SLPVectorizer.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#define SV_NAME "slp-vectorizer"
19#define DEBUG_TYPE "SLP"
20
21#include "llvm/Transforms/Vectorize.h"
22#include "llvm/ADT/MapVector.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/LoopInfo.h"
27#include "llvm/Analysis/ScalarEvolution.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/Analysis/TargetTransformInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/IR/Verifier.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/raw_ostream.h"
44#include <algorithm>
45#include <map>
46
47using namespace llvm;
48
49static cl::opt<int>
50    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
51                     cl::desc("Only vectorize if you gain more than this "
52                              "number "));
53
54static cl::opt<bool>
55ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
56                   cl::desc("Attempt to vectorize horizontal reductions"));
57
58static cl::opt<bool> ShouldStartVectorizeHorAtStore(
59    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
60    cl::desc(
61        "Attempt to vectorize horizontal reductions feeding into a store"));
62
63namespace {
64
65static const unsigned MinVecRegSize = 128;
66
67static const unsigned RecursionMaxDepth = 12;
68
69/// A helper class for numbering instructions in multiple blocks.
70/// Numbers start at zero for each basic block.
71struct BlockNumbering {
72
73  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
74
75  BlockNumbering() : BB(0), Valid(false) {}
76
77  void numberInstructions() {
78    unsigned Loc = 0;
79    InstrIdx.clear();
80    InstrVec.clear();
81    // Number the instructions in the block.
82    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
83      InstrIdx[it] = Loc++;
84      InstrVec.push_back(it);
85      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
86    }
87    Valid = true;
88  }
89
90  int getIndex(Instruction *I) {
91    assert(I->getParent() == BB && "Invalid instruction");
92    if (!Valid)
93      numberInstructions();
94    assert(InstrIdx.count(I) && "Unknown instruction");
95    return InstrIdx[I];
96  }
97
98  Instruction *getInstruction(unsigned loc) {
99    if (!Valid)
100      numberInstructions();
101    assert(InstrVec.size() > loc && "Invalid Index");
102    return InstrVec[loc];
103  }
104
105  void forget() { Valid = false; }
106
107private:
108  /// The block we are numbering.
109  BasicBlock *BB;
110  /// Is the block numbered.
111  bool Valid;
112  /// Maps instructions to numbers and back.
113  SmallDenseMap<Instruction *, int> InstrIdx;
114  /// Maps integers to Instructions.
115  SmallVector<Instruction *, 32> InstrVec;
116};
117
118/// \returns the parent basic block if all of the instructions in \p VL
119/// are in the same block or null otherwise.
120static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
121  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
122  if (!I0)
123    return 0;
124  BasicBlock *BB = I0->getParent();
125  for (int i = 1, e = VL.size(); i < e; i++) {
126    Instruction *I = dyn_cast<Instruction>(VL[i]);
127    if (!I)
128      return 0;
129
130    if (BB != I->getParent())
131      return 0;
132  }
133  return BB;
134}
135
136/// \returns True if all of the values in \p VL are constants.
137static bool allConstant(ArrayRef<Value *> VL) {
138  for (unsigned i = 0, e = VL.size(); i < e; ++i)
139    if (!isa<Constant>(VL[i]))
140      return false;
141  return true;
142}
143
144/// \returns True if all of the values in \p VL are identical.
145static bool isSplat(ArrayRef<Value *> VL) {
146  for (unsigned i = 1, e = VL.size(); i < e; ++i)
147    if (VL[i] != VL[0])
148      return false;
149  return true;
150}
151
152/// \returns The opcode if all of the Instructions in \p VL have the same
153/// opcode, or zero.
154static unsigned getSameOpcode(ArrayRef<Value *> VL) {
155  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
156  if (!I0)
157    return 0;
158  unsigned Opcode = I0->getOpcode();
159  for (int i = 1, e = VL.size(); i < e; i++) {
160    Instruction *I = dyn_cast<Instruction>(VL[i]);
161    if (!I || Opcode != I->getOpcode())
162      return 0;
163  }
164  return Opcode;
165}
166
167/// \returns \p I after propagating metadata from \p VL.
168static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
169  Instruction *I0 = cast<Instruction>(VL[0]);
170  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
171  I0->getAllMetadataOtherThanDebugLoc(Metadata);
172
173  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
174    unsigned Kind = Metadata[i].first;
175    MDNode *MD = Metadata[i].second;
176
177    for (int i = 1, e = VL.size(); MD && i != e; i++) {
178      Instruction *I = cast<Instruction>(VL[i]);
179      MDNode *IMD = I->getMetadata(Kind);
180
181      switch (Kind) {
182      default:
183        MD = 0; // Remove unknown metadata
184        break;
185      case LLVMContext::MD_tbaa:
186        MD = MDNode::getMostGenericTBAA(MD, IMD);
187        break;
188      case LLVMContext::MD_fpmath:
189        MD = MDNode::getMostGenericFPMath(MD, IMD);
190        break;
191      }
192    }
193    I->setMetadata(Kind, MD);
194  }
195  return I;
196}
197
198/// \returns The type that all of the values in \p VL have or null if there
199/// are different types.
200static Type* getSameType(ArrayRef<Value *> VL) {
201  Type *Ty = VL[0]->getType();
202  for (int i = 1, e = VL.size(); i < e; i++)
203    if (VL[i]->getType() != Ty)
204      return 0;
205
206  return Ty;
207}
208
209/// \returns True if the ExtractElement instructions in VL can be vectorized
210/// to use the original vector.
211static bool CanReuseExtract(ArrayRef<Value *> VL) {
212  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
213  // Check if all of the extracts come from the same vector and from the
214  // correct offset.
215  Value *VL0 = VL[0];
216  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
217  Value *Vec = E0->getOperand(0);
218
219  // We have to extract from the same vector type.
220  unsigned NElts = Vec->getType()->getVectorNumElements();
221
222  if (NElts != VL.size())
223    return false;
224
225  // Check that all of the indices extract from the correct offset.
226  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
227  if (!CI || CI->getZExtValue())
228    return false;
229
230  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
231    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
232    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
233
234    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
235      return false;
236  }
237
238  return true;
239}
240
241static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
242                                           SmallVectorImpl<Value *> &Left,
243                                           SmallVectorImpl<Value *> &Right) {
244
245  SmallVector<Value *, 16> OrigLeft, OrigRight;
246
247  bool AllSameOpcodeLeft = true;
248  bool AllSameOpcodeRight = true;
249  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
250    Instruction *I = cast<Instruction>(VL[i]);
251    Value *V0 = I->getOperand(0);
252    Value *V1 = I->getOperand(1);
253
254    OrigLeft.push_back(V0);
255    OrigRight.push_back(V1);
256
257    Instruction *I0 = dyn_cast<Instruction>(V0);
258    Instruction *I1 = dyn_cast<Instruction>(V1);
259
260    // Check whether all operands on one side have the same opcode. In this case
261    // we want to preserve the original order and not make things worse by
262    // reordering.
263    AllSameOpcodeLeft = I0;
264    AllSameOpcodeRight = I1;
265
266    if (i && AllSameOpcodeLeft) {
267      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
268        if(P0->getOpcode() != I0->getOpcode())
269          AllSameOpcodeLeft = false;
270      } else
271        AllSameOpcodeLeft = false;
272    }
273    if (i && AllSameOpcodeRight) {
274      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
275        if(P1->getOpcode() != I1->getOpcode())
276          AllSameOpcodeRight = false;
277      } else
278        AllSameOpcodeRight = false;
279    }
280
281    // Sort two opcodes. In the code below we try to preserve the ability to use
282    // broadcast of values instead of individual inserts.
283    // vl1 = load
284    // vl2 = phi
285    // vr1 = load
286    // vr2 = vr2
287    //    = vl1 x vr1
288    //    = vl2 x vr2
289    // If we just sorted according to opcode we would leave the first line in
290    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
291    //    = vl1 x vr1
292    //    = vr2 x vl2
293    // Because vr2 and vr1 are from the same load we loose the opportunity of a
294    // broadcast for the packed right side in the backend: we have [vr1, vl2]
295    // instead of [vr1, vr2=vr1].
296    if (I0 && I1) {
297       if(!i && I0->getOpcode() > I1->getOpcode()) {
298         Left.push_back(I1);
299         Right.push_back(I0);
300       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
301         // Try not to destroy a broad cast for no apparent benefit.
302         Left.push_back(I1);
303         Right.push_back(I0);
304       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
305         // Try preserve broadcasts.
306         Left.push_back(I1);
307         Right.push_back(I0);
308       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
309         // Try preserve broadcasts.
310         Left.push_back(I1);
311         Right.push_back(I0);
312       } else {
313         Left.push_back(I0);
314         Right.push_back(I1);
315       }
316       continue;
317    }
318    // One opcode, put the instruction on the right.
319    if (I0) {
320      Left.push_back(V1);
321      Right.push_back(I0);
322      continue;
323    }
324    Left.push_back(V0);
325    Right.push_back(V1);
326  }
327
328  bool LeftBroadcast = isSplat(Left);
329  bool RightBroadcast = isSplat(Right);
330
331  // Don't reorder if the operands where good to begin with.
332  if (!(LeftBroadcast || RightBroadcast) &&
333      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
334    Left = OrigLeft;
335    Right = OrigRight;
336  }
337}
338
339/// Bottom Up SLP Vectorizer.
340class BoUpSLP {
341public:
342  typedef SmallVector<Value *, 8> ValueList;
343  typedef SmallVector<Instruction *, 16> InstrList;
344  typedef SmallPtrSet<Value *, 16> ValueSet;
345  typedef SmallVector<StoreInst *, 8> StoreList;
346
347  BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
348          TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
349          DominatorTree *Dt) :
350    F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
351    Builder(Se->getContext()) {
352      // Setup the block numbering utility for all of the blocks in the
353      // function.
354      for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
355        BasicBlock *BB = it;
356        BlocksNumbers[BB] = BlockNumbering(BB);
357      }
358    }
359
360  /// \brief Vectorize the tree that starts with the elements in \p VL.
361  /// Returns the vectorized root.
362  Value *vectorizeTree();
363
364  /// \returns the vectorization cost of the subtree that starts at \p VL.
365  /// A negative number means that this is profitable.
366  int getTreeCost();
367
368  /// Construct a vectorizable tree that starts at \p Roots and is possibly
369  /// used by a reduction of \p RdxOps.
370  void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
371
372  /// Clear the internal data structures that are created by 'buildTree'.
373  void deleteTree() {
374    RdxOps = 0;
375    VectorizableTree.clear();
376    ScalarToTreeEntry.clear();
377    MustGather.clear();
378    ExternalUses.clear();
379    MemBarrierIgnoreList.clear();
380  }
381
382  /// \returns true if the memory operations A and B are consecutive.
383  bool isConsecutiveAccess(Value *A, Value *B);
384
385  /// \brief Perform LICM and CSE on the newly generated gather sequences.
386  void optimizeGatherSequence();
387private:
388  struct TreeEntry;
389
390  /// \returns the cost of the vectorizable entry.
391  int getEntryCost(TreeEntry *E);
392
393  /// This is the recursive part of buildTree.
394  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
395
396  /// Vectorize a single entry in the tree.
397  Value *vectorizeTree(TreeEntry *E);
398
399  /// Vectorize a single entry in the tree, starting in \p VL.
400  Value *vectorizeTree(ArrayRef<Value *> VL);
401
402  /// \returns the pointer to the vectorized value if \p VL is already
403  /// vectorized, or NULL. They may happen in cycles.
404  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
405
406  /// \brief Take the pointer operand from the Load/Store instruction.
407  /// \returns NULL if this is not a valid Load/Store instruction.
408  static Value *getPointerOperand(Value *I);
409
410  /// \brief Take the address space operand from the Load/Store instruction.
411  /// \returns -1 if this is not a valid Load/Store instruction.
412  static unsigned getAddressSpaceOperand(Value *I);
413
414  /// \returns the scalarization cost for this type. Scalarization in this
415  /// context means the creation of vectors from a group of scalars.
416  int getGatherCost(Type *Ty);
417
418  /// \returns the scalarization cost for this list of values. Assuming that
419  /// this subtree gets vectorized, we may need to extract the values from the
420  /// roots. This method calculates the cost of extracting the values.
421  int getGatherCost(ArrayRef<Value *> VL);
422
423  /// \returns the AA location that is being access by the instruction.
424  AliasAnalysis::Location getLocation(Instruction *I);
425
426  /// \brief Checks if it is possible to sink an instruction from
427  /// \p Src to \p Dst.
428  /// \returns the pointer to the barrier instruction if we can't sink.
429  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
430
431  /// \returns the index of the last instruction in the BB from \p VL.
432  int getLastIndex(ArrayRef<Value *> VL);
433
434  /// \returns the Instruction in the bundle \p VL.
435  Instruction *getLastInstruction(ArrayRef<Value *> VL);
436
437  /// \brief Set the Builder insert point to one after the last instruction in
438  /// the bundle
439  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
440
441  /// \returns a vector from a collection of scalars in \p VL.
442  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
443
444  /// \returns whether the VectorizableTree is fully vectoriable and will
445  /// be beneficial even the tree height is tiny.
446  bool isFullyVectorizableTinyTree();
447
448  struct TreeEntry {
449    TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
450    NeedToGather(0) {}
451
452    /// \returns true if the scalars in VL are equal to this entry.
453    bool isSame(ArrayRef<Value *> VL) const {
454      assert(VL.size() == Scalars.size() && "Invalid size");
455      return std::equal(VL.begin(), VL.end(), Scalars.begin());
456    }
457
458    /// A vector of scalars.
459    ValueList Scalars;
460
461    /// The Scalars are vectorized into this value. It is initialized to Null.
462    Value *VectorizedValue;
463
464    /// The index in the basic block of the last scalar.
465    int LastScalarIndex;
466
467    /// Do we need to gather this sequence ?
468    bool NeedToGather;
469  };
470
471  /// Create a new VectorizableTree entry.
472  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
473    VectorizableTree.push_back(TreeEntry());
474    int idx = VectorizableTree.size() - 1;
475    TreeEntry *Last = &VectorizableTree[idx];
476    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
477    Last->NeedToGather = !Vectorized;
478    if (Vectorized) {
479      Last->LastScalarIndex = getLastIndex(VL);
480      for (int i = 0, e = VL.size(); i != e; ++i) {
481        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
482        ScalarToTreeEntry[VL[i]] = idx;
483      }
484    } else {
485      Last->LastScalarIndex = 0;
486      MustGather.insert(VL.begin(), VL.end());
487    }
488    return Last;
489  }
490
491  /// -- Vectorization State --
492  /// Holds all of the tree entries.
493  std::vector<TreeEntry> VectorizableTree;
494
495  /// Maps a specific scalar to its tree entry.
496  SmallDenseMap<Value*, int> ScalarToTreeEntry;
497
498  /// A list of scalars that we found that we need to keep as scalars.
499  ValueSet MustGather;
500
501  /// This POD struct describes one external user in the vectorized tree.
502  struct ExternalUser {
503    ExternalUser (Value *S, llvm::User *U, int L) :
504      Scalar(S), User(U), Lane(L){};
505    // Which scalar in our function.
506    Value *Scalar;
507    // Which user that uses the scalar.
508    llvm::User *User;
509    // Which lane does the scalar belong to.
510    int Lane;
511  };
512  typedef SmallVector<ExternalUser, 16> UserList;
513
514  /// A list of values that need to extracted out of the tree.
515  /// This list holds pairs of (Internal Scalar : External User).
516  UserList ExternalUses;
517
518  /// A list of instructions to ignore while sinking
519  /// memory instructions. This map must be reset between runs of getCost.
520  ValueSet MemBarrierIgnoreList;
521
522  /// Holds all of the instructions that we gathered.
523  SetVector<Instruction *> GatherSeq;
524  /// A list of blocks that we are going to CSE.
525  SetVector<BasicBlock *> CSEBlocks;
526
527  /// Numbers instructions in different blocks.
528  DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
529
530  /// Reduction operators.
531  ValueSet *RdxOps;
532
533  // Analysis and block reference.
534  Function *F;
535  ScalarEvolution *SE;
536  const DataLayout *DL;
537  TargetTransformInfo *TTI;
538  AliasAnalysis *AA;
539  LoopInfo *LI;
540  DominatorTree *DT;
541  /// Instruction builder to construct the vectorized tree.
542  IRBuilder<> Builder;
543};
544
545void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
546  deleteTree();
547  RdxOps = Rdx;
548  if (!getSameType(Roots))
549    return;
550  buildTree_rec(Roots, 0);
551
552  // Collect the values that we need to extract from the tree.
553  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
554    TreeEntry *Entry = &VectorizableTree[EIdx];
555
556    // For each lane:
557    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
558      Value *Scalar = Entry->Scalars[Lane];
559
560      // No need to handle users of gathered values.
561      if (Entry->NeedToGather)
562        continue;
563
564      for (User *U : Scalar->users()) {
565        DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
566
567        // Skip in-tree scalars that become vectors.
568        if (ScalarToTreeEntry.count(U)) {
569          DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
570                *U << ".\n");
571          int Idx = ScalarToTreeEntry[U]; (void) Idx;
572          assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
573          continue;
574        }
575        Instruction *UserInst = dyn_cast<Instruction>(U);
576        if (!UserInst)
577          continue;
578
579        // Ignore uses that are part of the reduction.
580        if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
581          continue;
582
583        DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
584              Lane << " from " << *Scalar << ".\n");
585        ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
586      }
587    }
588  }
589}
590
591
592void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
593  bool SameTy = getSameType(VL); (void)SameTy;
594  assert(SameTy && "Invalid types!");
595
596  if (Depth == RecursionMaxDepth) {
597    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
598    newTreeEntry(VL, false);
599    return;
600  }
601
602  // Don't handle vectors.
603  if (VL[0]->getType()->isVectorTy()) {
604    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
605    newTreeEntry(VL, false);
606    return;
607  }
608
609  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
610    if (SI->getValueOperand()->getType()->isVectorTy()) {
611      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
612      newTreeEntry(VL, false);
613      return;
614    }
615
616  // If all of the operands are identical or constant we have a simple solution.
617  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
618      !getSameOpcode(VL)) {
619    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
620    newTreeEntry(VL, false);
621    return;
622  }
623
624  // We now know that this is a vector of instructions of the same type from
625  // the same block.
626
627  // Check if this is a duplicate of another entry.
628  if (ScalarToTreeEntry.count(VL[0])) {
629    int Idx = ScalarToTreeEntry[VL[0]];
630    TreeEntry *E = &VectorizableTree[Idx];
631    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
632      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
633      if (E->Scalars[i] != VL[i]) {
634        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
635        newTreeEntry(VL, false);
636        return;
637      }
638    }
639    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
640    return;
641  }
642
643  // Check that none of the instructions in the bundle are already in the tree.
644  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
645    if (ScalarToTreeEntry.count(VL[i])) {
646      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
647            ") is already in tree.\n");
648      newTreeEntry(VL, false);
649      return;
650    }
651  }
652
653  // If any of the scalars appears in the table OR it is marked as a value that
654  // needs to stat scalar then we need to gather the scalars.
655  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
656    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
657      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
658      newTreeEntry(VL, false);
659      return;
660    }
661  }
662
663  // Check that all of the users of the scalars that we want to vectorize are
664  // schedulable.
665  Instruction *VL0 = cast<Instruction>(VL[0]);
666  int MyLastIndex = getLastIndex(VL);
667  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
668
669  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
670    Instruction *Scalar = cast<Instruction>(VL[i]);
671    DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
672    for (User *U : Scalar->users()) {
673      DEBUG(dbgs() << "SLP: \tUser " << *U << ". \n");
674      Instruction *UI = dyn_cast<Instruction>(U);
675      if (!UI) {
676        DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
677        newTreeEntry(VL, false);
678        return;
679      }
680
681      // We don't care if the user is in a different basic block.
682      BasicBlock *UserBlock = UI->getParent();
683      if (UserBlock != BB) {
684        DEBUG(dbgs() << "SLP: User from a different basic block "
685              << *UI << ". \n");
686        continue;
687      }
688
689      // If this is a PHINode within this basic block then we can place the
690      // extract wherever we want.
691      if (isa<PHINode>(*UI)) {
692        DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *UI << ". \n");
693        continue;
694      }
695
696      // Check if this is a safe in-tree user.
697      if (ScalarToTreeEntry.count(UI)) {
698        int Idx = ScalarToTreeEntry[UI];
699        int VecLocation = VectorizableTree[Idx].LastScalarIndex;
700        if (VecLocation <= MyLastIndex) {
701          DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
702          newTreeEntry(VL, false);
703          return;
704        }
705        DEBUG(dbgs() << "SLP: In-tree user (" << *UI << ") at #" <<
706              VecLocation << " vector value (" << *Scalar << ") at #"
707              << MyLastIndex << ".\n");
708        continue;
709      }
710
711      // This user is part of the reduction.
712      if (RdxOps && RdxOps->count(UI))
713        continue;
714
715      // Make sure that we can schedule this unknown user.
716      BlockNumbering &BN = BlocksNumbers[BB];
717      int UserIndex = BN.getIndex(UI);
718      if (UserIndex < MyLastIndex) {
719
720        DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
721              << *UI << ". \n");
722        newTreeEntry(VL, false);
723        return;
724      }
725    }
726  }
727
728  // Check that every instructions appears once in this bundle.
729  for (unsigned i = 0, e = VL.size(); i < e; ++i)
730    for (unsigned j = i+1; j < e; ++j)
731      if (VL[i] == VL[j]) {
732        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
733        newTreeEntry(VL, false);
734        return;
735      }
736
737  // Check that instructions in this bundle don't reference other instructions.
738  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
739  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
740    for (User *U : VL[i]->users()) {
741      for (unsigned j = 0; j < e; ++j) {
742        if (i != j && U == VL[j]) {
743          DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << *U << ". \n");
744          newTreeEntry(VL, false);
745          return;
746        }
747      }
748    }
749  }
750
751  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
752
753  unsigned Opcode = getSameOpcode(VL);
754
755  // Check if it is safe to sink the loads or the stores.
756  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
757    Instruction *Last = getLastInstruction(VL);
758
759    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
760      if (VL[i] == Last)
761        continue;
762      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
763      if (Barrier) {
764        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
765              << "\n because of " << *Barrier << ".  Gathering.\n");
766        newTreeEntry(VL, false);
767        return;
768      }
769    }
770  }
771
772  switch (Opcode) {
773    case Instruction::PHI: {
774      PHINode *PH = dyn_cast<PHINode>(VL0);
775
776      // Check for terminator values (e.g. invoke).
777      for (unsigned j = 0; j < VL.size(); ++j)
778        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
779          TerminatorInst *Term = dyn_cast<TerminatorInst>(
780              cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
781          if (Term) {
782            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
783            newTreeEntry(VL, false);
784            return;
785          }
786        }
787
788      newTreeEntry(VL, true);
789      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
790
791      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
792        ValueList Operands;
793        // Prepare the operand vector.
794        for (unsigned j = 0; j < VL.size(); ++j)
795          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
796              PH->getIncomingBlock(i)));
797
798        buildTree_rec(Operands, Depth + 1);
799      }
800      return;
801    }
802    case Instruction::ExtractElement: {
803      bool Reuse = CanReuseExtract(VL);
804      if (Reuse) {
805        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
806      }
807      newTreeEntry(VL, Reuse);
808      return;
809    }
810    case Instruction::Load: {
811      // Check if the loads are consecutive or of we need to swizzle them.
812      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
813        LoadInst *L = cast<LoadInst>(VL[i]);
814        if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
815          newTreeEntry(VL, false);
816          DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
817          return;
818        }
819      }
820      newTreeEntry(VL, true);
821      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
822      return;
823    }
824    case Instruction::ZExt:
825    case Instruction::SExt:
826    case Instruction::FPToUI:
827    case Instruction::FPToSI:
828    case Instruction::FPExt:
829    case Instruction::PtrToInt:
830    case Instruction::IntToPtr:
831    case Instruction::SIToFP:
832    case Instruction::UIToFP:
833    case Instruction::Trunc:
834    case Instruction::FPTrunc:
835    case Instruction::BitCast: {
836      Type *SrcTy = VL0->getOperand(0)->getType();
837      for (unsigned i = 0; i < VL.size(); ++i) {
838        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
839        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
840          newTreeEntry(VL, false);
841          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
842          return;
843        }
844      }
845      newTreeEntry(VL, true);
846      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
847
848      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
849        ValueList Operands;
850        // Prepare the operand vector.
851        for (unsigned j = 0; j < VL.size(); ++j)
852          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
853
854        buildTree_rec(Operands, Depth+1);
855      }
856      return;
857    }
858    case Instruction::ICmp:
859    case Instruction::FCmp: {
860      // Check that all of the compares have the same predicate.
861      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
862      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
863      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
864        CmpInst *Cmp = cast<CmpInst>(VL[i]);
865        if (Cmp->getPredicate() != P0 ||
866            Cmp->getOperand(0)->getType() != ComparedTy) {
867          newTreeEntry(VL, false);
868          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
869          return;
870        }
871      }
872
873      newTreeEntry(VL, true);
874      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
875
876      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
877        ValueList Operands;
878        // Prepare the operand vector.
879        for (unsigned j = 0; j < VL.size(); ++j)
880          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
881
882        buildTree_rec(Operands, Depth+1);
883      }
884      return;
885    }
886    case Instruction::Select:
887    case Instruction::Add:
888    case Instruction::FAdd:
889    case Instruction::Sub:
890    case Instruction::FSub:
891    case Instruction::Mul:
892    case Instruction::FMul:
893    case Instruction::UDiv:
894    case Instruction::SDiv:
895    case Instruction::FDiv:
896    case Instruction::URem:
897    case Instruction::SRem:
898    case Instruction::FRem:
899    case Instruction::Shl:
900    case Instruction::LShr:
901    case Instruction::AShr:
902    case Instruction::And:
903    case Instruction::Or:
904    case Instruction::Xor: {
905      newTreeEntry(VL, true);
906      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
907
908      // Sort operands of the instructions so that each side is more likely to
909      // have the same opcode.
910      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
911        ValueList Left, Right;
912        reorderInputsAccordingToOpcode(VL, Left, Right);
913        buildTree_rec(Left, Depth + 1);
914        buildTree_rec(Right, Depth + 1);
915        return;
916      }
917
918      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
919        ValueList Operands;
920        // Prepare the operand vector.
921        for (unsigned j = 0; j < VL.size(); ++j)
922          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
923
924        buildTree_rec(Operands, Depth+1);
925      }
926      return;
927    }
928    case Instruction::Store: {
929      // Check if the stores are consecutive or of we need to swizzle them.
930      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
931        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
932          newTreeEntry(VL, false);
933          DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
934          return;
935        }
936
937      newTreeEntry(VL, true);
938      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
939
940      ValueList Operands;
941      for (unsigned j = 0; j < VL.size(); ++j)
942        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
943
944      // We can ignore these values because we are sinking them down.
945      MemBarrierIgnoreList.insert(VL.begin(), VL.end());
946      buildTree_rec(Operands, Depth + 1);
947      return;
948    }
949    case Instruction::Call: {
950      // Check if the calls are all to the same vectorizable intrinsic.
951      IntrinsicInst *II = dyn_cast<IntrinsicInst>(VL[0]);
952      if (II==NULL) {
953        newTreeEntry(VL, false);
954        DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
955        return;
956      }
957
958      Function *Int = II->getCalledFunction();
959
960      for (unsigned i = 1, e = VL.size(); i != e; ++i) {
961        IntrinsicInst *II2 = dyn_cast<IntrinsicInst>(VL[i]);
962        if (!II2 || II2->getCalledFunction() != Int) {
963          newTreeEntry(VL, false);
964          DEBUG(dbgs() << "SLP: mismatched calls:" << *II << "!=" << *VL[i]
965                       << "\n");
966          return;
967        }
968      }
969
970      newTreeEntry(VL, true);
971      for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i) {
972        ValueList Operands;
973        // Prepare the operand vector.
974        for (unsigned j = 0; j < VL.size(); ++j) {
975          IntrinsicInst *II2 = dyn_cast<IntrinsicInst>(VL[j]);
976          Operands.push_back(II2->getArgOperand(i));
977        }
978        buildTree_rec(Operands, Depth + 1);
979      }
980      return;
981    }
982    default:
983      newTreeEntry(VL, false);
984      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
985      return;
986  }
987}
988
989int BoUpSLP::getEntryCost(TreeEntry *E) {
990  ArrayRef<Value*> VL = E->Scalars;
991
992  Type *ScalarTy = VL[0]->getType();
993  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
994    ScalarTy = SI->getValueOperand()->getType();
995  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
996
997  if (E->NeedToGather) {
998    if (allConstant(VL))
999      return 0;
1000    if (isSplat(VL)) {
1001      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1002    }
1003    return getGatherCost(E->Scalars);
1004  }
1005
1006  assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
1007         "Invalid VL");
1008  Instruction *VL0 = cast<Instruction>(VL[0]);
1009  unsigned Opcode = VL0->getOpcode();
1010  switch (Opcode) {
1011    case Instruction::PHI: {
1012      return 0;
1013    }
1014    case Instruction::ExtractElement: {
1015      if (CanReuseExtract(VL)) {
1016        int DeadCost = 0;
1017        for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1018          ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1019          if (E->hasOneUse())
1020            // Take credit for instruction that will become dead.
1021            DeadCost +=
1022                TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1023        }
1024        return -DeadCost;
1025      }
1026      return getGatherCost(VecTy);
1027    }
1028    case Instruction::ZExt:
1029    case Instruction::SExt:
1030    case Instruction::FPToUI:
1031    case Instruction::FPToSI:
1032    case Instruction::FPExt:
1033    case Instruction::PtrToInt:
1034    case Instruction::IntToPtr:
1035    case Instruction::SIToFP:
1036    case Instruction::UIToFP:
1037    case Instruction::Trunc:
1038    case Instruction::FPTrunc:
1039    case Instruction::BitCast: {
1040      Type *SrcTy = VL0->getOperand(0)->getType();
1041
1042      // Calculate the cost of this instruction.
1043      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1044                                                         VL0->getType(), SrcTy);
1045
1046      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1047      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1048      return VecCost - ScalarCost;
1049    }
1050    case Instruction::FCmp:
1051    case Instruction::ICmp:
1052    case Instruction::Select:
1053    case Instruction::Add:
1054    case Instruction::FAdd:
1055    case Instruction::Sub:
1056    case Instruction::FSub:
1057    case Instruction::Mul:
1058    case Instruction::FMul:
1059    case Instruction::UDiv:
1060    case Instruction::SDiv:
1061    case Instruction::FDiv:
1062    case Instruction::URem:
1063    case Instruction::SRem:
1064    case Instruction::FRem:
1065    case Instruction::Shl:
1066    case Instruction::LShr:
1067    case Instruction::AShr:
1068    case Instruction::And:
1069    case Instruction::Or:
1070    case Instruction::Xor: {
1071      // Calculate the cost of this instruction.
1072      int ScalarCost = 0;
1073      int VecCost = 0;
1074      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1075          Opcode == Instruction::Select) {
1076        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1077        ScalarCost = VecTy->getNumElements() *
1078        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1079        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1080      } else {
1081        // Certain instructions can be cheaper to vectorize if they have a
1082        // constant second vector operand.
1083        TargetTransformInfo::OperandValueKind Op1VK =
1084            TargetTransformInfo::OK_AnyValue;
1085        TargetTransformInfo::OperandValueKind Op2VK =
1086            TargetTransformInfo::OK_UniformConstantValue;
1087
1088        // If all operands are exactly the same ConstantInt then set the
1089        // operand kind to OK_UniformConstantValue.
1090        // If instead not all operands are constants, then set the operand kind
1091        // to OK_AnyValue. If all operands are constants but not the same,
1092        // then set the operand kind to OK_NonUniformConstantValue.
1093        ConstantInt *CInt = NULL;
1094        for (unsigned i = 0; i < VL.size(); ++i) {
1095          const Instruction *I = cast<Instruction>(VL[i]);
1096          if (!isa<ConstantInt>(I->getOperand(1))) {
1097            Op2VK = TargetTransformInfo::OK_AnyValue;
1098            break;
1099          }
1100          if (i == 0) {
1101            CInt = cast<ConstantInt>(I->getOperand(1));
1102            continue;
1103          }
1104          if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1105              CInt != cast<ConstantInt>(I->getOperand(1)))
1106            Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1107        }
1108
1109        ScalarCost =
1110            VecTy->getNumElements() *
1111            TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1112        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1113      }
1114      return VecCost - ScalarCost;
1115    }
1116    case Instruction::Load: {
1117      // Cost of wide load - cost of scalar loads.
1118      int ScalarLdCost = VecTy->getNumElements() *
1119      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1120      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1121      return VecLdCost - ScalarLdCost;
1122    }
1123    case Instruction::Store: {
1124      // We know that we can merge the stores. Calculate the cost.
1125      int ScalarStCost = VecTy->getNumElements() *
1126      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1127      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1128      return VecStCost - ScalarStCost;
1129    }
1130    case Instruction::Call: {
1131      CallInst *CI = cast<CallInst>(VL0);
1132      IntrinsicInst *II = cast<IntrinsicInst>(CI);
1133      Intrinsic::ID ID = II->getIntrinsicID();
1134
1135      // Calculate the cost of the scalar and vector calls.
1136      SmallVector<Type*, 4> ScalarTys, VecTys;
1137      for (unsigned op = 0, opc = II->getNumArgOperands(); op!= opc; ++op) {
1138        ScalarTys.push_back(CI->getArgOperand(op)->getType());
1139        VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1140                                         VecTy->getNumElements()));
1141      }
1142
1143      int ScalarCallCost = VecTy->getNumElements() *
1144          TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1145
1146      int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1147
1148      DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
1149            << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
1150            << " for " << *II << "\n");
1151
1152      return VecCallCost - ScalarCallCost;
1153    }
1154    default:
1155      llvm_unreachable("Unknown instruction");
1156  }
1157}
1158
1159bool BoUpSLP::isFullyVectorizableTinyTree() {
1160  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1161        VectorizableTree.size() << " is fully vectorizable .\n");
1162
1163  // We only handle trees of height 2.
1164  if (VectorizableTree.size() != 2)
1165    return false;
1166
1167  // Handle splat stores.
1168  if (!VectorizableTree[0].NeedToGather && isSplat(VectorizableTree[1].Scalars))
1169    return true;
1170
1171  // Gathering cost would be too much for tiny trees.
1172  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1173    return false;
1174
1175  return true;
1176}
1177
1178int BoUpSLP::getTreeCost() {
1179  int Cost = 0;
1180  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1181        VectorizableTree.size() << ".\n");
1182
1183  // We only vectorize tiny trees if it is fully vectorizable.
1184  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1185    if (!VectorizableTree.size()) {
1186      assert(!ExternalUses.size() && "We should not have any external users");
1187    }
1188    return INT_MAX;
1189  }
1190
1191  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1192
1193  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1194    int C = getEntryCost(&VectorizableTree[i]);
1195    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1196          << *VectorizableTree[i].Scalars[0] << " .\n");
1197    Cost += C;
1198  }
1199
1200  SmallSet<Value *, 16> ExtractCostCalculated;
1201  int ExtractCost = 0;
1202  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1203       I != E; ++I) {
1204    // We only add extract cost once for the same scalar.
1205    if (!ExtractCostCalculated.insert(I->Scalar))
1206      continue;
1207
1208    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1209    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1210                                           I->Lane);
1211  }
1212
1213  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1214  return  Cost + ExtractCost;
1215}
1216
1217int BoUpSLP::getGatherCost(Type *Ty) {
1218  int Cost = 0;
1219  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1220    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1221  return Cost;
1222}
1223
1224int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1225  // Find the type of the operands in VL.
1226  Type *ScalarTy = VL[0]->getType();
1227  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1228    ScalarTy = SI->getValueOperand()->getType();
1229  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1230  // Find the cost of inserting/extracting values from the vector.
1231  return getGatherCost(VecTy);
1232}
1233
1234AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1235  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1236    return AA->getLocation(SI);
1237  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1238    return AA->getLocation(LI);
1239  return AliasAnalysis::Location();
1240}
1241
1242Value *BoUpSLP::getPointerOperand(Value *I) {
1243  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1244    return LI->getPointerOperand();
1245  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1246    return SI->getPointerOperand();
1247  return 0;
1248}
1249
1250unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1251  if (LoadInst *L = dyn_cast<LoadInst>(I))
1252    return L->getPointerAddressSpace();
1253  if (StoreInst *S = dyn_cast<StoreInst>(I))
1254    return S->getPointerAddressSpace();
1255  return -1;
1256}
1257
1258bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1259  Value *PtrA = getPointerOperand(A);
1260  Value *PtrB = getPointerOperand(B);
1261  unsigned ASA = getAddressSpaceOperand(A);
1262  unsigned ASB = getAddressSpaceOperand(B);
1263
1264  // Check that the address spaces match and that the pointers are valid.
1265  if (!PtrA || !PtrB || (ASA != ASB))
1266    return false;
1267
1268  // Make sure that A and B are different pointers of the same type.
1269  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1270    return false;
1271
1272  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1273  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1274  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1275
1276  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1277  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1278  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1279
1280  APInt OffsetDelta = OffsetB - OffsetA;
1281
1282  // Check if they are based on the same pointer. That makes the offsets
1283  // sufficient.
1284  if (PtrA == PtrB)
1285    return OffsetDelta == Size;
1286
1287  // Compute the necessary base pointer delta to have the necessary final delta
1288  // equal to the size.
1289  APInt BaseDelta = Size - OffsetDelta;
1290
1291  // Otherwise compute the distance with SCEV between the base pointers.
1292  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1293  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1294  const SCEV *C = SE->getConstant(BaseDelta);
1295  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1296  return X == PtrSCEVB;
1297}
1298
1299Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1300  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1301  BasicBlock::iterator I = Src, E = Dst;
1302  /// Scan all of the instruction from SRC to DST and check if
1303  /// the source may alias.
1304  for (++I; I != E; ++I) {
1305    // Ignore store instructions that are marked as 'ignore'.
1306    if (MemBarrierIgnoreList.count(I))
1307      continue;
1308    if (Src->mayWriteToMemory()) /* Write */ {
1309      if (!I->mayReadOrWriteMemory())
1310        continue;
1311    } else /* Read */ {
1312      if (!I->mayWriteToMemory())
1313        continue;
1314    }
1315    AliasAnalysis::Location A = getLocation(&*I);
1316    AliasAnalysis::Location B = getLocation(Src);
1317
1318    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1319      return I;
1320  }
1321  return 0;
1322}
1323
1324int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1325  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1326  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1327  BlockNumbering &BN = BlocksNumbers[BB];
1328
1329  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1330  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1331    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1332  return MaxIdx;
1333}
1334
1335Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1336  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1337  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1338  BlockNumbering &BN = BlocksNumbers[BB];
1339
1340  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1341  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1342    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1343  Instruction *I = BN.getInstruction(MaxIdx);
1344  assert(I && "bad location");
1345  return I;
1346}
1347
1348void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1349  Instruction *VL0 = cast<Instruction>(VL[0]);
1350  Instruction *LastInst = getLastInstruction(VL);
1351  BasicBlock::iterator NextInst = LastInst;
1352  ++NextInst;
1353  Builder.SetInsertPoint(VL0->getParent(), NextInst);
1354  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1355}
1356
1357Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1358  Value *Vec = UndefValue::get(Ty);
1359  // Generate the 'InsertElement' instruction.
1360  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1361    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1362    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1363      GatherSeq.insert(Insrt);
1364      CSEBlocks.insert(Insrt->getParent());
1365
1366      // Add to our 'need-to-extract' list.
1367      if (ScalarToTreeEntry.count(VL[i])) {
1368        int Idx = ScalarToTreeEntry[VL[i]];
1369        TreeEntry *E = &VectorizableTree[Idx];
1370        // Find which lane we need to extract.
1371        int FoundLane = -1;
1372        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1373          // Is this the lane of the scalar that we are looking for ?
1374          if (E->Scalars[Lane] == VL[i]) {
1375            FoundLane = Lane;
1376            break;
1377          }
1378        }
1379        assert(FoundLane >= 0 && "Could not find the correct lane");
1380        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1381      }
1382    }
1383  }
1384
1385  return Vec;
1386}
1387
1388Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1389  SmallDenseMap<Value*, int>::const_iterator Entry
1390    = ScalarToTreeEntry.find(VL[0]);
1391  if (Entry != ScalarToTreeEntry.end()) {
1392    int Idx = Entry->second;
1393    const TreeEntry *En = &VectorizableTree[Idx];
1394    if (En->isSame(VL) && En->VectorizedValue)
1395      return En->VectorizedValue;
1396  }
1397  return 0;
1398}
1399
1400Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1401  if (ScalarToTreeEntry.count(VL[0])) {
1402    int Idx = ScalarToTreeEntry[VL[0]];
1403    TreeEntry *E = &VectorizableTree[Idx];
1404    if (E->isSame(VL))
1405      return vectorizeTree(E);
1406  }
1407
1408  Type *ScalarTy = VL[0]->getType();
1409  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1410    ScalarTy = SI->getValueOperand()->getType();
1411  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1412
1413  return Gather(VL, VecTy);
1414}
1415
1416Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1417  IRBuilder<>::InsertPointGuard Guard(Builder);
1418
1419  if (E->VectorizedValue) {
1420    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1421    return E->VectorizedValue;
1422  }
1423
1424  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1425  Type *ScalarTy = VL0->getType();
1426  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1427    ScalarTy = SI->getValueOperand()->getType();
1428  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1429
1430  if (E->NeedToGather) {
1431    setInsertPointAfterBundle(E->Scalars);
1432    return Gather(E->Scalars, VecTy);
1433  }
1434
1435  unsigned Opcode = VL0->getOpcode();
1436  assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1437
1438  switch (Opcode) {
1439    case Instruction::PHI: {
1440      PHINode *PH = dyn_cast<PHINode>(VL0);
1441      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1442      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1443      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1444      E->VectorizedValue = NewPhi;
1445
1446      // PHINodes may have multiple entries from the same block. We want to
1447      // visit every block once.
1448      SmallSet<BasicBlock*, 4> VisitedBBs;
1449
1450      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1451        ValueList Operands;
1452        BasicBlock *IBB = PH->getIncomingBlock(i);
1453
1454        if (!VisitedBBs.insert(IBB)) {
1455          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1456          continue;
1457        }
1458
1459        // Prepare the operand vector.
1460        for (unsigned j = 0; j < E->Scalars.size(); ++j)
1461          Operands.push_back(cast<PHINode>(E->Scalars[j])->
1462                             getIncomingValueForBlock(IBB));
1463
1464        Builder.SetInsertPoint(IBB->getTerminator());
1465        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1466        Value *Vec = vectorizeTree(Operands);
1467        NewPhi->addIncoming(Vec, IBB);
1468      }
1469
1470      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1471             "Invalid number of incoming values");
1472      return NewPhi;
1473    }
1474
1475    case Instruction::ExtractElement: {
1476      if (CanReuseExtract(E->Scalars)) {
1477        Value *V = VL0->getOperand(0);
1478        E->VectorizedValue = V;
1479        return V;
1480      }
1481      return Gather(E->Scalars, VecTy);
1482    }
1483    case Instruction::ZExt:
1484    case Instruction::SExt:
1485    case Instruction::FPToUI:
1486    case Instruction::FPToSI:
1487    case Instruction::FPExt:
1488    case Instruction::PtrToInt:
1489    case Instruction::IntToPtr:
1490    case Instruction::SIToFP:
1491    case Instruction::UIToFP:
1492    case Instruction::Trunc:
1493    case Instruction::FPTrunc:
1494    case Instruction::BitCast: {
1495      ValueList INVL;
1496      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1497        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1498
1499      setInsertPointAfterBundle(E->Scalars);
1500
1501      Value *InVec = vectorizeTree(INVL);
1502
1503      if (Value *V = alreadyVectorized(E->Scalars))
1504        return V;
1505
1506      CastInst *CI = dyn_cast<CastInst>(VL0);
1507      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1508      E->VectorizedValue = V;
1509      return V;
1510    }
1511    case Instruction::FCmp:
1512    case Instruction::ICmp: {
1513      ValueList LHSV, RHSV;
1514      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1515        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1516        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1517      }
1518
1519      setInsertPointAfterBundle(E->Scalars);
1520
1521      Value *L = vectorizeTree(LHSV);
1522      Value *R = vectorizeTree(RHSV);
1523
1524      if (Value *V = alreadyVectorized(E->Scalars))
1525        return V;
1526
1527      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1528      Value *V;
1529      if (Opcode == Instruction::FCmp)
1530        V = Builder.CreateFCmp(P0, L, R);
1531      else
1532        V = Builder.CreateICmp(P0, L, R);
1533
1534      E->VectorizedValue = V;
1535      return V;
1536    }
1537    case Instruction::Select: {
1538      ValueList TrueVec, FalseVec, CondVec;
1539      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1540        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1541        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1542        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1543      }
1544
1545      setInsertPointAfterBundle(E->Scalars);
1546
1547      Value *Cond = vectorizeTree(CondVec);
1548      Value *True = vectorizeTree(TrueVec);
1549      Value *False = vectorizeTree(FalseVec);
1550
1551      if (Value *V = alreadyVectorized(E->Scalars))
1552        return V;
1553
1554      Value *V = Builder.CreateSelect(Cond, True, False);
1555      E->VectorizedValue = V;
1556      return V;
1557    }
1558    case Instruction::Add:
1559    case Instruction::FAdd:
1560    case Instruction::Sub:
1561    case Instruction::FSub:
1562    case Instruction::Mul:
1563    case Instruction::FMul:
1564    case Instruction::UDiv:
1565    case Instruction::SDiv:
1566    case Instruction::FDiv:
1567    case Instruction::URem:
1568    case Instruction::SRem:
1569    case Instruction::FRem:
1570    case Instruction::Shl:
1571    case Instruction::LShr:
1572    case Instruction::AShr:
1573    case Instruction::And:
1574    case Instruction::Or:
1575    case Instruction::Xor: {
1576      ValueList LHSVL, RHSVL;
1577      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1578        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1579      else
1580        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1581          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1582          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1583        }
1584
1585      setInsertPointAfterBundle(E->Scalars);
1586
1587      Value *LHS = vectorizeTree(LHSVL);
1588      Value *RHS = vectorizeTree(RHSVL);
1589
1590      if (LHS == RHS && isa<Instruction>(LHS)) {
1591        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1592      }
1593
1594      if (Value *V = alreadyVectorized(E->Scalars))
1595        return V;
1596
1597      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1598      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1599      E->VectorizedValue = V;
1600
1601      if (Instruction *I = dyn_cast<Instruction>(V))
1602        return propagateMetadata(I, E->Scalars);
1603
1604      return V;
1605    }
1606    case Instruction::Load: {
1607      // Loads are inserted at the head of the tree because we don't want to
1608      // sink them all the way down past store instructions.
1609      setInsertPointAfterBundle(E->Scalars);
1610
1611      LoadInst *LI = cast<LoadInst>(VL0);
1612      unsigned AS = LI->getPointerAddressSpace();
1613
1614      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1615                                            VecTy->getPointerTo(AS));
1616      unsigned Alignment = LI->getAlignment();
1617      LI = Builder.CreateLoad(VecPtr);
1618      LI->setAlignment(Alignment);
1619      E->VectorizedValue = LI;
1620      return propagateMetadata(LI, E->Scalars);
1621    }
1622    case Instruction::Store: {
1623      StoreInst *SI = cast<StoreInst>(VL0);
1624      unsigned Alignment = SI->getAlignment();
1625      unsigned AS = SI->getPointerAddressSpace();
1626
1627      ValueList ValueOp;
1628      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1629        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1630
1631      setInsertPointAfterBundle(E->Scalars);
1632
1633      Value *VecValue = vectorizeTree(ValueOp);
1634      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1635                                            VecTy->getPointerTo(AS));
1636      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1637      S->setAlignment(Alignment);
1638      E->VectorizedValue = S;
1639      return propagateMetadata(S, E->Scalars);
1640    }
1641    case Instruction::Call: {
1642      CallInst *CI = cast<CallInst>(VL0);
1643
1644      setInsertPointAfterBundle(E->Scalars);
1645      std::vector<Value *> OpVecs;
1646      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
1647        ValueList OpVL;
1648        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1649          CallInst *CEI = cast<CallInst>(E->Scalars[i]);
1650          OpVL.push_back(CEI->getArgOperand(j));
1651        }
1652
1653        Value *OpVec = vectorizeTree(OpVL);
1654        DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
1655        OpVecs.push_back(OpVec);
1656      }
1657
1658      Module *M = F->getParent();
1659      IntrinsicInst *II = cast<IntrinsicInst>(CI);
1660      Intrinsic::ID ID = II->getIntrinsicID();
1661      Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
1662      Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
1663      Value *V = Builder.CreateCall(CF, OpVecs);
1664      E->VectorizedValue = V;
1665      return V;
1666    }
1667    default:
1668    llvm_unreachable("unknown inst");
1669  }
1670  return 0;
1671}
1672
1673Value *BoUpSLP::vectorizeTree() {
1674  Builder.SetInsertPoint(F->getEntryBlock().begin());
1675  vectorizeTree(&VectorizableTree[0]);
1676
1677  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1678
1679  // Extract all of the elements with the external uses.
1680  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1681       it != e; ++it) {
1682    Value *Scalar = it->Scalar;
1683    llvm::User *User = it->User;
1684
1685    // Skip users that we already RAUW. This happens when one instruction
1686    // has multiple uses of the same value.
1687    if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
1688        Scalar->user_end())
1689      continue;
1690    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1691
1692    int Idx = ScalarToTreeEntry[Scalar];
1693    TreeEntry *E = &VectorizableTree[Idx];
1694    assert(!E->NeedToGather && "Extracting from a gather list");
1695
1696    Value *Vec = E->VectorizedValue;
1697    assert(Vec && "Can't find vectorizable value");
1698
1699    Value *Lane = Builder.getInt32(it->Lane);
1700    // Generate extracts for out-of-tree users.
1701    // Find the insertion point for the extractelement lane.
1702    if (isa<Instruction>(Vec)){
1703      if (PHINode *PH = dyn_cast<PHINode>(User)) {
1704        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1705          if (PH->getIncomingValue(i) == Scalar) {
1706            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1707            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1708            CSEBlocks.insert(PH->getIncomingBlock(i));
1709            PH->setOperand(i, Ex);
1710          }
1711        }
1712      } else {
1713        Builder.SetInsertPoint(cast<Instruction>(User));
1714        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1715        CSEBlocks.insert(cast<Instruction>(User)->getParent());
1716        User->replaceUsesOfWith(Scalar, Ex);
1717     }
1718    } else {
1719      Builder.SetInsertPoint(F->getEntryBlock().begin());
1720      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1721      CSEBlocks.insert(&F->getEntryBlock());
1722      User->replaceUsesOfWith(Scalar, Ex);
1723    }
1724
1725    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1726  }
1727
1728  // For each vectorized value:
1729  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1730    TreeEntry *Entry = &VectorizableTree[EIdx];
1731
1732    // For each lane:
1733    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1734      Value *Scalar = Entry->Scalars[Lane];
1735
1736      // No need to handle users of gathered values.
1737      if (Entry->NeedToGather)
1738        continue;
1739
1740      assert(Entry->VectorizedValue && "Can't find vectorizable value");
1741
1742      Type *Ty = Scalar->getType();
1743      if (!Ty->isVoidTy()) {
1744#ifndef NDEBUG
1745        for (User *U : Scalar->users()) {
1746          DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
1747
1748          assert((ScalarToTreeEntry.count(U) ||
1749                  // It is legal to replace the reduction users by undef.
1750                  (RdxOps && RdxOps->count(U))) &&
1751                 "Replacing out-of-tree value with undef");
1752        }
1753#endif
1754        Value *Undef = UndefValue::get(Ty);
1755        Scalar->replaceAllUsesWith(Undef);
1756      }
1757      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1758      cast<Instruction>(Scalar)->eraseFromParent();
1759    }
1760  }
1761
1762  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1763    BlocksNumbers[it].forget();
1764  }
1765  Builder.ClearInsertionPoint();
1766
1767  return VectorizableTree[0].VectorizedValue;
1768}
1769
1770void BoUpSLP::optimizeGatherSequence() {
1771  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1772        << " gather sequences instructions.\n");
1773  // LICM InsertElementInst sequences.
1774  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1775       e = GatherSeq.end(); it != e; ++it) {
1776    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
1777
1778    if (!Insert)
1779      continue;
1780
1781    // Check if this block is inside a loop.
1782    Loop *L = LI->getLoopFor(Insert->getParent());
1783    if (!L)
1784      continue;
1785
1786    // Check if it has a preheader.
1787    BasicBlock *PreHeader = L->getLoopPreheader();
1788    if (!PreHeader)
1789      continue;
1790
1791    // If the vector or the element that we insert into it are
1792    // instructions that are defined in this basic block then we can't
1793    // hoist this instruction.
1794    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1795    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1796    if (CurrVec && L->contains(CurrVec))
1797      continue;
1798    if (NewElem && L->contains(NewElem))
1799      continue;
1800
1801    // We can hoist this instruction. Move it to the pre-header.
1802    Insert->moveBefore(PreHeader->getTerminator());
1803  }
1804
1805  // Sort blocks by domination. This ensures we visit a block after all blocks
1806  // dominating it are visited.
1807  SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
1808  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
1809                   [this](const BasicBlock *A, const BasicBlock *B) {
1810    return DT->properlyDominates(A, B);
1811  });
1812
1813  // Perform O(N^2) search over the gather sequences and merge identical
1814  // instructions. TODO: We can further optimize this scan if we split the
1815  // instructions into different buckets based on the insert lane.
1816  SmallVector<Instruction *, 16> Visited;
1817  for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
1818                                               E = CSEWorkList.end();
1819       I != E; ++I) {
1820    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
1821           "Worklist not sorted properly!");
1822    BasicBlock *BB = *I;
1823    // For all instructions in blocks containing gather sequences:
1824    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
1825      Instruction *In = it++;
1826      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
1827        continue;
1828
1829      // Check if we can replace this instruction with any of the
1830      // visited instructions.
1831      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
1832                                                    ve = Visited.end();
1833           v != ve; ++v) {
1834        if (In->isIdenticalTo(*v) &&
1835            DT->dominates((*v)->getParent(), In->getParent())) {
1836          In->replaceAllUsesWith(*v);
1837          In->eraseFromParent();
1838          In = 0;
1839          break;
1840        }
1841      }
1842      if (In) {
1843        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
1844        Visited.push_back(In);
1845      }
1846    }
1847  }
1848  CSEBlocks.clear();
1849  GatherSeq.clear();
1850}
1851
1852/// The SLPVectorizer Pass.
1853struct SLPVectorizer : public FunctionPass {
1854  typedef SmallVector<StoreInst *, 8> StoreList;
1855  typedef MapVector<Value *, StoreList> StoreListMap;
1856
1857  /// Pass identification, replacement for typeid
1858  static char ID;
1859
1860  explicit SLPVectorizer() : FunctionPass(ID) {
1861    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
1862  }
1863
1864  ScalarEvolution *SE;
1865  const DataLayout *DL;
1866  TargetTransformInfo *TTI;
1867  AliasAnalysis *AA;
1868  LoopInfo *LI;
1869  DominatorTree *DT;
1870
1871  bool runOnFunction(Function &F) override {
1872    if (skipOptnoneFunction(F))
1873      return false;
1874
1875    SE = &getAnalysis<ScalarEvolution>();
1876    DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1877    DL = DLP ? &DLP->getDataLayout() : 0;
1878    TTI = &getAnalysis<TargetTransformInfo>();
1879    AA = &getAnalysis<AliasAnalysis>();
1880    LI = &getAnalysis<LoopInfo>();
1881    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1882
1883    StoreRefs.clear();
1884    bool Changed = false;
1885
1886    // If the target claims to have no vector registers don't attempt
1887    // vectorization.
1888    if (!TTI->getNumberOfRegisters(true))
1889      return false;
1890
1891    // Must have DataLayout. We can't require it because some tests run w/o
1892    // triple.
1893    if (!DL)
1894      return false;
1895
1896    // Don't vectorize when the attribute NoImplicitFloat is used.
1897    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
1898      return false;
1899
1900    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1901
1902    // Use the bottom up slp vectorizer to construct chains that start with
1903    // he store instructions.
1904    BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1905
1906    // Scan the blocks in the function in post order.
1907    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
1908         e = po_end(&F.getEntryBlock()); it != e; ++it) {
1909      BasicBlock *BB = *it;
1910
1911      // Vectorize trees that end at stores.
1912      if (unsigned count = collectStores(BB, R)) {
1913        (void)count;
1914        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1915        Changed |= vectorizeStoreChains(R);
1916      }
1917
1918      // Vectorize trees that end at reductions.
1919      Changed |= vectorizeChainsInBlock(BB, R);
1920    }
1921
1922    if (Changed) {
1923      R.optimizeGatherSequence();
1924      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1925      DEBUG(verifyFunction(F));
1926    }
1927    return Changed;
1928  }
1929
1930  void getAnalysisUsage(AnalysisUsage &AU) const override {
1931    FunctionPass::getAnalysisUsage(AU);
1932    AU.addRequired<ScalarEvolution>();
1933    AU.addRequired<AliasAnalysis>();
1934    AU.addRequired<TargetTransformInfo>();
1935    AU.addRequired<LoopInfo>();
1936    AU.addRequired<DominatorTreeWrapperPass>();
1937    AU.addPreserved<LoopInfo>();
1938    AU.addPreserved<DominatorTreeWrapperPass>();
1939    AU.setPreservesCFG();
1940  }
1941
1942private:
1943
1944  /// \brief Collect memory references and sort them according to their base
1945  /// object. We sort the stores to their base objects to reduce the cost of the
1946  /// quadratic search on the stores. TODO: We can further reduce this cost
1947  /// if we flush the chain creation every time we run into a memory barrier.
1948  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1949
1950  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1951  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1952
1953  /// \brief Try to vectorize a list of operands.
1954  /// \returns true if a value was vectorized.
1955  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1956
1957  /// \brief Try to vectorize a chain that may start at the operands of \V;
1958  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1959
1960  /// \brief Vectorize the stores that were collected in StoreRefs.
1961  bool vectorizeStoreChains(BoUpSLP &R);
1962
1963  /// \brief Scan the basic block and look for patterns that are likely to start
1964  /// a vectorization chain.
1965  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1966
1967  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1968                           BoUpSLP &R);
1969
1970  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1971                       BoUpSLP &R);
1972private:
1973  StoreListMap StoreRefs;
1974};
1975
1976/// \brief Check that the Values in the slice in VL array are still existent in
1977/// the WeakVH array.
1978/// Vectorization of part of the VL array may cause later values in the VL array
1979/// to become invalid. We track when this has happened in the WeakVH array.
1980static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
1981                               SmallVectorImpl<WeakVH> &VH,
1982                               unsigned SliceBegin,
1983                               unsigned SliceSize) {
1984  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
1985    if (VH[i] != VL[i])
1986      return true;
1987
1988  return false;
1989}
1990
1991bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1992                                          int CostThreshold, BoUpSLP &R) {
1993  unsigned ChainLen = Chain.size();
1994  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1995        << "\n");
1996  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1997  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1998  unsigned VF = MinVecRegSize / Sz;
1999
2000  if (!isPowerOf2_32(Sz) || VF < 2)
2001    return false;
2002
2003  // Keep track of values that were deleted by vectorizing in the loop below.
2004  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
2005
2006  bool Changed = false;
2007  // Look for profitable vectorizable trees at all offsets, starting at zero.
2008  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
2009    if (i + VF > e)
2010      break;
2011
2012    // Check that a previous iteration of this loop did not delete the Value.
2013    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
2014      continue;
2015
2016    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
2017          << "\n");
2018    ArrayRef<Value *> Operands = Chain.slice(i, VF);
2019
2020    R.buildTree(Operands);
2021
2022    int Cost = R.getTreeCost();
2023
2024    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
2025    if (Cost < CostThreshold) {
2026      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
2027      R.vectorizeTree();
2028
2029      // Move to the next bundle.
2030      i += VF - 1;
2031      Changed = true;
2032    }
2033  }
2034
2035  return Changed;
2036}
2037
2038bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
2039                                    int costThreshold, BoUpSLP &R) {
2040  SetVector<Value *> Heads, Tails;
2041  SmallDenseMap<Value *, Value *> ConsecutiveChain;
2042
2043  // We may run into multiple chains that merge into a single chain. We mark the
2044  // stores that we vectorized so that we don't visit the same store twice.
2045  BoUpSLP::ValueSet VectorizedStores;
2046  bool Changed = false;
2047
2048  // Do a quadratic search on all of the given stores and find
2049  // all of the pairs of stores that follow each other.
2050  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
2051    for (unsigned j = 0; j < e; ++j) {
2052      if (i == j)
2053        continue;
2054
2055      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
2056        Tails.insert(Stores[j]);
2057        Heads.insert(Stores[i]);
2058        ConsecutiveChain[Stores[i]] = Stores[j];
2059      }
2060    }
2061  }
2062
2063  // For stores that start but don't end a link in the chain:
2064  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
2065       it != e; ++it) {
2066    if (Tails.count(*it))
2067      continue;
2068
2069    // We found a store instr that starts a chain. Now follow the chain and try
2070    // to vectorize it.
2071    BoUpSLP::ValueList Operands;
2072    Value *I = *it;
2073    // Collect the chain into a list.
2074    while (Tails.count(I) || Heads.count(I)) {
2075      if (VectorizedStores.count(I))
2076        break;
2077      Operands.push_back(I);
2078      // Move to the next value in the chain.
2079      I = ConsecutiveChain[I];
2080    }
2081
2082    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
2083
2084    // Mark the vectorized stores so that we don't vectorize them again.
2085    if (Vectorized)
2086      VectorizedStores.insert(Operands.begin(), Operands.end());
2087    Changed |= Vectorized;
2088  }
2089
2090  return Changed;
2091}
2092
2093
2094unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
2095  unsigned count = 0;
2096  StoreRefs.clear();
2097  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2098    StoreInst *SI = dyn_cast<StoreInst>(it);
2099    if (!SI)
2100      continue;
2101
2102    // Don't touch volatile stores.
2103    if (!SI->isSimple())
2104      continue;
2105
2106    // Check that the pointer points to scalars.
2107    Type *Ty = SI->getValueOperand()->getType();
2108    if (Ty->isAggregateType() || Ty->isVectorTy())
2109      return 0;
2110
2111    // Find the base pointer.
2112    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2113
2114    // Save the store locations.
2115    StoreRefs[Ptr].push_back(SI);
2116    count++;
2117  }
2118  return count;
2119}
2120
2121bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2122  if (!A || !B)
2123    return false;
2124  Value *VL[] = { A, B };
2125  return tryToVectorizeList(VL, R);
2126}
2127
2128bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
2129  if (VL.size() < 2)
2130    return false;
2131
2132  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2133
2134  // Check that all of the parts are scalar instructions of the same type.
2135  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2136  if (!I0)
2137    return false;
2138
2139  unsigned Opcode0 = I0->getOpcode();
2140
2141  Type *Ty0 = I0->getType();
2142  unsigned Sz = DL->getTypeSizeInBits(Ty0);
2143  unsigned VF = MinVecRegSize / Sz;
2144
2145  for (int i = 0, e = VL.size(); i < e; ++i) {
2146    Type *Ty = VL[i]->getType();
2147    if (Ty->isAggregateType() || Ty->isVectorTy())
2148      return false;
2149    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2150    if (!Inst || Inst->getOpcode() != Opcode0)
2151      return false;
2152  }
2153
2154  bool Changed = false;
2155
2156  // Keep track of values that were delete by vectorizing in the loop below.
2157  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2158
2159  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2160    unsigned OpsWidth = 0;
2161
2162    if (i + VF > e)
2163      OpsWidth = e - i;
2164    else
2165      OpsWidth = VF;
2166
2167    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2168      break;
2169
2170    // Check that a previous iteration of this loop did not delete the Value.
2171    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2172      continue;
2173
2174    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2175                 << "\n");
2176    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2177
2178    R.buildTree(Ops);
2179    int Cost = R.getTreeCost();
2180
2181    if (Cost < -SLPCostThreshold) {
2182      DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
2183      R.vectorizeTree();
2184
2185      // Move to the next bundle.
2186      i += VF - 1;
2187      Changed = true;
2188    }
2189  }
2190
2191  return Changed;
2192}
2193
2194bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2195  if (!V)
2196    return false;
2197
2198  // Try to vectorize V.
2199  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2200    return true;
2201
2202  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2203  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2204  // Try to skip B.
2205  if (B && B->hasOneUse()) {
2206    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2207    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2208    if (tryToVectorizePair(A, B0, R)) {
2209      B->moveBefore(V);
2210      return true;
2211    }
2212    if (tryToVectorizePair(A, B1, R)) {
2213      B->moveBefore(V);
2214      return true;
2215    }
2216  }
2217
2218  // Try to skip A.
2219  if (A && A->hasOneUse()) {
2220    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2221    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2222    if (tryToVectorizePair(A0, B, R)) {
2223      A->moveBefore(V);
2224      return true;
2225    }
2226    if (tryToVectorizePair(A1, B, R)) {
2227      A->moveBefore(V);
2228      return true;
2229    }
2230  }
2231  return 0;
2232}
2233
2234/// \brief Generate a shuffle mask to be used in a reduction tree.
2235///
2236/// \param VecLen The length of the vector to be reduced.
2237/// \param NumEltsToRdx The number of elements that should be reduced in the
2238///        vector.
2239/// \param IsPairwise Whether the reduction is a pairwise or splitting
2240///        reduction. A pairwise reduction will generate a mask of
2241///        <0,2,...> or <1,3,..> while a splitting reduction will generate
2242///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2243/// \param IsLeft True will generate a mask of even elements, odd otherwise.
2244static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2245                                   bool IsPairwise, bool IsLeft,
2246                                   IRBuilder<> &Builder) {
2247  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2248
2249  SmallVector<Constant *, 32> ShuffleMask(
2250      VecLen, UndefValue::get(Builder.getInt32Ty()));
2251
2252  if (IsPairwise)
2253    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2254    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2255      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2256  else
2257    // Move the upper half of the vector to the lower half.
2258    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2259      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2260
2261  return ConstantVector::get(ShuffleMask);
2262}
2263
2264
2265/// Model horizontal reductions.
2266///
2267/// A horizontal reduction is a tree of reduction operations (currently add and
2268/// fadd) that has operations that can be put into a vector as its leaf.
2269/// For example, this tree:
2270///
2271/// mul mul mul mul
2272///  \  /    \  /
2273///   +       +
2274///    \     /
2275///       +
2276/// This tree has "mul" as its reduced values and "+" as its reduction
2277/// operations. A reduction might be feeding into a store or a binary operation
2278/// feeding a phi.
2279///    ...
2280///    \  /
2281///     +
2282///     |
2283///  phi +=
2284///
2285///  Or:
2286///    ...
2287///    \  /
2288///     +
2289///     |
2290///   *p =
2291///
2292class HorizontalReduction {
2293  SmallPtrSet<Value *, 16> ReductionOps;
2294  SmallVector<Value *, 32> ReducedVals;
2295
2296  BinaryOperator *ReductionRoot;
2297  PHINode *ReductionPHI;
2298
2299  /// The opcode of the reduction.
2300  unsigned ReductionOpcode;
2301  /// The opcode of the values we perform a reduction on.
2302  unsigned ReducedValueOpcode;
2303  /// The width of one full horizontal reduction operation.
2304  unsigned ReduxWidth;
2305  /// Should we model this reduction as a pairwise reduction tree or a tree that
2306  /// splits the vector in halves and adds those halves.
2307  bool IsPairwiseReduction;
2308
2309public:
2310  HorizontalReduction()
2311    : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
2312    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2313
2314  /// \brief Try to find a reduction tree.
2315  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2316                                 const DataLayout *DL) {
2317    assert((!Phi ||
2318            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2319           "Thi phi needs to use the binary operator");
2320
2321    // We could have a initial reductions that is not an add.
2322    //  r *= v1 + v2 + v3 + v4
2323    // In such a case start looking for a tree rooted in the first '+'.
2324    if (Phi) {
2325      if (B->getOperand(0) == Phi) {
2326        Phi = 0;
2327        B = dyn_cast<BinaryOperator>(B->getOperand(1));
2328      } else if (B->getOperand(1) == Phi) {
2329        Phi = 0;
2330        B = dyn_cast<BinaryOperator>(B->getOperand(0));
2331      }
2332    }
2333
2334    if (!B)
2335      return false;
2336
2337    Type *Ty = B->getType();
2338    if (Ty->isVectorTy())
2339      return false;
2340
2341    ReductionOpcode = B->getOpcode();
2342    ReducedValueOpcode = 0;
2343    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2344    ReductionRoot = B;
2345    ReductionPHI = Phi;
2346
2347    if (ReduxWidth < 4)
2348      return false;
2349
2350    // We currently only support adds.
2351    if (ReductionOpcode != Instruction::Add &&
2352        ReductionOpcode != Instruction::FAdd)
2353      return false;
2354
2355    // Post order traverse the reduction tree starting at B. We only handle true
2356    // trees containing only binary operators.
2357    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2358    Stack.push_back(std::make_pair(B, 0));
2359    while (!Stack.empty()) {
2360      BinaryOperator *TreeN = Stack.back().first;
2361      unsigned EdgeToVist = Stack.back().second++;
2362      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2363
2364      // Only handle trees in the current basic block.
2365      if (TreeN->getParent() != B->getParent())
2366        return false;
2367
2368      // Each tree node needs to have one user except for the ultimate
2369      // reduction.
2370      if (!TreeN->hasOneUse() && TreeN != B)
2371        return false;
2372
2373      // Postorder vist.
2374      if (EdgeToVist == 2 || IsReducedValue) {
2375        if (IsReducedValue) {
2376          // Make sure that the opcodes of the operations that we are going to
2377          // reduce match.
2378          if (!ReducedValueOpcode)
2379            ReducedValueOpcode = TreeN->getOpcode();
2380          else if (ReducedValueOpcode != TreeN->getOpcode())
2381            return false;
2382          ReducedVals.push_back(TreeN);
2383        } else {
2384          // We need to be able to reassociate the adds.
2385          if (!TreeN->isAssociative())
2386            return false;
2387          ReductionOps.insert(TreeN);
2388        }
2389        // Retract.
2390        Stack.pop_back();
2391        continue;
2392      }
2393
2394      // Visit left or right.
2395      Value *NextV = TreeN->getOperand(EdgeToVist);
2396      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2397      if (Next)
2398        Stack.push_back(std::make_pair(Next, 0));
2399      else if (NextV != Phi)
2400        return false;
2401    }
2402    return true;
2403  }
2404
2405  /// \brief Attempt to vectorize the tree found by
2406  /// matchAssociativeReduction.
2407  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2408    if (ReducedVals.empty())
2409      return false;
2410
2411    unsigned NumReducedVals = ReducedVals.size();
2412    if (NumReducedVals < ReduxWidth)
2413      return false;
2414
2415    Value *VectorizedTree = 0;
2416    IRBuilder<> Builder(ReductionRoot);
2417    FastMathFlags Unsafe;
2418    Unsafe.setUnsafeAlgebra();
2419    Builder.SetFastMathFlags(Unsafe);
2420    unsigned i = 0;
2421
2422    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2423      ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2424      V.buildTree(ValsToReduce, &ReductionOps);
2425
2426      // Estimate cost.
2427      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2428      if (Cost >= -SLPCostThreshold)
2429        break;
2430
2431      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2432                   << ". (HorRdx)\n");
2433
2434      // Vectorize a tree.
2435      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2436      Value *VectorizedRoot = V.vectorizeTree();
2437
2438      // Emit a reduction.
2439      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2440      if (VectorizedTree) {
2441        Builder.SetCurrentDebugLocation(Loc);
2442        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2443                                     ReducedSubTree, "bin.rdx");
2444      } else
2445        VectorizedTree = ReducedSubTree;
2446    }
2447
2448    if (VectorizedTree) {
2449      // Finish the reduction.
2450      for (; i < NumReducedVals; ++i) {
2451        Builder.SetCurrentDebugLocation(
2452          cast<Instruction>(ReducedVals[i])->getDebugLoc());
2453        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2454                                     ReducedVals[i]);
2455      }
2456      // Update users.
2457      if (ReductionPHI) {
2458        assert(ReductionRoot != NULL && "Need a reduction operation");
2459        ReductionRoot->setOperand(0, VectorizedTree);
2460        ReductionRoot->setOperand(1, ReductionPHI);
2461      } else
2462        ReductionRoot->replaceAllUsesWith(VectorizedTree);
2463    }
2464    return VectorizedTree != 0;
2465  }
2466
2467private:
2468
2469  /// \brief Calcuate the cost of a reduction.
2470  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2471    Type *ScalarTy = FirstReducedVal->getType();
2472    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2473
2474    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2475    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2476
2477    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2478    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2479
2480    int ScalarReduxCost =
2481        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2482
2483    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2484                 << " for reduction that starts with " << *FirstReducedVal
2485                 << " (It is a "
2486                 << (IsPairwiseReduction ? "pairwise" : "splitting")
2487                 << " reduction)\n");
2488
2489    return VecReduxCost - ScalarReduxCost;
2490  }
2491
2492  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2493                            Value *R, const Twine &Name = "") {
2494    if (Opcode == Instruction::FAdd)
2495      return Builder.CreateFAdd(L, R, Name);
2496    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2497  }
2498
2499  /// \brief Emit a horizontal reduction of the vectorized value.
2500  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2501    assert(VectorizedValue && "Need to have a vectorized tree node");
2502    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2503    assert(isPowerOf2_32(ReduxWidth) &&
2504           "We only handle power-of-two reductions for now");
2505
2506    Value *TmpVec = ValToReduce;
2507    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2508      if (IsPairwiseReduction) {
2509        Value *LeftMask =
2510          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2511        Value *RightMask =
2512          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2513
2514        Value *LeftShuf = Builder.CreateShuffleVector(
2515          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2516        Value *RightShuf = Builder.CreateShuffleVector(
2517          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2518          "rdx.shuf.r");
2519        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2520                             "bin.rdx");
2521      } else {
2522        Value *UpperHalf =
2523          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2524        Value *Shuf = Builder.CreateShuffleVector(
2525          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2526        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2527      }
2528    }
2529
2530    // The result is in the first element of the vector.
2531    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2532  }
2533};
2534
2535/// \brief Recognize construction of vectors like
2536///  %ra = insertelement <4 x float> undef, float %s0, i32 0
2537///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
2538///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
2539///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
2540///
2541/// Returns true if it matches
2542///
2543static bool findBuildVector(InsertElementInst *IE,
2544                            SmallVectorImpl<Value *> &Ops) {
2545  if (!isa<UndefValue>(IE->getOperand(0)))
2546    return false;
2547
2548  while (true) {
2549    Ops.push_back(IE->getOperand(1));
2550
2551    if (IE->use_empty())
2552      return false;
2553
2554    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
2555    if (!NextUse)
2556      return true;
2557
2558    // If this isn't the final use, make sure the next insertelement is the only
2559    // use. It's OK if the final constructed vector is used multiple times
2560    if (!IE->hasOneUse())
2561      return false;
2562
2563    IE = NextUse;
2564  }
2565
2566  return false;
2567}
2568
2569static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2570  return V->getType() < V2->getType();
2571}
2572
2573bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2574  bool Changed = false;
2575  SmallVector<Value *, 4> Incoming;
2576  SmallSet<Value *, 16> VisitedInstrs;
2577
2578  bool HaveVectorizedPhiNodes = true;
2579  while (HaveVectorizedPhiNodes) {
2580    HaveVectorizedPhiNodes = false;
2581
2582    // Collect the incoming values from the PHIs.
2583    Incoming.clear();
2584    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2585         ++instr) {
2586      PHINode *P = dyn_cast<PHINode>(instr);
2587      if (!P)
2588        break;
2589
2590      if (!VisitedInstrs.count(P))
2591        Incoming.push_back(P);
2592    }
2593
2594    // Sort by type.
2595    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2596
2597    // Try to vectorize elements base on their type.
2598    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2599                                           E = Incoming.end();
2600         IncIt != E;) {
2601
2602      // Look for the next elements with the same type.
2603      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2604      while (SameTypeIt != E &&
2605             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2606        VisitedInstrs.insert(*SameTypeIt);
2607        ++SameTypeIt;
2608      }
2609
2610      // Try to vectorize them.
2611      unsigned NumElts = (SameTypeIt - IncIt);
2612      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2613      if (NumElts > 1 &&
2614          tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2615        // Success start over because instructions might have been changed.
2616        HaveVectorizedPhiNodes = true;
2617        Changed = true;
2618        break;
2619      }
2620
2621      // Start over at the next instruction of a different type (or the end).
2622      IncIt = SameTypeIt;
2623    }
2624  }
2625
2626  VisitedInstrs.clear();
2627
2628  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2629    // We may go through BB multiple times so skip the one we have checked.
2630    if (!VisitedInstrs.insert(it))
2631      continue;
2632
2633    if (isa<DbgInfoIntrinsic>(it))
2634      continue;
2635
2636    // Try to vectorize reductions that use PHINodes.
2637    if (PHINode *P = dyn_cast<PHINode>(it)) {
2638      // Check that the PHI is a reduction PHI.
2639      if (P->getNumIncomingValues() != 2)
2640        return Changed;
2641      Value *Rdx =
2642          (P->getIncomingBlock(0) == BB
2643               ? (P->getIncomingValue(0))
2644               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
2645      // Check if this is a Binary Operator.
2646      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2647      if (!BI)
2648        continue;
2649
2650      // Try to match and vectorize a horizontal reduction.
2651      HorizontalReduction HorRdx;
2652      if (ShouldVectorizeHor &&
2653          HorRdx.matchAssociativeReduction(P, BI, DL) &&
2654          HorRdx.tryToReduce(R, TTI)) {
2655        Changed = true;
2656        it = BB->begin();
2657        e = BB->end();
2658        continue;
2659      }
2660
2661     Value *Inst = BI->getOperand(0);
2662      if (Inst == P)
2663        Inst = BI->getOperand(1);
2664
2665      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2666        // We would like to start over since some instructions are deleted
2667        // and the iterator may become invalid value.
2668        Changed = true;
2669        it = BB->begin();
2670        e = BB->end();
2671        continue;
2672      }
2673
2674      continue;
2675    }
2676
2677    // Try to vectorize horizontal reductions feeding into a store.
2678    if (ShouldStartVectorizeHorAtStore)
2679      if (StoreInst *SI = dyn_cast<StoreInst>(it))
2680        if (BinaryOperator *BinOp =
2681                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2682          HorizontalReduction HorRdx;
2683          if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
2684                HorRdx.tryToReduce(R, TTI)) ||
2685               tryToVectorize(BinOp, R))) {
2686            Changed = true;
2687            it = BB->begin();
2688            e = BB->end();
2689            continue;
2690          }
2691        }
2692
2693    // Try to vectorize trees that start at compare instructions.
2694    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
2695      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
2696        Changed = true;
2697        // We would like to start over since some instructions are deleted
2698        // and the iterator may become invalid value.
2699        it = BB->begin();
2700        e = BB->end();
2701        continue;
2702      }
2703
2704      for (int i = 0; i < 2; ++i) {
2705         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
2706            if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
2707              Changed = true;
2708              // We would like to start over since some instructions are deleted
2709              // and the iterator may become invalid value.
2710              it = BB->begin();
2711              e = BB->end();
2712            }
2713         }
2714      }
2715      continue;
2716    }
2717
2718    // Try to vectorize trees that start at insertelement instructions.
2719    if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
2720      SmallVector<Value *, 8> Ops;
2721      if (!findBuildVector(IE, Ops))
2722        continue;
2723
2724      if (tryToVectorizeList(Ops, R)) {
2725        Changed = true;
2726        it = BB->begin();
2727        e = BB->end();
2728      }
2729
2730      continue;
2731    }
2732  }
2733
2734  return Changed;
2735}
2736
2737bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
2738  bool Changed = false;
2739  // Attempt to sort and vectorize each of the store-groups.
2740  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
2741       it != e; ++it) {
2742    if (it->second.size() < 2)
2743      continue;
2744
2745    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
2746          << it->second.size() << ".\n");
2747
2748    // Process the stores in chunks of 16.
2749    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
2750      unsigned Len = std::min<unsigned>(CE - CI, 16);
2751      ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
2752      Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
2753    }
2754  }
2755  return Changed;
2756}
2757
2758} // end anonymous namespace
2759
2760char SLPVectorizer::ID = 0;
2761static const char lv_name[] = "SLP Vectorizer";
2762INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
2763INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2764INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
2765INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2766INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2767INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
2768
2769namespace llvm {
2770Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
2771}
2772