CodeGenRegisters.cpp revision 79e2045531cb4d1978be42591e9254c38a463d30
1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines structures to encapsulate information gleaned from the
11// target register and register class definitions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenRegisters.h"
16#include "CodeGenTarget.h"
17#include "llvm/TableGen/Error.h"
18#include "llvm/ADT/IntEqClasses.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/Twine.h"
23
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27//                             CodeGenSubRegIndex
28//===----------------------------------------------------------------------===//
29
30CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
31  : TheDef(R),
32    EnumValue(Enum)
33{}
34
35std::string CodeGenSubRegIndex::getNamespace() const {
36  if (TheDef->getValue("Namespace"))
37    return TheDef->getValueAsString("Namespace");
38  else
39    return "";
40}
41
42const std::string &CodeGenSubRegIndex::getName() const {
43  return TheDef->getName();
44}
45
46std::string CodeGenSubRegIndex::getQualifiedName() const {
47  std::string N = getNamespace();
48  if (!N.empty())
49    N += "::";
50  N += getName();
51  return N;
52}
53
54void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
55  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
56  if (Comps.empty())
57    return;
58  if (Comps.size() != 2)
59    throw TGError(TheDef->getLoc(), "ComposedOf must have exactly two entries");
60  CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
61  CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
62  CodeGenSubRegIndex *X = A->addComposite(B, this);
63  if (X)
64    throw TGError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
65}
66
67void CodeGenSubRegIndex::cleanComposites() {
68  // Clean out redundant mappings of the form this+X -> X.
69  for (CompMap::iterator i = Composed.begin(), e = Composed.end(); i != e;) {
70    CompMap::iterator j = i;
71    ++i;
72    if (j->first == j->second)
73      Composed.erase(j);
74  }
75}
76
77//===----------------------------------------------------------------------===//
78//                              CodeGenRegister
79//===----------------------------------------------------------------------===//
80
81CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
82  : TheDef(R),
83    EnumValue(Enum),
84    CostPerUse(R->getValueAsInt("CostPerUse")),
85    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
86    SubRegsComplete(false),
87    SuperRegsComplete(false)
88{}
89
90void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
91  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
92  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
93
94  if (SRIs.size() != SRs.size())
95    throw TGError(TheDef->getLoc(),
96                  "SubRegs and SubRegIndices must have the same size");
97
98  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
99    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
100    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
101  }
102
103  // Also compute leading super-registers. Each register has a list of
104  // covered-by-subregs super-registers where it appears as the first explicit
105  // sub-register.
106  //
107  // This is used by computeSecondarySubRegs() to find candidates.
108  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
109    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
110}
111
112const std::string &CodeGenRegister::getName() const {
113  return TheDef->getName();
114}
115
116namespace {
117// Iterate over all register units in a set of registers.
118class RegUnitIterator {
119  CodeGenRegister::Set::const_iterator RegI, RegE;
120  CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
121
122public:
123  RegUnitIterator(const CodeGenRegister::Set &Regs):
124    RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
125
126    if (RegI != RegE) {
127      UnitI = (*RegI)->getRegUnits().begin();
128      UnitE = (*RegI)->getRegUnits().end();
129      advance();
130    }
131  }
132
133  bool isValid() const { return UnitI != UnitE; }
134
135  unsigned operator* () const { assert(isValid()); return *UnitI; };
136
137  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
138
139  /// Preincrement.  Move to the next unit.
140  void operator++() {
141    assert(isValid() && "Cannot advance beyond the last operand");
142    ++UnitI;
143    advance();
144  }
145
146protected:
147  void advance() {
148    while (UnitI == UnitE) {
149      if (++RegI == RegE)
150        break;
151      UnitI = (*RegI)->getRegUnits().begin();
152      UnitE = (*RegI)->getRegUnits().end();
153    }
154  }
155};
156} // namespace
157
158// Merge two RegUnitLists maintaining the order and removing duplicates.
159// Overwrites MergedRU in the process.
160static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
161                          const CodeGenRegister::RegUnitList &RRU) {
162  CodeGenRegister::RegUnitList LRU = MergedRU;
163  MergedRU.clear();
164  std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
165                 std::back_inserter(MergedRU));
166}
167
168// Return true of this unit appears in RegUnits.
169static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
170  return std::count(RegUnits.begin(), RegUnits.end(), Unit);
171}
172
173// Inherit register units from subregisters.
174// Return true if the RegUnits changed.
175bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
176  unsigned OldNumUnits = RegUnits.size();
177  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
178       I != E; ++I) {
179    // Strangely a register may have itself as a subreg (self-cycle) e.g. XMM.
180    // Only create a unit if no other subregs have units.
181    CodeGenRegister *SR = I->second;
182    if (SR == this) {
183      // RegUnits are only empty during computeSubRegs, prior to computing
184      // weight.
185      if (RegUnits.empty())
186        RegUnits.push_back(RegBank.newRegUnit(0));
187      continue;
188    }
189    // Merge the subregister's units into this register's RegUnits.
190    mergeRegUnits(RegUnits, SR->RegUnits);
191  }
192  return OldNumUnits != RegUnits.size();
193}
194
195const CodeGenRegister::SubRegMap &
196CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
197  // Only compute this map once.
198  if (SubRegsComplete)
199    return SubRegs;
200  SubRegsComplete = true;
201
202  // First insert the explicit subregs and make sure they are fully indexed.
203  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
204    CodeGenRegister *SR = ExplicitSubRegs[i];
205    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
206    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
207      throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
208                    " appears twice in Register " + getName());
209    // Map explicit sub-registers first, so the names take precedence.
210    // The inherited sub-registers are mapped below.
211    SubReg2Idx.insert(std::make_pair(SR, Idx));
212  }
213
214  // Keep track of inherited subregs and how they can be reached.
215  SmallPtrSet<CodeGenRegister*, 8> Orphans;
216
217  // Clone inherited subregs and place duplicate entries in Orphans.
218  // Here the order is important - earlier subregs take precedence.
219  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
220    CodeGenRegister *SR = ExplicitSubRegs[i];
221    const SubRegMap &Map = SR->computeSubRegs(RegBank);
222
223    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
224         ++SI) {
225      if (!SubRegs.insert(*SI).second)
226        Orphans.insert(SI->second);
227    }
228  }
229
230  // Expand any composed subreg indices.
231  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
232  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
233  // expanded subreg indices recursively.
234  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
235  for (unsigned i = 0; i != Indices.size(); ++i) {
236    CodeGenSubRegIndex *Idx = Indices[i];
237    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
238    CodeGenRegister *SR = SubRegs[Idx];
239    const SubRegMap &Map = SR->computeSubRegs(RegBank);
240
241    // Look at the possible compositions of Idx.
242    // They may not all be supported by SR.
243    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
244           E = Comps.end(); I != E; ++I) {
245      SubRegMap::const_iterator SRI = Map.find(I->first);
246      if (SRI == Map.end())
247        continue; // Idx + I->first doesn't exist in SR.
248      // Add I->second as a name for the subreg SRI->second, assuming it is
249      // orphaned, and the name isn't already used for something else.
250      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
251        continue;
252      // We found a new name for the orphaned sub-register.
253      SubRegs.insert(std::make_pair(I->second, SRI->second));
254      Indices.push_back(I->second);
255    }
256  }
257
258  // Process the composites.
259  ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
260  for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
261    DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
262    if (!Pat)
263      throw TGError(TheDef->getLoc(), "Invalid dag '" +
264                    Comps->getElement(i)->getAsString() +
265                    "' in CompositeIndices");
266    DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
267    if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
268      throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
269                    Pat->getAsString());
270    CodeGenSubRegIndex *BaseIdx = RegBank.getSubRegIdx(BaseIdxInit->getDef());
271
272    // Resolve list of subreg indices into R2.
273    CodeGenRegister *R2 = this;
274    for (DagInit::const_arg_iterator di = Pat->arg_begin(),
275         de = Pat->arg_end(); di != de; ++di) {
276      DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
277      if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
278        throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
279                      Pat->getAsString());
280      CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxInit->getDef());
281      const SubRegMap &R2Subs = R2->computeSubRegs(RegBank);
282      SubRegMap::const_iterator ni = R2Subs.find(Idx);
283      if (ni == R2Subs.end())
284        throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
285                      " refers to bad index in " + R2->getName());
286      R2 = ni->second;
287    }
288
289    // Insert composite index. Allow overriding inherited indices etc.
290    SubRegs[BaseIdx] = R2;
291
292    // R2 is no longer an orphan.
293    Orphans.erase(R2);
294  }
295
296  // Now Orphans contains the inherited subregisters without a direct index.
297  // Create inferred indexes for all missing entries.
298  // Work backwards in the Indices vector in order to compose subregs bottom-up.
299  // Consider this subreg sequence:
300  //
301  //   qsub_1 -> dsub_0 -> ssub_0
302  //
303  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
304  // can be reached in two different ways:
305  //
306  //   qsub_1 -> ssub_0
307  //   dsub_2 -> ssub_0
308  //
309  // We pick the latter composition because another register may have [dsub_0,
310  // dsub_1, dsub_2] subregs without neccessarily having a qsub_1 subreg.  The
311  // dsub_2 -> ssub_0 composition can be shared.
312  while (!Indices.empty() && !Orphans.empty()) {
313    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
314    CodeGenRegister *SR = SubRegs[Idx];
315    const SubRegMap &Map = SR->computeSubRegs(RegBank);
316    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
317         ++SI)
318      if (Orphans.erase(SI->second))
319        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
320  }
321
322  // Compute the inverse SubReg -> Idx map.
323  for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
324       SI != SE; ++SI) {
325    // Ignore idempotent sub-register indices.
326    if (SI->second == this)
327      continue;
328    // Is is possible to have multiple names for the same sub-register.
329    // For example, XMM0 appears as sub_xmm, sub_sd, and sub_ss in YMM0.
330    // Eventually, this degeneration should go away, but for now we simply give
331    // precedence to the explicit sub-register index over the inherited ones.
332    SubReg2Idx.insert(std::make_pair(SI->second, SI->first));
333  }
334
335  // Derive possible names for sub-register concatenations from any explicit
336  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
337  // that getConcatSubRegIndex() won't invent any concatenated indices that the
338  // user already specified.
339  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
340    CodeGenRegister *SR = ExplicitSubRegs[i];
341    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
342      continue;
343
344    // SR is composed of multiple sub-regs. Find their names in this register.
345    SmallVector<CodeGenSubRegIndex*, 8> Parts;
346    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
347      Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
348
349    // Offer this as an existing spelling for the concatenation of Parts.
350    RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
351  }
352
353  // Initialize RegUnitList. A register with no subregisters creates its own
354  // unit. Otherwise, it inherits all its subregister's units. Because
355  // getSubRegs is called recursively, this processes the register hierarchy in
356  // postorder.
357  //
358  // TODO: We currently assume all register units correspond to a named "leaf"
359  // register. We should also unify register units for ad-hoc register
360  // aliases. This can be done by iteratively merging units for aliasing
361  // registers using a worklist.
362  assert(RegUnits.empty() && "Should only initialize RegUnits once");
363  if (SubRegs.empty())
364    RegUnits.push_back(RegBank.newRegUnit(0));
365  else
366    inheritRegUnits(RegBank);
367  return SubRegs;
368}
369
370// In a register that is covered by its sub-registers, try to find redundant
371// sub-registers. For example:
372//
373//   QQ0 = {Q0, Q1}
374//   Q0 = {D0, D1}
375//   Q1 = {D2, D3}
376//
377// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
378// the register definition.
379//
380// The explicitly specified registers form a tree. This function discovers
381// sub-register relationships that would force a DAG.
382//
383void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
384  // Collect new sub-registers first, add them later.
385  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
386
387  // Look at the leading super-registers of each sub-register. Those are the
388  // candidates for new sub-registers, assuming they are fully contained in
389  // this register.
390  for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
391    const CodeGenRegister *SubReg = I->second;
392    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
393    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
394      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
395      // Already got this sub-register?
396      if (Cand == this || getSubRegIndex(Cand))
397        continue;
398      // Check if each component of Cand is already a sub-register.
399      // We know that the first component is I->second, and is present with the
400      // name I->first.
401      SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
402      assert(!Cand->ExplicitSubRegs.empty() &&
403             "Super-register has no sub-registers");
404      for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
405        if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
406          Parts.push_back(Idx);
407        else {
408          // Sub-register doesn't exist.
409          Parts.clear();
410          break;
411        }
412      }
413      // If some Cand sub-register is not part of this register, or if Cand only
414      // has one sub-register, there is nothing to do.
415      if (Parts.size() <= 1)
416        continue;
417
418      // Each part of Cand is a sub-register of this. Make the full Cand also
419      // a sub-register with a concatenated sub-register index.
420      CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
421      NewSubRegs.push_back(std::make_pair(Concat, Cand));
422    }
423  }
424
425  // Now add all the new sub-registers.
426  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
427    // Don't add Cand if another sub-register is already using the index.
428    if (!SubRegs.insert(NewSubRegs[i]).second)
429      continue;
430
431    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
432    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
433    SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
434  }
435
436  // Create sub-register index composition maps for the synthesized indices.
437  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
438    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
439    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
440    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
441           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
442      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
443      if (!SubIdx)
444        throw TGError(TheDef->getLoc(), "No SubRegIndex for " +
445                      SI->second->getName() + " in " + getName());
446      NewIdx->addComposite(SI->first, SubIdx);
447    }
448  }
449}
450
451void CodeGenRegister::computeSuperRegs() {
452  // Only visit each register once.
453  if (SuperRegsComplete)
454    return;
455  SuperRegsComplete = true;
456
457  // Make sure all sub-registers have been visited first, so the super-reg
458  // lists will be topologically ordered.
459  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
460       I != E; ++I)
461    I->second->computeSuperRegs();
462
463  // Now add this as a super-register on all sub-registers.
464  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
465       I != E; ++I) {
466    if (I->second == this)
467      continue;
468    // Don't add duplicate entries.
469    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
470      continue;
471    I->second->SuperRegs.push_back(this);
472  }
473}
474
475void
476CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
477                                    CodeGenRegBank &RegBank) const {
478  assert(SubRegsComplete && "Must precompute sub-registers");
479  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
480    CodeGenRegister *SR = ExplicitSubRegs[i];
481    if (OSet.insert(SR))
482      SR->addSubRegsPreOrder(OSet, RegBank);
483  }
484  // Add any secondary sub-registers that weren't part of the explicit tree.
485  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
486       I != E; ++I)
487    if (I->second != this)
488      OSet.insert(I->second);
489}
490
491// Get the sum of this register's unit weights.
492unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
493  unsigned Weight = 0;
494  for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
495       I != E; ++I) {
496    Weight += RegBank.getRegUnitWeight(*I);
497  }
498  return Weight;
499}
500
501//===----------------------------------------------------------------------===//
502//                               RegisterTuples
503//===----------------------------------------------------------------------===//
504
505// A RegisterTuples def is used to generate pseudo-registers from lists of
506// sub-registers. We provide a SetTheory expander class that returns the new
507// registers.
508namespace {
509struct TupleExpander : SetTheory::Expander {
510  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
511    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
512    unsigned Dim = Indices.size();
513    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
514    if (Dim != SubRegs->getSize())
515      throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
516    if (Dim < 2)
517      throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
518
519    // Evaluate the sub-register lists to be zipped.
520    unsigned Length = ~0u;
521    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
522    for (unsigned i = 0; i != Dim; ++i) {
523      ST.evaluate(SubRegs->getElement(i), Lists[i]);
524      Length = std::min(Length, unsigned(Lists[i].size()));
525    }
526
527    if (Length == 0)
528      return;
529
530    // Precompute some types.
531    Record *RegisterCl = Def->getRecords().getClass("Register");
532    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
533    StringInit *BlankName = StringInit::get("");
534
535    // Zip them up.
536    for (unsigned n = 0; n != Length; ++n) {
537      std::string Name;
538      Record *Proto = Lists[0][n];
539      std::vector<Init*> Tuple;
540      unsigned CostPerUse = 0;
541      for (unsigned i = 0; i != Dim; ++i) {
542        Record *Reg = Lists[i][n];
543        if (i) Name += '_';
544        Name += Reg->getName();
545        Tuple.push_back(DefInit::get(Reg));
546        CostPerUse = std::max(CostPerUse,
547                              unsigned(Reg->getValueAsInt("CostPerUse")));
548      }
549
550      // Create a new Record representing the synthesized register. This record
551      // is only for consumption by CodeGenRegister, it is not added to the
552      // RecordKeeper.
553      Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
554      Elts.insert(NewReg);
555
556      // Copy Proto super-classes.
557      for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
558        NewReg->addSuperClass(Proto->getSuperClasses()[i]);
559
560      // Copy Proto fields.
561      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
562        RecordVal RV = Proto->getValues()[i];
563
564        // Skip existing fields, like NAME.
565        if (NewReg->getValue(RV.getNameInit()))
566          continue;
567
568        StringRef Field = RV.getName();
569
570        // Replace the sub-register list with Tuple.
571        if (Field == "SubRegs")
572          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
573
574        // Provide a blank AsmName. MC hacks are required anyway.
575        if (Field == "AsmName")
576          RV.setValue(BlankName);
577
578        // CostPerUse is aggregated from all Tuple members.
579        if (Field == "CostPerUse")
580          RV.setValue(IntInit::get(CostPerUse));
581
582        // Composite registers are always covered by sub-registers.
583        if (Field == "CoveredBySubRegs")
584          RV.setValue(BitInit::get(true));
585
586        // Copy fields from the RegisterTuples def.
587        if (Field == "SubRegIndices" ||
588            Field == "CompositeIndices") {
589          NewReg->addValue(*Def->getValue(Field));
590          continue;
591        }
592
593        // Some fields get their default uninitialized value.
594        if (Field == "DwarfNumbers" ||
595            Field == "DwarfAlias" ||
596            Field == "Aliases") {
597          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
598            NewReg->addValue(*DefRV);
599          continue;
600        }
601
602        // Everything else is copied from Proto.
603        NewReg->addValue(RV);
604      }
605    }
606  }
607};
608}
609
610//===----------------------------------------------------------------------===//
611//                            CodeGenRegisterClass
612//===----------------------------------------------------------------------===//
613
614CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
615  : TheDef(R), Name(R->getName()), EnumValue(-1) {
616  // Rename anonymous register classes.
617  if (R->getName().size() > 9 && R->getName()[9] == '.') {
618    static unsigned AnonCounter = 0;
619    R->setName("AnonRegClass_"+utostr(AnonCounter++));
620  }
621
622  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
623  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
624    Record *Type = TypeList[i];
625    if (!Type->isSubClassOf("ValueType"))
626      throw "RegTypes list member '" + Type->getName() +
627        "' does not derive from the ValueType class!";
628    VTs.push_back(getValueType(Type));
629  }
630  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
631
632  // Allocation order 0 is the full set. AltOrders provides others.
633  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
634  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
635  Orders.resize(1 + AltOrders->size());
636
637  // Default allocation order always contains all registers.
638  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
639    Orders[0].push_back((*Elements)[i]);
640    Members.insert(RegBank.getReg((*Elements)[i]));
641  }
642
643  // Alternative allocation orders may be subsets.
644  SetTheory::RecSet Order;
645  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
646    RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
647    Orders[1 + i].append(Order.begin(), Order.end());
648    // Verify that all altorder members are regclass members.
649    while (!Order.empty()) {
650      CodeGenRegister *Reg = RegBank.getReg(Order.back());
651      Order.pop_back();
652      if (!contains(Reg))
653        throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
654                      " is not a class member");
655    }
656  }
657
658  // Allow targets to override the size in bits of the RegisterClass.
659  unsigned Size = R->getValueAsInt("Size");
660
661  Namespace = R->getValueAsString("Namespace");
662  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
663  SpillAlignment = R->getValueAsInt("Alignment");
664  CopyCost = R->getValueAsInt("CopyCost");
665  Allocatable = R->getValueAsBit("isAllocatable");
666  AltOrderSelect = R->getValueAsString("AltOrderSelect");
667}
668
669// Create an inferred register class that was missing from the .td files.
670// Most properties will be inherited from the closest super-class after the
671// class structure has been computed.
672CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props)
673  : Members(*Props.Members),
674    TheDef(0),
675    Name(Name),
676    EnumValue(-1),
677    SpillSize(Props.SpillSize),
678    SpillAlignment(Props.SpillAlignment),
679    CopyCost(0),
680    Allocatable(true) {
681}
682
683// Compute inherited propertied for a synthesized register class.
684void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
685  assert(!getDef() && "Only synthesized classes can inherit properties");
686  assert(!SuperClasses.empty() && "Synthesized class without super class");
687
688  // The last super-class is the smallest one.
689  CodeGenRegisterClass &Super = *SuperClasses.back();
690
691  // Most properties are copied directly.
692  // Exceptions are members, size, and alignment
693  Namespace = Super.Namespace;
694  VTs = Super.VTs;
695  CopyCost = Super.CopyCost;
696  Allocatable = Super.Allocatable;
697  AltOrderSelect = Super.AltOrderSelect;
698
699  // Copy all allocation orders, filter out foreign registers from the larger
700  // super-class.
701  Orders.resize(Super.Orders.size());
702  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
703    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
704      if (contains(RegBank.getReg(Super.Orders[i][j])))
705        Orders[i].push_back(Super.Orders[i][j]);
706}
707
708bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
709  return Members.count(Reg);
710}
711
712namespace llvm {
713  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
714    OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
715    for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
716         E = K.Members->end(); I != E; ++I)
717      OS << ", " << (*I)->getName();
718    return OS << " }";
719  }
720}
721
722// This is a simple lexicographical order that can be used to search for sets.
723// It is not the same as the topological order provided by TopoOrderRC.
724bool CodeGenRegisterClass::Key::
725operator<(const CodeGenRegisterClass::Key &B) const {
726  assert(Members && B.Members);
727  if (*Members != *B.Members)
728    return *Members < *B.Members;
729  if (SpillSize != B.SpillSize)
730    return SpillSize < B.SpillSize;
731  return SpillAlignment < B.SpillAlignment;
732}
733
734// Returns true if RC is a strict subclass.
735// RC is a sub-class of this class if it is a valid replacement for any
736// instruction operand where a register of this classis required. It must
737// satisfy these conditions:
738//
739// 1. All RC registers are also in this.
740// 2. The RC spill size must not be smaller than our spill size.
741// 3. RC spill alignment must be compatible with ours.
742//
743static bool testSubClass(const CodeGenRegisterClass *A,
744                         const CodeGenRegisterClass *B) {
745  return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
746    A->SpillSize <= B->SpillSize &&
747    std::includes(A->getMembers().begin(), A->getMembers().end(),
748                  B->getMembers().begin(), B->getMembers().end(),
749                  CodeGenRegister::Less());
750}
751
752/// Sorting predicate for register classes.  This provides a topological
753/// ordering that arranges all register classes before their sub-classes.
754///
755/// Register classes with the same registers, spill size, and alignment form a
756/// clique.  They will be ordered alphabetically.
757///
758static int TopoOrderRC(const void *PA, const void *PB) {
759  const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
760  const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
761  if (A == B)
762    return 0;
763
764  // Order by ascending spill size.
765  if (A->SpillSize < B->SpillSize)
766    return -1;
767  if (A->SpillSize > B->SpillSize)
768    return 1;
769
770  // Order by ascending spill alignment.
771  if (A->SpillAlignment < B->SpillAlignment)
772    return -1;
773  if (A->SpillAlignment > B->SpillAlignment)
774    return 1;
775
776  // Order by descending set size.  Note that the classes' allocation order may
777  // not have been computed yet.  The Members set is always vaild.
778  if (A->getMembers().size() > B->getMembers().size())
779    return -1;
780  if (A->getMembers().size() < B->getMembers().size())
781    return 1;
782
783  // Finally order by name as a tie breaker.
784  return StringRef(A->getName()).compare(B->getName());
785}
786
787std::string CodeGenRegisterClass::getQualifiedName() const {
788  if (Namespace.empty())
789    return getName();
790  else
791    return Namespace + "::" + getName();
792}
793
794// Compute sub-classes of all register classes.
795// Assume the classes are ordered topologically.
796void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
797  ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
798
799  // Visit backwards so sub-classes are seen first.
800  for (unsigned rci = RegClasses.size(); rci; --rci) {
801    CodeGenRegisterClass &RC = *RegClasses[rci - 1];
802    RC.SubClasses.resize(RegClasses.size());
803    RC.SubClasses.set(RC.EnumValue);
804
805    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
806    for (unsigned s = rci; s != RegClasses.size(); ++s) {
807      if (RC.SubClasses.test(s))
808        continue;
809      CodeGenRegisterClass *SubRC = RegClasses[s];
810      if (!testSubClass(&RC, SubRC))
811        continue;
812      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
813      // check them again.
814      RC.SubClasses |= SubRC->SubClasses;
815    }
816
817    // Sweep up missed clique members.  They will be immediately preceeding RC.
818    for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
819      RC.SubClasses.set(s - 1);
820  }
821
822  // Compute the SuperClasses lists from the SubClasses vectors.
823  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
824    const BitVector &SC = RegClasses[rci]->getSubClasses();
825    for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
826      if (unsigned(s) == rci)
827        continue;
828      RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
829    }
830  }
831
832  // With the class hierarchy in place, let synthesized register classes inherit
833  // properties from their closest super-class. The iteration order here can
834  // propagate properties down multiple levels.
835  for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
836    if (!RegClasses[rci]->getDef())
837      RegClasses[rci]->inheritProperties(RegBank);
838}
839
840void
841CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
842                                         BitVector &Out) const {
843  DenseMap<CodeGenSubRegIndex*,
844           SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
845    FindI = SuperRegClasses.find(SubIdx);
846  if (FindI == SuperRegClasses.end())
847    return;
848  for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
849       FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
850    Out.set((*I)->EnumValue);
851}
852
853// Populate a unique sorted list of units from a register set.
854void CodeGenRegisterClass::buildRegUnitSet(
855  std::vector<unsigned> &RegUnits) const {
856  std::vector<unsigned> TmpUnits;
857  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
858    TmpUnits.push_back(*UnitI);
859  std::sort(TmpUnits.begin(), TmpUnits.end());
860  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
861                   std::back_inserter(RegUnits));
862}
863
864//===----------------------------------------------------------------------===//
865//                               CodeGenRegBank
866//===----------------------------------------------------------------------===//
867
868CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
869  // Configure register Sets to understand register classes and tuples.
870  Sets.addFieldExpander("RegisterClass", "MemberList");
871  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
872  Sets.addExpander("RegisterTuples", new TupleExpander());
873
874  // Read in the user-defined (named) sub-register indices.
875  // More indices will be synthesized later.
876  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
877  std::sort(SRIs.begin(), SRIs.end(), LessRecord());
878  NumNamedIndices = SRIs.size();
879  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
880    getSubRegIdx(SRIs[i]);
881  // Build composite maps from ComposedOf fields.
882  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
883    SubRegIndices[i]->updateComponents(*this);
884
885  // Read in the register definitions.
886  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
887  std::sort(Regs.begin(), Regs.end(), LessRecord());
888  Registers.reserve(Regs.size());
889  // Assign the enumeration values.
890  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
891    getReg(Regs[i]);
892
893  // Expand tuples and number the new registers.
894  std::vector<Record*> Tups =
895    Records.getAllDerivedDefinitions("RegisterTuples");
896  for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
897    const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
898    for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
899      getReg((*TupRegs)[j]);
900  }
901
902  // Now all the registers are known. Build the object graph of explicit
903  // register-register references.
904  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
905    Registers[i]->buildObjectGraph(*this);
906
907  // Precompute all sub-register maps.
908  // This will create Composite entries for all inferred sub-register indices.
909  NumRegUnits = 0;
910  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
911    Registers[i]->computeSubRegs(*this);
912
913  // Infer even more sub-registers by combining leading super-registers.
914  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
915    if (Registers[i]->CoveredBySubRegs)
916      Registers[i]->computeSecondarySubRegs(*this);
917
918  // After the sub-register graph is complete, compute the topologically
919  // ordered SuperRegs list.
920  for (unsigned i = 0, e = Registers.size(); i != e; ++i)
921    Registers[i]->computeSuperRegs();
922
923  // Native register units are associated with a leaf register. They've all been
924  // discovered now.
925  NumNativeRegUnits = NumRegUnits;
926
927  // Read in register class definitions.
928  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
929  if (RCs.empty())
930    throw std::string("No 'RegisterClass' subclasses defined!");
931
932  // Allocate user-defined register classes.
933  RegClasses.reserve(RCs.size());
934  for (unsigned i = 0, e = RCs.size(); i != e; ++i)
935    addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
936
937  // Infer missing classes to create a full algebra.
938  computeInferredRegisterClasses();
939
940  // Order register classes topologically and assign enum values.
941  array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
942  for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
943    RegClasses[i]->EnumValue = i;
944  CodeGenRegisterClass::computeSubClasses(*this);
945}
946
947CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
948  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
949  if (Idx)
950    return Idx;
951  Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
952  SubRegIndices.push_back(Idx);
953  return Idx;
954}
955
956CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
957  CodeGenRegister *&Reg = Def2Reg[Def];
958  if (Reg)
959    return Reg;
960  Reg = new CodeGenRegister(Def, Registers.size() + 1);
961  Registers.push_back(Reg);
962  return Reg;
963}
964
965void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
966  RegClasses.push_back(RC);
967
968  if (Record *Def = RC->getDef())
969    Def2RC.insert(std::make_pair(Def, RC));
970
971  // Duplicate classes are rejected by insert().
972  // That's OK, we only care about the properties handled by CGRC::Key.
973  CodeGenRegisterClass::Key K(*RC);
974  Key2RC.insert(std::make_pair(K, RC));
975}
976
977// Create a synthetic sub-class if it is missing.
978CodeGenRegisterClass*
979CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
980                                    const CodeGenRegister::Set *Members,
981                                    StringRef Name) {
982  // Synthetic sub-class has the same size and alignment as RC.
983  CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
984  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
985  if (FoundI != Key2RC.end())
986    return FoundI->second;
987
988  // Sub-class doesn't exist, create a new one.
989  CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(Name, K);
990  addToMaps(NewRC);
991  return NewRC;
992}
993
994CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
995  if (CodeGenRegisterClass *RC = Def2RC[Def])
996    return RC;
997
998  throw TGError(Def->getLoc(), "Not a known RegisterClass!");
999}
1000
1001CodeGenSubRegIndex*
1002CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1003                                        CodeGenSubRegIndex *B) {
1004  // Look for an existing entry.
1005  CodeGenSubRegIndex *Comp = A->compose(B);
1006  if (Comp)
1007    return Comp;
1008
1009  // None exists, synthesize one.
1010  std::string Name = A->getName() + "_then_" + B->getName();
1011  Comp = getSubRegIdx(new Record(Name, SMLoc(), Records));
1012  A->addComposite(B, Comp);
1013  return Comp;
1014}
1015
1016CodeGenSubRegIndex *CodeGenRegBank::
1017getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
1018  assert(Parts.size() > 1 && "Need two parts to concatenate");
1019
1020  // Look for an existing entry.
1021  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1022  if (Idx)
1023    return Idx;
1024
1025  // None exists, synthesize one.
1026  std::string Name = Parts.front()->getName();
1027  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1028    Name += '_';
1029    Name += Parts[i]->getName();
1030  }
1031  return Idx = getSubRegIdx(new Record(Name, SMLoc(), Records));
1032}
1033
1034void CodeGenRegBank::computeComposites() {
1035  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1036    CodeGenRegister *Reg1 = Registers[i];
1037    const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
1038    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1039         e1 = SRM1.end(); i1 != e1; ++i1) {
1040      CodeGenSubRegIndex *Idx1 = i1->first;
1041      CodeGenRegister *Reg2 = i1->second;
1042      // Ignore identity compositions.
1043      if (Reg1 == Reg2)
1044        continue;
1045      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1046      // Try composing Idx1 with another SubRegIndex.
1047      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1048           e2 = SRM2.end(); i2 != e2; ++i2) {
1049      CodeGenSubRegIndex *Idx2 = i2->first;
1050        CodeGenRegister *Reg3 = i2->second;
1051        // Ignore identity compositions.
1052        if (Reg2 == Reg3)
1053          continue;
1054        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1055        for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(),
1056             e1d = SRM1.end(); i1d != e1d; ++i1d) {
1057          if (i1d->second == Reg3) {
1058            // Conflicting composition? Emit a warning but allow it.
1059            if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, i1d->first))
1060              PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1061                     " and " + Idx2->getQualifiedName() +
1062                     " compose ambiguously as " + Prev->getQualifiedName() +
1063                     " or " + i1d->first->getQualifiedName());
1064          }
1065        }
1066      }
1067    }
1068  }
1069
1070  // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
1071  // compositions, so remove any mappings of that form.
1072  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
1073    SubRegIndices[i]->cleanComposites();
1074}
1075
1076namespace {
1077// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1078// the transitive closure of the union of overlapping register
1079// classes. Together, the UberRegSets form a partition of the registers. If we
1080// consider overlapping register classes to be connected, then each UberRegSet
1081// is a set of connected components.
1082//
1083// An UberRegSet will likely be a horizontal slice of register names of
1084// the same width. Nontrivial subregisters should then be in a separate
1085// UberRegSet. But this property isn't required for valid computation of
1086// register unit weights.
1087//
1088// A Weight field caches the max per-register unit weight in each UberRegSet.
1089//
1090// A set of SingularDeterminants flags single units of some register in this set
1091// for which the unit weight equals the set weight. These units should not have
1092// their weight increased.
1093struct UberRegSet {
1094  CodeGenRegister::Set Regs;
1095  unsigned Weight;
1096  CodeGenRegister::RegUnitList SingularDeterminants;
1097
1098  UberRegSet(): Weight(0) {}
1099};
1100} // namespace
1101
1102// Partition registers into UberRegSets, where each set is the transitive
1103// closure of the union of overlapping register classes.
1104//
1105// UberRegSets[0] is a special non-allocatable set.
1106static void computeUberSets(std::vector<UberRegSet> &UberSets,
1107                            std::vector<UberRegSet*> &RegSets,
1108                            CodeGenRegBank &RegBank) {
1109
1110  const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
1111
1112  // The Register EnumValue is one greater than its index into Registers.
1113  assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
1114         "register enum value mismatch");
1115
1116  // For simplicitly make the SetID the same as EnumValue.
1117  IntEqClasses UberSetIDs(Registers.size()+1);
1118  std::set<unsigned> AllocatableRegs;
1119  for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
1120
1121    CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
1122    if (!RegClass->Allocatable)
1123      continue;
1124
1125    const CodeGenRegister::Set &Regs = RegClass->getMembers();
1126    if (Regs.empty())
1127      continue;
1128
1129    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1130    assert(USetID && "register number 0 is invalid");
1131
1132    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1133    for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
1134           E = Regs.end(); I != E; ++I) {
1135      AllocatableRegs.insert((*I)->EnumValue);
1136      UberSetIDs.join(USetID, (*I)->EnumValue);
1137    }
1138  }
1139  // Combine non-allocatable regs.
1140  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1141    unsigned RegNum = Registers[i]->EnumValue;
1142    if (AllocatableRegs.count(RegNum))
1143      continue;
1144
1145    UberSetIDs.join(0, RegNum);
1146  }
1147  UberSetIDs.compress();
1148
1149  // Make the first UberSet a special unallocatable set.
1150  unsigned ZeroID = UberSetIDs[0];
1151
1152  // Insert Registers into the UberSets formed by union-find.
1153  // Do not resize after this.
1154  UberSets.resize(UberSetIDs.getNumClasses());
1155  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1156    const CodeGenRegister *Reg = Registers[i];
1157    unsigned USetID = UberSetIDs[Reg->EnumValue];
1158    if (!USetID)
1159      USetID = ZeroID;
1160    else if (USetID == ZeroID)
1161      USetID = 0;
1162
1163    UberRegSet *USet = &UberSets[USetID];
1164    USet->Regs.insert(Reg);
1165    RegSets[i] = USet;
1166  }
1167}
1168
1169// Recompute each UberSet weight after changing unit weights.
1170static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1171                               CodeGenRegBank &RegBank) {
1172  // Skip the first unallocatable set.
1173  for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
1174         E = UberSets.end(); I != E; ++I) {
1175
1176    // Initialize all unit weights in this set, and remember the max units/reg.
1177    const CodeGenRegister *Reg = 0;
1178    unsigned MaxWeight = 0, Weight = 0;
1179    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1180      if (Reg != UnitI.getReg()) {
1181        if (Weight > MaxWeight)
1182          MaxWeight = Weight;
1183        Reg = UnitI.getReg();
1184        Weight = 0;
1185      }
1186      unsigned UWeight = RegBank.getRegUnitWeight(*UnitI);
1187      if (!UWeight) {
1188        UWeight = 1;
1189        RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1190      }
1191      Weight += UWeight;
1192    }
1193    if (Weight > MaxWeight)
1194      MaxWeight = Weight;
1195
1196    // Update the set weight.
1197    I->Weight = MaxWeight;
1198
1199    // Find singular determinants.
1200    for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1201           RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1202      if ((*RegI)->getRegUnits().size() == 1
1203          && (*RegI)->getWeight(RegBank) == I->Weight)
1204        mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1205    }
1206  }
1207}
1208
1209// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1210// a register and its subregisters so that they have the same weight as their
1211// UberSet. Self-recursion processes the subregister tree in postorder so
1212// subregisters are normalized first.
1213//
1214// Side effects:
1215// - creates new adopted register units
1216// - causes superregisters to inherit adopted units
1217// - increases the weight of "singular" units
1218// - induces recomputation of UberWeights.
1219static bool normalizeWeight(CodeGenRegister *Reg,
1220                            std::vector<UberRegSet> &UberSets,
1221                            std::vector<UberRegSet*> &RegSets,
1222                            std::set<unsigned> &NormalRegs,
1223                            CodeGenRegister::RegUnitList &NormalUnits,
1224                            CodeGenRegBank &RegBank) {
1225  bool Changed = false;
1226  if (!NormalRegs.insert(Reg->EnumValue).second)
1227    return Changed;
1228
1229  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1230  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1231         SRE = SRM.end(); SRI != SRE; ++SRI) {
1232    if (SRI->second == Reg)
1233      continue; // self-cycles happen
1234
1235    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1236                               NormalRegs, NormalUnits, RegBank);
1237  }
1238  // Postorder register normalization.
1239
1240  // Inherit register units newly adopted by subregisters.
1241  if (Reg->inheritRegUnits(RegBank))
1242    computeUberWeights(UberSets, RegBank);
1243
1244  // Check if this register is too skinny for its UberRegSet.
1245  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1246
1247  unsigned RegWeight = Reg->getWeight(RegBank);
1248  if (UberSet->Weight > RegWeight) {
1249    // A register unit's weight can be adjusted only if it is the singular unit
1250    // for this register, has not been used to normalize a subregister's set,
1251    // and has not already been used to singularly determine this UberRegSet.
1252    unsigned AdjustUnit = Reg->getRegUnits().front();
1253    if (Reg->getRegUnits().size() != 1
1254        || hasRegUnit(NormalUnits, AdjustUnit)
1255        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1256      // We don't have an adjustable unit, so adopt a new one.
1257      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1258      Reg->adoptRegUnit(AdjustUnit);
1259      // Adopting a unit does not immediately require recomputing set weights.
1260    }
1261    else {
1262      // Adjust the existing single unit.
1263      RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1264      // The unit may be shared among sets and registers within this set.
1265      computeUberWeights(UberSets, RegBank);
1266    }
1267    Changed = true;
1268  }
1269
1270  // Mark these units normalized so superregisters can't change their weights.
1271  mergeRegUnits(NormalUnits, Reg->getRegUnits());
1272
1273  return Changed;
1274}
1275
1276// Compute a weight for each register unit created during getSubRegs.
1277//
1278// The goal is that two registers in the same class will have the same weight,
1279// where each register's weight is defined as sum of its units' weights.
1280void CodeGenRegBank::computeRegUnitWeights() {
1281  assert(RegUnitWeights.empty() && "Only initialize RegUnitWeights once");
1282
1283  // Only allocatable units will be initialized to nonzero weight.
1284  RegUnitWeights.resize(NumRegUnits);
1285
1286  std::vector<UberRegSet> UberSets;
1287  std::vector<UberRegSet*> RegSets(Registers.size());
1288  computeUberSets(UberSets, RegSets, *this);
1289  // UberSets and RegSets are now immutable.
1290
1291  computeUberWeights(UberSets, *this);
1292
1293  // Iterate over each Register, normalizing the unit weights until reaching
1294  // a fix point.
1295  unsigned NumIters = 0;
1296  for (bool Changed = true; Changed; ++NumIters) {
1297    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1298    Changed = false;
1299    for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1300      CodeGenRegister::RegUnitList NormalUnits;
1301      std::set<unsigned> NormalRegs;
1302      Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
1303                                 NormalRegs, NormalUnits, *this);
1304    }
1305  }
1306}
1307
1308// Find a set in UniqueSets with the same elements as Set.
1309// Return an iterator into UniqueSets.
1310static std::vector<RegUnitSet>::const_iterator
1311findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1312               const RegUnitSet &Set) {
1313  std::vector<RegUnitSet>::const_iterator
1314    I = UniqueSets.begin(), E = UniqueSets.end();
1315  for(;I != E; ++I) {
1316    if (I->Units == Set.Units)
1317      break;
1318  }
1319  return I;
1320}
1321
1322// Return true if the RUSubSet is a subset of RUSuperSet.
1323static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1324                            const std::vector<unsigned> &RUSuperSet) {
1325  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1326                       RUSubSet.begin(), RUSubSet.end());
1327}
1328
1329// Iteratively prune unit sets.
1330void CodeGenRegBank::pruneUnitSets() {
1331  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1332
1333  // Form an equivalence class of UnitSets with no significant difference.
1334  std::vector<unsigned> SuperSetIDs;
1335  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1336       SubIdx != EndIdx; ++SubIdx) {
1337    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1338    unsigned SuperIdx = 0;
1339    for (; SuperIdx != EndIdx; ++SuperIdx) {
1340      if (SuperIdx == SubIdx)
1341        continue;
1342
1343      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1344      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1345          && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
1346        break;
1347      }
1348    }
1349    if (SuperIdx == EndIdx)
1350      SuperSetIDs.push_back(SubIdx);
1351  }
1352  // Populate PrunedUnitSets with each equivalence class's superset.
1353  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1354  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1355    unsigned SuperIdx = SuperSetIDs[i];
1356    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1357    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1358  }
1359  RegUnitSets.swap(PrunedUnitSets);
1360}
1361
1362// Create a RegUnitSet for each RegClass that contains all units in the class
1363// including adopted units that are necessary to model register pressure. Then
1364// iteratively compute RegUnitSets such that the union of any two overlapping
1365// RegUnitSets is repreresented.
1366//
1367// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1368// RegUnitSet that is a superset of that RegUnitClass.
1369void CodeGenRegBank::computeRegUnitSets() {
1370
1371  // Compute a unique RegUnitSet for each RegClass.
1372  const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
1373  unsigned NumRegClasses = RegClasses.size();
1374  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1375    if (!RegClasses[RCIdx]->Allocatable)
1376      continue;
1377
1378    // Speculatively grow the RegUnitSets to hold the new set.
1379    RegUnitSets.resize(RegUnitSets.size() + 1);
1380    RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
1381
1382    // Compute a sorted list of units in this class.
1383    RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
1384
1385    // Find an existing RegUnitSet.
1386    std::vector<RegUnitSet>::const_iterator SetI =
1387      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1388    if (SetI != llvm::prior(RegUnitSets.end()))
1389      RegUnitSets.pop_back();
1390  }
1391
1392  // Iteratively prune unit sets.
1393  pruneUnitSets();
1394
1395  // Iterate over all unit sets, including new ones added by this loop.
1396  unsigned NumRegUnitSubSets = RegUnitSets.size();
1397  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1398    // In theory, this is combinatorial. In practice, it needs to be bounded
1399    // by a small number of sets for regpressure to be efficient.
1400    // If the assert is hit, we need to implement pruning.
1401    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1402
1403    // Compare new sets with all original classes.
1404    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1405         SearchIdx != EndIdx; ++SearchIdx) {
1406      std::set<unsigned> Intersection;
1407      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1408                            RegUnitSets[Idx].Units.end(),
1409                            RegUnitSets[SearchIdx].Units.begin(),
1410                            RegUnitSets[SearchIdx].Units.end(),
1411                            std::inserter(Intersection, Intersection.begin()));
1412      if (Intersection.empty())
1413        continue;
1414
1415      // Speculatively grow the RegUnitSets to hold the new set.
1416      RegUnitSets.resize(RegUnitSets.size() + 1);
1417      RegUnitSets.back().Name =
1418        RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1419
1420      std::set_union(RegUnitSets[Idx].Units.begin(),
1421                     RegUnitSets[Idx].Units.end(),
1422                     RegUnitSets[SearchIdx].Units.begin(),
1423                     RegUnitSets[SearchIdx].Units.end(),
1424                     std::inserter(RegUnitSets.back().Units,
1425                                   RegUnitSets.back().Units.begin()));
1426
1427      // Find an existing RegUnitSet, or add the union to the unique sets.
1428      std::vector<RegUnitSet>::const_iterator SetI =
1429        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1430      if (SetI != llvm::prior(RegUnitSets.end()))
1431        RegUnitSets.pop_back();
1432    }
1433  }
1434
1435  // Iteratively prune unit sets after inferring supersets.
1436  pruneUnitSets();
1437
1438  // For each register class, list the UnitSets that are supersets.
1439  RegClassUnitSets.resize(NumRegClasses);
1440  for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
1441    if (!RegClasses[RCIdx]->Allocatable)
1442      continue;
1443
1444    // Recompute the sorted list of units in this class.
1445    std::vector<unsigned> RegUnits;
1446    RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
1447
1448    // Don't increase pressure for unallocatable regclasses.
1449    if (RegUnits.empty())
1450      continue;
1451
1452    // Find all supersets.
1453    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1454         USIdx != USEnd; ++USIdx) {
1455      if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
1456        RegClassUnitSets[RCIdx].push_back(USIdx);
1457    }
1458    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1459  }
1460}
1461
1462// Compute sets of overlapping registers.
1463//
1464// The standard set is all super-registers and all sub-registers, but the
1465// target description can add arbitrary overlapping registers via the 'Aliases'
1466// field. This complicates things, but we can compute overlapping sets using
1467// the following rules:
1468//
1469// 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
1470//
1471// 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
1472//
1473// Alternatively:
1474//
1475//    overlap(A, B) iff there exists:
1476//    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
1477//    A' = B' or A' in aliases(B') or B' in aliases(A').
1478//
1479// Here subregs(A) is the full flattened sub-register set returned by
1480// A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
1481// description of register A.
1482//
1483// This also implies that registers with a common sub-register are considered
1484// overlapping. This can happen when forming register pairs:
1485//
1486//    P0 = (R0, R1)
1487//    P1 = (R1, R2)
1488//    P2 = (R2, R3)
1489//
1490// In this case, we will infer an overlap between P0 and P1 because of the
1491// shared sub-register R1. There is no overlap between P0 and P2.
1492//
1493void CodeGenRegBank::
1494computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
1495  assert(Map.empty());
1496
1497  // Collect overlaps that don't follow from rule 2.
1498  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1499    CodeGenRegister *Reg = Registers[i];
1500    CodeGenRegister::Set &Overlaps = Map[Reg];
1501
1502    // Reg overlaps itself.
1503    Overlaps.insert(Reg);
1504
1505    // All super-registers overlap.
1506    const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
1507    Overlaps.insert(Supers.begin(), Supers.end());
1508
1509    // Form symmetrical relations from the special Aliases[] lists.
1510    std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
1511    for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
1512      CodeGenRegister *Reg2 = getReg(RegList[i2]);
1513      CodeGenRegister::Set &Overlaps2 = Map[Reg2];
1514      const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
1515      // Reg overlaps Reg2 which implies it overlaps supers(Reg2).
1516      Overlaps.insert(Reg2);
1517      Overlaps.insert(Supers2.begin(), Supers2.end());
1518      Overlaps2.insert(Reg);
1519      Overlaps2.insert(Supers.begin(), Supers.end());
1520    }
1521  }
1522
1523  // Apply rule 2. and inherit all sub-register overlaps.
1524  for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
1525    CodeGenRegister *Reg = Registers[i];
1526    CodeGenRegister::Set &Overlaps = Map[Reg];
1527    const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1528    for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
1529         e2 = SRM.end(); i2 != e2; ++i2) {
1530      CodeGenRegister::Set &Overlaps2 = Map[i2->second];
1531      Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
1532    }
1533  }
1534}
1535
1536void CodeGenRegBank::computeDerivedInfo() {
1537  computeComposites();
1538
1539  // Compute a weight for each register unit created during getSubRegs.
1540  // This may create adopted register units (with unit # >= NumNativeRegUnits).
1541  computeRegUnitWeights();
1542
1543  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1544  // supersets for the union of overlapping sets.
1545  computeRegUnitSets();
1546}
1547
1548//
1549// Synthesize missing register class intersections.
1550//
1551// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1552// returns a maximal register class for all X.
1553//
1554void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1555  for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
1556    CodeGenRegisterClass *RC1 = RC;
1557    CodeGenRegisterClass *RC2 = RegClasses[rci];
1558    if (RC1 == RC2)
1559      continue;
1560
1561    // Compute the set intersection of RC1 and RC2.
1562    const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1563    const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1564    CodeGenRegister::Set Intersection;
1565    std::set_intersection(Memb1.begin(), Memb1.end(),
1566                          Memb2.begin(), Memb2.end(),
1567                          std::inserter(Intersection, Intersection.begin()),
1568                          CodeGenRegister::Less());
1569
1570    // Skip disjoint class pairs.
1571    if (Intersection.empty())
1572      continue;
1573
1574    // If RC1 and RC2 have different spill sizes or alignments, use the
1575    // larger size for sub-classing.  If they are equal, prefer RC1.
1576    if (RC2->SpillSize > RC1->SpillSize ||
1577        (RC2->SpillSize == RC1->SpillSize &&
1578         RC2->SpillAlignment > RC1->SpillAlignment))
1579      std::swap(RC1, RC2);
1580
1581    getOrCreateSubClass(RC1, &Intersection,
1582                        RC1->getName() + "_and_" + RC2->getName());
1583  }
1584}
1585
1586//
1587// Synthesize missing sub-classes for getSubClassWithSubReg().
1588//
1589// Make sure that the set of registers in RC with a given SubIdx sub-register
1590// form a register class.  Update RC->SubClassWithSubReg.
1591//
1592void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1593  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1594  typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
1595                   CodeGenSubRegIndex::Less> SubReg2SetMap;
1596
1597  // Compute the set of registers supporting each SubRegIndex.
1598  SubReg2SetMap SRSets;
1599  for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1600       RE = RC->getMembers().end(); RI != RE; ++RI) {
1601    const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1602    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1603         E = SRM.end(); I != E; ++I)
1604      SRSets[I->first].insert(*RI);
1605  }
1606
1607  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1608  // numerical order to visit synthetic indices last.
1609  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1610    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1611    SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
1612    // Unsupported SubRegIndex. Skip it.
1613    if (I == SRSets.end())
1614      continue;
1615    // In most cases, all RC registers support the SubRegIndex.
1616    if (I->second.size() == RC->getMembers().size()) {
1617      RC->setSubClassWithSubReg(SubIdx, RC);
1618      continue;
1619    }
1620    // This is a real subset.  See if we have a matching class.
1621    CodeGenRegisterClass *SubRC =
1622      getOrCreateSubClass(RC, &I->second,
1623                          RC->getName() + "_with_" + I->first->getName());
1624    RC->setSubClassWithSubReg(SubIdx, SubRC);
1625  }
1626}
1627
1628//
1629// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1630//
1631// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1632// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1633//
1634
1635void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1636                                                unsigned FirstSubRegRC) {
1637  SmallVector<std::pair<const CodeGenRegister*,
1638                        const CodeGenRegister*>, 16> SSPairs;
1639
1640  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1641  for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
1642    CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
1643    // Skip indexes that aren't fully supported by RC's registers. This was
1644    // computed by inferSubClassWithSubReg() above which should have been
1645    // called first.
1646    if (RC->getSubClassWithSubReg(SubIdx) != RC)
1647      continue;
1648
1649    // Build list of (Super, Sub) pairs for this SubIdx.
1650    SSPairs.clear();
1651    for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1652         RE = RC->getMembers().end(); RI != RE; ++RI) {
1653      const CodeGenRegister *Super = *RI;
1654      const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
1655      assert(Sub && "Missing sub-register");
1656      SSPairs.push_back(std::make_pair(Super, Sub));
1657    }
1658
1659    // Iterate over sub-register class candidates.  Ignore classes created by
1660    // this loop. They will never be useful.
1661    for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
1662         ++rci) {
1663      CodeGenRegisterClass *SubRC = RegClasses[rci];
1664      // Compute the subset of RC that maps into SubRC.
1665      CodeGenRegister::Set SubSet;
1666      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1667        if (SubRC->contains(SSPairs[i].second))
1668          SubSet.insert(SSPairs[i].first);
1669      if (SubSet.empty())
1670        continue;
1671      // RC injects completely into SubRC.
1672      if (SubSet.size() == SSPairs.size()) {
1673        SubRC->addSuperRegClass(SubIdx, RC);
1674        continue;
1675      }
1676      // Only a subset of RC maps into SubRC. Make sure it is represented by a
1677      // class.
1678      getOrCreateSubClass(RC, &SubSet, RC->getName() +
1679                          "_with_" + SubIdx->getName() +
1680                          "_in_" + SubRC->getName());
1681    }
1682  }
1683}
1684
1685
1686//
1687// Infer missing register classes.
1688//
1689void CodeGenRegBank::computeInferredRegisterClasses() {
1690  // When this function is called, the register classes have not been sorted
1691  // and assigned EnumValues yet.  That means getSubClasses(),
1692  // getSuperClasses(), and hasSubClass() functions are defunct.
1693  unsigned FirstNewRC = RegClasses.size();
1694
1695  // Visit all register classes, including the ones being added by the loop.
1696  for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
1697    CodeGenRegisterClass *RC = RegClasses[rci];
1698
1699    // Synthesize answers for getSubClassWithSubReg().
1700    inferSubClassWithSubReg(RC);
1701
1702    // Synthesize answers for getCommonSubClass().
1703    inferCommonSubClass(RC);
1704
1705    // Synthesize answers for getMatchingSuperRegClass().
1706    inferMatchingSuperRegClass(RC);
1707
1708    // New register classes are created while this loop is running, and we need
1709    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
1710    // to match old super-register classes with sub-register classes created
1711    // after inferMatchingSuperRegClass was called.  At this point,
1712    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
1713    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
1714    if (rci + 1 == FirstNewRC) {
1715      unsigned NextNewRC = RegClasses.size();
1716      for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
1717        inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
1718      FirstNewRC = NextNewRC;
1719    }
1720  }
1721}
1722
1723/// getRegisterClassForRegister - Find the register class that contains the
1724/// specified physical register.  If the register is not in a register class,
1725/// return null. If the register is in multiple classes, and the classes have a
1726/// superset-subset relationship and the same set of types, return the
1727/// superclass.  Otherwise return null.
1728const CodeGenRegisterClass*
1729CodeGenRegBank::getRegClassForRegister(Record *R) {
1730  const CodeGenRegister *Reg = getReg(R);
1731  ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
1732  const CodeGenRegisterClass *FoundRC = 0;
1733  for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
1734    const CodeGenRegisterClass &RC = *RCs[i];
1735    if (!RC.contains(Reg))
1736      continue;
1737
1738    // If this is the first class that contains the register,
1739    // make a note of it and go on to the next class.
1740    if (!FoundRC) {
1741      FoundRC = &RC;
1742      continue;
1743    }
1744
1745    // If a register's classes have different types, return null.
1746    if (RC.getValueTypes() != FoundRC->getValueTypes())
1747      return 0;
1748
1749    // Check to see if the previously found class that contains
1750    // the register is a subclass of the current class. If so,
1751    // prefer the superclass.
1752    if (RC.hasSubClass(FoundRC)) {
1753      FoundRC = &RC;
1754      continue;
1755    }
1756
1757    // Check to see if the previously found class that contains
1758    // the register is a superclass of the current class. If so,
1759    // prefer the superclass.
1760    if (FoundRC->hasSubClass(&RC))
1761      continue;
1762
1763    // Multiple classes, and neither is a superclass of the other.
1764    // Return null.
1765    return 0;
1766  }
1767  return FoundRC;
1768}
1769
1770BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
1771  SetVector<const CodeGenRegister*> Set;
1772
1773  // First add Regs with all sub-registers.
1774  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
1775    CodeGenRegister *Reg = getReg(Regs[i]);
1776    if (Set.insert(Reg))
1777      // Reg is new, add all sub-registers.
1778      // The pre-ordering is not important here.
1779      Reg->addSubRegsPreOrder(Set, *this);
1780  }
1781
1782  // Second, find all super-registers that are completely covered by the set.
1783  for (unsigned i = 0; i != Set.size(); ++i) {
1784    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
1785    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
1786      const CodeGenRegister *Super = SR[j];
1787      if (!Super->CoveredBySubRegs || Set.count(Super))
1788        continue;
1789      // This new super-register is covered by its sub-registers.
1790      bool AllSubsInSet = true;
1791      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
1792      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1793             E = SRM.end(); I != E; ++I)
1794        if (!Set.count(I->second)) {
1795          AllSubsInSet = false;
1796          break;
1797        }
1798      // All sub-registers in Set, add Super as well.
1799      // We will visit Super later to recheck its super-registers.
1800      if (AllSubsInSet)
1801        Set.insert(Super);
1802    }
1803  }
1804
1805  // Convert to BitVector.
1806  BitVector BV(Registers.size() + 1);
1807  for (unsigned i = 0, e = Set.size(); i != e; ++i)
1808    BV.set(Set[i]->EnumValue);
1809  return BV;
1810}
1811