SLPVectorizer.cpp revision fc1f9531d3f9bf14b4b20b80f158317795d3d1d8
1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#define SV_NAME "slp-vectorizer"
19#define DEBUG_TYPE "SLP"
20
21#include "llvm/Transforms/Vectorize.h"
22#include "llvm/ADT/MapVector.h"
23#include "llvm/ADT/PostOrderIterator.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/Analysis/ScalarEvolution.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/Analysis/TargetTransformInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/Verifier.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Module.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <map>
45
46using namespace llvm;
47
48static cl::opt<int>
49    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
50                     cl::desc("Only vectorize if you gain more than this "
51                              "number "));
52
53static cl::opt<bool>
54ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
55                   cl::desc("Attempt to vectorize horizontal reductions"));
56
57static cl::opt<bool> ShouldStartVectorizeHorAtStore(
58    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
59    cl::desc(
60        "Attempt to vectorize horizontal reductions feeding into a store"));
61
62namespace {
63
64static const unsigned MinVecRegSize = 128;
65
66static const unsigned RecursionMaxDepth = 12;
67
68/// A helper class for numbering instructions in multiple blocks.
69/// Numbers start at zero for each basic block.
70struct BlockNumbering {
71
72  BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
73
74  BlockNumbering() : BB(0), Valid(false) {}
75
76  void numberInstructions() {
77    unsigned Loc = 0;
78    InstrIdx.clear();
79    InstrVec.clear();
80    // Number the instructions in the block.
81    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
82      InstrIdx[it] = Loc++;
83      InstrVec.push_back(it);
84      assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
85    }
86    Valid = true;
87  }
88
89  int getIndex(Instruction *I) {
90    assert(I->getParent() == BB && "Invalid instruction");
91    if (!Valid)
92      numberInstructions();
93    assert(InstrIdx.count(I) && "Unknown instruction");
94    return InstrIdx[I];
95  }
96
97  Instruction *getInstruction(unsigned loc) {
98    if (!Valid)
99      numberInstructions();
100    assert(InstrVec.size() > loc && "Invalid Index");
101    return InstrVec[loc];
102  }
103
104  void forget() { Valid = false; }
105
106private:
107  /// The block we are numbering.
108  BasicBlock *BB;
109  /// Is the block numbered.
110  bool Valid;
111  /// Maps instructions to numbers and back.
112  SmallDenseMap<Instruction *, int> InstrIdx;
113  /// Maps integers to Instructions.
114  SmallVector<Instruction *, 32> InstrVec;
115};
116
117/// \returns the parent basic block if all of the instructions in \p VL
118/// are in the same block or null otherwise.
119static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
120  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
121  if (!I0)
122    return 0;
123  BasicBlock *BB = I0->getParent();
124  for (int i = 1, e = VL.size(); i < e; i++) {
125    Instruction *I = dyn_cast<Instruction>(VL[i]);
126    if (!I)
127      return 0;
128
129    if (BB != I->getParent())
130      return 0;
131  }
132  return BB;
133}
134
135/// \returns True if all of the values in \p VL are constants.
136static bool allConstant(ArrayRef<Value *> VL) {
137  for (unsigned i = 0, e = VL.size(); i < e; ++i)
138    if (!isa<Constant>(VL[i]))
139      return false;
140  return true;
141}
142
143/// \returns True if all of the values in \p VL are identical.
144static bool isSplat(ArrayRef<Value *> VL) {
145  for (unsigned i = 1, e = VL.size(); i < e; ++i)
146    if (VL[i] != VL[0])
147      return false;
148  return true;
149}
150
151/// \returns The opcode if all of the Instructions in \p VL have the same
152/// opcode, or zero.
153static unsigned getSameOpcode(ArrayRef<Value *> VL) {
154  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
155  if (!I0)
156    return 0;
157  unsigned Opcode = I0->getOpcode();
158  for (int i = 1, e = VL.size(); i < e; i++) {
159    Instruction *I = dyn_cast<Instruction>(VL[i]);
160    if (!I || Opcode != I->getOpcode())
161      return 0;
162  }
163  return Opcode;
164}
165
166/// \returns \p I after propagating metadata from \p VL.
167static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
168  Instruction *I0 = cast<Instruction>(VL[0]);
169  SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
170  I0->getAllMetadataOtherThanDebugLoc(Metadata);
171
172  for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
173    unsigned Kind = Metadata[i].first;
174    MDNode *MD = Metadata[i].second;
175
176    for (int i = 1, e = VL.size(); MD && i != e; i++) {
177      Instruction *I = cast<Instruction>(VL[i]);
178      MDNode *IMD = I->getMetadata(Kind);
179
180      switch (Kind) {
181      default:
182        MD = 0; // Remove unknown metadata
183        break;
184      case LLVMContext::MD_tbaa:
185        MD = MDNode::getMostGenericTBAA(MD, IMD);
186        break;
187      case LLVMContext::MD_fpmath:
188        MD = MDNode::getMostGenericFPMath(MD, IMD);
189        break;
190      }
191    }
192    I->setMetadata(Kind, MD);
193  }
194  return I;
195}
196
197/// \returns The type that all of the values in \p VL have or null if there
198/// are different types.
199static Type* getSameType(ArrayRef<Value *> VL) {
200  Type *Ty = VL[0]->getType();
201  for (int i = 1, e = VL.size(); i < e; i++)
202    if (VL[i]->getType() != Ty)
203      return 0;
204
205  return Ty;
206}
207
208/// \returns True if the ExtractElement instructions in VL can be vectorized
209/// to use the original vector.
210static bool CanReuseExtract(ArrayRef<Value *> VL) {
211  assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
212  // Check if all of the extracts come from the same vector and from the
213  // correct offset.
214  Value *VL0 = VL[0];
215  ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
216  Value *Vec = E0->getOperand(0);
217
218  // We have to extract from the same vector type.
219  unsigned NElts = Vec->getType()->getVectorNumElements();
220
221  if (NElts != VL.size())
222    return false;
223
224  // Check that all of the indices extract from the correct offset.
225  ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
226  if (!CI || CI->getZExtValue())
227    return false;
228
229  for (unsigned i = 1, e = VL.size(); i < e; ++i) {
230    ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
231    ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
232
233    if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
234      return false;
235  }
236
237  return true;
238}
239
240static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
241                                           SmallVectorImpl<Value *> &Left,
242                                           SmallVectorImpl<Value *> &Right) {
243
244  SmallVector<Value *, 16> OrigLeft, OrigRight;
245
246  bool AllSameOpcodeLeft = true;
247  bool AllSameOpcodeRight = true;
248  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
249    Instruction *I = cast<Instruction>(VL[i]);
250    Value *V0 = I->getOperand(0);
251    Value *V1 = I->getOperand(1);
252
253    OrigLeft.push_back(V0);
254    OrigRight.push_back(V1);
255
256    Instruction *I0 = dyn_cast<Instruction>(V0);
257    Instruction *I1 = dyn_cast<Instruction>(V1);
258
259    // Check whether all operands on one side have the same opcode. In this case
260    // we want to preserve the original order and not make things worse by
261    // reordering.
262    AllSameOpcodeLeft = I0;
263    AllSameOpcodeRight = I1;
264
265    if (i && AllSameOpcodeLeft) {
266      if(Instruction *P0 = dyn_cast<Instruction>(OrigLeft[i-1])) {
267        if(P0->getOpcode() != I0->getOpcode())
268          AllSameOpcodeLeft = false;
269      } else
270        AllSameOpcodeLeft = false;
271    }
272    if (i && AllSameOpcodeRight) {
273      if(Instruction *P1 = dyn_cast<Instruction>(OrigRight[i-1])) {
274        if(P1->getOpcode() != I1->getOpcode())
275          AllSameOpcodeRight = false;
276      } else
277        AllSameOpcodeRight = false;
278    }
279
280    // Sort two opcodes. In the code below we try to preserve the ability to use
281    // broadcast of values instead of individual inserts.
282    // vl1 = load
283    // vl2 = phi
284    // vr1 = load
285    // vr2 = vr2
286    //    = vl1 x vr1
287    //    = vl2 x vr2
288    // If we just sorted according to opcode we would leave the first line in
289    // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
290    //    = vl1 x vr1
291    //    = vr2 x vl2
292    // Because vr2 and vr1 are from the same load we loose the opportunity of a
293    // broadcast for the packed right side in the backend: we have [vr1, vl2]
294    // instead of [vr1, vr2=vr1].
295    if (I0 && I1) {
296       if(!i && I0->getOpcode() > I1->getOpcode()) {
297         Left.push_back(I1);
298         Right.push_back(I0);
299       } else if (i && I0->getOpcode() > I1->getOpcode() && Right[i-1] != I1) {
300         // Try not to destroy a broad cast for no apparent benefit.
301         Left.push_back(I1);
302         Right.push_back(I0);
303       } else if (i && I0->getOpcode() == I1->getOpcode() && Right[i-1] ==  I0) {
304         // Try preserve broadcasts.
305         Left.push_back(I1);
306         Right.push_back(I0);
307       } else if (i && I0->getOpcode() == I1->getOpcode() && Left[i-1] == I1) {
308         // Try preserve broadcasts.
309         Left.push_back(I1);
310         Right.push_back(I0);
311       } else {
312         Left.push_back(I0);
313         Right.push_back(I1);
314       }
315       continue;
316    }
317    // One opcode, put the instruction on the right.
318    if (I0) {
319      Left.push_back(V1);
320      Right.push_back(I0);
321      continue;
322    }
323    Left.push_back(V0);
324    Right.push_back(V1);
325  }
326
327  bool LeftBroadcast = isSplat(Left);
328  bool RightBroadcast = isSplat(Right);
329
330  // Don't reorder if the operands where good to begin with.
331  if (!(LeftBroadcast || RightBroadcast) &&
332      (AllSameOpcodeRight || AllSameOpcodeLeft)) {
333    Left = OrigLeft;
334    Right = OrigRight;
335  }
336}
337
338/// Bottom Up SLP Vectorizer.
339class BoUpSLP {
340public:
341  typedef SmallVector<Value *, 8> ValueList;
342  typedef SmallVector<Instruction *, 16> InstrList;
343  typedef SmallPtrSet<Value *, 16> ValueSet;
344  typedef SmallVector<StoreInst *, 8> StoreList;
345
346  BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
347          TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
348          DominatorTree *Dt) :
349    F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
350    Builder(Se->getContext()) {
351      // Setup the block numbering utility for all of the blocks in the
352      // function.
353      for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
354        BasicBlock *BB = it;
355        BlocksNumbers[BB] = BlockNumbering(BB);
356      }
357    }
358
359  /// \brief Vectorize the tree that starts with the elements in \p VL.
360  /// Returns the vectorized root.
361  Value *vectorizeTree();
362
363  /// \returns the vectorization cost of the subtree that starts at \p VL.
364  /// A negative number means that this is profitable.
365  int getTreeCost();
366
367  /// Construct a vectorizable tree that starts at \p Roots and is possibly
368  /// used by a reduction of \p RdxOps.
369  void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
370
371  /// Clear the internal data structures that are created by 'buildTree'.
372  void deleteTree() {
373    RdxOps = 0;
374    VectorizableTree.clear();
375    ScalarToTreeEntry.clear();
376    MustGather.clear();
377    ExternalUses.clear();
378    MemBarrierIgnoreList.clear();
379  }
380
381  /// \returns true if the memory operations A and B are consecutive.
382  bool isConsecutiveAccess(Value *A, Value *B);
383
384  /// \brief Perform LICM and CSE on the newly generated gather sequences.
385  void optimizeGatherSequence();
386private:
387  struct TreeEntry;
388
389  /// \returns the cost of the vectorizable entry.
390  int getEntryCost(TreeEntry *E);
391
392  /// This is the recursive part of buildTree.
393  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
394
395  /// Vectorize a single entry in the tree.
396  Value *vectorizeTree(TreeEntry *E);
397
398  /// Vectorize a single entry in the tree, starting in \p VL.
399  Value *vectorizeTree(ArrayRef<Value *> VL);
400
401  /// \returns the pointer to the vectorized value if \p VL is already
402  /// vectorized, or NULL. They may happen in cycles.
403  Value *alreadyVectorized(ArrayRef<Value *> VL) const;
404
405  /// \brief Take the pointer operand from the Load/Store instruction.
406  /// \returns NULL if this is not a valid Load/Store instruction.
407  static Value *getPointerOperand(Value *I);
408
409  /// \brief Take the address space operand from the Load/Store instruction.
410  /// \returns -1 if this is not a valid Load/Store instruction.
411  static unsigned getAddressSpaceOperand(Value *I);
412
413  /// \returns the scalarization cost for this type. Scalarization in this
414  /// context means the creation of vectors from a group of scalars.
415  int getGatherCost(Type *Ty);
416
417  /// \returns the scalarization cost for this list of values. Assuming that
418  /// this subtree gets vectorized, we may need to extract the values from the
419  /// roots. This method calculates the cost of extracting the values.
420  int getGatherCost(ArrayRef<Value *> VL);
421
422  /// \returns the AA location that is being access by the instruction.
423  AliasAnalysis::Location getLocation(Instruction *I);
424
425  /// \brief Checks if it is possible to sink an instruction from
426  /// \p Src to \p Dst.
427  /// \returns the pointer to the barrier instruction if we can't sink.
428  Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
429
430  /// \returns the index of the last instruction in the BB from \p VL.
431  int getLastIndex(ArrayRef<Value *> VL);
432
433  /// \returns the Instruction in the bundle \p VL.
434  Instruction *getLastInstruction(ArrayRef<Value *> VL);
435
436  /// \brief Set the Builder insert point to one after the last instruction in
437  /// the bundle
438  void setInsertPointAfterBundle(ArrayRef<Value *> VL);
439
440  /// \returns a vector from a collection of scalars in \p VL.
441  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
442
443  /// \returns whether the VectorizableTree is fully vectoriable and will
444  /// be beneficial even the tree height is tiny.
445  bool isFullyVectorizableTinyTree();
446
447  struct TreeEntry {
448    TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
449    NeedToGather(0) {}
450
451    /// \returns true if the scalars in VL are equal to this entry.
452    bool isSame(ArrayRef<Value *> VL) const {
453      assert(VL.size() == Scalars.size() && "Invalid size");
454      return std::equal(VL.begin(), VL.end(), Scalars.begin());
455    }
456
457    /// A vector of scalars.
458    ValueList Scalars;
459
460    /// The Scalars are vectorized into this value. It is initialized to Null.
461    Value *VectorizedValue;
462
463    /// The index in the basic block of the last scalar.
464    int LastScalarIndex;
465
466    /// Do we need to gather this sequence ?
467    bool NeedToGather;
468  };
469
470  /// Create a new VectorizableTree entry.
471  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
472    VectorizableTree.push_back(TreeEntry());
473    int idx = VectorizableTree.size() - 1;
474    TreeEntry *Last = &VectorizableTree[idx];
475    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
476    Last->NeedToGather = !Vectorized;
477    if (Vectorized) {
478      Last->LastScalarIndex = getLastIndex(VL);
479      for (int i = 0, e = VL.size(); i != e; ++i) {
480        assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
481        ScalarToTreeEntry[VL[i]] = idx;
482      }
483    } else {
484      Last->LastScalarIndex = 0;
485      MustGather.insert(VL.begin(), VL.end());
486    }
487    return Last;
488  }
489
490  /// -- Vectorization State --
491  /// Holds all of the tree entries.
492  std::vector<TreeEntry> VectorizableTree;
493
494  /// Maps a specific scalar to its tree entry.
495  SmallDenseMap<Value*, int> ScalarToTreeEntry;
496
497  /// A list of scalars that we found that we need to keep as scalars.
498  ValueSet MustGather;
499
500  /// This POD struct describes one external user in the vectorized tree.
501  struct ExternalUser {
502    ExternalUser (Value *S, llvm::User *U, int L) :
503      Scalar(S), User(U), Lane(L){};
504    // Which scalar in our function.
505    Value *Scalar;
506    // Which user that uses the scalar.
507    llvm::User *User;
508    // Which lane does the scalar belong to.
509    int Lane;
510  };
511  typedef SmallVector<ExternalUser, 16> UserList;
512
513  /// A list of values that need to extracted out of the tree.
514  /// This list holds pairs of (Internal Scalar : External User).
515  UserList ExternalUses;
516
517  /// A list of instructions to ignore while sinking
518  /// memory instructions. This map must be reset between runs of getCost.
519  ValueSet MemBarrierIgnoreList;
520
521  /// Holds all of the instructions that we gathered.
522  SetVector<Instruction *> GatherSeq;
523
524  /// Numbers instructions in different blocks.
525  DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
526
527  /// Reduction operators.
528  ValueSet *RdxOps;
529
530  // Analysis and block reference.
531  Function *F;
532  ScalarEvolution *SE;
533  DataLayout *DL;
534  TargetTransformInfo *TTI;
535  AliasAnalysis *AA;
536  LoopInfo *LI;
537  DominatorTree *DT;
538  /// Instruction builder to construct the vectorized tree.
539  IRBuilder<> Builder;
540};
541
542void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
543  deleteTree();
544  RdxOps = Rdx;
545  if (!getSameType(Roots))
546    return;
547  buildTree_rec(Roots, 0);
548
549  // Collect the values that we need to extract from the tree.
550  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
551    TreeEntry *Entry = &VectorizableTree[EIdx];
552
553    // For each lane:
554    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
555      Value *Scalar = Entry->Scalars[Lane];
556
557      // No need to handle users of gathered values.
558      if (Entry->NeedToGather)
559        continue;
560
561      for (Value::use_iterator User = Scalar->use_begin(),
562           UE = Scalar->use_end(); User != UE; ++User) {
563        DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
564
565        bool Gathered = MustGather.count(*User);
566
567        // Skip in-tree scalars that become vectors.
568        if (ScalarToTreeEntry.count(*User) && !Gathered) {
569          DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
570                **User << ".\n");
571          int Idx = ScalarToTreeEntry[*User]; (void) Idx;
572          assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
573          continue;
574        }
575        Instruction *UserInst = dyn_cast<Instruction>(*User);
576        if (!UserInst)
577          continue;
578
579        // Ignore uses that are part of the reduction.
580        if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
581          continue;
582
583        DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
584              Lane << " from " << *Scalar << ".\n");
585        ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
586      }
587    }
588  }
589}
590
591
592void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
593  bool SameTy = getSameType(VL); (void)SameTy;
594  assert(SameTy && "Invalid types!");
595
596  if (Depth == RecursionMaxDepth) {
597    DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
598    newTreeEntry(VL, false);
599    return;
600  }
601
602  // Don't handle vectors.
603  if (VL[0]->getType()->isVectorTy()) {
604    DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
605    newTreeEntry(VL, false);
606    return;
607  }
608
609  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
610    if (SI->getValueOperand()->getType()->isVectorTy()) {
611      DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
612      newTreeEntry(VL, false);
613      return;
614    }
615
616  // If all of the operands are identical or constant we have a simple solution.
617  if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
618      !getSameOpcode(VL)) {
619    DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
620    newTreeEntry(VL, false);
621    return;
622  }
623
624  // We now know that this is a vector of instructions of the same type from
625  // the same block.
626
627  // Check if this is a duplicate of another entry.
628  if (ScalarToTreeEntry.count(VL[0])) {
629    int Idx = ScalarToTreeEntry[VL[0]];
630    TreeEntry *E = &VectorizableTree[Idx];
631    for (unsigned i = 0, e = VL.size(); i != e; ++i) {
632      DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
633      if (E->Scalars[i] != VL[i]) {
634        DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
635        newTreeEntry(VL, false);
636        return;
637      }
638    }
639    DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
640    return;
641  }
642
643  // Check that none of the instructions in the bundle are already in the tree.
644  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
645    if (ScalarToTreeEntry.count(VL[i])) {
646      DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
647            ") is already in tree.\n");
648      newTreeEntry(VL, false);
649      return;
650    }
651  }
652
653  // If any of the scalars appears in the table OR it is marked as a value that
654  // needs to stat scalar then we need to gather the scalars.
655  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
656    if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
657      DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
658      newTreeEntry(VL, false);
659      return;
660    }
661  }
662
663  // Check that all of the users of the scalars that we want to vectorize are
664  // schedulable.
665  Instruction *VL0 = cast<Instruction>(VL[0]);
666  int MyLastIndex = getLastIndex(VL);
667  BasicBlock *BB = cast<Instruction>(VL0)->getParent();
668
669  for (unsigned i = 0, e = VL.size(); i != e; ++i) {
670    Instruction *Scalar = cast<Instruction>(VL[i]);
671    DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
672    for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
673         U != UE; ++U) {
674      DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
675      Instruction *User = dyn_cast<Instruction>(*U);
676      if (!User) {
677        DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
678        newTreeEntry(VL, false);
679        return;
680      }
681
682      // We don't care if the user is in a different basic block.
683      BasicBlock *UserBlock = User->getParent();
684      if (UserBlock != BB) {
685        DEBUG(dbgs() << "SLP: User from a different basic block "
686              << *User << ". \n");
687        continue;
688      }
689
690      // If this is a PHINode within this basic block then we can place the
691      // extract wherever we want.
692      if (isa<PHINode>(*User)) {
693        DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
694        continue;
695      }
696
697      // Check if this is a safe in-tree user.
698      if (ScalarToTreeEntry.count(User)) {
699        int Idx = ScalarToTreeEntry[User];
700        int VecLocation = VectorizableTree[Idx].LastScalarIndex;
701        if (VecLocation <= MyLastIndex) {
702          DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
703          newTreeEntry(VL, false);
704          return;
705        }
706        DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
707              VecLocation << " vector value (" << *Scalar << ") at #"
708              << MyLastIndex << ".\n");
709        continue;
710      }
711
712      // This user is part of the reduction.
713      if (RdxOps && RdxOps->count(User))
714        continue;
715
716      // Make sure that we can schedule this unknown user.
717      BlockNumbering &BN = BlocksNumbers[BB];
718      int UserIndex = BN.getIndex(User);
719      if (UserIndex < MyLastIndex) {
720
721        DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
722              << *User << ". \n");
723        newTreeEntry(VL, false);
724        return;
725      }
726    }
727  }
728
729  // Check that every instructions appears once in this bundle.
730  for (unsigned i = 0, e = VL.size(); i < e; ++i)
731    for (unsigned j = i+1; j < e; ++j)
732      if (VL[i] == VL[j]) {
733        DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
734        newTreeEntry(VL, false);
735        return;
736      }
737
738  // Check that instructions in this bundle don't reference other instructions.
739  // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
740  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
741    for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
742         U != UE; ++U) {
743      for (unsigned j = 0; j < e; ++j) {
744        if (i != j && *U == VL[j]) {
745          DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
746          newTreeEntry(VL, false);
747          return;
748        }
749      }
750    }
751  }
752
753  DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
754
755  unsigned Opcode = getSameOpcode(VL);
756
757  // Check if it is safe to sink the loads or the stores.
758  if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
759    Instruction *Last = getLastInstruction(VL);
760
761    for (unsigned i = 0, e = VL.size(); i < e; ++i) {
762      if (VL[i] == Last)
763        continue;
764      Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
765      if (Barrier) {
766        DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
767              << "\n because of " << *Barrier << ".  Gathering.\n");
768        newTreeEntry(VL, false);
769        return;
770      }
771    }
772  }
773
774  switch (Opcode) {
775    case Instruction::PHI: {
776      PHINode *PH = dyn_cast<PHINode>(VL0);
777
778      // Check for terminator values (e.g. invoke).
779      for (unsigned j = 0; j < VL.size(); ++j)
780        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
781          TerminatorInst *Term = dyn_cast<TerminatorInst>(cast<PHINode>(VL[j])->getIncomingValue(i));
782          if (Term) {
783            DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
784            newTreeEntry(VL, false);
785            return;
786          }
787        }
788
789      newTreeEntry(VL, true);
790      DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
791
792      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
793        ValueList Operands;
794        // Prepare the operand vector.
795        for (unsigned j = 0; j < VL.size(); ++j)
796          Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
797
798        buildTree_rec(Operands, Depth + 1);
799      }
800      return;
801    }
802    case Instruction::ExtractElement: {
803      bool Reuse = CanReuseExtract(VL);
804      if (Reuse) {
805        DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
806      }
807      newTreeEntry(VL, Reuse);
808      return;
809    }
810    case Instruction::Load: {
811      // Check if the loads are consecutive or of we need to swizzle them.
812      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
813        LoadInst *L = cast<LoadInst>(VL[i]);
814        if (!L->isSimple() || !isConsecutiveAccess(VL[i], VL[i + 1])) {
815          newTreeEntry(VL, false);
816          DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
817          return;
818        }
819      }
820      newTreeEntry(VL, true);
821      DEBUG(dbgs() << "SLP: added a vector of loads.\n");
822      return;
823    }
824    case Instruction::ZExt:
825    case Instruction::SExt:
826    case Instruction::FPToUI:
827    case Instruction::FPToSI:
828    case Instruction::FPExt:
829    case Instruction::PtrToInt:
830    case Instruction::IntToPtr:
831    case Instruction::SIToFP:
832    case Instruction::UIToFP:
833    case Instruction::Trunc:
834    case Instruction::FPTrunc:
835    case Instruction::BitCast: {
836      Type *SrcTy = VL0->getOperand(0)->getType();
837      for (unsigned i = 0; i < VL.size(); ++i) {
838        Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
839        if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
840          newTreeEntry(VL, false);
841          DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
842          return;
843        }
844      }
845      newTreeEntry(VL, true);
846      DEBUG(dbgs() << "SLP: added a vector of casts.\n");
847
848      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
849        ValueList Operands;
850        // Prepare the operand vector.
851        for (unsigned j = 0; j < VL.size(); ++j)
852          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
853
854        buildTree_rec(Operands, Depth+1);
855      }
856      return;
857    }
858    case Instruction::ICmp:
859    case Instruction::FCmp: {
860      // Check that all of the compares have the same predicate.
861      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
862      Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
863      for (unsigned i = 1, e = VL.size(); i < e; ++i) {
864        CmpInst *Cmp = cast<CmpInst>(VL[i]);
865        if (Cmp->getPredicate() != P0 ||
866            Cmp->getOperand(0)->getType() != ComparedTy) {
867          newTreeEntry(VL, false);
868          DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
869          return;
870        }
871      }
872
873      newTreeEntry(VL, true);
874      DEBUG(dbgs() << "SLP: added a vector of compares.\n");
875
876      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
877        ValueList Operands;
878        // Prepare the operand vector.
879        for (unsigned j = 0; j < VL.size(); ++j)
880          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
881
882        buildTree_rec(Operands, Depth+1);
883      }
884      return;
885    }
886    case Instruction::Select:
887    case Instruction::Add:
888    case Instruction::FAdd:
889    case Instruction::Sub:
890    case Instruction::FSub:
891    case Instruction::Mul:
892    case Instruction::FMul:
893    case Instruction::UDiv:
894    case Instruction::SDiv:
895    case Instruction::FDiv:
896    case Instruction::URem:
897    case Instruction::SRem:
898    case Instruction::FRem:
899    case Instruction::Shl:
900    case Instruction::LShr:
901    case Instruction::AShr:
902    case Instruction::And:
903    case Instruction::Or:
904    case Instruction::Xor: {
905      newTreeEntry(VL, true);
906      DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
907
908      // Sort operands of the instructions so that each side is more likely to
909      // have the same opcode.
910      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
911        ValueList Left, Right;
912        reorderInputsAccordingToOpcode(VL, Left, Right);
913        buildTree_rec(Left, Depth + 1);
914        buildTree_rec(Right, Depth + 1);
915        return;
916      }
917
918      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
919        ValueList Operands;
920        // Prepare the operand vector.
921        for (unsigned j = 0; j < VL.size(); ++j)
922          Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
923
924        buildTree_rec(Operands, Depth+1);
925      }
926      return;
927    }
928    case Instruction::Store: {
929      // Check if the stores are consecutive or of we need to swizzle them.
930      for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
931        if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
932          newTreeEntry(VL, false);
933          DEBUG(dbgs() << "SLP: Non consecutive store.\n");
934          return;
935        }
936
937      newTreeEntry(VL, true);
938      DEBUG(dbgs() << "SLP: added a vector of stores.\n");
939
940      ValueList Operands;
941      for (unsigned j = 0; j < VL.size(); ++j)
942        Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
943
944      // We can ignore these values because we are sinking them down.
945      MemBarrierIgnoreList.insert(VL.begin(), VL.end());
946      buildTree_rec(Operands, Depth + 1);
947      return;
948    }
949    default:
950      newTreeEntry(VL, false);
951      DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
952      return;
953  }
954}
955
956int BoUpSLP::getEntryCost(TreeEntry *E) {
957  ArrayRef<Value*> VL = E->Scalars;
958
959  Type *ScalarTy = VL[0]->getType();
960  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
961    ScalarTy = SI->getValueOperand()->getType();
962  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
963
964  if (E->NeedToGather) {
965    if (allConstant(VL))
966      return 0;
967    if (isSplat(VL)) {
968      return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
969    }
970    return getGatherCost(E->Scalars);
971  }
972
973  assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
974         "Invalid VL");
975  Instruction *VL0 = cast<Instruction>(VL[0]);
976  unsigned Opcode = VL0->getOpcode();
977  switch (Opcode) {
978    case Instruction::PHI: {
979      return 0;
980    }
981    case Instruction::ExtractElement: {
982      if (CanReuseExtract(VL))
983        return 0;
984      return getGatherCost(VecTy);
985    }
986    case Instruction::ZExt:
987    case Instruction::SExt:
988    case Instruction::FPToUI:
989    case Instruction::FPToSI:
990    case Instruction::FPExt:
991    case Instruction::PtrToInt:
992    case Instruction::IntToPtr:
993    case Instruction::SIToFP:
994    case Instruction::UIToFP:
995    case Instruction::Trunc:
996    case Instruction::FPTrunc:
997    case Instruction::BitCast: {
998      Type *SrcTy = VL0->getOperand(0)->getType();
999
1000      // Calculate the cost of this instruction.
1001      int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1002                                                         VL0->getType(), SrcTy);
1003
1004      VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1005      int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1006      return VecCost - ScalarCost;
1007    }
1008    case Instruction::FCmp:
1009    case Instruction::ICmp:
1010    case Instruction::Select:
1011    case Instruction::Add:
1012    case Instruction::FAdd:
1013    case Instruction::Sub:
1014    case Instruction::FSub:
1015    case Instruction::Mul:
1016    case Instruction::FMul:
1017    case Instruction::UDiv:
1018    case Instruction::SDiv:
1019    case Instruction::FDiv:
1020    case Instruction::URem:
1021    case Instruction::SRem:
1022    case Instruction::FRem:
1023    case Instruction::Shl:
1024    case Instruction::LShr:
1025    case Instruction::AShr:
1026    case Instruction::And:
1027    case Instruction::Or:
1028    case Instruction::Xor: {
1029      // Calculate the cost of this instruction.
1030      int ScalarCost = 0;
1031      int VecCost = 0;
1032      if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1033          Opcode == Instruction::Select) {
1034        VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1035        ScalarCost = VecTy->getNumElements() *
1036        TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1037        VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1038      } else {
1039        // Certain instructions can be cheaper to vectorize if they have a
1040        // constant second vector operand.
1041        TargetTransformInfo::OperandValueKind Op1VK =
1042            TargetTransformInfo::OK_AnyValue;
1043        TargetTransformInfo::OperandValueKind Op2VK =
1044            TargetTransformInfo::OK_UniformConstantValue;
1045
1046        // Check whether all second operands are constant.
1047        for (unsigned i = 0; i < VL.size(); ++i)
1048          if (!isa<ConstantInt>(cast<Instruction>(VL[i])->getOperand(1))) {
1049            Op2VK = TargetTransformInfo::OK_AnyValue;
1050            break;
1051          }
1052
1053        ScalarCost =
1054            VecTy->getNumElements() *
1055            TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK);
1056        VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK);
1057      }
1058      return VecCost - ScalarCost;
1059    }
1060    case Instruction::Load: {
1061      // Cost of wide load - cost of scalar loads.
1062      int ScalarLdCost = VecTy->getNumElements() *
1063      TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1064      int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1065      return VecLdCost - ScalarLdCost;
1066    }
1067    case Instruction::Store: {
1068      // We know that we can merge the stores. Calculate the cost.
1069      int ScalarStCost = VecTy->getNumElements() *
1070      TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1071      int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1072      return VecStCost - ScalarStCost;
1073    }
1074    default:
1075      llvm_unreachable("Unknown instruction");
1076  }
1077}
1078
1079bool BoUpSLP::isFullyVectorizableTinyTree() {
1080  DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
1081        VectorizableTree.size() << " is fully vectorizable .\n");
1082
1083  // We only handle trees of height 2.
1084  if (VectorizableTree.size() != 2)
1085    return false;
1086
1087  // Gathering cost would be too much for tiny trees.
1088  if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1089    return false;
1090
1091  return true;
1092}
1093
1094int BoUpSLP::getTreeCost() {
1095  int Cost = 0;
1096  DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
1097        VectorizableTree.size() << ".\n");
1098
1099  // We only vectorize tiny trees if it is fully vectorizable.
1100  if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1101    if (!VectorizableTree.size()) {
1102      assert(!ExternalUses.size() && "We should not have any external users");
1103    }
1104    return INT_MAX;
1105  }
1106
1107  unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1108
1109  for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1110    int C = getEntryCost(&VectorizableTree[i]);
1111    DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
1112          << *VectorizableTree[i].Scalars[0] << " .\n");
1113    Cost += C;
1114  }
1115
1116  int ExtractCost = 0;
1117  for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1118       I != E; ++I) {
1119
1120    VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1121    ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1122                                           I->Lane);
1123  }
1124
1125
1126  DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
1127  return  Cost + ExtractCost;
1128}
1129
1130int BoUpSLP::getGatherCost(Type *Ty) {
1131  int Cost = 0;
1132  for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1133    Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1134  return Cost;
1135}
1136
1137int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1138  // Find the type of the operands in VL.
1139  Type *ScalarTy = VL[0]->getType();
1140  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1141    ScalarTy = SI->getValueOperand()->getType();
1142  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1143  // Find the cost of inserting/extracting values from the vector.
1144  return getGatherCost(VecTy);
1145}
1146
1147AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
1148  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1149    return AA->getLocation(SI);
1150  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1151    return AA->getLocation(LI);
1152  return AliasAnalysis::Location();
1153}
1154
1155Value *BoUpSLP::getPointerOperand(Value *I) {
1156  if (LoadInst *LI = dyn_cast<LoadInst>(I))
1157    return LI->getPointerOperand();
1158  if (StoreInst *SI = dyn_cast<StoreInst>(I))
1159    return SI->getPointerOperand();
1160  return 0;
1161}
1162
1163unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1164  if (LoadInst *L = dyn_cast<LoadInst>(I))
1165    return L->getPointerAddressSpace();
1166  if (StoreInst *S = dyn_cast<StoreInst>(I))
1167    return S->getPointerAddressSpace();
1168  return -1;
1169}
1170
1171bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
1172  Value *PtrA = getPointerOperand(A);
1173  Value *PtrB = getPointerOperand(B);
1174  unsigned ASA = getAddressSpaceOperand(A);
1175  unsigned ASB = getAddressSpaceOperand(B);
1176
1177  // Check that the address spaces match and that the pointers are valid.
1178  if (!PtrA || !PtrB || (ASA != ASB))
1179    return false;
1180
1181  // Make sure that A and B are different pointers of the same type.
1182  if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1183    return false;
1184
1185  unsigned PtrBitWidth = DL->getPointerSizeInBits(ASA);
1186  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1187  APInt Size(PtrBitWidth, DL->getTypeStoreSize(Ty));
1188
1189  APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1190  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetA);
1191  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(*DL, OffsetB);
1192
1193  APInt OffsetDelta = OffsetB - OffsetA;
1194
1195  // Check if they are based on the same pointer. That makes the offsets
1196  // sufficient.
1197  if (PtrA == PtrB)
1198    return OffsetDelta == Size;
1199
1200  // Compute the necessary base pointer delta to have the necessary final delta
1201  // equal to the size.
1202  APInt BaseDelta = Size - OffsetDelta;
1203
1204  // Otherwise compute the distance with SCEV between the base pointers.
1205  const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1206  const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1207  const SCEV *C = SE->getConstant(BaseDelta);
1208  const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1209  return X == PtrSCEVB;
1210}
1211
1212Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
1213  assert(Src->getParent() == Dst->getParent() && "Not the same BB");
1214  BasicBlock::iterator I = Src, E = Dst;
1215  /// Scan all of the instruction from SRC to DST and check if
1216  /// the source may alias.
1217  for (++I; I != E; ++I) {
1218    // Ignore store instructions that are marked as 'ignore'.
1219    if (MemBarrierIgnoreList.count(I))
1220      continue;
1221    if (Src->mayWriteToMemory()) /* Write */ {
1222      if (!I->mayReadOrWriteMemory())
1223        continue;
1224    } else /* Read */ {
1225      if (!I->mayWriteToMemory())
1226        continue;
1227    }
1228    AliasAnalysis::Location A = getLocation(&*I);
1229    AliasAnalysis::Location B = getLocation(Src);
1230
1231    if (!A.Ptr || !B.Ptr || AA->alias(A, B))
1232      return I;
1233  }
1234  return 0;
1235}
1236
1237int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
1238  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1239  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1240  BlockNumbering &BN = BlocksNumbers[BB];
1241
1242  int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
1243  for (unsigned i = 0, e = VL.size(); i < e; ++i)
1244    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1245  return MaxIdx;
1246}
1247
1248Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
1249  BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
1250  assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
1251  BlockNumbering &BN = BlocksNumbers[BB];
1252
1253  int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
1254  for (unsigned i = 1, e = VL.size(); i < e; ++i)
1255    MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
1256  Instruction *I = BN.getInstruction(MaxIdx);
1257  assert(I && "bad location");
1258  return I;
1259}
1260
1261void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
1262  Instruction *VL0 = cast<Instruction>(VL[0]);
1263  Instruction *LastInst = getLastInstruction(VL);
1264  BasicBlock::iterator NextInst = LastInst;
1265  ++NextInst;
1266  Builder.SetInsertPoint(VL0->getParent(), NextInst);
1267  Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
1268}
1269
1270Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
1271  Value *Vec = UndefValue::get(Ty);
1272  // Generate the 'InsertElement' instruction.
1273  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
1274    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
1275    if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
1276      GatherSeq.insert(Insrt);
1277
1278      // Add to our 'need-to-extract' list.
1279      if (ScalarToTreeEntry.count(VL[i])) {
1280        int Idx = ScalarToTreeEntry[VL[i]];
1281        TreeEntry *E = &VectorizableTree[Idx];
1282        // Find which lane we need to extract.
1283        int FoundLane = -1;
1284        for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
1285          // Is this the lane of the scalar that we are looking for ?
1286          if (E->Scalars[Lane] == VL[i]) {
1287            FoundLane = Lane;
1288            break;
1289          }
1290        }
1291        assert(FoundLane >= 0 && "Could not find the correct lane");
1292        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
1293      }
1294    }
1295  }
1296
1297  return Vec;
1298}
1299
1300Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
1301  SmallDenseMap<Value*, int>::const_iterator Entry
1302    = ScalarToTreeEntry.find(VL[0]);
1303  if (Entry != ScalarToTreeEntry.end()) {
1304    int Idx = Entry->second;
1305    const TreeEntry *En = &VectorizableTree[Idx];
1306    if (En->isSame(VL) && En->VectorizedValue)
1307      return En->VectorizedValue;
1308  }
1309  return 0;
1310}
1311
1312Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
1313  if (ScalarToTreeEntry.count(VL[0])) {
1314    int Idx = ScalarToTreeEntry[VL[0]];
1315    TreeEntry *E = &VectorizableTree[Idx];
1316    if (E->isSame(VL))
1317      return vectorizeTree(E);
1318  }
1319
1320  Type *ScalarTy = VL[0]->getType();
1321  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1322    ScalarTy = SI->getValueOperand()->getType();
1323  VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1324
1325  return Gather(VL, VecTy);
1326}
1327
1328Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
1329  IRBuilder<>::InsertPointGuard Guard(Builder);
1330
1331  if (E->VectorizedValue) {
1332    DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
1333    return E->VectorizedValue;
1334  }
1335
1336  Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
1337  Type *ScalarTy = VL0->getType();
1338  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
1339    ScalarTy = SI->getValueOperand()->getType();
1340  VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
1341
1342  if (E->NeedToGather) {
1343    setInsertPointAfterBundle(E->Scalars);
1344    return Gather(E->Scalars, VecTy);
1345  }
1346
1347  unsigned Opcode = VL0->getOpcode();
1348  assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
1349
1350  switch (Opcode) {
1351    case Instruction::PHI: {
1352      PHINode *PH = dyn_cast<PHINode>(VL0);
1353      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
1354      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1355      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
1356      E->VectorizedValue = NewPhi;
1357
1358      // PHINodes may have multiple entries from the same block. We want to
1359      // visit every block once.
1360      SmallSet<BasicBlock*, 4> VisitedBBs;
1361
1362      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1363        ValueList Operands;
1364        BasicBlock *IBB = PH->getIncomingBlock(i);
1365
1366        if (!VisitedBBs.insert(IBB)) {
1367          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
1368          continue;
1369        }
1370
1371        // Prepare the operand vector.
1372        for (unsigned j = 0; j < E->Scalars.size(); ++j)
1373          Operands.push_back(cast<PHINode>(E->Scalars[j])->
1374                             getIncomingValueForBlock(IBB));
1375
1376        Builder.SetInsertPoint(IBB->getTerminator());
1377        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
1378        Value *Vec = vectorizeTree(Operands);
1379        NewPhi->addIncoming(Vec, IBB);
1380      }
1381
1382      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
1383             "Invalid number of incoming values");
1384      return NewPhi;
1385    }
1386
1387    case Instruction::ExtractElement: {
1388      if (CanReuseExtract(E->Scalars)) {
1389        Value *V = VL0->getOperand(0);
1390        E->VectorizedValue = V;
1391        return V;
1392      }
1393      return Gather(E->Scalars, VecTy);
1394    }
1395    case Instruction::ZExt:
1396    case Instruction::SExt:
1397    case Instruction::FPToUI:
1398    case Instruction::FPToSI:
1399    case Instruction::FPExt:
1400    case Instruction::PtrToInt:
1401    case Instruction::IntToPtr:
1402    case Instruction::SIToFP:
1403    case Instruction::UIToFP:
1404    case Instruction::Trunc:
1405    case Instruction::FPTrunc:
1406    case Instruction::BitCast: {
1407      ValueList INVL;
1408      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1409        INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1410
1411      setInsertPointAfterBundle(E->Scalars);
1412
1413      Value *InVec = vectorizeTree(INVL);
1414
1415      if (Value *V = alreadyVectorized(E->Scalars))
1416        return V;
1417
1418      CastInst *CI = dyn_cast<CastInst>(VL0);
1419      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
1420      E->VectorizedValue = V;
1421      return V;
1422    }
1423    case Instruction::FCmp:
1424    case Instruction::ICmp: {
1425      ValueList LHSV, RHSV;
1426      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1427        LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1428        RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1429      }
1430
1431      setInsertPointAfterBundle(E->Scalars);
1432
1433      Value *L = vectorizeTree(LHSV);
1434      Value *R = vectorizeTree(RHSV);
1435
1436      if (Value *V = alreadyVectorized(E->Scalars))
1437        return V;
1438
1439      CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
1440      Value *V;
1441      if (Opcode == Instruction::FCmp)
1442        V = Builder.CreateFCmp(P0, L, R);
1443      else
1444        V = Builder.CreateICmp(P0, L, R);
1445
1446      E->VectorizedValue = V;
1447      return V;
1448    }
1449    case Instruction::Select: {
1450      ValueList TrueVec, FalseVec, CondVec;
1451      for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1452        CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1453        TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1454        FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
1455      }
1456
1457      setInsertPointAfterBundle(E->Scalars);
1458
1459      Value *Cond = vectorizeTree(CondVec);
1460      Value *True = vectorizeTree(TrueVec);
1461      Value *False = vectorizeTree(FalseVec);
1462
1463      if (Value *V = alreadyVectorized(E->Scalars))
1464        return V;
1465
1466      Value *V = Builder.CreateSelect(Cond, True, False);
1467      E->VectorizedValue = V;
1468      return V;
1469    }
1470    case Instruction::Add:
1471    case Instruction::FAdd:
1472    case Instruction::Sub:
1473    case Instruction::FSub:
1474    case Instruction::Mul:
1475    case Instruction::FMul:
1476    case Instruction::UDiv:
1477    case Instruction::SDiv:
1478    case Instruction::FDiv:
1479    case Instruction::URem:
1480    case Instruction::SRem:
1481    case Instruction::FRem:
1482    case Instruction::Shl:
1483    case Instruction::LShr:
1484    case Instruction::AShr:
1485    case Instruction::And:
1486    case Instruction::Or:
1487    case Instruction::Xor: {
1488      ValueList LHSVL, RHSVL;
1489      if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
1490        reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
1491      else
1492        for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
1493          LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
1494          RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
1495        }
1496
1497      setInsertPointAfterBundle(E->Scalars);
1498
1499      Value *LHS = vectorizeTree(LHSVL);
1500      Value *RHS = vectorizeTree(RHSVL);
1501
1502      if (LHS == RHS && isa<Instruction>(LHS)) {
1503        assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
1504      }
1505
1506      if (Value *V = alreadyVectorized(E->Scalars))
1507        return V;
1508
1509      BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
1510      Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
1511      E->VectorizedValue = V;
1512
1513      if (Instruction *I = dyn_cast<Instruction>(V))
1514        return propagateMetadata(I, E->Scalars);
1515
1516      return V;
1517    }
1518    case Instruction::Load: {
1519      // Loads are inserted at the head of the tree because we don't want to
1520      // sink them all the way down past store instructions.
1521      setInsertPointAfterBundle(E->Scalars);
1522
1523      LoadInst *LI = cast<LoadInst>(VL0);
1524      unsigned AS = LI->getPointerAddressSpace();
1525
1526      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
1527                                            VecTy->getPointerTo(AS));
1528      unsigned Alignment = LI->getAlignment();
1529      LI = Builder.CreateLoad(VecPtr);
1530      LI->setAlignment(Alignment);
1531      E->VectorizedValue = LI;
1532      return propagateMetadata(LI, E->Scalars);
1533    }
1534    case Instruction::Store: {
1535      StoreInst *SI = cast<StoreInst>(VL0);
1536      unsigned Alignment = SI->getAlignment();
1537      unsigned AS = SI->getPointerAddressSpace();
1538
1539      ValueList ValueOp;
1540      for (int i = 0, e = E->Scalars.size(); i < e; ++i)
1541        ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
1542
1543      setInsertPointAfterBundle(E->Scalars);
1544
1545      Value *VecValue = vectorizeTree(ValueOp);
1546      Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
1547                                            VecTy->getPointerTo(AS));
1548      StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
1549      S->setAlignment(Alignment);
1550      E->VectorizedValue = S;
1551      return propagateMetadata(S, E->Scalars);
1552    }
1553    default:
1554    llvm_unreachable("unknown inst");
1555  }
1556  return 0;
1557}
1558
1559Value *BoUpSLP::vectorizeTree() {
1560  Builder.SetInsertPoint(F->getEntryBlock().begin());
1561  vectorizeTree(&VectorizableTree[0]);
1562
1563  DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
1564
1565  // Extract all of the elements with the external uses.
1566  for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
1567       it != e; ++it) {
1568    Value *Scalar = it->Scalar;
1569    llvm::User *User = it->User;
1570
1571    // Skip users that we already RAUW. This happens when one instruction
1572    // has multiple uses of the same value.
1573    if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
1574        Scalar->use_end())
1575      continue;
1576    assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
1577
1578    int Idx = ScalarToTreeEntry[Scalar];
1579    TreeEntry *E = &VectorizableTree[Idx];
1580    assert(!E->NeedToGather && "Extracting from a gather list");
1581
1582    Value *Vec = E->VectorizedValue;
1583    assert(Vec && "Can't find vectorizable value");
1584
1585    Value *Lane = Builder.getInt32(it->Lane);
1586    // Generate extracts for out-of-tree users.
1587    // Find the insertion point for the extractelement lane.
1588    if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
1589      Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
1590      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1591      User->replaceUsesOfWith(Scalar, Ex);
1592    } else if (isa<Instruction>(Vec)){
1593      if (PHINode *PH = dyn_cast<PHINode>(User)) {
1594        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
1595          if (PH->getIncomingValue(i) == Scalar) {
1596            Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
1597            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1598            PH->setOperand(i, Ex);
1599          }
1600        }
1601      } else {
1602        Builder.SetInsertPoint(cast<Instruction>(User));
1603        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1604        User->replaceUsesOfWith(Scalar, Ex);
1605     }
1606    } else {
1607      Builder.SetInsertPoint(F->getEntryBlock().begin());
1608      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
1609      User->replaceUsesOfWith(Scalar, Ex);
1610    }
1611
1612    DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
1613  }
1614
1615  // For each vectorized value:
1616  for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
1617    TreeEntry *Entry = &VectorizableTree[EIdx];
1618
1619    // For each lane:
1620    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1621      Value *Scalar = Entry->Scalars[Lane];
1622
1623      // No need to handle users of gathered values.
1624      if (Entry->NeedToGather)
1625        continue;
1626
1627      assert(Entry->VectorizedValue && "Can't find vectorizable value");
1628
1629      Type *Ty = Scalar->getType();
1630      if (!Ty->isVoidTy()) {
1631        for (Value::use_iterator User = Scalar->use_begin(),
1632             UE = Scalar->use_end(); User != UE; ++User) {
1633          DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
1634          assert(!MustGather.count(*User) &&
1635                 "Replacing gathered value with undef");
1636
1637          assert((ScalarToTreeEntry.count(*User) ||
1638                  // It is legal to replace the reduction users by undef.
1639                  (RdxOps && RdxOps->count(*User))) &&
1640                 "Replacing out-of-tree value with undef");
1641        }
1642        Value *Undef = UndefValue::get(Ty);
1643        Scalar->replaceAllUsesWith(Undef);
1644      }
1645      DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
1646      cast<Instruction>(Scalar)->eraseFromParent();
1647    }
1648  }
1649
1650  for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
1651    BlocksNumbers[it].forget();
1652  }
1653  Builder.ClearInsertionPoint();
1654
1655  return VectorizableTree[0].VectorizedValue;
1656}
1657
1658class DTCmp {
1659  const DominatorTree *DT;
1660
1661public:
1662  DTCmp(const DominatorTree *DT) : DT(DT) {}
1663  bool operator()(const BasicBlock *A, const BasicBlock *B) const {
1664    return DT->properlyDominates(A, B);
1665  }
1666};
1667
1668void BoUpSLP::optimizeGatherSequence() {
1669  DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
1670        << " gather sequences instructions.\n");
1671  // Keep a list of visited BBs to run CSE on. It is typically small.
1672  SmallPtrSet<BasicBlock *, 4> VisitedBBs;
1673  SmallVector<BasicBlock *, 4> CSEWorkList;
1674  // LICM InsertElementInst sequences.
1675  for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
1676       e = GatherSeq.end(); it != e; ++it) {
1677    InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
1678
1679    if (!Insert)
1680      continue;
1681
1682    if (VisitedBBs.insert(Insert->getParent()))
1683      CSEWorkList.push_back(Insert->getParent());
1684
1685    // Check if this block is inside a loop.
1686    Loop *L = LI->getLoopFor(Insert->getParent());
1687    if (!L)
1688      continue;
1689
1690    // Check if it has a preheader.
1691    BasicBlock *PreHeader = L->getLoopPreheader();
1692    if (!PreHeader)
1693      continue;
1694
1695    // If the vector or the element that we insert into it are
1696    // instructions that are defined in this basic block then we can't
1697    // hoist this instruction.
1698    Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
1699    Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
1700    if (CurrVec && L->contains(CurrVec))
1701      continue;
1702    if (NewElem && L->contains(NewElem))
1703      continue;
1704
1705    // We can hoist this instruction. Move it to the pre-header.
1706    Insert->moveBefore(PreHeader->getTerminator());
1707  }
1708
1709  // Sort blocks by domination. This ensures we visit a block after all blocks
1710  // dominating it are visited.
1711  std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), DTCmp(DT));
1712
1713  // Perform O(N^2) search over the gather sequences and merge identical
1714  // instructions. TODO: We can further optimize this scan if we split the
1715  // instructions into different buckets based on the insert lane.
1716  SmallVector<Instruction *, 16> Visited;
1717  for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
1718                                               E = CSEWorkList.end();
1719       I != E; ++I) {
1720    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *llvm::prior(I))) &&
1721           "Worklist not sorted properly!");
1722    BasicBlock *BB = *I;
1723    // For all instructions in blocks containing gather sequences:
1724    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
1725      Instruction *In = it++;
1726      if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
1727          !GatherSeq.count(In))
1728        continue;
1729
1730      // Check if we can replace this instruction with any of the
1731      // visited instructions.
1732      for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
1733                                                    ve = Visited.end();
1734           v != ve; ++v) {
1735        if (In->isIdenticalTo(*v) &&
1736            DT->dominates((*v)->getParent(), In->getParent())) {
1737          In->replaceAllUsesWith(*v);
1738          In->eraseFromParent();
1739          In = 0;
1740          break;
1741        }
1742      }
1743      if (In) {
1744        assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
1745        Visited.push_back(In);
1746      }
1747    }
1748  }
1749}
1750
1751/// The SLPVectorizer Pass.
1752struct SLPVectorizer : public FunctionPass {
1753  typedef SmallVector<StoreInst *, 8> StoreList;
1754  typedef MapVector<Value *, StoreList> StoreListMap;
1755
1756  /// Pass identification, replacement for typeid
1757  static char ID;
1758
1759  explicit SLPVectorizer() : FunctionPass(ID) {
1760    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
1761  }
1762
1763  ScalarEvolution *SE;
1764  DataLayout *DL;
1765  TargetTransformInfo *TTI;
1766  AliasAnalysis *AA;
1767  LoopInfo *LI;
1768  DominatorTree *DT;
1769
1770  virtual bool runOnFunction(Function &F) {
1771    SE = &getAnalysis<ScalarEvolution>();
1772    DL = getAnalysisIfAvailable<DataLayout>();
1773    TTI = &getAnalysis<TargetTransformInfo>();
1774    AA = &getAnalysis<AliasAnalysis>();
1775    LI = &getAnalysis<LoopInfo>();
1776    DT = &getAnalysis<DominatorTree>();
1777
1778    StoreRefs.clear();
1779    bool Changed = false;
1780
1781    // If the target claims to have no vector registers don't attempt
1782    // vectorization.
1783    if (!TTI->getNumberOfRegisters(true))
1784      return false;
1785
1786    // Must have DataLayout. We can't require it because some tests run w/o
1787    // triple.
1788    if (!DL)
1789      return false;
1790
1791    // Don't vectorize when the attribute NoImplicitFloat is used.
1792    if (F.hasFnAttribute(Attribute::NoImplicitFloat))
1793      return false;
1794
1795    DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
1796
1797    // Use the bollom up slp vectorizer to construct chains that start with
1798    // he store instructions.
1799    BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
1800
1801    // Scan the blocks in the function in post order.
1802    for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
1803         e = po_end(&F.getEntryBlock()); it != e; ++it) {
1804      BasicBlock *BB = *it;
1805
1806      // Vectorize trees that end at stores.
1807      if (unsigned count = collectStores(BB, R)) {
1808        (void)count;
1809        DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
1810        Changed |= vectorizeStoreChains(R);
1811      }
1812
1813      // Vectorize trees that end at reductions.
1814      Changed |= vectorizeChainsInBlock(BB, R);
1815    }
1816
1817    if (Changed) {
1818      R.optimizeGatherSequence();
1819      DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
1820      DEBUG(verifyFunction(F));
1821    }
1822    return Changed;
1823  }
1824
1825  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1826    FunctionPass::getAnalysisUsage(AU);
1827    AU.addRequired<ScalarEvolution>();
1828    AU.addRequired<AliasAnalysis>();
1829    AU.addRequired<TargetTransformInfo>();
1830    AU.addRequired<LoopInfo>();
1831    AU.addRequired<DominatorTree>();
1832    AU.addPreserved<LoopInfo>();
1833    AU.addPreserved<DominatorTree>();
1834    AU.setPreservesCFG();
1835  }
1836
1837private:
1838
1839  /// \brief Collect memory references and sort them according to their base
1840  /// object. We sort the stores to their base objects to reduce the cost of the
1841  /// quadratic search on the stores. TODO: We can further reduce this cost
1842  /// if we flush the chain creation every time we run into a memory barrier.
1843  unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
1844
1845  /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
1846  bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
1847
1848  /// \brief Try to vectorize a list of operands.
1849  /// \returns true if a value was vectorized.
1850  bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
1851
1852  /// \brief Try to vectorize a chain that may start at the operands of \V;
1853  bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
1854
1855  /// \brief Vectorize the stores that were collected in StoreRefs.
1856  bool vectorizeStoreChains(BoUpSLP &R);
1857
1858  /// \brief Scan the basic block and look for patterns that are likely to start
1859  /// a vectorization chain.
1860  bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
1861
1862  bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
1863                           BoUpSLP &R);
1864
1865  bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
1866                       BoUpSLP &R);
1867private:
1868  StoreListMap StoreRefs;
1869};
1870
1871/// \brief Check that the Values in the slice in VL array are still existant in
1872/// the WeakVH array.
1873/// Vectorization of part of the VL array may cause later values in the VL array
1874/// to become invalid. We track when this has happened in the WeakVH array.
1875static bool hasValueBeenRAUWed(ArrayRef<Value *> &VL,
1876                               SmallVectorImpl<WeakVH> &VH,
1877                               unsigned SliceBegin,
1878                               unsigned SliceSize) {
1879  for (unsigned i = SliceBegin; i < SliceBegin + SliceSize; ++i)
1880    if (VH[i] != VL[i])
1881      return true;
1882
1883  return false;
1884}
1885
1886bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
1887                                          int CostThreshold, BoUpSLP &R) {
1888  unsigned ChainLen = Chain.size();
1889  DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
1890        << "\n");
1891  Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
1892  unsigned Sz = DL->getTypeSizeInBits(StoreTy);
1893  unsigned VF = MinVecRegSize / Sz;
1894
1895  if (!isPowerOf2_32(Sz) || VF < 2)
1896    return false;
1897
1898  // Keep track of values that were delete by vectorizing in the loop below.
1899  SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
1900
1901  bool Changed = false;
1902  // Look for profitable vectorizable trees at all offsets, starting at zero.
1903  for (unsigned i = 0, e = ChainLen; i < e; ++i) {
1904    if (i + VF > e)
1905      break;
1906
1907    // Check that a previous iteration of this loop did not delete the Value.
1908    if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
1909      continue;
1910
1911    DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
1912          << "\n");
1913    ArrayRef<Value *> Operands = Chain.slice(i, VF);
1914
1915    R.buildTree(Operands);
1916
1917    int Cost = R.getTreeCost();
1918
1919    DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
1920    if (Cost < CostThreshold) {
1921      DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
1922      R.vectorizeTree();
1923
1924      // Move to the next bundle.
1925      i += VF - 1;
1926      Changed = true;
1927    }
1928  }
1929
1930  return Changed;
1931}
1932
1933bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
1934                                    int costThreshold, BoUpSLP &R) {
1935  SetVector<Value *> Heads, Tails;
1936  SmallDenseMap<Value *, Value *> ConsecutiveChain;
1937
1938  // We may run into multiple chains that merge into a single chain. We mark the
1939  // stores that we vectorized so that we don't visit the same store twice.
1940  BoUpSLP::ValueSet VectorizedStores;
1941  bool Changed = false;
1942
1943  // Do a quadratic search on all of the given stores and find
1944  // all of the pairs of stores that follow each other.
1945  for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
1946    for (unsigned j = 0; j < e; ++j) {
1947      if (i == j)
1948        continue;
1949
1950      if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
1951        Tails.insert(Stores[j]);
1952        Heads.insert(Stores[i]);
1953        ConsecutiveChain[Stores[i]] = Stores[j];
1954      }
1955    }
1956  }
1957
1958  // For stores that start but don't end a link in the chain:
1959  for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
1960       it != e; ++it) {
1961    if (Tails.count(*it))
1962      continue;
1963
1964    // We found a store instr that starts a chain. Now follow the chain and try
1965    // to vectorize it.
1966    BoUpSLP::ValueList Operands;
1967    Value *I = *it;
1968    // Collect the chain into a list.
1969    while (Tails.count(I) || Heads.count(I)) {
1970      if (VectorizedStores.count(I))
1971        break;
1972      Operands.push_back(I);
1973      // Move to the next value in the chain.
1974      I = ConsecutiveChain[I];
1975    }
1976
1977    bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
1978
1979    // Mark the vectorized stores so that we don't vectorize them again.
1980    if (Vectorized)
1981      VectorizedStores.insert(Operands.begin(), Operands.end());
1982    Changed |= Vectorized;
1983  }
1984
1985  return Changed;
1986}
1987
1988
1989unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
1990  unsigned count = 0;
1991  StoreRefs.clear();
1992  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1993    StoreInst *SI = dyn_cast<StoreInst>(it);
1994    if (!SI)
1995      continue;
1996
1997    // Don't touch volatile stores.
1998    if (!SI->isSimple())
1999      continue;
2000
2001    // Check that the pointer points to scalars.
2002    Type *Ty = SI->getValueOperand()->getType();
2003    if (Ty->isAggregateType() || Ty->isVectorTy())
2004      return 0;
2005
2006    // Find the base pointer.
2007    Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
2008
2009    // Save the store locations.
2010    StoreRefs[Ptr].push_back(SI);
2011    count++;
2012  }
2013  return count;
2014}
2015
2016bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
2017  if (!A || !B)
2018    return false;
2019  Value *VL[] = { A, B };
2020  return tryToVectorizeList(VL, R);
2021}
2022
2023bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
2024  if (VL.size() < 2)
2025    return false;
2026
2027  DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
2028
2029  // Check that all of the parts are scalar instructions of the same type.
2030  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
2031  if (!I0)
2032    return false;
2033
2034  unsigned Opcode0 = I0->getOpcode();
2035
2036  Type *Ty0 = I0->getType();
2037  unsigned Sz = DL->getTypeSizeInBits(Ty0);
2038  unsigned VF = MinVecRegSize / Sz;
2039
2040  for (int i = 0, e = VL.size(); i < e; ++i) {
2041    Type *Ty = VL[i]->getType();
2042    if (Ty->isAggregateType() || Ty->isVectorTy())
2043      return false;
2044    Instruction *Inst = dyn_cast<Instruction>(VL[i]);
2045    if (!Inst || Inst->getOpcode() != Opcode0)
2046      return false;
2047  }
2048
2049  bool Changed = false;
2050
2051  // Keep track of values that were delete by vectorizing in the loop below.
2052  SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
2053
2054  for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2055    unsigned OpsWidth = 0;
2056
2057    if (i + VF > e)
2058      OpsWidth = e - i;
2059    else
2060      OpsWidth = VF;
2061
2062    if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
2063      break;
2064
2065    // Check that a previous iteration of this loop did not delete the Value.
2066    if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
2067      continue;
2068
2069    DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
2070                 << "\n");
2071    ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
2072
2073    R.buildTree(Ops);
2074    int Cost = R.getTreeCost();
2075
2076    if (Cost < -SLPCostThreshold) {
2077      DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
2078      R.vectorizeTree();
2079
2080      // Move to the next bundle.
2081      i += VF - 1;
2082      Changed = true;
2083    }
2084  }
2085
2086  return Changed;
2087}
2088
2089bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
2090  if (!V)
2091    return false;
2092
2093  // Try to vectorize V.
2094  if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
2095    return true;
2096
2097  BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
2098  BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
2099  // Try to skip B.
2100  if (B && B->hasOneUse()) {
2101    BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
2102    BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
2103    if (tryToVectorizePair(A, B0, R)) {
2104      B->moveBefore(V);
2105      return true;
2106    }
2107    if (tryToVectorizePair(A, B1, R)) {
2108      B->moveBefore(V);
2109      return true;
2110    }
2111  }
2112
2113  // Try to skip A.
2114  if (A && A->hasOneUse()) {
2115    BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
2116    BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
2117    if (tryToVectorizePair(A0, B, R)) {
2118      A->moveBefore(V);
2119      return true;
2120    }
2121    if (tryToVectorizePair(A1, B, R)) {
2122      A->moveBefore(V);
2123      return true;
2124    }
2125  }
2126  return 0;
2127}
2128
2129/// \brief Generate a shuffle mask to be used in a reduction tree.
2130///
2131/// \param VecLen The length of the vector to be reduced.
2132/// \param NumEltsToRdx The number of elements that should be reduced in the
2133///        vector.
2134/// \param IsPairwise Whether the reduction is a pairwise or splitting
2135///        reduction. A pairwise reduction will generate a mask of
2136///        <0,2,...> or <1,3,..> while a splitting reduction will generate
2137///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
2138/// \param IsLeft True will generate a mask of even elements, odd otherwise.
2139static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
2140                                   bool IsPairwise, bool IsLeft,
2141                                   IRBuilder<> &Builder) {
2142  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
2143
2144  SmallVector<Constant *, 32> ShuffleMask(
2145      VecLen, UndefValue::get(Builder.getInt32Ty()));
2146
2147  if (IsPairwise)
2148    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
2149    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2150      ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
2151  else
2152    // Move the upper half of the vector to the lower half.
2153    for (unsigned i = 0; i != NumEltsToRdx; ++i)
2154      ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
2155
2156  return ConstantVector::get(ShuffleMask);
2157}
2158
2159
2160/// Model horizontal reductions.
2161///
2162/// A horizontal reduction is a tree of reduction operations (currently add and
2163/// fadd) that has operations that can be put into a vector as its leaf.
2164/// For example, this tree:
2165///
2166/// mul mul mul mul
2167///  \  /    \  /
2168///   +       +
2169///    \     /
2170///       +
2171/// This tree has "mul" as its reduced values and "+" as its reduction
2172/// operations. A reduction might be feeding into a store or a binary operation
2173/// feeding a phi.
2174///    ...
2175///    \  /
2176///     +
2177///     |
2178///  phi +=
2179///
2180///  Or:
2181///    ...
2182///    \  /
2183///     +
2184///     |
2185///   *p =
2186///
2187class HorizontalReduction {
2188  SmallPtrSet<Value *, 16> ReductionOps;
2189  SmallVector<Value *, 32> ReducedVals;
2190
2191  BinaryOperator *ReductionRoot;
2192  PHINode *ReductionPHI;
2193
2194  /// The opcode of the reduction.
2195  unsigned ReductionOpcode;
2196  /// The opcode of the values we perform a reduction on.
2197  unsigned ReducedValueOpcode;
2198  /// The width of one full horizontal reduction operation.
2199  unsigned ReduxWidth;
2200  /// Should we model this reduction as a pairwise reduction tree or a tree that
2201  /// splits the vector in halves and adds those halves.
2202  bool IsPairwiseReduction;
2203
2204public:
2205  HorizontalReduction()
2206    : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
2207    ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
2208
2209  /// \brief Try to find a reduction tree.
2210  bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
2211                                 DataLayout *DL) {
2212    assert((!Phi ||
2213            std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
2214           "Thi phi needs to use the binary operator");
2215
2216    // We could have a initial reductions that is not an add.
2217    //  r *= v1 + v2 + v3 + v4
2218    // In such a case start looking for a tree rooted in the first '+'.
2219    if (Phi) {
2220      if (B->getOperand(0) == Phi) {
2221        Phi = 0;
2222        B = dyn_cast<BinaryOperator>(B->getOperand(1));
2223      } else if (B->getOperand(1) == Phi) {
2224        Phi = 0;
2225        B = dyn_cast<BinaryOperator>(B->getOperand(0));
2226      }
2227    }
2228
2229    if (!B)
2230      return false;
2231
2232    Type *Ty = B->getType();
2233    if (Ty->isVectorTy())
2234      return false;
2235
2236    ReductionOpcode = B->getOpcode();
2237    ReducedValueOpcode = 0;
2238    ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
2239    ReductionRoot = B;
2240    ReductionPHI = Phi;
2241
2242    if (ReduxWidth < 4)
2243      return false;
2244
2245    // We currently only support adds.
2246    if (ReductionOpcode != Instruction::Add &&
2247        ReductionOpcode != Instruction::FAdd)
2248      return false;
2249
2250    // Post order traverse the reduction tree starting at B. We only handle true
2251    // trees containing only binary operators.
2252    SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
2253    Stack.push_back(std::make_pair(B, 0));
2254    while (!Stack.empty()) {
2255      BinaryOperator *TreeN = Stack.back().first;
2256      unsigned EdgeToVist = Stack.back().second++;
2257      bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
2258
2259      // Only handle trees in the current basic block.
2260      if (TreeN->getParent() != B->getParent())
2261        return false;
2262
2263      // Each tree node needs to have one user except for the ultimate
2264      // reduction.
2265      if (!TreeN->hasOneUse() && TreeN != B)
2266        return false;
2267
2268      // Postorder vist.
2269      if (EdgeToVist == 2 || IsReducedValue) {
2270        if (IsReducedValue) {
2271          // Make sure that the opcodes of the operations that we are going to
2272          // reduce match.
2273          if (!ReducedValueOpcode)
2274            ReducedValueOpcode = TreeN->getOpcode();
2275          else if (ReducedValueOpcode != TreeN->getOpcode())
2276            return false;
2277          ReducedVals.push_back(TreeN);
2278        } else {
2279          // We need to be able to reassociate the adds.
2280          if (!TreeN->isAssociative())
2281            return false;
2282          ReductionOps.insert(TreeN);
2283        }
2284        // Retract.
2285        Stack.pop_back();
2286        continue;
2287      }
2288
2289      // Visit left or right.
2290      Value *NextV = TreeN->getOperand(EdgeToVist);
2291      BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
2292      if (Next)
2293        Stack.push_back(std::make_pair(Next, 0));
2294      else if (NextV != Phi)
2295        return false;
2296    }
2297    return true;
2298  }
2299
2300  /// \brief Attempt to vectorize the tree found by
2301  /// matchAssociativeReduction.
2302  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
2303    if (ReducedVals.empty())
2304      return false;
2305
2306    unsigned NumReducedVals = ReducedVals.size();
2307    if (NumReducedVals < ReduxWidth)
2308      return false;
2309
2310    Value *VectorizedTree = 0;
2311    IRBuilder<> Builder(ReductionRoot);
2312    FastMathFlags Unsafe;
2313    Unsafe.setUnsafeAlgebra();
2314    Builder.SetFastMathFlags(Unsafe);
2315    unsigned i = 0;
2316
2317    for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
2318      ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
2319      V.buildTree(ValsToReduce, &ReductionOps);
2320
2321      // Estimate cost.
2322      int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
2323      if (Cost >= -SLPCostThreshold)
2324        break;
2325
2326      DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
2327                   << ". (HorRdx)\n");
2328
2329      // Vectorize a tree.
2330      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
2331      Value *VectorizedRoot = V.vectorizeTree();
2332
2333      // Emit a reduction.
2334      Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
2335      if (VectorizedTree) {
2336        Builder.SetCurrentDebugLocation(Loc);
2337        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2338                                     ReducedSubTree, "bin.rdx");
2339      } else
2340        VectorizedTree = ReducedSubTree;
2341    }
2342
2343    if (VectorizedTree) {
2344      // Finish the reduction.
2345      for (; i < NumReducedVals; ++i) {
2346        Builder.SetCurrentDebugLocation(
2347          cast<Instruction>(ReducedVals[i])->getDebugLoc());
2348        VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
2349                                     ReducedVals[i]);
2350      }
2351      // Update users.
2352      if (ReductionPHI) {
2353        assert(ReductionRoot != NULL && "Need a reduction operation");
2354        ReductionRoot->setOperand(0, VectorizedTree);
2355        ReductionRoot->setOperand(1, ReductionPHI);
2356      } else
2357        ReductionRoot->replaceAllUsesWith(VectorizedTree);
2358    }
2359    return VectorizedTree != 0;
2360  }
2361
2362private:
2363
2364  /// \brief Calcuate the cost of a reduction.
2365  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
2366    Type *ScalarTy = FirstReducedVal->getType();
2367    Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
2368
2369    int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
2370    int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
2371
2372    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
2373    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
2374
2375    int ScalarReduxCost =
2376        ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
2377
2378    DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
2379                 << " for reduction that starts with " << *FirstReducedVal
2380                 << " (It is a "
2381                 << (IsPairwiseReduction ? "pairwise" : "splitting")
2382                 << " reduction)\n");
2383
2384    return VecReduxCost - ScalarReduxCost;
2385  }
2386
2387  static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
2388                            Value *R, const Twine &Name = "") {
2389    if (Opcode == Instruction::FAdd)
2390      return Builder.CreateFAdd(L, R, Name);
2391    return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
2392  }
2393
2394  /// \brief Emit a horizontal reduction of the vectorized value.
2395  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
2396    assert(VectorizedValue && "Need to have a vectorized tree node");
2397    Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
2398    assert(isPowerOf2_32(ReduxWidth) &&
2399           "We only handle power-of-two reductions for now");
2400
2401    Value *TmpVec = ValToReduce;
2402    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
2403      if (IsPairwiseReduction) {
2404        Value *LeftMask =
2405          createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
2406        Value *RightMask =
2407          createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
2408
2409        Value *LeftShuf = Builder.CreateShuffleVector(
2410          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
2411        Value *RightShuf = Builder.CreateShuffleVector(
2412          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
2413          "rdx.shuf.r");
2414        TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
2415                             "bin.rdx");
2416      } else {
2417        Value *UpperHalf =
2418          createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
2419        Value *Shuf = Builder.CreateShuffleVector(
2420          TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
2421        TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
2422      }
2423    }
2424
2425    // The result is in the first element of the vector.
2426    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2427  }
2428};
2429
2430/// \brief Recognize construction of vectors like
2431///  %ra = insertelement <4 x float> undef, float %s0, i32 0
2432///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
2433///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
2434///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
2435///
2436/// Returns true if it matches
2437///
2438static bool findBuildVector(InsertElementInst *IE,
2439                            SmallVectorImpl<Value *> &Ops) {
2440  if (!isa<UndefValue>(IE->getOperand(0)))
2441    return false;
2442
2443  while (true) {
2444    Ops.push_back(IE->getOperand(1));
2445
2446    if (IE->use_empty())
2447      return false;
2448
2449    InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->use_back());
2450    if (!NextUse)
2451      return true;
2452
2453    // If this isn't the final use, make sure the next insertelement is the only
2454    // use. It's OK if the final constructed vector is used multiple times
2455    if (!IE->hasOneUse())
2456      return false;
2457
2458    IE = NextUse;
2459  }
2460
2461  return false;
2462}
2463
2464static bool PhiTypeSorterFunc(Value *V, Value *V2) {
2465  return V->getType() < V2->getType();
2466}
2467
2468bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
2469  bool Changed = false;
2470  SmallVector<Value *, 4> Incoming;
2471  SmallSet<Value *, 16> VisitedInstrs;
2472
2473  bool HaveVectorizedPhiNodes = true;
2474  while (HaveVectorizedPhiNodes) {
2475    HaveVectorizedPhiNodes = false;
2476
2477    // Collect the incoming values from the PHIs.
2478    Incoming.clear();
2479    for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
2480         ++instr) {
2481      PHINode *P = dyn_cast<PHINode>(instr);
2482      if (!P)
2483        break;
2484
2485      if (!VisitedInstrs.count(P))
2486        Incoming.push_back(P);
2487    }
2488
2489    // Sort by type.
2490    std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
2491
2492    // Try to vectorize elements base on their type.
2493    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
2494                                           E = Incoming.end();
2495         IncIt != E;) {
2496
2497      // Look for the next elements with the same type.
2498      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
2499      while (SameTypeIt != E &&
2500             (*SameTypeIt)->getType() == (*IncIt)->getType()) {
2501        VisitedInstrs.insert(*SameTypeIt);
2502        ++SameTypeIt;
2503      }
2504
2505      // Try to vectorize them.
2506      unsigned NumElts = (SameTypeIt - IncIt);
2507      DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
2508      if (NumElts > 1 &&
2509          tryToVectorizeList(ArrayRef<Value *>(IncIt, NumElts), R)) {
2510        // Success start over because instructions might have been changed.
2511        HaveVectorizedPhiNodes = true;
2512        Changed = true;
2513        break;
2514      }
2515
2516      // Start over at the next instruction of a differnt type (or the end).
2517      IncIt = SameTypeIt;
2518    }
2519  }
2520
2521  VisitedInstrs.clear();
2522
2523  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
2524    // We may go through BB multiple times so skip the one we have checked.
2525    if (!VisitedInstrs.insert(it))
2526      continue;
2527
2528    if (isa<DbgInfoIntrinsic>(it))
2529      continue;
2530
2531    // Try to vectorize reductions that use PHINodes.
2532    if (PHINode *P = dyn_cast<PHINode>(it)) {
2533      // Check that the PHI is a reduction PHI.
2534      if (P->getNumIncomingValues() != 2)
2535        return Changed;
2536      Value *Rdx =
2537          (P->getIncomingBlock(0) == BB
2538               ? (P->getIncomingValue(0))
2539               : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
2540      // Check if this is a Binary Operator.
2541      BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
2542      if (!BI)
2543        continue;
2544
2545      // Try to match and vectorize a horizontal reduction.
2546      HorizontalReduction HorRdx;
2547      if (ShouldVectorizeHor &&
2548          HorRdx.matchAssociativeReduction(P, BI, DL) &&
2549          HorRdx.tryToReduce(R, TTI)) {
2550        Changed = true;
2551        it = BB->begin();
2552        e = BB->end();
2553        continue;
2554      }
2555
2556     Value *Inst = BI->getOperand(0);
2557      if (Inst == P)
2558        Inst = BI->getOperand(1);
2559
2560      if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
2561        // We would like to start over since some instructions are deleted
2562        // and the iterator may become invalid value.
2563        Changed = true;
2564        it = BB->begin();
2565        e = BB->end();
2566        continue;
2567      }
2568
2569      continue;
2570    }
2571
2572    // Try to vectorize horizontal reductions feeding into a store.
2573    if (ShouldStartVectorizeHorAtStore)
2574      if (StoreInst *SI = dyn_cast<StoreInst>(it))
2575        if (BinaryOperator *BinOp =
2576                dyn_cast<BinaryOperator>(SI->getValueOperand())) {
2577          HorizontalReduction HorRdx;
2578          if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
2579                HorRdx.tryToReduce(R, TTI)) ||
2580               tryToVectorize(BinOp, R))) {
2581            Changed = true;
2582            it = BB->begin();
2583            e = BB->end();
2584            continue;
2585          }
2586        }
2587
2588    // Try to vectorize trees that start at compare instructions.
2589    if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
2590      if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
2591        Changed = true;
2592        // We would like to start over since some instructions are deleted
2593        // and the iterator may become invalid value.
2594        it = BB->begin();
2595        e = BB->end();
2596        continue;
2597      }
2598
2599      for (int i = 0; i < 2; ++i) {
2600         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
2601            if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
2602              Changed = true;
2603              // We would like to start over since some instructions are deleted
2604              // and the iterator may become invalid value.
2605              it = BB->begin();
2606              e = BB->end();
2607            }
2608         }
2609      }
2610      continue;
2611    }
2612
2613    // Try to vectorize trees that start at insertelement instructions.
2614    if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
2615      SmallVector<Value *, 8> Ops;
2616      if (!findBuildVector(IE, Ops))
2617        continue;
2618
2619      if (tryToVectorizeList(Ops, R)) {
2620        Changed = true;
2621        it = BB->begin();
2622        e = BB->end();
2623      }
2624
2625      continue;
2626    }
2627  }
2628
2629  return Changed;
2630}
2631
2632bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
2633  bool Changed = false;
2634  // Attempt to sort and vectorize each of the store-groups.
2635  for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
2636       it != e; ++it) {
2637    if (it->second.size() < 2)
2638      continue;
2639
2640    DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
2641          << it->second.size() << ".\n");
2642
2643    // Process the stores in chunks of 16.
2644    for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
2645      unsigned Len = std::min<unsigned>(CE - CI, 16);
2646      ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
2647      Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
2648    }
2649  }
2650  return Changed;
2651}
2652
2653} // end anonymous namespace
2654
2655char SLPVectorizer::ID = 0;
2656static const char lv_name[] = "SLP Vectorizer";
2657INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
2658INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2659INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
2660INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2661INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2662INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
2663
2664namespace llvm {
2665Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
2666}
2667