove it.
3120  if (pred_begin(BB) == pred_end(BB) &&
3121      BB != &BB->getParent()->getEntryBlock()) {
3122    // We know there are no successors, so just nuke the block.
3123    BB->eraseFromParent();
3124    return true;
3125  }
3126
3127  return Changed;
3128}
3129
3130/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3131/// integer range comparison into a sub, an icmp and a branch.
3132static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3133  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3134
3135  // Make sure all cases point to the same destination and gather the values.
3136  SmallVector<ConstantInt *, 16> Cases;
3137  SwitchInst::CaseIt I = SI->case_begin();
3138  Cases.push_back(I.getCaseValue());
3139  SwitchInst::CaseIt PrevI = I++;
3140  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3141    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3142      return false;
3143    Cases.push_back(I.getCaseValue());
3144  }
3145  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3146
3147  // Sort the case values, then check if they form a range we can transform.
3148  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3149  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3150    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3151      return false;
3152  }
3153
3154  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3155  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3156
3157  Value *Sub = SI->getCondition();
3158  if (!Offset->isNullValue())
3159    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3160  Value *Cmp;
3161  // If NumCases overflowed, then all possible values jump to the successor.
3162  if (NumCases->isNullValue() && SI->getNumCases() != 0)
3163    Cmp = ConstantInt::getTrue(SI->getContext());
3164  else
3165    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3166  BranchInst *NewBI = Builder.CreateCondBr(
3167      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3168
3169  // Update weight for the newly-created conditional branch.
3170  SmallVector<uint64_t, 8> Weights;
3171  bool HasWeights = HasBranchWeights(SI);
3172  if (HasWeights) {
3173    GetBranchWeights(SI, Weights);
3174    if (Weights.size() == 1 + SI->getNumCases()) {
3175      // Combine all weights for the cases to be the true weight of NewBI.
3176      // We assume that the sum of all weights for a Terminator can fit into 32
3177      // bits.
3178      uint32_t NewTrueWeight = 0;
3179      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3180        NewTrueWeight += (uint32_t)Weights[I];
3181      NewBI->setMetadata(LLVMContext::MD_prof,
3182                         MDBuilder(SI->getContext()).
3183                         createBranchWeights(NewTrueWeight,
3184                                             (uint32_t)Weights[0]));
3185    }
3186  }
3187
3188  // Prune obsolete incoming values off the successor's PHI nodes.
3189  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3190       isa<PHINode>(BBI); ++BBI) {
3191    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3192      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3193  }
3194  SI->eraseFromParent();
3195
3196  return true;
3197}
3198
3199/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3200/// and use it to remove dead cases.
3201static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3202  Value *Cond = SI->getCondition();
3203  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
3204  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3205  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3206
3207  // Gather dead cases.
3208  SmallVector<ConstantInt*, 8> DeadCases;
3209  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3210    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3211        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3212      DeadCases.push_back(I.getCaseValue());
3213      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3214                   << I.getCaseValue() << "' is dead.\n");
3215    }
3216  }
3217
3218  SmallVector<uint64_t, 8> Weights;
3219  bool HasWeight = HasBranchWeights(SI);
3220  if (HasWeight) {
3221    GetBranchWeights(SI, Weights);
3222    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3223  }
3224
3225  // Remove dead cases from the switch.
3226  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3227    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3228    assert(Case != SI->case_default() &&
3229           "Case was not found. Probably mistake in DeadCases forming.");
3230    if (HasWeight) {
3231      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3232      Weights.pop_back();
3233    }
3234
3235    // Prune unused values from PHI nodes.
3236    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3237    SI->removeCase(Case);
3238  }
3239  if (HasWeight) {
3240    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3241    SI->setMetadata(LLVMContext::MD_prof,
3242                    MDBuilder(SI->getParent()->getContext()).
3243                    createBranchWeights(MDWeights));
3244  }
3245
3246  return !DeadCases.empty();
3247}
3248
3249/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3250/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3251/// by an unconditional branch), look at the phi node for BB in the successor
3252/// block and see if the incoming value is equal to CaseValue. If so, return
3253/// the phi node, and set PhiIndex to BB's index in the phi node.
3254static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3255                                              BasicBlock *BB,
3256                                              int *PhiIndex) {
3257  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3258    return NULL; // BB must be empty to be a candidate for simplification.
3259  if (!BB->getSinglePredecessor())
3260    return NULL; // BB must be dominated by the switch.
3261
3262  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3263  if (!Branch || !Branch->isUnconditional())
3264    return NULL; // Terminator must be unconditional branch.
3265
3266  BasicBlock *Succ = Branch->getSuccessor(0);
3267
3268  BasicBlock::iterator I = Succ->begin();
3269  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3270    int Idx = PHI->getBasicBlockIndex(BB);
3271    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3272
3273    Value *InValue = PHI->getIncomingValue(Idx);
3274    if (InValue != CaseValue) continue;
3275
3276    *PhiIndex = Idx;
3277    return PHI;
3278  }
3279
3280  return NULL;
3281}
3282
3283/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3284/// instruction to a phi node dominated by the switch, if that would mean that
3285/// some of the destination blocks of the switch can be folded away.
3286/// Returns true if a change is made.
3287static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3288  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3289  ForwardingNodesMap ForwardingNodes;
3290
3291  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3292    ConstantInt *CaseValue = I.getCaseValue();
3293    BasicBlock *CaseDest = I.getCaseSuccessor();
3294
3295    int PhiIndex;
3296    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3297                                                 &PhiIndex);
3298    if (!PHI) continue;
3299
3300    ForwardingNodes[PHI].push_back(PhiIndex);
3301  }
3302
3303  bool Changed = false;
3304
3305  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3306       E = ForwardingNodes.end(); I != E; ++I) {
3307    PHINode *Phi = I->first;
3308    SmallVector<int,4> &Indexes = I->second;
3309
3310    if (Indexes.size() < 2) continue;
3311
3312    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3313      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3314    Changed = true;
3315  }
3316
3317  return Changed;
3318}
3319
3320/// ValidLookupTableConstant - Return true if the backend will be able to handle
3321/// initializing an array of constants like C.
3322static bool ValidLookupTableConstant(Constant *C) {
3323  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3324    return CE->isGEPWithNoNotionalOverIndexing();
3325
3326  return isa<ConstantFP>(C) ||
3327      isa<ConstantInt>(C) ||
3328      isa<ConstantPointerNull>(C) ||
3329      isa<GlobalValue>(C) ||
3330      isa<UndefValue>(C);
3331}
3332
3333/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3334/// its constant value in ConstantPool, returning 0 if it's not there.
3335static Constant *LookupConstant(Value *V,
3336                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3337  if (Constant *C = dyn_cast<Constant>(V))
3338    return C;
3339  return ConstantPool.lookup(V);
3340}
3341
3342/// ConstantFold - Try to fold instruction I into a constant. This works for
3343/// simple instructions such as binary operations where both operands are
3344/// constant or can be replaced by constants from the ConstantPool. Returns the
3345/// resulting constant on success, 0 otherwise.
3346static Constant *ConstantFold(Instruction *I,
3347                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3348  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
3349    Constant *A = LookupConstant(BO->getOperand(0), ConstantPool);
3350    if (!A)
3351      return 0;
3352    Constant *B = LookupConstant(BO->getOperand(1), ConstantPool);
3353    if (!B)
3354      return 0;
3355    return ConstantExpr::get(BO->getOpcode(), A, B);
3356  }
3357
3358  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
3359    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3360    if (!A)
3361      return 0;
3362    Constant *B = LookupConstant(I->getOperand(1), ConstantPool);
3363    if (!B)
3364      return 0;
3365    return ConstantExpr::getCompare(Cmp->getPredicate(), A, B);
3366  }
3367
3368  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3369    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3370    if (!A)
3371      return 0;
3372    if (A->isAllOnesValue())
3373      return LookupConstant(Select->getTrueValue(), ConstantPool);
3374    if (A->isNullValue())
3375      return LookupConstant(Select->getFalseValue(), ConstantPool);
3376    return 0;
3377  }
3378
3379  if (CastInst *Cast = dyn_cast<CastInst>(I)) {
3380    Constant *A = LookupConstant(I->getOperand(0), ConstantPool);
3381    if (!A)
3382      return 0;
3383    return ConstantExpr::getCast(Cast->getOpcode(), A, Cast->getDestTy());
3384  }
3385
3386  return 0;
3387}
3388
3389/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3390/// at the common destination basic block, *CommonDest, for one of the case
3391/// destionations CaseDest corresponding to value CaseVal (0 for the default
3392/// case), of a switch instruction SI.
3393static bool GetCaseResults(SwitchInst *SI,
3394                           ConstantInt *CaseVal,
3395                           BasicBlock *CaseDest,
3396                           BasicBlock **CommonDest,
3397                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3398  // The block from which we enter the common destination.
3399  BasicBlock *Pred = SI->getParent();
3400
3401  // If CaseDest is empty except for some side-effect free instructions through
3402  // which we can constant-propagate the CaseVal, continue to its successor.
3403  SmallDenseMap<Value*, Constant*> ConstantPool;
3404  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3405  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3406       ++I) {
3407    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3408      // If the terminator is a simple branch, continue to the next block.
3409      if (T->getNumSuccessors() != 1)
3410        return false;
3411      Pred = CaseDest;
3412      CaseDest = T->getSuccessor(0);
3413    } else if (isa<DbgInfoIntrinsic>(I)) {
3414      // Skip debug intrinsic.
3415      continue;
3416    } else if (Constant *C = ConstantFold(I, ConstantPool)) {
3417      // Instruction is side-effect free and constant.
3418      ConstantPool.insert(std::make_pair(I, C));
3419    } else {
3420      break;
3421    }
3422  }
3423
3424  // If we did not have a CommonDest before, use the current one.
3425  if (!*CommonDest)
3426    *CommonDest = CaseDest;
3427  // If the destination isn't the common one, abort.
3428  if (CaseDest != *CommonDest)
3429    return false;
3430
3431  // Get the values for this case from phi nodes in the destination block.
3432  BasicBlock::iterator I = (*CommonDest)->begin();
3433  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3434    int Idx = PHI->getBasicBlockIndex(Pred);
3435    if (Idx == -1)
3436      continue;
3437
3438    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3439                                        ConstantPool);
3440    if (!ConstVal)
3441      return false;
3442
3443    // Note: If the constant comes from constant-propagating the case value
3444    // through the CaseDest basic block, it will be safe to remove the
3445    // instructions in that block. They cannot be used (except in the phi nodes
3446    // we visit) outside CaseDest, because that block does not dominate its
3447    // successor. If it did, we would not be in this phi node.
3448
3449    // Be conservative about which kinds of constants we support.
3450    if (!ValidLookupTableConstant(ConstVal))
3451      return false;
3452
3453    Res.push_back(std::make_pair(PHI, ConstVal));
3454  }
3455
3456  return true;
3457}
3458
3459namespace {
3460  /// SwitchLookupTable - This class represents a lookup table that can be used
3461  /// to replace a switch.
3462  class SwitchLookupTable {
3463  public:
3464    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3465    /// with the contents of Values, using DefaultValue to fill any holes in the
3466    /// table.
3467    SwitchLookupTable(Module &M,
3468                      uint64_t TableSize,
3469                      ConstantInt *Offset,
3470               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3471                      Constant *DefaultValue,
3472                      const DataLayout *TD);
3473
3474    /// BuildLookup - Build instructions with Builder to retrieve the value at
3475    /// the position given by Index in the lookup table.
3476    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3477
3478    /// WouldFitInRegister - Return true if a table with TableSize elements of
3479    /// type ElementType would fit in a target-legal register.
3480    static bool WouldFitInRegister(const DataLayout *TD,
3481                                   uint64_t TableSize,
3482                                   const Type *ElementType);
3483
3484  private:
3485    // Depending on the contents of the table, it can be represented in
3486    // different ways.
3487    enum {
3488      // For tables where each element contains the same value, we just have to
3489      // store that single value and return it for each lookup.
3490      SingleValueKind,
3491
3492      // For small tables with integer elements, we can pack them into a bitmap
3493      // that fits into a target-legal register. Values are retrieved by
3494      // shift and mask operations.
3495      BitMapKind,
3496
3497      // The table is stored as an array of values. Values are retrieved by load
3498      // instructions from the table.
3499      ArrayKind
3500    } Kind;
3501
3502    // For SingleValueKind, this is the single value.
3503    Constant *SingleValue;
3504
3505    // For BitMapKind, this is the bitmap.
3506    ConstantInt *BitMap;
3507    IntegerType *BitMapElementTy;
3508
3509    // For ArrayKind, this is the array.
3510    GlobalVariable *Array;
3511  };
3512}
3513
3514SwitchLookupTable::SwitchLookupTable(Module &M,
3515                                     uint64_t TableSize,
3516                                     ConstantInt *Offset,
3517               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3518                                     Constant *DefaultValue,
3519                                     const DataLayout *TD)
3520    : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
3521  assert(Values.size() && "Can't build lookup table without values!");
3522  assert(TableSize >= Values.size() && "Can't fit values in table!");
3523
3524  // If all values in the table are equal, this is that value.
3525  SingleValue = Values.begin()->second;
3526
3527  // Build up the table contents.
3528  SmallVector<Constant*, 64> TableContents(TableSize);
3529  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3530    ConstantInt *CaseVal = Values[I].first;
3531    Constant *CaseRes = Values[I].second;
3532    assert(CaseRes->getType() == DefaultValue->getType());
3533
3534    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3535                   .getLimitedValue();
3536    TableContents[Idx] = CaseRes;
3537
3538    if (CaseRes != SingleValue)
3539      SingleValue = 0;
3540  }
3541
3542  // Fill in any holes in the table with the default result.
3543  if (Values.size() < TableSize) {
3544    for (uint64_t I = 0; I < TableSize; ++I) {
3545      if (!TableContents[I])
3546        TableContents[I] = DefaultValue;
3547    }
3548
3549    if (DefaultValue != SingleValue)
3550      SingleValue = 0;
3551  }
3552
3553  // If each element in the table contains the same value, we only need to store
3554  // that single value.
3555  if (SingleValue) {
3556    Kind = SingleValueKind;
3557    return;
3558  }
3559
3560  // If the type is integer and the table fits in a register, build a bitmap.
3561  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3562    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3563    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3564    for (uint64_t I = TableSize; I > 0; --I) {
3565      TableInt <<= IT->getBitWidth();
3566      // Insert values into the bitmap. Undef values are set to zero.
3567      if (!isa<UndefValue>(TableContents[I - 1])) {
3568        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3569        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3570      }
3571    }
3572    BitMap = ConstantInt::get(M.getContext(), TableInt);
3573    BitMapElementTy = IT;
3574    Kind = BitMapKind;
3575    ++NumBitMaps;
3576    return;
3577  }
3578
3579  // Store the table in an array.
3580  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3581  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3582
3583  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3584                             GlobalVariable::PrivateLinkage,
3585                             Initializer,
3586                             "switch.table");
3587  Array->setUnnamedAddr(true);
3588  Kind = ArrayKind;
3589}
3590
3591Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3592  switch (Kind) {
3593    case SingleValueKind:
3594      return SingleValue;
3595    case BitMapKind: {
3596      // Type of the bitmap (e.g. i59).
3597      IntegerType *MapTy = BitMap->getType();
3598
3599      // Cast Index to the same type as the bitmap.
3600      // Note: The Index is <= the number of elements in the table, so
3601      // truncating it to the width of the bitmask is safe.
3602      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3603
3604      // Multiply the shift amount by the element width.
3605      ShiftAmt = Builder.CreateMul(ShiftAmt,
3606                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3607                                   "switch.shiftamt");
3608
3609      // Shift down.
3610      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3611                                              "switch.downshift");
3612      // Mask off.
3613      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3614                                 "switch.masked");
3615    }
3616    case ArrayKind: {
3617      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3618      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3619                                             "switch.gep");
3620      return Builder.CreateLoad(GEP, "switch.load");
3621    }
3622  }
3623  llvm_unreachable("Unknown lookup table kind!");
3624}
3625
3626bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3627                                           uint64_t TableSize,
3628                                           const Type *ElementType) {
3629  if (!TD)
3630    return false;
3631  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3632  if (!IT)
3633    return false;
3634  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3635  // are <= 15, we could try to narrow the type.
3636
3637  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3638  if (TableSize >= UINT_MAX/IT->getBitWidth())
3639    return false;
3640  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3641}
3642
3643/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3644/// for this switch, based on the number of caes, size of the table and the
3645/// types of the results.
3646static bool ShouldBuildLookupTable(SwitchInst *SI,
3647                                   uint64_t TableSize,
3648                                   const TargetTransformInfo &TTI,
3649                                   const DataLayout *TD,
3650                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3651  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3652    return false; // TableSize overflowed, or mul below might overflow.
3653
3654  bool AllTablesFitInRegister = true;
3655  bool HasIllegalType = false;
3656  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3657       E = ResultTypes.end(); I != E; ++I) {
3658    Type *Ty = I->second;
3659
3660    // Saturate this flag to true.
3661    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3662
3663    // Saturate this flag to false.
3664    AllTablesFitInRegister = AllTablesFitInRegister &&
3665      SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
3666
3667    // If both flags saturate, we're done. NOTE: This *only* works with
3668    // saturating flags, and all flags have to saturate first due to the
3669    // non-deterministic behavior of iterating over a dense map.
3670    if (HasIllegalType && !AllTablesFitInRegister)
3671      break;
3672  }
3673
3674  // If each table would fit in a register, we should build it anyway.
3675  if (AllTablesFitInRegister)
3676    return true;
3677
3678  // Don't build a table that doesn't fit in-register if it has illegal types.
3679  if (HasIllegalType)
3680    return false;
3681
3682  // The table density should be at least 40%. This is the same criterion as for
3683  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3684  // FIXME: Find the best cut-off.
3685  return SI->getNumCases() * 10 >= TableSize * 4;
3686}
3687
3688/// SwitchToLookupTable - If the switch is only used to initialize one or more
3689/// phi nodes in a common successor block with different constant values,
3690/// replace the switch with lookup tables.
3691static bool SwitchToLookupTable(SwitchInst *SI,
3692                                IRBuilder<> &Builder,
3693                                const TargetTransformInfo &TTI,
3694                                const DataLayout* TD) {
3695  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3696
3697  // Only build lookup table when we have a target that supports it.
3698  if (!TTI.shouldBuildLookupTables())
3699    return false;
3700
3701  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3702  // split off a dense part and build a lookup table for that.
3703
3704  // FIXME: This creates arrays of GEPs to constant strings, which means each
3705  // GEP needs a runtime relocation in PIC code. We should just build one big
3706  // string and lookup indices into that.
3707
3708  // Ignore the switch if the number of cases is too small.
3709  // This is similar to the check when building jump tables in
3710  // SelectionDAGBuilder::handleJTSwitchCase.
3711  // FIXME: Determine the best cut-off.
3712  if (SI->getNumCases() < 4)
3713    return false;
3714
3715  // Figure out the corresponding result for each case value and phi node in the
3716  // common destination, as well as the the min and max case values.
3717  assert(SI->case_begin() != SI->case_end());
3718  SwitchInst::CaseIt CI = SI->case_begin();
3719  ConstantInt *MinCaseVal = CI.getCaseValue();
3720  ConstantInt *MaxCaseVal = CI.getCaseValue();
3721
3722  BasicBlock *CommonDest = 0;
3723  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3724  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3725  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3726  SmallDenseMap<PHINode*, Type*> ResultTypes;
3727  SmallVector<PHINode*, 4> PHIs;
3728
3729  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3730    ConstantInt *CaseVal = CI.getCaseValue();
3731    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3732      MinCaseVal = CaseVal;
3733    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3734      MaxCaseVal = CaseVal;
3735
3736    // Resulting value at phi nodes for this case value.
3737    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3738    ResultsTy Results;
3739    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3740                        Results))
3741      return false;
3742
3743    // Append the result from this case to the list for each phi.
3744    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3745      if (!ResultLists.count(I->first))
3746        PHIs.push_back(I->first);
3747      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3748    }
3749  }
3750
3751  // Get the resulting values for the default case.
3752  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3753  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3754                      DefaultResultsList))
3755    return false;
3756  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3757    PHINode *PHI = DefaultResultsList[I].first;
3758    Constant *Result = DefaultResultsList[I].second;
3759    DefaultResults[PHI] = Result;
3760    ResultTypes[PHI] = Result->getType();
3761  }
3762
3763  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3764  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3765  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
3766    return false;
3767
3768  // Create the BB that does the lookups.
3769  Module &Mod = *CommonDest->getParent()->getParent();
3770  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3771                                            "switch.lookup",
3772                                            CommonDest->getParent(),
3773                                            CommonDest);
3774
3775  // Check whether the condition value is within the case range, and branch to
3776  // the new BB.
3777  Builder.SetInsertPoint(SI);
3778  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3779                                        "switch.tableidx");
3780  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3781      MinCaseVal->getType(), TableSize));
3782  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3783
3784  // Populate the BB that does the lookups.
3785  Builder.SetInsertPoint(LookupBB);
3786  bool ReturnedEarly = false;
3787  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3788    PHINode *PHI = PHIs[I];
3789
3790    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3791                            DefaultResults[PHI], TD);
3792
3793    Value *Result = Table.BuildLookup(TableIndex, Builder);
3794
3795    // If the result is used to return immediately from the function, we want to
3796    // do that right here.
3797    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3798        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3799      Builder.CreateRet(Result);
3800      ReturnedEarly = true;
3801      break;
3802    }
3803
3804    PHI->addIncoming(Result, LookupBB);
3805  }
3806
3807  if (!ReturnedEarly)
3808    Builder.CreateBr(CommonDest);
3809
3810  // Remove the switch.
3811  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3812    BasicBlock *Succ = SI->getSuccessor(i);
3813    if (Succ == SI->getDefaultDest()) continue;
3814    Succ->removePredecessor(SI->getParent());
3815  }
3816  SI->eraseFromParent();
3817
3818  ++NumLookupTables;
3819  return true;
3820}
3821
3822bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3823  BasicBlock *BB = SI->getParent();
3824
3825  if (isValueEqualityComparison(SI)) {
3826    // If we only have one predecessor, and if it is a branch on this value,
3827    // see if that predecessor totally determines the outcome of this switch.
3828    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3829      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3830        return SimplifyCFG(BB, TTI, TD) | true;
3831
3832    Value *Cond = SI->getCondition();
3833    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3834      if (SimplifySwitchOnSelect(SI, Select))
3835        return SimplifyCFG(BB, TTI, TD) | true;
3836
3837    // If the block only contains the switch, see if we can fold the block
3838    // away into any preds.
3839    BasicBlock::iterator BBI = BB->begin();
3840    // Ignore dbg intrinsics.
3841    while (isa<DbgInfoIntrinsic>(BBI))
3842      ++BBI;
3843    if (SI == &*BBI)
3844      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3845        return SimplifyCFG(BB, TTI, TD) | true;
3846  }
3847
3848  // Try to transform the switch into an icmp and a branch.
3849  if (TurnSwitchRangeIntoICmp(SI, Builder))
3850    return SimplifyCFG(BB, TTI, TD) | true;
3851
3852  // Remove unreachable cases.
3853  if (EliminateDeadSwitchCases(SI))
3854    return SimplifyCFG(BB, TTI, TD) | true;
3855
3856  if (ForwardSwitchConditionToPHI(SI))
3857    return SimplifyCFG(BB, TTI, TD) | true;
3858
3859  if (SwitchToLookupTable(SI, Builder, TTI, TD))
3860    return SimplifyCFG(BB, TTI, TD) | true;
3861
3862  return false;
3863}
3864
3865bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3866  BasicBlock *BB = IBI->getParent();
3867  bool Changed = false;
3868
3869  // Eliminate redundant destinations.
3870  SmallPtrSet<Value *, 8> Succs;
3871  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3872    BasicBlock *Dest = IBI->getDestination(i);
3873    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3874      Dest->removePredecessor(BB);
3875      IBI->removeDestination(i);
3876      --i; --e;
3877      Changed = true;
3878    }
3879  }
3880
3881  if (IBI->getNumDestinations() == 0) {
3882    // If the indirectbr has no successors, change it to unreachable.
3883    new UnreachableInst(IBI->getContext(), IBI);
3884    EraseTerminatorInstAndDCECond(IBI);
3885    return true;
3886  }
3887
3888  if (IBI->getNumDestinations() == 1) {
3889    // If the indirectbr has one successor, change it to a direct branch.
3890    BranchInst::Create(IBI->getDestination(0), IBI);
3891    EraseTerminatorInstAndDCECond(IBI);
3892    return true;
3893  }
3894
3895  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3896    if (SimplifyIndirectBrOnSelect(IBI, SI))
3897      return SimplifyCFG(BB, TTI, TD) | true;
3898  }
3899  return Changed;
3900}
3901
3902bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3903  BasicBlock *BB = BI->getParent();
3904
3905  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3906    return true;
3907
3908  // If the Terminator is the only non-phi instruction, simplify the block.
3909  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3910  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3911      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3912    return true;
3913
3914  // If the only instruction in the block is a seteq/setne comparison
3915  // against a constant, try to simplify the block.
3916  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3917    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3918      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3919        ;
3920      if (I->isTerminator() &&
3921          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
3922        return true;
3923    }
3924
3925  // If this basic block is ONLY a compare and a branch, and if a predecessor
3926  // branches to us and our successor, fold the comparison into the
3927  // predecessor and use logical operations to update the incoming value
3928  // for PHI nodes in common successor.
3929  if (FoldBranchToCommonDest(BI))
3930    return SimplifyCFG(BB, TTI, TD) | true;
3931  return false;
3932}
3933
3934
3935bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3936  BasicBlock *BB = BI->getParent();
3937
3938  // Conditional branch
3939  if (isValueEqualityComparison(BI)) {
3940    // If we only have one predecessor, and if it is a branch on this value,
3941    // see if that predecessor totally determines the outcome of this
3942    // switch.
3943    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3944      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3945        return SimplifyCFG(BB, TTI, TD) | true;
3946
3947    // This block must be empty, except for the setcond inst, if it exists.
3948    // Ignore dbg intrinsics.
3949    BasicBlock::iterator I = BB->begin();
3950    // Ignore dbg intrinsics.
3951    while (isa<DbgInfoIntrinsic>(I))
3952      ++I;
3953    if (&*I == BI) {
3954      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3955        return SimplifyCFG(BB, TTI, TD) | true;
3956    } else if (&*I == cast<Instruction>(BI->getCondition())){
3957      ++I;
3958      // Ignore dbg intrinsics.
3959      while (isa<DbgInfoIntrinsic>(I))
3960        ++I;
3961      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3962        return SimplifyCFG(BB, TTI, TD) | true;
3963    }
3964  }
3965
3966  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3967  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3968    return true;
3969
3970  // If this basic block is ONLY a compare and a branch, and if a predecessor
3971  // branches to us and one of our successors, fold the comparison into the
3972  // predecessor and use logical operations to pick the right destination.
3973  if (FoldBranchToCommonDest(BI))
3974    return SimplifyCFG(BB, TTI, TD) | true;
3975
3976  // We have a conditional branch to two blocks that are only reachable
3977  // from BI.  We know that the condbr dominates the two blocks, so see if
3978  // there is any identical code in the "then" and "else" blocks.  If so, we
3979  // can hoist it up to the branching block.
3980  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3981    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3982      if (HoistThenElseCodeToIf(BI))
3983        return SimplifyCFG(BB, TTI, TD) | true;
3984    } else {
3985      // If Successor #1 has multiple preds, we may be able to conditionally
3986      // execute Successor #0 if it branches to successor #1.
3987      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3988      if (Succ0TI->getNumSuccessors() == 1 &&
3989          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3990        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3991          return SimplifyCFG(BB, TTI, TD) | true;
3992    }
3993  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3994    // If Successor #0 has multiple preds, we may be able to conditionally
3995    // execute Successor #1 if it branches to successor #0.
3996    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3997    if (Succ1TI->getNumSuccessors() == 1 &&
3998        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3999      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
4000        return SimplifyCFG(BB, TTI, TD) | true;
4001  }
4002
4003  // If this is a branch on a phi node in the current block, thread control
4004  // through this block if any PHI node entries are constants.
4005  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4006    if (PN->getParent() == BI->getParent())
4007      if (FoldCondBranchOnPHI(BI, TD))
4008        return SimplifyCFG(BB, TTI, TD) | true;
4009
4010  // Scan predecessor blocks for conditional branches.
4011  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4012    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4013      if (PBI != BI && PBI->isConditional())
4014        if (SimplifyCondBranchToCondBranch(PBI, BI))
4015          return SimplifyCFG(BB, TTI, TD) | true;
4016
4017  return false;
4018}
4019
4020/// Check if passing a value to an instruction will cause undefined behavior.
4021static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4022  Constant *C = dyn_cast<Constant>(V);
4023  if (!C)
4024    return false;
4025
4026  if (I->use_empty())
4027    return false;
4028
4029  if (C->isNullValue()) {
4030    // Only look at the first use, avoid hurting compile time with long uselists
4031    User *Use = *I->use_begin();
4032
4033    // Now make sure that there are no instructions in between that can alter
4034    // control flow (eg. calls)
4035    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4036      if (i == I->getParent()->end() || i->mayHaveSideEffects())
4037        return false;
4038
4039    // Look through GEPs. A load from a GEP derived from NULL is still undefined
4040    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4041      if (GEP->getPointerOperand() == I)
4042        return passingValueIsAlwaysUndefined(V, GEP);
4043
4044    // Look through bitcasts.
4045    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4046      return passingValueIsAlwaysUndefined(V, BC);
4047
4048    // Load from null is undefined.
4049    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4050      if (!LI->isVolatile())
4051        return LI->getPointerAddressSpace() == 0;
4052
4053    // Store to null is undefined.
4054    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4055      if (!SI->isVolatile())
4056        return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4057  }
4058  return false;
4059}
4060
4061/// If BB has an incoming value that will always trigger undefined behavior
4062/// (eg. null pointer dereference), remove the branch leading here.
4063static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4064  for (BasicBlock::iterator i = BB->begin();
4065       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4066    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4067      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4068        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4069        IRBuilder<> Builder(T);
4070        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4071          BB->removePredecessor(PHI->getIncomingBlock(i));
4072          // Turn uncoditional branches into unreachables and remove the dead
4073          // destination from conditional branches.
4074          if (BI->isUnconditional())
4075            Builder.CreateUnreachable();
4076          else
4077            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4078                                                         BI->getSuccessor(0));
4079          BI->eraseFromParent();
4080          return true;
4081        }
4082        // TODO: SwitchInst.
4083      }
4084
4085  return false;
4086}
4087
4088bool SimplifyCFGOpt::run(BasicBlock *BB) {
4089  bool Changed = false;
4090
4091  assert(BB && BB->getParent() && "Block not embedded in function!");
4092  assert(BB->getTerminator() && "Degenerate basic block encountered!");
4093
4094  // Remove basic blocks that have no predecessors (except the entry block)...
4095  // or that just have themself as a predecessor.  These are unreachable.
4096  if ((pred_begin(BB) == pred_end(BB) &&
4097       BB != &BB->getParent()->getEntryBlock()) ||
4098      BB->getSinglePredecessor() == BB) {
4099    DEBUG(dbgs() << "Removing BB: \n" << *BB);
4100    DeleteDeadBlock(BB);
4101    return true;
4102  }
4103
4104  // Check to see if we can constant propagate this terminator instruction
4105  // away...
4106  Changed |= ConstantFoldTerminator(BB, true);
4107
4108  // Check for and eliminate duplicate PHI nodes in this block.
4109  Changed |= EliminateDuplicatePHINodes(BB);
4110
4111  // Check for and remove branches that will always cause undefined behavior.
4112  Changed |= removeUndefIntroducingPredecessor(BB);
4113
4114  // Merge basic blocks into their predecessor if there is only one distinct
4115  // pred, and if there is only one distinct successor of the predecessor, and
4116  // if there are no PHI nodes.
4117  //
4118  if (MergeBlockIntoPredecessor(BB))
4119    return true;
4120
4121  IRBuilder<> Builder(BB);
4122
4123  // If there is a trivial two-entry PHI node in this basic block, and we can
4124  // eliminate it, do so now.
4125  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4126    if (PN->getNumIncomingValues() == 2)
4127      Changed |= FoldTwoEntryPHINode(PN, TD);
4128
4129  Builder.SetInsertPoint(BB->getTerminator());
4130  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4131    if (BI->isUnconditional()) {
4132      if (SimplifyUncondBranch(BI, Builder)) return true;
4133    } else {
4134      if (SimplifyCondBranch(BI, Builder)) return true;
4135    }
4136  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4137    if (SimplifyReturn(RI, Builder)) return true;
4138  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4139    if (SimplifyResume(RI, Builder)) return true;
4140  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4141    if (SimplifySwitch(SI, Builder)) return true;
4142  } else if (UnreachableInst *UI =
4143               dyn_cast<UnreachableInst>(BB->getTerminator())) {
4144    if (SimplifyUnreachable(UI)) return true;
4145  } else if (IndirectBrInst *IBI =
4146               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4147    if (SimplifyIndirectBr(IBI)) return true;
4148  }
4149
4150  return Changed;
4151}
4152
4153/// SimplifyCFG - This function is used to do simplification of a CFG.  For
4154/// example, it adjusts branches to branches to eliminate the extra hop, it
4155/// eliminates unreachable basic blocks, and does other "peephole" optimization
4156/// of the CFG.  It returns true if a modification was made.
4157///
4158bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4159                       const DataLayout *TD) {
4160  return SimplifyCFGOpt(TTI, TD).run(BB);
4161}
4162