CodeGenRegisters.cpp revision 61131ab15fd593a2e295d79fe2714e7bc21f2ec8
1c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//
3c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
4c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//
5c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)// This file is distributed under the University of Illinois Open Source
6c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)// License. See LICENSE.TXT for details.
7c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//
8c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
9c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//
10c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)// This file defines structures to encapsulate information gleaned from the
11c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)// target register and register class definitions.
12c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//
13c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
14c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
15c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "CodeGenRegisters.h"
16c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "CodeGenTarget.h"
17c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "llvm/TableGen/Error.h"
18c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "llvm/ADT/IntEqClasses.h"
19c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "llvm/ADT/SmallVector.h"
20c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "llvm/ADT/STLExtras.h"
21c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "llvm/ADT/StringExtras.h"
22c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)#include "llvm/ADT/Twine.h"
23c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
24c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)using namespace llvm;
25c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
26c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
27c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//                             CodeGenSubRegIndex
28c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
29c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
30c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
31c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  : TheDef(R), EnumValue(Enum), LaneMask(0) {
32c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  Name = R->getName();
33c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  if (R->getValue("Namespace"))
34c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    Namespace = R->getValueAsString("Namespace");
35c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)}
36c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
37c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
38c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)                                       unsigned Enum)
39c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum), LaneMask(0) {
40c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)}
41c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
42c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)std::string CodeGenSubRegIndex::getQualifiedName() const {
43c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  std::string N = getNamespace();
44c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  if (!N.empty())
45c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    N += "::";
46c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  N += getName();
47c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  return N;
48c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)}
49c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
50868fa2fe829687343ffae624259930155e16dbd8Torne (Richard Coles)void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
51c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  if (!TheDef)
52c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    return;
53c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
54c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
55c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  if (!Comps.empty()) {
56c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    if (Comps.size() != 2)
57c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)      PrintFatalError(TheDef->getLoc(),
58c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)                      "ComposedOf must have exactly two entries");
59c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
60c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
61c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    CodeGenSubRegIndex *X = A->addComposite(B, this);
62c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    if (X)
63c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
64c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  }
65c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
66c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  std::vector<Record*> Parts =
67c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
68c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  if (!Parts.empty()) {
69c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    if (Parts.size() < 2)
70c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)      PrintFatalError(TheDef->getLoc(),
71c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)                    "CoveredBySubRegs must have two or more entries");
72c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
73c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    for (unsigned i = 0, e = Parts.size(); i != e; ++i)
74c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)      IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
75c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    RegBank.addConcatSubRegIndex(IdxParts, this);
76c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  }
77c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)}
78c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
79c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)unsigned CodeGenSubRegIndex::computeLaneMask() {
80c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  // Already computed?
81c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  if (LaneMask)
82c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    return LaneMask;
83c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
84c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  // Recursion guard, shouldn't be required.
85c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  LaneMask = ~0u;
86c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
87c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  // The lane mask is simply the union of all sub-indices.
88c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  unsigned M = 0;
89c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
90c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    M |= I->second->computeLaneMask();
91c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  assert(M && "Missing lane mask, sub-register cycle?");
92c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  LaneMask = M;
93c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  return LaneMask;
94c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)}
95c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
96c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
97c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//                              CodeGenRegister
98c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)//===----------------------------------------------------------------------===//
99c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)
100c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
101c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)  : TheDef(R),
102c2e0dbddbe15c98d52c4786dac06cb8952a8ae6dTorne (Richard Coles)    EnumValue(Enum),
103    CostPerUse(R->getValueAsInt("CostPerUse")),
104    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
105    NumNativeRegUnits(0),
106    SubRegsComplete(false),
107    SuperRegsComplete(false),
108    TopoSig(~0u)
109{}
110
111void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
112  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
113  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
114
115  if (SRIs.size() != SRs.size())
116    PrintFatalError(TheDef->getLoc(),
117                    "SubRegs and SubRegIndices must have the same size");
118
119  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
120    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
121    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
122  }
123
124  // Also compute leading super-registers. Each register has a list of
125  // covered-by-subregs super-registers where it appears as the first explicit
126  // sub-register.
127  //
128  // This is used by computeSecondarySubRegs() to find candidates.
129  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
130    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
131
132  // Add ad hoc alias links. This is a symmetric relationship between two
133  // registers, so build a symmetric graph by adding links in both ends.
134  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
135  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
136    CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
137    ExplicitAliases.push_back(Reg);
138    Reg->ExplicitAliases.push_back(this);
139  }
140}
141
142const std::string &CodeGenRegister::getName() const {
143  return TheDef->getName();
144}
145
146namespace {
147// Iterate over all register units in a set of registers.
148class RegUnitIterator {
149  CodeGenRegister::Set::const_iterator RegI, RegE;
150  CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
151
152public:
153  RegUnitIterator(const CodeGenRegister::Set &Regs):
154    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
155
156    if (RegI != RegE) {
157      UnitI = (*RegI)->getRegUnits().begin();
158      UnitE = (*RegI)->getRegUnits().end();
159      advance();
160    }
161  }
162
163  bool isValid() const { return UnitI != UnitE; }
164
165  unsigned operator* () const { assert(isValid()); return *UnitI; }
166
167  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
168
169  /// Preincrement.  Move to the next unit.
170  void operator++() {
171    assert(isValid() && "Cannot advance beyond the last operand");
172    ++UnitI;
173    advance();
174  }
175
176protected:
177  void advance() {
178    while (UnitI == UnitE) {
179      if (++RegI == RegE)
180        break;
181      UnitI = (*RegI)->getRegUnits().begin();
182      UnitE = (*RegI)->getRegUnits().end();
183    }
184  }
185};
186} // namespace
187
188// Merge two RegUnitLists maintaining the order and removing duplicates.
189// Overwrites MergedRU in the process.
190static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
191                          const CodeGenRegister::RegUnitList &RRU) {
192  CodeGenRegister::RegUnitList LRU = MergedRU;
193  MergedRU.clear();
194  std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
195                 std::back_inserter(MergedRU));
196}
197
198// Return true of this unit appears in RegUnits.
199static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
200  return std::count(RegUnits.begin(), RegUnits.end(), Unit);
201}
202
203// Inherit register units from subregisters.
204// Return true if the RegUnits changed.
205bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
206  unsigned OldNumUnits = RegUnits.size();
207  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
208       I != E; ++I) {
209    CodeGenRegister *SR = I->second;
210    // Merge the subregister's units into this register's RegUnits.
211    mergeRegUnits(RegUnits, SR->RegUnits);
212  }
213  return OldNumUnits != RegUnits.size();
214}
215
216const CodeGenRegister::SubRegMap &
217CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
218  // Only compute this map once.
219  if (SubRegsComplete)
220    return SubRegs;
221  SubRegsComplete = true;
222
223  // First insert the explicit subregs and make sure they are fully indexed.
224  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225    CodeGenRegister *SR = ExplicitSubRegs[i];
226    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                      " appears twice in Register " + getName());
230    // Map explicit sub-registers first, so the names take precedence.
231    // The inherited sub-registers are mapped below.
232    SubReg2Idx.insert(std::make_pair(SR, Idx));
233  }
234
235  // Keep track of inherited subregs and how they can be reached.
236  SmallPtrSet<CodeGenRegister*, 8> Orphans;
237
238  // Clone inherited subregs and place duplicate entries in Orphans.
239  // Here the order is important - earlier subregs take precedence.
240  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241    CodeGenRegister *SR = ExplicitSubRegs[i];
242    const SubRegMap &Map = SR->computeSubRegs(RegBank);
243
244    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
245         ++SI) {
246      if (!SubRegs.insert(*SI).second)
247        Orphans.insert(SI->second);
248    }
249  }
250
251  // Expand any composed subreg indices.
252  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
253  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
254  // expanded subreg indices recursively.
255  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
256  for (unsigned i = 0; i != Indices.size(); ++i) {
257    CodeGenSubRegIndex *Idx = Indices[i];
258    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
259    CodeGenRegister *SR = SubRegs[Idx];
260    const SubRegMap &Map = SR->computeSubRegs(RegBank);
261
262    // Look at the possible compositions of Idx.
263    // They may not all be supported by SR.
264    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
265           E = Comps.end(); I != E; ++I) {
266      SubRegMap::const_iterator SRI = Map.find(I->first);
267      if (SRI == Map.end())
268        continue; // Idx + I->first doesn't exist in SR.
269      // Add I->second as a name for the subreg SRI->second, assuming it is
270      // orphaned, and the name isn't already used for something else.
271      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
272        continue;
273      // We found a new name for the orphaned sub-register.
274      SubRegs.insert(std::make_pair(I->second, SRI->second));
275      Indices.push_back(I->second);
276    }
277  }
278
279  // Now Orphans contains the inherited subregisters without a direct index.
280  // Create inferred indexes for all missing entries.
281  // Work backwards in the Indices vector in order to compose subregs bottom-up.
282  // Consider this subreg sequence:
283  //
284  //   qsub_1 -> dsub_0 -> ssub_0
285  //
286  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
287  // can be reached in two different ways:
288  //
289  //   qsub_1 -> ssub_0
290  //   dsub_2 -> ssub_0
291  //
292  // We pick the latter composition because another register may have [dsub_0,
293  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
294  // dsub_2 -> ssub_0 composition can be shared.
295  while (!Indices.empty() && !Orphans.empty()) {
296    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
297    CodeGenRegister *SR = SubRegs[Idx];
298    const SubRegMap &Map = SR->computeSubRegs(RegBank);
299    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
300         ++SI)
301      if (Orphans.erase(SI->second))
302        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
303  }
304
305  // Compute the inverse SubReg -> Idx map.
306  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
307       SI != SE; ++SI) {
308    if (SI->second == this) {
309      ArrayRef<SMLoc> Loc;
310      if (TheDef)
311        Loc = TheDef->getLoc();
312      PrintFatalError(Loc, "Register " + getName() +
313                      " has itself as a sub-register");
314    }
315    // Ensure that every sub-register has a unique name.
316    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
317      SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
318    if (Ins->second == SI->first)
319      continue;
320    // Trouble: Two different names for SI->second.
321    ArrayRef<SMLoc> Loc;
322    if (TheDef)
323      Loc = TheDef->getLoc();
324    PrintFatalError(Loc, "Sub-register can't have two names: " +
325                  SI->second->getName() + " available as " +
326                  SI->first->getName() + " and " + Ins->second->getName());
327  }
328
329  // Derive possible names for sub-register concatenations from any explicit
330  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
331  // that getConcatSubRegIndex() won't invent any concatenated indices that the
332  // user already specified.
333  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
334    CodeGenRegister *SR = ExplicitSubRegs[i];
335    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
336      continue;
337
338    // SR is composed of multiple sub-regs. Find their names in this register.
339    SmallVector<CodeGenSubRegIndex*, 8> Parts;
340    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
341      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
342
343    // Offer this as an existing spelling for the concatenation of Parts.
344    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
345  }
346
347  // Initialize RegUnitList. Because getSubRegs is called recursively, this
348  // processes the register hierarchy in postorder.
349  //
350  // Inherit all sub-register units. It is good enough to look at the explicit
351  // sub-registers, the other registers won't contribute any more units.
352  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
353    CodeGenRegister *SR = ExplicitSubRegs[i];
354    // Explicit sub-registers are usually disjoint, so this is a good way of
355    // computing the union. We may pick up a few duplicates that will be
356    // eliminated below.
357    unsigned N = RegUnits.size();
358    RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
359    std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
360  }
361  RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
362
363  // Absent any ad hoc aliasing, we create one register unit per leaf register.
364  // These units correspond to the maximal cliques in the register overlap
365  // graph which is optimal.
366  //
367  // When there is ad hoc aliasing, we simply create one unit per edge in the
368  // undirected ad hoc aliasing graph. Technically, we could do better by
369  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370  // are extremely rare anyway (I've never seen one), so we don't bother with
371  // the added complexity.
372  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373    CodeGenRegister *AR = ExplicitAliases[i];
374    // Only visit each edge once.
375    if (AR->SubRegsComplete)
376      continue;
377    // Create a RegUnit representing this alias edge, and add it to both
378    // registers.
379    unsigned Unit = RegBank.newRegUnit(this, AR);
380    RegUnits.push_back(Unit);
381    AR->RegUnits.push_back(Unit);
382  }
383
384  // Finally, create units for leaf registers without ad hoc aliases. Note that
385  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386  // necessary. This means the aliasing leaf registers can share a single unit.
387  if (RegUnits.empty())
388    RegUnits.push_back(RegBank.newRegUnit(this));
389
390  // We have now computed the native register units. More may be adopted later
391  // for balancing purposes.
392  NumNativeRegUnits = RegUnits.size();
393
394  return SubRegs;
395}
396
397// In a register that is covered by its sub-registers, try to find redundant
398// sub-registers. For example:
399//
400//   QQ0 = {Q0, Q1}
401//   Q0 = {D0, D1}
402//   Q1 = {D2, D3}
403//
404// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405// the register definition.
406//
407// The explicitly specified registers form a tree. This function discovers
408// sub-register relationships that would force a DAG.
409//
410void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411  // Collect new sub-registers first, add them later.
412  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413
414  // Look at the leading super-registers of each sub-register. Those are the
415  // candidates for new sub-registers, assuming they are fully contained in
416  // this register.
417  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418    const CodeGenRegister *SubReg = I->second;
419    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422      // Already got this sub-register?
423      if (Cand == this || getSubRegIndex(Cand))
424        continue;
425      // Check if each component of Cand is already a sub-register.
426      // We know that the first component is I->second, and is present with the
427      // name I->first.
428      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429      assert(!Cand->ExplicitSubRegs.empty() &&
430             "Super-register has no sub-registers");
431      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433          Parts.push_back(Idx);
434        else {
435          // Sub-register doesn't exist.
436          Parts.clear();
437          break;
438        }
439      }
440      // If some Cand sub-register is not part of this register, or if Cand only
441      // has one sub-register, there is nothing to do.
442      if (Parts.size() <= 1)
443        continue;
444
445      // Each part of Cand is a sub-register of this. Make the full Cand also
446      // a sub-register with a concatenated sub-register index.
447      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448      NewSubRegs.push_back(std::make_pair(Concat, Cand));
449    }
450  }
451
452  // Now add all the new sub-registers.
453  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454    // Don't add Cand if another sub-register is already using the index.
455    if (!SubRegs.insert(NewSubRegs[i]).second)
456      continue;
457
458    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461  }
462
463  // Create sub-register index composition maps for the synthesized indices.
464  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470      if (!SubIdx)
471        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                        SI->second->getName() + " in " + getName());
473      NewIdx->addComposite(SI->first, SubIdx);
474    }
475  }
476}
477
478void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479  // Only visit each register once.
480  if (SuperRegsComplete)
481    return;
482  SuperRegsComplete = true;
483
484  // Make sure all sub-registers have been visited first, so the super-reg
485  // lists will be topologically ordered.
486  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487       I != E; ++I)
488    I->second->computeSuperRegs(RegBank);
489
490  // Now add this as a super-register on all sub-registers.
491  // Also compute the TopoSigId in post-order.
492  TopoSigId Id;
493  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494       I != E; ++I) {
495    // Topological signature computed from SubIdx, TopoId(SubReg).
496    // Loops and idempotent indices have TopoSig = ~0u.
497    Id.push_back(I->first->EnumValue);
498    Id.push_back(I->second->TopoSig);
499
500    // Don't add duplicate entries.
501    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502      continue;
503    I->second->SuperRegs.push_back(this);
504  }
505  TopoSig = RegBank.getTopoSig(Id);
506}
507
508void
509CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                    CodeGenRegBank &RegBank) const {
511  assert(SubRegsComplete && "Must precompute sub-registers");
512  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513    CodeGenRegister *SR = ExplicitSubRegs[i];
514    if (OSet.insert(SR))
515      SR->addSubRegsPreOrder(OSet, RegBank);
516  }
517  // Add any secondary sub-registers that weren't part of the explicit tree.
518  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519       I != E; ++I)
520    OSet.insert(I->second);
521}
522
523// Compute overlapping registers.
524//
525// The standard set is all super-registers and all sub-registers, but the
526// target description can add arbitrary overlapping registers via the 'Aliases'
527// field. This complicates things, but we can compute overlapping sets using
528// the following rules:
529//
530// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
531//
532// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
533//
534// Alternatively:
535//
536//    overlap(A, B) iff there exists:
537//    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
538//    A' = B' or A' in aliases(B') or B' in aliases(A').
539//
540// Here subregs(A) is the full flattened sub-register set returned by
541// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
542// description of register A.
543//
544// This also implies that registers with a common sub-register are considered
545// overlapping. This can happen when forming register pairs:
546//
547//    P0 = (R0, R1)
548//    P1 = (R1, R2)
549//    P2 = (R2, R3)
550//
551// In this case, we will infer an overlap between P0 and P1 because of the
552// shared sub-register R1. There is no overlap between P0 and P2.
553//
554void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
555                                      const CodeGenRegBank &RegBank) const {
556  assert(!RegUnits.empty() && "Compute register units before overlaps.");
557
558  // Register units are assigned such that the overlapping registers are the
559  // super-registers of the root registers of the register units.
560  for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
561    const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
562    ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
563    for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
564      const CodeGenRegister *Root = Roots[ri];
565      Overlaps.insert(Root);
566      ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
567      Overlaps.insert(Supers.begin(), Supers.end());
568    }
569  }
570}
571
572// Get the sum of this register's unit weights.
573unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
574  unsigned Weight = 0;
575  for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
576       I != E; ++I) {
577    Weight += RegBank.getRegUnit(*I).Weight;
578  }
579  return Weight;
580}
581
582//===----------------------------------------------------------------------===//
583//                               RegisterTuples
584//===----------------------------------------------------------------------===//
585
586// A RegisterTuples def is used to generate pseudo-registers from lists of
587// sub-registers. We provide a SetTheory expander class that returns the new
588// registers.
589namespace {
590struct TupleExpander : SetTheory::Expander {
591  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
592    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
593    unsigned Dim = Indices.size();
594    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
595    if (Dim != SubRegs->getSize())
596      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
597    if (Dim < 2)
598      PrintFatalError(Def->getLoc(),
599                      "Tuples must have at least 2 sub-registers");
600
601    // Evaluate the sub-register lists to be zipped.
602    unsigned Length = ~0u;
603    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
604    for (unsigned i = 0; i != Dim; ++i) {
605      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
606      Length = std::min(Length, unsigned(Lists[i].size()));
607    }
608
609    if (Length == 0)
610      return;
611
612    // Precompute some types.
613    Record *RegisterCl = Def->getRecords().getClass("Register");
614    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
615    StringInit *BlankName = StringInit::get("");
616
617    // Zip them up.
618    for (unsigned n = 0; n != Length; ++n) {
619      std::string Name;
620      Record *Proto = Lists[0][n];
621      std::vector<Init*> Tuple;
622      unsigned CostPerUse = 0;
623      for (unsigned i = 0; i != Dim; ++i) {
624        Record *Reg = Lists[i][n];
625        if (i) Name += '_';
626        Name += Reg->getName();
627        Tuple.push_back(DefInit::get(Reg));
628        CostPerUse = std::max(CostPerUse,
629                              unsigned(Reg->getValueAsInt("CostPerUse")));
630      }
631
632      // Create a new Record representing the synthesized register. This record
633      // is only for consumption by CodeGenRegister, it is not added to the
634      // RecordKeeper.
635      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
636      Elts.insert(NewReg);
637
638      // Copy Proto super-classes.
639      for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
640        NewReg->addSuperClass(Proto->getSuperClasses()[i]);
641
642      // Copy Proto fields.
643      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
644        RecordVal RV = Proto->getValues()[i];
645
646        // Skip existing fields, like NAME.
647        if (NewReg->getValue(RV.getNameInit()))
648          continue;
649
650        StringRef Field = RV.getName();
651
652        // Replace the sub-register list with Tuple.
653        if (Field == "SubRegs")
654          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
655
656        // Provide a blank AsmName. MC hacks are required anyway.
657        if (Field == "AsmName")
658          RV.setValue(BlankName);
659
660        // CostPerUse is aggregated from all Tuple members.
661        if (Field == "CostPerUse")
662          RV.setValue(IntInit::get(CostPerUse));
663
664        // Composite registers are always covered by sub-registers.
665        if (Field == "CoveredBySubRegs")
666          RV.setValue(BitInit::get(true));
667
668        // Copy fields from the RegisterTuples def.
669        if (Field == "SubRegIndices" ||
670            Field == "CompositeIndices") {
671          NewReg->addValue(*Def->getValue(Field));
672          continue;
673        }
674
675        // Some fields get their default uninitialized value.
676        if (Field == "DwarfNumbers" ||
677            Field == "DwarfAlias" ||
678            Field == "Aliases") {
679          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
680            NewReg->addValue(*DefRV);
681          continue;
682        }
683
684        // Everything else is copied from Proto.
685        NewReg->addValue(RV);
686      }
687    }
688  }
689};
690}
691
692//===----------------------------------------------------------------------===//
693//                            CodeGenRegisterClass
694//===----------------------------------------------------------------------===//
695
696CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
697  : TheDef(R),
698    Name(R->getName()),
699    TopoSigs(RegBank.getNumTopoSigs()),
700    EnumValue(-1) {
701  // Rename anonymous register classes.
702  if (R->getName().size() > 9 && R->getName()[9] == '.') {
703    static unsigned AnonCounter = 0;
704    R->setName("AnonRegClass_"+utostr(AnonCounter++));
705  }
706
707  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
708  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
709    Record *Type = TypeList[i];
710    if (!Type->isSubClassOf("ValueType"))
711      PrintFatalError("RegTypes list member '" + Type->getName() +
712        "' does not derive from the ValueType class!");
713    VTs.push_back(getValueType(Type));
714  }
715  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
716
717  // Allocation order 0 is the full set. AltOrders provides others.
718  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
719  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
720  Orders.resize(1 + AltOrders->size());
721
722  // Default allocation order always contains all registers.
723  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
724    Orders[0].push_back((*Elements)[i]);
725    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
726    Members.insert(Reg);
727    TopoSigs.set(Reg->getTopoSig());
728  }
729
730  // Alternative allocation orders may be subsets.
731  SetTheory::RecSet Order;
732  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
733    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
734    Orders[1 + i].append(Order.begin(), Order.end());
735    // Verify that all altorder members are regclass members.
736    while (!Order.empty()) {
737      CodeGenRegister *Reg = RegBank.getReg(Order.back());
738      Order.pop_back();
739      if (!contains(Reg))
740        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
741                      " is not a class member");
742    }
743  }
744
745  // Allow targets to override the size in bits of the RegisterClass.
746  unsigned Size = R->getValueAsInt("Size");
747
748  Namespace = R->getValueAsString("Namespace");
749  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
750  SpillAlignment = R->getValueAsInt("Alignment");
751  CopyCost = R->getValueAsInt("CopyCost");
752  Allocatable = R->getValueAsBit("isAllocatable");
753  AltOrderSelect = R->getValueAsString("AltOrderSelect");
754}
755
756// Create an inferred register class that was missing from the .td files.
757// Most properties will be inherited from the closest super-class after the
758// class structure has been computed.
759CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
760                                           StringRef Name, Key Props)
761  : Members(*Props.Members),
762    TheDef(0),
763    Name(Name),
764    TopoSigs(RegBank.getNumTopoSigs()),
765    EnumValue(-1),
766    SpillSize(Props.SpillSize),
767    SpillAlignment(Props.SpillAlignment),
768    CopyCost(0),
769    Allocatable(true) {
770  for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
771       I != E; ++I)
772    TopoSigs.set((*I)->getTopoSig());
773}
774
775// Compute inherited propertied for a synthesized register class.
776void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
777  assert(!getDef() && "Only synthesized classes can inherit properties");
778  assert(!SuperClasses.empty() && "Synthesized class without super class");
779
780  // The last super-class is the smallest one.
781  CodeGenRegisterClass &Super = *SuperClasses.back();
782
783  // Most properties are copied directly.
784  // Exceptions are members, size, and alignment
785  Namespace = Super.Namespace;
786  VTs = Super.VTs;
787  CopyCost = Super.CopyCost;
788  Allocatable = Super.Allocatable;
789  AltOrderSelect = Super.AltOrderSelect;
790
791  // Copy all allocation orders, filter out foreign registers from the larger
792  // super-class.
793  Orders.resize(Super.Orders.size());
794  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
795    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
796      if (contains(RegBank.getReg(Super.Orders[i][j])))
797        Orders[i].push_back(Super.Orders[i][j]);
798}
799
800bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
801  return Members.count(Reg);
802}
803
804namespace llvm {
805  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
806    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
807    for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
808         E = K.Members->end(); I != E; ++I)
809      OS << ", " << (*I)->getName();
810    return OS << " }";
811  }
812}
813
814// This is a simple lexicographical order that can be used to search for sets.
815// It is not the same as the topological order provided by TopoOrderRC.
816bool CodeGenRegisterClass::Key::
817operator<(const CodeGenRegisterClass::Key &B) const {
818  assert(Members && B.Members);
819  if (*Members != *B.Members)
820    return *Members < *B.Members;
821  if (SpillSize != B.SpillSize)
822    return SpillSize < B.SpillSize;
823  return SpillAlignment < B.SpillAlignment;
824}
825
826// Returns true if RC is a strict subclass.
827// RC is a sub-class of this class if it is a valid replacement for any
828// instruction operand where a register of this classis required. It must
829// satisfy these conditions:
830//
831// 1. All RC registers are also in this.
832// 2. The RC spill size must not be smaller than our spill size.
833// 3. RC spill alignment must be compatible with ours.
834//
835static bool testSubClass(const CodeGenRegisterClass *A,
836                         const CodeGenRegisterClass *B) {
837  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
838    A->SpillSize <= B->SpillSize &&
839    std::includes(A->getMembers().begin(), A->getMembers().end(),
840                  B->getMembers().begin(), B->getMembers().end(),
841                  CodeGenRegister::Less());
842}
843
844/// Sorting predicate for register classes.  This provides a topological
845/// ordering that arranges all register classes before their sub-classes.
846///
847/// Register classes with the same registers, spill size, and alignment form a
848/// clique.  They will be ordered alphabetically.
849///
850static int TopoOrderRC(const void *PA, const void *PB) {
851  const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
852  const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
853  if (A == B)
854    return 0;
855
856  // Order by ascending spill size.
857  if (A->SpillSize < B->SpillSize)
858    return -1;
859  if (A->SpillSize > B->SpillSize)
860    return 1;
861
862  // Order by ascending spill alignment.
863  if (A->SpillAlignment < B->SpillAlignment)
864    return -1;
865  if (A->SpillAlignment > B->SpillAlignment)
866    return 1;
867
868  // Order by descending set size.  Note that the classes' allocation order may
869  // not have been computed yet.  The Members set is always vaild.
870  if (A->getMembers().size() > B->getMembers().size())
871    return -1;
872  if (A->getMembers().size() < B->getMembers().size())
873    return 1;
874
875  // Finally order by name as a tie breaker.
876  return StringRef(A->getName()).compare(B->getName());
877}
878
879std::string CodeGenRegisterClass::getQualifiedName() const {
880  if (Namespace.empty())
881    return getName();
882  else
883    return Namespace + "::" + getName();
884}
885
886// Compute sub-classes of all register classes.
887// Assume the classes are ordered topologically.
888void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
889  ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
890
891  // Visit backwards so sub-classes are seen first.
892  for (unsigned rci = RegClasses.size(); rci; --rci) {
893    CodeGenRegisterClass &RC = *RegClasses[rci - 1];
894    RC.SubClasses.resize(RegClasses.size());
895    RC.SubClasses.set(RC.EnumValue);
896
897    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
898    for (unsigned s = rci; s != RegClasses.size(); ++s) {
899      if (RC.SubClasses.test(s))
900        continue;
901      CodeGenRegisterClass *SubRC = RegClasses[s];
902      if (!testSubClass(&RC, SubRC))
903        continue;
904      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
905      // check them again.
906      RC.SubClasses |= SubRC->SubClasses;
907    }
908
909    // Sweep up missed clique members.  They will be immediately preceding RC.
910    for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
911      RC.SubClasses.set(s - 1);
912  }
913
914  // Compute the SuperClasses lists from the SubClasses vectors.
915  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
916    const BitVector &SC = RegClasses[rci]->getSubClasses();
917    for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
918      if (unsigned(s) == rci)
919        continue;
920      RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
921    }
922  }
923
924  // With the class hierarchy in place, let synthesized register classes inherit
925  // properties from their closest super-class. The iteration order here can
926  // propagate properties down multiple levels.
927  for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
928    if (!RegClasses[rci]->getDef())
929      RegClasses[rci]->inheritProperties(RegBank);
930}
931
932void
933CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
934                                         BitVector &Out) const {
935  DenseMap<CodeGenSubRegIndex*,
936           SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
937    FindI = SuperRegClasses.find(SubIdx);
938  if (FindI == SuperRegClasses.end())
939    return;
940  for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
941       FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
942    Out.set((*I)->EnumValue);
943}
944
945// Populate a unique sorted list of units from a register set.
946void CodeGenRegisterClass::buildRegUnitSet(
947  std::vector<unsigned> &RegUnits) const {
948  std::vector<unsigned> TmpUnits;
949  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
950    TmpUnits.push_back(*UnitI);
951  std::sort(TmpUnits.begin(), TmpUnits.end());
952  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
953                   std::back_inserter(RegUnits));
954}
955
956//===----------------------------------------------------------------------===//
957//                               CodeGenRegBank
958//===----------------------------------------------------------------------===//
959
960CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
961  // Configure register Sets to understand register classes and tuples.
962  Sets.addFieldExpander("RegisterClass", "MemberList");
963  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
964  Sets.addExpander("RegisterTuples", new TupleExpander());
965
966  // Read in the user-defined (named) sub-register indices.
967  // More indices will be synthesized later.
968  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
969  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
970  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
971    getSubRegIdx(SRIs[i]);
972  // Build composite maps from ComposedOf fields.
973  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
974    SubRegIndices[i]->updateComponents(*this);
975
976  // Read in the register definitions.
977  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
978  std::sort(Regs.begin(), Regs.end(), LessRecord());
979  Registers.reserve(Regs.size());
980  // Assign the enumeration values.
981  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
982    getReg(Regs[i]);
983
984  // Expand tuples and number the new registers.
985  std::vector<Record*> Tups =
986    Records.getAllDerivedDefinitions("RegisterTuples");
987  for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
988    const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
989    for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
990      getReg((*TupRegs)[j]);
991  }
992
993  // Now all the registers are known. Build the object graph of explicit
994  // register-register references.
995  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
996    Registers[i]->buildObjectGraph(*this);
997
998  // Compute register name map.
999  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1000    RegistersByName.GetOrCreateValue(
1001                       Registers[i]->TheDef->getValueAsString("AsmName"),
1002                       Registers[i]);
1003
1004  // Precompute all sub-register maps.
1005  // This will create Composite entries for all inferred sub-register indices.
1006  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1007    Registers[i]->computeSubRegs(*this);
1008
1009  // Infer even more sub-registers by combining leading super-registers.
1010  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1011    if (Registers[i]->CoveredBySubRegs)
1012      Registers[i]->computeSecondarySubRegs(*this);
1013
1014  // After the sub-register graph is complete, compute the topologically
1015  // ordered SuperRegs list.
1016  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
1017    Registers[i]->computeSuperRegs(*this);
1018
1019  // Native register units are associated with a leaf register. They've all been
1020  // discovered now.
1021  NumNativeRegUnits = RegUnits.size();
1022
1023  // Read in register class definitions.
1024  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1025  if (RCs.empty())
1026    PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
1027
1028  // Allocate user-defined register classes.
1029  RegClasses.reserve(RCs.size());
1030  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
1031    addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
1032
1033  // Infer missing classes to create a full algebra.
1034  computeInferredRegisterClasses();
1035
1036  // Order register classes topologically and assign enum values.
1037  array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
1038  for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
1039    RegClasses[i]->EnumValue = i;
1040  CodeGenRegisterClass::computeSubClasses(*this);
1041}
1042
1043// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1044CodeGenSubRegIndex*
1045CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1046  CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
1047                                                   SubRegIndices.size() + 1);
1048  SubRegIndices.push_back(Idx);
1049  return Idx;
1050}
1051
1052CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1053  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1054  if (Idx)
1055    return Idx;
1056  Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
1057  SubRegIndices.push_back(Idx);
1058  return Idx;
1059}
1060
1061CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1062  CodeGenRegister *&Reg = Def2Reg[Def];
1063  if (Reg)
1064    return Reg;
1065  Reg = new CodeGenRegister(Def, Registers.size() + 1);
1066  Registers.push_back(Reg);
1067  return Reg;
1068}
1069
1070void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1071  RegClasses.push_back(RC);
1072
1073  if (Record *Def = RC->getDef())
1074    Def2RC.insert(std::make_pair(Def, RC));
1075
1076  // Duplicate classes are rejected by insert().
1077  // That's OK, we only care about the properties handled by CGRC::Key.
1078  CodeGenRegisterClass::Key K(*RC);
1079  Key2RC.insert(std::make_pair(K, RC));
1080}
1081
1082// Create a synthetic sub-class if it is missing.
1083CodeGenRegisterClass*
1084CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1085                                    const CodeGenRegister::Set *Members,
1086                                    StringRef Name) {
1087  // Synthetic sub-class has the same size and alignment as RC.
1088  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1089  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1090  if (FoundI != Key2RC.end())
1091    return FoundI->second;
1092
1093  // Sub-class doesn't exist, create a new one.
1094  CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
1095  addToMaps(NewRC);
1096  return NewRC;
1097}
1098
1099CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1100  if (CodeGenRegisterClass *RC = Def2RC[Def])
1101    return RC;
1102
1103  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1104}
1105
1106CodeGenSubRegIndex*
1107CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1108                                        CodeGenSubRegIndex *B) {
1109  // Look for an existing entry.
1110  CodeGenSubRegIndex *Comp = A->compose(B);
1111  if (Comp)
1112    return Comp;
1113
1114  // None exists, synthesize one.
1115  std::string Name = A->getName() + "_then_" + B->getName();
1116  Comp = createSubRegIndex(Name, A->getNamespace());
1117  A->addComposite(B, Comp);
1118  return Comp;
1119}
1120
1121CodeGenSubRegIndex *CodeGenRegBank::
1122getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
1123  assert(Parts.size() > 1 && "Need two parts to concatenate");
1124
1125  // Look for an existing entry.
1126  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1127  if (Idx)
1128    return Idx;
1129
1130  // None exists, synthesize one.
1131  std::string Name = Parts.front()->getName();
1132  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1133    Name += '_';
1134    Name += Parts[i]->getName();
1135  }
1136  return Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1137}
1138
1139void CodeGenRegBank::computeComposites() {
1140  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1141  // and many registers will share TopoSigs on regular architectures.
1142  BitVector TopoSigs(getNumTopoSigs());
1143
1144  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1145    CodeGenRegister *Reg1 = Registers[i];
1146
1147    // Skip identical subreg structures already processed.
1148    if (TopoSigs.test(Reg1->getTopoSig()))
1149      continue;
1150    TopoSigs.set(Reg1->getTopoSig());
1151
1152    const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1153    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1154         e1 = SRM1.end(); i1 != e1; ++i1) {
1155      CodeGenSubRegIndex *Idx1 = i1->first;
1156      CodeGenRegister *Reg2 = i1->second;
1157      // Ignore identity compositions.
1158      if (Reg1 == Reg2)
1159        continue;
1160      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1161      // Try composing Idx1 with another SubRegIndex.
1162      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1163           e2 = SRM2.end(); i2 != e2; ++i2) {
1164        CodeGenSubRegIndex *Idx2 = i2->first;
1165        CodeGenRegister *Reg3 = i2->second;
1166        // Ignore identity compositions.
1167        if (Reg2 == Reg3)
1168          continue;
1169        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1170        CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
1171        assert(Idx3 && "Sub-register doesn't have an index");
1172
1173        // Conflicting composition? Emit a warning but allow it.
1174        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1175          PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1176                       " and " + Idx2->getQualifiedName() +
1177                       " compose ambiguously as " + Prev->getQualifiedName() +
1178                       " or " + Idx3->getQualifiedName());
1179      }
1180    }
1181  }
1182}
1183
1184// Compute lane masks. This is similar to register units, but at the
1185// sub-register index level. Each bit in the lane mask is like a register unit
1186// class, and two lane masks will have a bit in common if two sub-register
1187// indices overlap in some register.
1188//
1189// Conservatively share a lane mask bit if two sub-register indices overlap in
1190// some registers, but not in others. That shouldn't happen a lot.
1191void CodeGenRegBank::computeSubRegIndexLaneMasks() {
1192  // First assign individual bits to all the leaf indices.
1193  unsigned Bit = 0;
1194  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
1195    CodeGenSubRegIndex *Idx = SubRegIndices[i];
1196    if (Idx->getComposites().empty()) {
1197      Idx->LaneMask = 1u << Bit;
1198      // Share bit 31 in the unlikely case there are more than 32 leafs.
1199      if (Bit < 31) ++Bit;
1200    } else {
1201      Idx->LaneMask = 0;
1202    }
1203  }
1204
1205  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1206  // by the sub-register graph? This doesn't occur in any known targets.
1207
1208  // Inherit lanes from composites.
1209  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
1210    SubRegIndices[i]->computeLaneMask();
1211}
1212
1213namespace {
1214// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1215// the transitive closure of the union of overlapping register
1216// classes. Together, the UberRegSets form a partition of the registers. If we
1217// consider overlapping register classes to be connected, then each UberRegSet
1218// is a set of connected components.
1219//
1220// An UberRegSet will likely be a horizontal slice of register names of
1221// the same width. Nontrivial subregisters should then be in a separate
1222// UberRegSet. But this property isn't required for valid computation of
1223// register unit weights.
1224//
1225// A Weight field caches the max per-register unit weight in each UberRegSet.
1226//
1227// A set of SingularDeterminants flags single units of some register in this set
1228// for which the unit weight equals the set weight. These units should not have
1229// their weight increased.
1230struct UberRegSet {
1231  CodeGenRegister::Set Regs;
1232  unsigned Weight;
1233  CodeGenRegister::RegUnitList SingularDeterminants;
1234
1235  UberRegSet(): Weight(0) {}
1236};
1237} // namespace
1238
1239// Partition registers into UberRegSets, where each set is the transitive
1240// closure of the union of overlapping register classes.
1241//
1242// UberRegSets[0] is a special non-allocatable set.
1243static void computeUberSets(std::vector<UberRegSet> &UberSets,
1244                            std::vector<UberRegSet*> &RegSets,
1245                            CodeGenRegBank &RegBank) {
1246
1247  const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1248
1249  // The Register EnumValue is one greater than its index into Registers.
1250  assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1251         "register enum value mismatch");
1252
1253  // For simplicitly make the SetID the same as EnumValue.
1254  IntEqClasses UberSetIDs(Registers.size()+1);
1255  std::set<unsigned> AllocatableRegs;
1256  for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1257
1258    CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1259    if (!RegClass->Allocatable)
1260      continue;
1261
1262    const CodeGenRegister::Set &Regs = RegClass->getMembers();
1263    if (Regs.empty())
1264      continue;
1265
1266    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1267    assert(USetID && "register number 0 is invalid");
1268
1269    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1270    for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1271           E = Regs.end(); I != E; ++I) {
1272      AllocatableRegs.insert((*I)->EnumValue);
1273      UberSetIDs.join(USetID, (*I)->EnumValue);
1274    }
1275  }
1276  // Combine non-allocatable regs.
1277  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1278    unsigned RegNum = Registers[i]->EnumValue;
1279    if (AllocatableRegs.count(RegNum))
1280      continue;
1281
1282    UberSetIDs.join(0, RegNum);
1283  }
1284  UberSetIDs.compress();
1285
1286  // Make the first UberSet a special unallocatable set.
1287  unsigned ZeroID = UberSetIDs[0];
1288
1289  // Insert Registers into the UberSets formed by union-find.
1290  // Do not resize after this.
1291  UberSets.resize(UberSetIDs.getNumClasses());
1292  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1293    const CodeGenRegister *Reg = Registers[i];
1294    unsigned USetID = UberSetIDs[Reg->EnumValue];
1295    if (!USetID)
1296      USetID = ZeroID;
1297    else if (USetID == ZeroID)
1298      USetID = 0;
1299
1300    UberRegSet *USet = &UberSets[USetID];
1301    USet->Regs.insert(Reg);
1302    RegSets[i] = USet;
1303  }
1304}
1305
1306// Recompute each UberSet weight after changing unit weights.
1307static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1308                               CodeGenRegBank &RegBank) {
1309  // Skip the first unallocatable set.
1310  for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1311         E = UberSets.end(); I != E; ++I) {
1312
1313    // Initialize all unit weights in this set, and remember the max units/reg.
1314    const CodeGenRegister *Reg = 0;
1315    unsigned MaxWeight = 0, Weight = 0;
1316    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1317      if (Reg != UnitI.getReg()) {
1318        if (Weight > MaxWeight)
1319          MaxWeight = Weight;
1320        Reg = UnitI.getReg();
1321        Weight = 0;
1322      }
1323      unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1324      if (!UWeight) {
1325        UWeight = 1;
1326        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1327      }
1328      Weight += UWeight;
1329    }
1330    if (Weight > MaxWeight)
1331      MaxWeight = Weight;
1332
1333    // Update the set weight.
1334    I->Weight = MaxWeight;
1335
1336    // Find singular determinants.
1337    for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1338           RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1339      if ((*RegI)->getRegUnits().size() == 1
1340          && (*RegI)->getWeight(RegBank) == I->Weight)
1341        mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1342    }
1343  }
1344}
1345
1346// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1347// a register and its subregisters so that they have the same weight as their
1348// UberSet. Self-recursion processes the subregister tree in postorder so
1349// subregisters are normalized first.
1350//
1351// Side effects:
1352// - creates new adopted register units
1353// - causes superregisters to inherit adopted units
1354// - increases the weight of "singular" units
1355// - induces recomputation of UberWeights.
1356static bool normalizeWeight(CodeGenRegister *Reg,
1357                            std::vector<UberRegSet> &UberSets,
1358                            std::vector<UberRegSet*> &RegSets,
1359                            std::set<unsigned> &NormalRegs,
1360                            CodeGenRegister::RegUnitList &NormalUnits,
1361                            CodeGenRegBank &RegBank) {
1362  bool Changed = false;
1363  if (!NormalRegs.insert(Reg->EnumValue).second)
1364    return Changed;
1365
1366  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1367  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1368         SRE = SRM.end(); SRI != SRE; ++SRI) {
1369    if (SRI->second == Reg)
1370      continue; // self-cycles happen
1371
1372    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1373                               NormalRegs, NormalUnits, RegBank);
1374  }
1375  // Postorder register normalization.
1376
1377  // Inherit register units newly adopted by subregisters.
1378  if (Reg->inheritRegUnits(RegBank))
1379    computeUberWeights(UberSets, RegBank);
1380
1381  // Check if this register is too skinny for its UberRegSet.
1382  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1383
1384  unsigned RegWeight = Reg->getWeight(RegBank);
1385  if (UberSet->Weight > RegWeight) {
1386    // A register unit's weight can be adjusted only if it is the singular unit
1387    // for this register, has not been used to normalize a subregister's set,
1388    // and has not already been used to singularly determine this UberRegSet.
1389    unsigned AdjustUnit = Reg->getRegUnits().front();
1390    if (Reg->getRegUnits().size() != 1
1391        || hasRegUnit(NormalUnits, AdjustUnit)
1392        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1393      // We don't have an adjustable unit, so adopt a new one.
1394      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1395      Reg->adoptRegUnit(AdjustUnit);
1396      // Adopting a unit does not immediately require recomputing set weights.
1397    }
1398    else {
1399      // Adjust the existing single unit.
1400      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1401      // The unit may be shared among sets and registers within this set.
1402      computeUberWeights(UberSets, RegBank);
1403    }
1404    Changed = true;
1405  }
1406
1407  // Mark these units normalized so superregisters can't change their weights.
1408  mergeRegUnits(NormalUnits, Reg->getRegUnits());
1409
1410  return Changed;
1411}
1412
1413// Compute a weight for each register unit created during getSubRegs.
1414//
1415// The goal is that two registers in the same class will have the same weight,
1416// where each register's weight is defined as sum of its units' weights.
1417void CodeGenRegBank::computeRegUnitWeights() {
1418  std::vector<UberRegSet> UberSets;
1419  std::vector<UberRegSet*> RegSets(Registers.size());
1420  computeUberSets(UberSets, RegSets, *this);
1421  // UberSets and RegSets are now immutable.
1422
1423  computeUberWeights(UberSets, *this);
1424
1425  // Iterate over each Register, normalizing the unit weights until reaching
1426  // a fix point.
1427  unsigned NumIters = 0;
1428  for (bool Changed = true; Changed; ++NumIters) {
1429    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1430    Changed = false;
1431    for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1432      CodeGenRegister::RegUnitList NormalUnits;
1433      std::set<unsigned> NormalRegs;
1434      Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1435                                 NormalRegs, NormalUnits, *this);
1436    }
1437  }
1438}
1439
1440// Find a set in UniqueSets with the same elements as Set.
1441// Return an iterator into UniqueSets.
1442static std::vector<RegUnitSet>::const_iterator
1443findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1444               const RegUnitSet &Set) {
1445  std::vector<RegUnitSet>::const_iterator
1446    I = UniqueSets.begin(), E = UniqueSets.end();
1447  for(;I != E; ++I) {
1448    if (I->Units == Set.Units)
1449      break;
1450  }
1451  return I;
1452}
1453
1454// Return true if the RUSubSet is a subset of RUSuperSet.
1455static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1456                            const std::vector<unsigned> &RUSuperSet) {
1457  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1458                       RUSubSet.begin(), RUSubSet.end());
1459}
1460
1461// Iteratively prune unit sets.
1462void CodeGenRegBank::pruneUnitSets() {
1463  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1464
1465  // Form an equivalence class of UnitSets with no significant difference.
1466  std::vector<unsigned> SuperSetIDs;
1467  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1468       SubIdx != EndIdx; ++SubIdx) {
1469    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1470    unsigned SuperIdx = 0;
1471    for (; SuperIdx != EndIdx; ++SuperIdx) {
1472      if (SuperIdx == SubIdx)
1473        continue;
1474
1475      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1476      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1477          && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
1478        break;
1479      }
1480    }
1481    if (SuperIdx == EndIdx)
1482      SuperSetIDs.push_back(SubIdx);
1483  }
1484  // Populate PrunedUnitSets with each equivalence class's superset.
1485  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1486  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1487    unsigned SuperIdx = SuperSetIDs[i];
1488    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1489    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1490  }
1491  RegUnitSets.swap(PrunedUnitSets);
1492}
1493
1494// Create a RegUnitSet for each RegClass that contains all units in the class
1495// including adopted units that are necessary to model register pressure. Then
1496// iteratively compute RegUnitSets such that the union of any two overlapping
1497// RegUnitSets is repreresented.
1498//
1499// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1500// RegUnitSet that is a superset of that RegUnitClass.
1501void CodeGenRegBank::computeRegUnitSets() {
1502
1503  // Compute a unique RegUnitSet for each RegClass.
1504  const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1505  unsigned NumRegClasses = RegClasses.size();
1506  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1507    if (!RegClasses[RCIdx]->Allocatable)
1508      continue;
1509
1510    // Speculatively grow the RegUnitSets to hold the new set.
1511    RegUnitSets.resize(RegUnitSets.size() + 1);
1512    RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1513
1514    // Compute a sorted list of units in this class.
1515    RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1516
1517    // Find an existing RegUnitSet.
1518    std::vector<RegUnitSet>::const_iterator SetI =
1519      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1520    if (SetI != llvm::prior(RegUnitSets.end()))
1521      RegUnitSets.pop_back();
1522  }
1523
1524  // Iteratively prune unit sets.
1525  pruneUnitSets();
1526
1527  // Iterate over all unit sets, including new ones added by this loop.
1528  unsigned NumRegUnitSubSets = RegUnitSets.size();
1529  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1530    // In theory, this is combinatorial. In practice, it needs to be bounded
1531    // by a small number of sets for regpressure to be efficient.
1532    // If the assert is hit, we need to implement pruning.
1533    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1534
1535    // Compare new sets with all original classes.
1536    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1537         SearchIdx != EndIdx; ++SearchIdx) {
1538      std::set<unsigned> Intersection;
1539      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1540                            RegUnitSets[Idx].Units.end(),
1541                            RegUnitSets[SearchIdx].Units.begin(),
1542                            RegUnitSets[SearchIdx].Units.end(),
1543                            std::inserter(Intersection, Intersection.begin()));
1544      if (Intersection.empty())
1545        continue;
1546
1547      // Speculatively grow the RegUnitSets to hold the new set.
1548      RegUnitSets.resize(RegUnitSets.size() + 1);
1549      RegUnitSets.back().Name =
1550        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1551
1552      std::set_union(RegUnitSets[Idx].Units.begin(),
1553                     RegUnitSets[Idx].Units.end(),
1554                     RegUnitSets[SearchIdx].Units.begin(),
1555                     RegUnitSets[SearchIdx].Units.end(),
1556                     std::inserter(RegUnitSets.back().Units,
1557                                   RegUnitSets.back().Units.begin()));
1558
1559      // Find an existing RegUnitSet, or add the union to the unique sets.
1560      std::vector<RegUnitSet>::const_iterator SetI =
1561        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1562      if (SetI != llvm::prior(RegUnitSets.end()))
1563        RegUnitSets.pop_back();
1564    }
1565  }
1566
1567  // Iteratively prune unit sets after inferring supersets.
1568  pruneUnitSets();
1569
1570  // For each register class, list the UnitSets that are supersets.
1571  RegClassUnitSets.resize(NumRegClasses);
1572  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1573    if (!RegClasses[RCIdx]->Allocatable)
1574      continue;
1575
1576    // Recompute the sorted list of units in this class.
1577    std::vector<unsigned> RegUnits;
1578    RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
1579
1580    // Don't increase pressure for unallocatable regclasses.
1581    if (RegUnits.empty())
1582      continue;
1583
1584    // Find all supersets.
1585    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1586         USIdx != USEnd; ++USIdx) {
1587      if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
1588        RegClassUnitSets[RCIdx].push_back(USIdx);
1589    }
1590    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1591  }
1592}
1593
1594void CodeGenRegBank::computeDerivedInfo() {
1595  computeComposites();
1596  computeSubRegIndexLaneMasks();
1597
1598  // Compute a weight for each register unit created during getSubRegs.
1599  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1600  computeRegUnitWeights();
1601
1602  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1603  // supersets for the union of overlapping sets.
1604  computeRegUnitSets();
1605}
1606
1607//
1608// Synthesize missing register class intersections.
1609//
1610// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1611// returns a maximal register class for all X.
1612//
1613void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1614  for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1615    CodeGenRegisterClass *RC1 = RC;
1616    CodeGenRegisterClass *RC2 = RegClasses[rci];
1617    if (RC1 == RC2)
1618      continue;
1619
1620    // Compute the set intersection of RC1 and RC2.
1621    const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1622    const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1623    CodeGenRegister::Set Intersection;
1624    std::set_intersection(Memb1.begin(), Memb1.end(),
1625                          Memb2.begin(), Memb2.end(),
1626                          std::inserter(Intersection, Intersection.begin()),
1627                          CodeGenRegister::Less());
1628
1629    // Skip disjoint class pairs.
1630    if (Intersection.empty())
1631      continue;
1632
1633    // If RC1 and RC2 have different spill sizes or alignments, use the
1634    // larger size for sub-classing.  If they are equal, prefer RC1.
1635    if (RC2->SpillSize > RC1->SpillSize ||
1636        (RC2->SpillSize == RC1->SpillSize &&
1637         RC2->SpillAlignment > RC1->SpillAlignment))
1638      std::swap(RC1, RC2);
1639
1640    getOrCreateSubClass(RC1, &Intersection,
1641                        RC1->getName() + "_and_" + RC2->getName());
1642  }
1643}
1644
1645//
1646// Synthesize missing sub-classes for getSubClassWithSubReg().
1647//
1648// Make sure that the set of registers in RC with a given SubIdx sub-register
1649// form a register class.  Update RC->SubClassWithSubReg.
1650//
1651void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1652  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1653  typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1654                   CodeGenSubRegIndex::Less> SubReg2SetMap;
1655
1656  // Compute the set of registers supporting each SubRegIndex.
1657  SubReg2SetMap SRSets;
1658  for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1659       RE = RC->getMembers().end(); RI != RE; ++RI) {
1660    const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1661    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1662         E = SRM.end(); I != E; ++I)
1663      SRSets[I->first].insert(*RI);
1664  }
1665
1666  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1667  // numerical order to visit synthetic indices last.
1668  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1669    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1670    SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1671    // Unsupported SubRegIndex. Skip it.
1672    if (I == SRSets.end())
1673      continue;
1674    // In most cases, all RC registers support the SubRegIndex.
1675    if (I->second.size() == RC->getMembers().size()) {
1676      RC->setSubClassWithSubReg(SubIdx, RC);
1677      continue;
1678    }
1679    // This is a real subset.  See if we have a matching class.
1680    CodeGenRegisterClass *SubRC =
1681      getOrCreateSubClass(RC, &I->second,
1682                          RC->getName() + "_with_" + I->first->getName());
1683    RC->setSubClassWithSubReg(SubIdx, SubRC);
1684  }
1685}
1686
1687//
1688// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1689//
1690// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1691// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1692//
1693
1694void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1695                                                unsigned FirstSubRegRC) {
1696  SmallVector<std::pair<const CodeGenRegister*,
1697                        const CodeGenRegister*>, 16> SSPairs;
1698  BitVector TopoSigs(getNumTopoSigs());
1699
1700  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1701  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1702    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1703    // Skip indexes that aren't fully supported by RC's registers. This was
1704    // computed by inferSubClassWithSubReg() above which should have been
1705    // called first.
1706    if (RC->getSubClassWithSubReg(SubIdx) != RC)
1707      continue;
1708
1709    // Build list of (Super, Sub) pairs for this SubIdx.
1710    SSPairs.clear();
1711    TopoSigs.reset();
1712    for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1713         RE = RC->getMembers().end(); RI != RE; ++RI) {
1714      const CodeGenRegister *Super = *RI;
1715      const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1716      assert(Sub && "Missing sub-register");
1717      SSPairs.push_back(std::make_pair(Super, Sub));
1718      TopoSigs.set(Sub->getTopoSig());
1719    }
1720
1721    // Iterate over sub-register class candidates.  Ignore classes created by
1722    // this loop. They will never be useful.
1723    for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1724         ++rci) {
1725      CodeGenRegisterClass *SubRC = RegClasses[rci];
1726      // Topological shortcut: SubRC members have the wrong shape.
1727      if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
1728        continue;
1729      // Compute the subset of RC that maps into SubRC.
1730      CodeGenRegister::Set SubSet;
1731      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1732        if (SubRC->contains(SSPairs[i].second))
1733          SubSet.insert(SSPairs[i].first);
1734      if (SubSet.empty())
1735        continue;
1736      // RC injects completely into SubRC.
1737      if (SubSet.size() == SSPairs.size()) {
1738        SubRC->addSuperRegClass(SubIdx, RC);
1739        continue;
1740      }
1741      // Only a subset of RC maps into SubRC. Make sure it is represented by a
1742      // class.
1743      getOrCreateSubClass(RC, &SubSet, RC->getName() +
1744                          "_with_" + SubIdx->getName() +
1745                          "_in_" + SubRC->getName());
1746    }
1747  }
1748}
1749
1750
1751//
1752// Infer missing register classes.
1753//
1754void CodeGenRegBank::computeInferredRegisterClasses() {
1755  // When this function is called, the register classes have not been sorted
1756  // and assigned EnumValues yet.  That means getSubClasses(),
1757  // getSuperClasses(), and hasSubClass() functions are defunct.
1758  unsigned FirstNewRC = RegClasses.size();
1759
1760  // Visit all register classes, including the ones being added by the loop.
1761  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1762    CodeGenRegisterClass *RC = RegClasses[rci];
1763
1764    // Synthesize answers for getSubClassWithSubReg().
1765    inferSubClassWithSubReg(RC);
1766
1767    // Synthesize answers for getCommonSubClass().
1768    inferCommonSubClass(RC);
1769
1770    // Synthesize answers for getMatchingSuperRegClass().
1771    inferMatchingSuperRegClass(RC);
1772
1773    // New register classes are created while this loop is running, and we need
1774    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
1775    // to match old super-register classes with sub-register classes created
1776    // after inferMatchingSuperRegClass was called.  At this point,
1777    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1778    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
1779    if (rci + 1 == FirstNewRC) {
1780      unsigned NextNewRC = RegClasses.size();
1781      for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1782        inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1783      FirstNewRC = NextNewRC;
1784    }
1785  }
1786}
1787
1788/// getRegisterClassForRegister - Find the register class that contains the
1789/// specified physical register.  If the register is not in a register class,
1790/// return null. If the register is in multiple classes, and the classes have a
1791/// superset-subset relationship and the same set of types, return the
1792/// superclass.  Otherwise return null.
1793const CodeGenRegisterClass*
1794CodeGenRegBank::getRegClassForRegister(Record *R) {
1795  const CodeGenRegister *Reg = getReg(R);
1796  ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1797  const CodeGenRegisterClass *FoundRC = 0;
1798  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1799    const CodeGenRegisterClass &RC = *RCs[i];
1800    if (!RC.contains(Reg))
1801      continue;
1802
1803    // If this is the first class that contains the register,
1804    // make a note of it and go on to the next class.
1805    if (!FoundRC) {
1806      FoundRC = &RC;
1807      continue;
1808    }
1809
1810    // If a register's classes have different types, return null.
1811    if (RC.getValueTypes() != FoundRC->getValueTypes())
1812      return 0;
1813
1814    // Check to see if the previously found class that contains
1815    // the register is a subclass of the current class. If so,
1816    // prefer the superclass.
1817    if (RC.hasSubClass(FoundRC)) {
1818      FoundRC = &RC;
1819      continue;
1820    }
1821
1822    // Check to see if the previously found class that contains
1823    // the register is a superclass of the current class. If so,
1824    // prefer the superclass.
1825    if (FoundRC->hasSubClass(&RC))
1826      continue;
1827
1828    // Multiple classes, and neither is a superclass of the other.
1829    // Return null.
1830    return 0;
1831  }
1832  return FoundRC;
1833}
1834
1835BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1836  SetVector<const CodeGenRegister*> Set;
1837
1838  // First add Regs with all sub-registers.
1839  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1840    CodeGenRegister *Reg = getReg(Regs[i]);
1841    if (Set.insert(Reg))
1842      // Reg is new, add all sub-registers.
1843      // The pre-ordering is not important here.
1844      Reg->addSubRegsPreOrder(Set, *this);
1845  }
1846
1847  // Second, find all super-registers that are completely covered by the set.
1848  for (unsigned i = 0; i != Set.size(); ++i) {
1849    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1850    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1851      const CodeGenRegister *Super = SR[j];
1852      if (!Super->CoveredBySubRegs || Set.count(Super))
1853        continue;
1854      // This new super-register is covered by its sub-registers.
1855      bool AllSubsInSet = true;
1856      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1857      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1858             E = SRM.end(); I != E; ++I)
1859        if (!Set.count(I->second)) {
1860          AllSubsInSet = false;
1861          break;
1862        }
1863      // All sub-registers in Set, add Super as well.
1864      // We will visit Super later to recheck its super-registers.
1865      if (AllSubsInSet)
1866        Set.insert(Super);
1867    }
1868  }
1869
1870  // Convert to BitVector.
1871  BitVector BV(Registers.size() + 1);
1872  for (unsigned i = 0, e = Set.size(); i != e; ++i)
1873    BV.set(Set[i]->EnumValue);
1874  return BV;
1875}
1876